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Abstract
We present a method for geometric point light source calibration. Unlike prior works that use Lambertian spheres, mirror
spheres, or mirror planes, we use a calibration target consisting of a plane and small shadow casters at unknown positions
above the plane.We show that shadow observations from amoving calibration target under a fixed light follow the principles of
pinhole camera geometry and epipolar geometry, allowing joint recovery of the light position and 3D shadow caster positions,
equivalent to how conventional structure from motion jointly recovers camera parameters and 3D feature positions from
observed 2D features. Moreover, we devised a unified light model that works with nearby point lights as well as distant light
in one common framework. Our evaluation shows that our method yields light estimates that are stable and more accurate
than existing techniques while having a much simpler setup and requiring less manual labor.

Keywords Light source calibration · Photometric stereo · Structure from motion

1 Introduction

Accurately estimating the position or direction of a light
source is essential for many physics-based computer vision
tasks, such as shape from shading (Horn 1970), photomet-
ric stereo (Silver 1980; Woodham 1980), or reflectance and
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material estimation (Goldman et al. 2010). In these tasks,
inaccurate light positions cause errors. For example, Fig. 1
shows the relation between light calibration error and sur-
face normal estimation error in a synthetic experiment with
a directional light, a Lambertian sphere as target object, and
a basic photometric stereo method (Silver 1980; Woodham
1980).Wecan clearly see the importanceof accurate light cal-
ibration. Ideally, the error of a calibration method is so small
that developers of physics-based modeling algorithms never
need consider it. Although there are approaches to refine
inaccurate light calibration (Quéau et al. 2017) or bypass cal-
ibration altogether [uncalibrated photometric stereo (Alldrin
et al. 2007; Matsushita et al. 2010; Chen et al. 2019)], they
do not make highly accurate calibration obsolete. Uncali-
brated photometric stereo cannot overcome the generalized
bas-relief ambiguity for Lambertian materials and even in
favorable settings they do not reach the accuracy of accurate
calibration. Despite the importance of accurate light calibra-
tion, it remains laborious as researchers have not yet come
up with accurate and easy to use techniques.

This paper proposes a method for calibrating both distant
andnear point lights.We introduce a calibration target, shown
in Fig. 2, that can be made within 1–2min from off-the-shelf
items for less than five dollars. Instead of specular highlights
on spheres, we use a planar board (shadow receiver) and pins
(shadow casters) that cast small point shadows on the board.
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Fig. 1 Light calibration error versus normal estimation error in photo-
metric stereo. Each data point is the average of 100 independent runs

Fig. 2 Clockwise from top left: our calibration target, a camera observ-
ing the movement of shadows cast by a point light while the target is
moved, our algorithm’s workflow, and the estimation result (Color fig-
ure online)

Moving the board around in front of a static camera and light
source and observing the pin head shadows under various
board poses lets us determine the light position/direction.

The reasons why we operate with shadows on a planar
target rather than with specular highlights or spherical tar-
gets are the following: A key factor in the overall calibration
accuracy is the accuracy with which one can localize a cal-
ibration method’s points of interest in the captured images.
With the off-the-shelf pins that we use, we can automati-
cally localize shadow centers with an accuracy of ∼1–2px
(Fig. 3, left), which is in marked contrast to how accurately
we can detect specular highlights (Fig. 3, center and right).
Moreover, our planar target translates small shadow localiza-
tion errors only into small light direction errors. In contrast,
mirror sphere methods amplify localization errors since the
surface normal, which determines the light reflection angle,
varies across the sphere.

From a geometric point of view, point lights are inverse
pinhole cameras (Hu et al. 2004) (see Fig. 4). We can thus
build upon past studies on multiview projective geometry. In
particular, we show that shadows of static objects on a plane

Fig. 3 Left: the pin head shadows on our planar target. Center and
right: specular highlights on a mirror plane (Shen and Cheng 2011) and
a mirror sphere

Fig. 4 Cameras versus point lights. A cameramatrixPi projects a scene
point c j to an image point si j just like a light matrix Li projects a scene
point c j to a shadow si j . Conventional SfM estimates Pi and c j from
{si j } and in this paper we show how to estimate Li and c j from {si j }

follow the principles of epipolar geometry. Further we show
that, analogous to structure frommotion (SfM) which jointly
estimates camera poses and3Dpoint locations,we can jointly
estimate light position/direction and shadow caster pin posi-
tions from moving our calibration target and observing the
pin shadows, i.e., we can estimate light and pins via structure
from pin motion. Conveniently, this joint estimation of light
and pins allows users to place the pins arbitrarily on the board
and without needing to know their locations—in contrast to
most previous works—our calibration target does not need
to be carefully manufactured or measured.

To summarize, the primary contributions of our work are
as follows. First, we show that shadow projection with a
unified light model for both nearby and distant light fol-
lows the principles of pinhole camera projection and epipolar
geometry. Second, using these principles we show how the
joint estimation of light position/direction and 3D shadow
caster positions based on shadow observations can be for-
mulated as a bundle adjustment problem and we develop
a robust solution technique for accurately achieving this
estimation. Finally, we introduce a practical light source cal-
ibration method based on an easy-to-make calibration target.
Instead of requiring a carefully designed calibration target,
our method only uses needle pins that are stuck at unknown
locations on a plane.

The benefits of the new calibration target and associated
solution method are an extremely simple target construc-
tion process, a calibration process that requires no manual
intervention other than moving the target since all required
information is inferred automatically, and improved accuracy
compared to prior work.
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2 RelatedWork

Light source calibration can be roughly divided into two
tasks: geometric calibration and radiant intensity distribu-
tion (RID) calibration. This paper is solely concerned with
geometric calibration but in this section, we introduce the
prior works of both tasks and discuss the relationship to our
work.

Geometric Light Source Calibration The goal of geometric
light source calibration is to estimate

1. Light source directions in scenes with distant point light
sources or

2. Light source positions in scenes with nearby point light
sources.

In category 1, Zhang and Yang (2001) [and Wei (2003)
with a more robust implementation] proposed a method
to estimate multiple distant lights based on a Lambertian
sphere’s shadow boundaries and their intensities. Wang
and Samaras (2002) extended this to objects of arbitrary
but known shape, combining information from the object’s
shading and the shadows cast on the scene. Zhou and Kamb-
hamettu (2002) estimated light directions from stereo images
of a reference sphere with specular reflection. Cao and Shah
(2005) proposed a method for estimating camera parameters
and the light direction from shadows of common vertical
objects such as walls instead of special, precisely fabricated
objects, which can be used for images from less restricted
settings.

In category 2, Powell et al. (2001) triangulated multi-
ple light positions from highlights on three specular spheres
at known positions. Other methods also used reflective
spheres (Ackermann et al. 2013; Hara et al. 2005; Schnieders
and Wong 2013; Takai et al. 2009; Wong et al. 2008) or
specially designed geometric objects (Aoto et al. 2012; Bun-
teong and Chotikakamthorn 2016; Weber and Cipolla 2001).
Unlike these methods, some methods were based on pla-
nar mirrors (Schnieders et al. 2009; Shen and Cheng 2011).
They modeled the mirror by perspective projection and infer
parameters similar to camera calibration. An interesting
method, quite similar to ours in its simplicity and usage of
shadows, is Bouguet and Perona’s (1999, Sec. 2.3): They
captured a pencil standing upright at multiple positions on
a plane and triangulated all rays from pencil tip shadow to
pencil tip. The core difference to our method is that it does
not jointly estimate the calibration target (i.e., pencil) with
the light position.

In highlight-based geometric calibration methods, pre-
cisely localizing the light source center’s reflection on the

specular surface is problematic in practice: Even with the
shortest exposure at which one can still barely detect or
annotate other parts of the calibration target (pose detection
markers, sphere outline, etc.), the highlight is much bigger
than an image of the light source (such as a switched off LED
seen in themirror) would be; see Fig. 3, center and right. Lens
flare, noise, etc. further complicate segmenting the highlight.
Also, since the highlight is generally not a circle but a conic
section on a mirror plane or an even more complicated shape
on a mirror sphere, the light source center’s image (i.e., the
intersection of the light cone’s axis and the mirror) cannot
be computed as the highlight’s centroid, as for example Shen
and Cheng (2011) did.We thus argue that it is extremely hard
to reliably localize light source centers on specular surfaces
with pixel accuracy—even with careful manual annotation.
Instead, we employ very small cast shadows for stable local-
ization.

Mirror sphere-based geometric calibration methods suf-
fer from the fact that the sphere curvature amplifies highlight
localization errors into larger light direction errors since the
surface normal, which determines the reflection angle, dif-
fers between erroneous and correct highlight location. Also,
the spheres need to be very precise since “even slight geo-
metric inaccuracies on the surface can lead to highlights that
are offset by several pixels and markedly influence the sta-
bility of the results” (Ackermann et al. 2013). The prices
of precise spheres (∼$40 for a high-quality 60mm bearing
ball of which we need 3–8 for accurate calibration) rules out
high-accuracy sphere-based calibration for users on a tight
budget.

Further, sphere methods typically require accurate anno-
tation of the sphere outline in the images. Although methods
for automatic ellipse detection exist (Pătrăucean et al. 2016),
accurately detecting the boundary of the mirror sphere is
extremely difficult because the sphere’s exact outline is
hard to distinguish from the background, especially in dark
images, since the sphere also mirrors the background.

Regarding the triangulation ofmultiple line constraints for
the position of a light source, Hartley and Sturm (1997) and
Szeliski (2010, Sec. 7.1) pointed out that, given noisy obser-
vations, reprojection errorminimization is superior to finding
the 3D point closest to each ray in a set of rays. The latter is
a popular choice in many methods of category 2, for exam-
ple Shen and Cheng’s mirror plane method (Shen and Cheng
2011) or most sphere methods prior to Ackermann’s (2013).
By contrast, Ackermann et al. (2013) and we follow Hartley
and Sturm’s suggestion and minimize reprojection error to
obtain a more accurate prediction of light source positions.

The connection between pinhole cameras and point lights
that we describe and exploit in the next section, has already
been shown by others: Hu et al. (2004) use it in a theoret-
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ical setting similar to ours with point objects and shadows.
However, they do not turn it into a full mathematical formal-
ism for the light estimation but only discuss it with geometric
sketches (and suggest using the inferior triangulationmethod
mentioned above).

We push the idea further by deriving mathematical solu-
tions, extending it to a unified light model that includes
distant light, embedding it in an SfM framework (Snavely
et al. 2006; Triggs et al. 2000) that minimizes reprojection
error, deriving an initialization for the non-convexminimiza-
tion, devising a simple calibration target that leverages our
method in the real world, and demonstrating our method’s
accuracy in simulated and real-world experiments.

Radiant Intensity Distribution Calibration While point light
sources are often assumed to emit light uniformly in all direc-
tions, practical light sources such as LEDs actually have a
non-isotropic lighting distribution (radiant intensity distribu-
tion; RID), which is described in terms of light orientation,
intensities, and an anisotropy function. Park et al. (2014) and
Ma et al. (2019) handle non-isotropic lights and jointly esti-
mate the light position and RID from imagery of shading
and specular reflections on a planar calibration target. In the
context of photometric stereo, Quéau et al. (2018), Collins
and Bartoli (2012), and Song et al. (2018) proposed pipelines
that first perform geometric calibration by specularity-based
triangulation and then estimate the RID from shading on
a planar target. Regarding the geometric calibration, these
methods have shown to obtain a more accurate estimation
compared to the plane-based methods of Park et al. (2014)
and Ma et al. (2019). Although this paper focuses on geo-
metric calibration, we note that plane-based RID calibration
could be combined with our method since it uses a similar
planar target.

Anotherway to handle practical light sources in photomet-
ric stereo are “semi-calibrated” approaches (Cho et al. 2018;
Logothetis et al. 2017), which assume given light source
positions/directions and estimate the non-uniform light inten-
sities simultaneously with the scene shape. Their methods
take care of part of RID, i.e., the intensities, and assume
isotropic lights or known lights anisotropy function.

More generally, incoming light may be not only from
a single point source but also from a distribution of many
points. Sato et al. (2001, 2003) used shadows of an object
of known shape to estimate illumination distributions of area
lights while being restricted to distant light and having to
estimate the shadow receiver’s reflectance. Recently, Gard-
ner et al. (2017) proposed an estimation method of indoor
illumination from a single image with a deep neural network.
By limiting the scenes to indoor environments and training
their model with a panorama image dataset, their method
does not require any calibration target.

3 ShadowGeometry

As foundation for the later sections, in this sectionwewill lay
out the mathematics behind shadow projection. Specifically,
we analyze how a point light or distant, parallel light projects
shadows of infinitesimal shadowcasters on a shadow receiver
plane. In Sect. 3.1, we will derive the shadow projection in
an entirely static scene. In Sect. 3.2, we will then analyze
shadows in a scene where the plane and the shadow casters
remain static but the light source moves.

Throughout this paper, we will denote matrices and vec-
tors with bold upper and lower case, respectively, and the
homogeneous form of vector v with ṽ. Further, we will
sometimes use parentheses and indices to refer to parts of
a vector/matrix/tensor: (v)i denotes vector v’s i th element,
(L)i, j is the element in row i and column j ofmatrixL, (L)i,:
refers to the entire row i of L, and (L):,i : j refers to all rows
of columns i to j of L.

3.1 Shadow FormationModel

In this section, we show the mathematical relationship
between a light source, shadow casters, and their correspond-
ing shadows on a shadow receiver plane �. Let us for now
assume that the pose of the plane � is fixed to the world
coordinate system’s x–y plane.

Nearby Light Let a nearby point light be located at l =[
lx , ly, lz

]� ∈ R
3 in world coordinates. An infinitesimally

small caster located at c ∈ R
3 in world coordinates casts a

shadow on the receiver plane � at s ∈ R
2 in �’s 2D coor-

dinate system, which is s̄ = [
s�, 0

]�
in world coordinates

because � coincides with the world’s x–y plane. Since l, c,
and s̄ are all on the same line, the lines cs̄ and ls̄ must be
parallel:

(c − s̄) × (l − s̄) = 0. (1)

Inserting c=[cx , cy, cz]�, s̄=[sx , sy, 0]�, and l = [lx , ly, lz]�
(all in non-homogeneous 3D global world coordinates) into
Eq. (1) yields

(c − s̄) × (l − s̄) =
⎡

⎣
cx − sx

cy − sy

cz − 0

⎤

⎦ ×
⎡

⎣
lx − sx

ly − sy

lz − 0

⎤

⎦ = 0.

Expanding the cross-product yields

⎧
⎪⎨

⎪⎩

(cy − sy)lz − cz(ly − sy) = 0,

cz(lx − sx ) − (cx − sx )lz = 0,

(cx − sx )(ly − sy) − (cy − sy)(lx − sx ) = 0,
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⇔

⎧
⎪⎪⎨

⎪⎪⎩

sx = cxlz − czlx

lz − cz
,

sy = cylz − czly

lz − cz
.

We can then rewrite s in homogeneous coordinates using
scaling parameters γ and λ:

γ s̃ =
⎡

⎢
⎣

cx lz−czlx
lz−cz

cylz−czly
lz−cz

1

⎤

⎥
⎦

−(lz − cz)γ︸ ︷︷ ︸
λ

s̃ =
⎡

⎣
−(cxlz − czlx )

−(cylz − czly)

−(lz − cz)

⎤

⎦

λs̃ =
⎡

⎣
−lz 0 lx 0
0 −lz ly 0
0 0 1 −lz

⎤

⎦

⎡

⎢⎢
⎣

cx

cy

cz

1

⎤

⎥⎥
⎦ = Lc̃.

In the following, we will call L a light matrix. As we can
see, point lights and pinhole cameras can be described by
similar mathematical models with the following correspon-
dences: (point light ⇔ pinhole camera), (shadow receiver
plane ⇔ image plane), (shadow caster ⇔ scene point), and
(light matrixL⇔ camera projection matrix P = K [R | t ]),
as illustrated in Fig. 4. We can even decompose the light
matrix L into “intrinsics” and “extrinsics” parameterized by
the light location l as

L =
⎡

⎣
−lz 0 lx 0
0 −lz ly 0
0 0 1 −lz

⎤

⎦ =
⎡

⎣
−lz 0 lx

0 −lz ly

0 0 1

⎤

⎦

︸ ︷︷ ︸
intrinsics K

⎡

⎣
1 0 0 −lx

0 1 0 −ly

0 0 1 −lz

⎤

⎦

︸ ︷︷ ︸
extrinsics [R|t]

.

(2)

Distant Light For distant light, all light rays in the scene are
parallel, l = [

lx , ly, lz
]� ∈ S2 (S2 = {v ∈ R

3 : |v| = 1}) is
a light direction instead of a position, and the line cs̄must be
parallel to l:

(c − s̄) × l = 0. (3)

Inserting c, s̄, and l into Eq. (3) yields

(c − s̄) × l =
⎡

⎣
cx − sx

cy − sy

cz − 0

⎤

⎦ ×
⎡

⎣
lx

ly

lz

⎤

⎦ = 0.

By expanding the cross-product, we have

⎧
⎪⎨

⎪⎩

(cy − sy)lz − czly = 0,

czlx − (cx − sx )lz = 0,

(cx − sx )ly − (cy − sy)lx = 0,

⇔

⎧
⎪⎪⎨

⎪⎪⎩

sx = cxlz − czlx

lz
,

sy = cylz − czly

lz
.

We can then write s in homogeneous coordinates as:

γ s̃ =
⎡

⎢
⎣

cx lz−czlx
lz

cylz−czly
lz

1

⎤

⎥
⎦

−lzγ︸ ︷︷ ︸
λ

s̃ =
⎡

⎣
−(cxlz − czlx )

−(cylz − czly)

−lz

⎤

⎦

λs̃ =
⎡

⎣
−lz 0 lx 0
0 −lz ly 0
0 0 0 −lz

⎤

⎦

⎡

⎢⎢
⎣

cx

cy

cz

1

⎤

⎥⎥
⎦ = Lc̃.

The difference to the nearby light case is the entry (L)3,3 = 0.
This light matrix resembles orthographic projection with a

camera matrix
[
1 0 0 0
0 1 0 0
0 0 0 1

]
.

Unifying Nearby and Distant Light Having two different
models, a nearby and a distant light model, is a nuisance
because it forces users to choose the one that better fits their
scene, which can be hard especially for inexperienced users.
Further, the real world does not exhibit a sharp transition
from nearby to distant light (at a distance of, say, 3m) but
rather a smooth transition. It is thus desirable to have a unified
model that also transitions smoothly. The intuition behind a
unification is that orthographic projection can be seen as a
special case of perspective projection with an infinite focal
length.

Since in homogeneous coordinates we consider vectors
equivalent if they are equal up to a constant, we can divide
the nearby and distant light matrices by lz :

Lnearby =
⎡

⎣
−lz 0 lx 0
0 −lz ly 0
0 0 1 −lz

⎤

⎦ →
⎡

⎣
−1 0 lx/lz 0
0 −1 ly/lz 0
0 0 1/lz −1

⎤

⎦ ,

Ldistant =
⎡

⎣
−lz 0 lx 0
0 −lz ly 0
0 0 0 −lz

⎤

⎦ →
⎡

⎣
−1 0 lx/lz 0
0 −1 ly/lz 0
0 0 0 −1

⎤

⎦ .
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Fig. 5 A plane has a shadow caster above it at a fixed but unknown
position. Given shadow s cast by light l1, the caster causing this shadow
can be anywhere on the line l1s, yielding an infinite series of caster
position hypotheses. When the light moves to position l2, this series
results in a line of shadows, the equivalent of the epipolar line in camera
geometry

We can see that, if the light source moves towards infinity,
Lnearby converges to Ldistant. Therefore, we use

λs̃ =
⎡

⎣
−1 0 lx/lz 0
0 −1 ly/lz 0
0 0 1/lz −1

⎤

⎦

⎡

⎢⎢
⎣

cx

cy

cz

1

⎤

⎥⎥
⎦ = Lc̃. (4)

as unified shadow projection equation for representing both
nearby and distant light. Later in this paper, we will see that
we can use the unified projectionmodel for determining light
positions and directions in synthetic as well as real-world
datasets.

3.2 Epipolar Geometry for Shadow Correspondences

We will now look at a scene with a moving light source,
static shadow casters, and a static shadow receiver plane. We
analyze shadow correspondences, i.e., the relation between
shadows belonging to the same caster but different light
positions. As we saw, shadow projection is a special case
of projective geometry. Thus, shadow correspondences in a
static scene with a moving point light should follow the same
principles as image point correspondences in pinhole camera
projection with a static scene and a moving camera: epipolar
geometry.

3.2.1 Fundamental ShadowMatrix

Figure 5 shows a shadow receiver plane � and two point
lights at positions l1 and l2. Shadow s from a shadow caster
at an unknown position cast by light l1 has corresponding
shadows s′ cast by light l2. These can be found on an epipolar
line arising from a fundamental matrix, which we will derive
now analogous to the derivation of the standard fundamental
matrix.

Let c be the caster position, l1 �= l2 be the light positions in
calibration target coordinates, Li be li ’s light matrix, L+

1 =
(L�

1 L1)
−1L�

1 be L1’s pseudo inverse, ∅L1 ∈ null(L1) be a

non-zero vector in L1’s one-dimensional null space, and η

be a scalar. We then have

λ1s̃1 = L1c̃ ⇒ c̃ = λ1L
+
1 s̃1 + η ∅L1

λ2s̃2 = L2c̃ = λ1L2L
+
1 s̃1 + ηL2 ∅L1 .

Multiplying s̃�2
[
L2∅L1

]
× (with [·]× being the cross-product’s

matrix form) from the left, we obtain

λ2 s̃�2
[
L2∅L1

]
× s̃2

︸ ︷︷ ︸
0

= λ1s̃�2
[
L2∅L1

]
× L2L

+
1 s̃1

+ η s̃�2
[
L2∅L1

]
× L2∅L1︸ ︷︷ ︸
0

⇒ 0 = s̃�2
[
L2∅L1

]
× L2L

+
1︸ ︷︷ ︸

F

s̃1. (5)

Thus, corresponding shadows s̃1 and s̃2 fulfill a condition
with some fundamental matrix F that is directly analo-
gous to the regular correspondence condition. For Li =[ −1 0 l(i)x /l(i)z 0

0 −1 l(i)y /l(i)z 0

0 0 1/l(i)z −1

]

, we obtain the null space vector ∅L1 ∝
[
l(1)x , l(1)y , l(1)z , 1

]�
and finally the fundamental shadow

matrix

F = [
L2∅L1

]
× L2L

+
1

∝ 1

l(2)z

⎡

⎣
0 −l(1)z +l(2)z −l(1)y l(2)z +l(2)y l(1)z

l(1)z −l(2)z 0 l(1)x l(2)z −l(2)x l(1)z

l(1)y l(2)z −l(2)y l(1)z −l(1)x l(2)z +l(2)x l(1)z 0

⎤

⎦

=
⎡

⎣
0 f1 f2

− f1 0 f3
− f2 − f3 0

⎤

⎦ . (6)

Interestingly, this matrix is a special case of regular funda-
mental matrices: It is skew-symmetric. For corresponding
shadows s̃1 = [u, v, 1]� and s̃2 = [u′, v′, 1]� the corre-
spondence condition Eq. (5) becomes

0 = [
u v 1

]
⎡

⎣
0 f1 f2

− f1 0 f3
− f2 − f3 0

⎤

⎦

⎡

⎣
u′
v′
1

⎤

⎦

= (uv′ − vu′) f1 + (u − u′) f2 + (v − v′) f3 (7)

We can thus estimate the parameters f1, f2, and f3 of our
fundamental shadowmatrix up to scale by solving the homo-
geneous linear system

⎡

⎢
⎣

u1v
′
1 − v1u′

1 u1 − u′
1 v1 − v′

1
...

...
...

unv′
n − vnu′

n un − u′
n vn − v′

n

⎤

⎥
⎦

⎡

⎣
f1
f2
f3

⎤

⎦ = 0n×1 (8)
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with n ≥ 2 correspondences using singular value decom-
position. This is actually equivalent to estimating regular
essential matrices for cameras that only undergo pure trans-
lation and no relative rotation (Szeliski 2010, Eq. 7.27). This
makes sense since we saw in Eq. (2) that point lights act
like cameras with an identity rotation. As a consequence, all
properties discussed in the following also hold for essential
matrix estimation of cameras with pure translation.

Conveniently, the fundamental shadow matrix has a rank
of 2 as a direct result of estimating the parameters of a skew-
symmetric matrix and the rank does not need to be enforced
in a post-processing step. Further, the matrix can be esti-
mated up to scale from 2 point correspondences. Moreover,
in contrast to regular fundamental/essential matrix estima-
tion, fundamental shadow matrix estimation does not suffer
from the most common degenerate scene point configura-
tion: all 3D scene points lying in a plane. We will show this
now.

Planar Degeneracy A degeneracy in fundamental matrix
estimation means that a correct fundamental matrix F exists
and could be computed from the projection matrices, but the
3D scene points are in a configuration such that we can find
an F′ �= F that also fulfills the correspondence condition
s̃�2 F′s̃1 = 0.

In regular SfM, a well-known degeneracy are coplanar
scene points. In this case, their projections in both views are
related by a homography: x′

i = Hxi , the correspondence

condition 0 = x′�
i Fxi = x′�

i FH−1
︸ ︷︷ ︸

S

x′
i is true for any skew-

symmetric S, and thus any fundamental matrix F = SH
(with any skew-symmetric S and the homography H) is a
valid solution (Hartley andZisserman2004, Sec. 11.9.2). The
planar degeneracy is relevant in practice because a camera
may have only captured scene points from a wall, floor, or
table surface.

Wewill now show that fundamental shadowmatrices have
no general planar degeneracy, i.e., a degeneracy from copla-
nar casters independent of their configuration towards the
lights and image plane: fundamental shadow matrices are
skew-symmetric, are thus essential matrices (Hartley and
Zisserman 2004, Result 9.17) and can have atmost the degen-
eracies of essential matrices. Further, since essential matrices
have the form [t]×R, our skew-symmetric shadow matrices
are a special case of essential matrices where we haveR = I.
From Negahdaripour (1990) we know that when observing
the projection of a 3D plane, there are 2 sets of translation,
rotation, and 3D plane coordinates that satisfy the observa-
tions. Let R be the true and R′ be the alternative rotation.
Negahdaripour’s lemma (Negahdaripour 1990, p. 5) states
that

R′ = VR with

V = (1 − cos θ̄ ) n̄n̄� + sin θ̄ N + cos θ̄ I,
(9)

where N is skew-symmetric and n̄ is a unit vector. Here the
precise meanings of n̄, θ̄ , and N do not matter, only the
form of Eq. (9) does. Recall that the rotations of fundamental
shadow matrices are identities. Inserting R′ = R = I into
Eq. (9) yields

I = VI = (1 − cos θ̄ ) n̄n̄� + sin θ̄ N + cos θ̄ I

⇒ I = n̄n̄� + sin θ̄

1 − cos θ̄
N. (10)

As |n̄| = 1, n̄n̄� has at most one diagonal element that is 1.
As N is skew-symmetric, the diagonal elements of sin θ̄

1−cos θ̄
N

are all 0. Thus, Eq. (10) cannot be true, implying that con-
straining the essential matrix to a skew-symmetric matrix
removes the planar degeneracy.

In our application, not having a general planar degeneracy
is important asweworkwith approximately coplanar shadow
casters (the red pin heads in Fig. 2). Further, it means we can
estimateFwith 3 casters even though3 casters are necessarily
coplanar.

Apart from the lack of a general planar degeneracy, there
do exist specialized ones. Most of them are fairly obvious
and rather irrelevant in practice, e.g., casters lying on the
image plane (their shadows thus always keeping their posi-
tions) or all lights and casters being collinear (all shadows
thus being projected to the same point). Beside these, the
only degeneracy we could find is all casters and both lights
being coplanar, in which case all shadows are projected to the
line where the image plane and the casters-and-lights plane
intersect. However, this configuration is unlikely in reality.
To make it non-degenerate, it suffices that 1 caster or 1 light
is not in the casters-and-lights plane.

We further found empirically that the estimation ofF from
2 casters, which are necessarily collinear, is not generally
degenerate. Both lights and one or both casters or both cast-
ers and one or both lights being collinear is degenerate. And
again, both casters and both lights being coplanar is degener-
ate but one light or caster not being in the casters-and-lights
plane is non-degenerate.

Hartley Normalization Hartley (1997) proposed normaliz-
ing the points [ui , vi ]� and [u′

i , v
′
i ]� to zero mean and unit

variance in x- and y-directions to increase the algorithm’s
numerical stability in applications with large x and y image
coordinates. In regularHartley normalization, it is admissible
to normalize the points of the left and right images indepen-
dently (with scaling parameters sx , sy , s′

x , s′
y and shifting
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parameters dx , dy , d ′
x , d ′

y) to obtain the normalized point
coordinates (un, vn) and (u′

n, v
′
n):

⎡

⎣
un

vn

1

⎤

⎦ =
⎡

⎢
⎣

1
sx

0 − dx
sx

0 1
sy

− dy
sy

0 0 1

⎤

⎥
⎦

⎡

⎣
u
v

1

⎤

⎦ and

⎡

⎣
u′

n

v′
n

1

⎤

⎦ =

⎡

⎢⎢
⎣

1
s′

x
0 − d ′

x
s′

x

0 1
s′

y
− d ′

y
s′

y

0 0 1

⎤

⎥⎥
⎦

⎡

⎣
u′
v′
1

⎤

⎦ .

For fundamental shadow matrices, we need to be more
cautious because we want to maintain their special structure.
Normalizing both images identically, i.e.,

⎡

⎣
un

vn

1

⎤

⎦ = N

⎡

⎣
u
v

1

⎤

⎦ and

⎡

⎣
u′
n

v′
n

1

⎤

⎦ = N

⎡

⎣
u′
v′
1

⎤

⎦ with N =
⎡

⎢
⎣

1
sx

0 − dx
sx

0 1
sy

− dy
sy

0 0 1

⎤

⎥
⎦

preserves F’s skew-symmetry:

N�
⎡

⎣
0 f1 f2

− f1 0 f3
− f2 − f3 0

⎤

⎦N

= 1

sx sy

⎡

⎣
0 f1 − f1dy + f2sy

− f1 0 f1dx + f3sx

f1dy − f2sy − f1dx − f3sx 0

⎤

⎦ .

Using different matrices for the left and right image would
result in a non-skew-symmetric matrix which would require
more than 2 point correspondences for estimation.

Analogous to regular Hartley normalization, from the
matrixFn for normalized points, we can compute thematrixF
for unnormalized points as

F = N�Fn N.

3.2.2 Trifocal Shadow Tensor

For shadow correspondences in 3 images, we have a trifo-
cal shadow tensor (“tritensor” or “shadow tritensor” in the
following). The tritensor’s general form for 3 general projec-
tion matrices P1, P2, P3 is Hartley, R.I., Zisserman [2004,
Eq. (17.12)]

(T )p,q,r = (−1)p+1det

⎡

⎢⎢
⎣

(P1)1:p−1,:
(P1)p+1:n,:

(P2)q,:
(P3)r ,:

⎤

⎥⎥
⎦ (11)

(recall that the (·)i, j notation extracts parts of a matrix).

Inserting 3 light matrices Li =
[ −1 0 l(i)x /l(i)z 0

0 −1 l(i)y /l(i)z 0

0 0 1/l(i)z −1

]

for P1,

P2, and P3 yields

T = 1

l(1)z l(2)z l(3)z

·
⎡

⎢
⎣

⎡

⎢
⎣

l(1)z

(
l(2)x l(3)z −l(3)x l(2)z

)
l(2)z

(
l(1)y l(3)z −l(3)y l(1)z

)
l(2)z

(
l(3)z −l(1)z

)

l(3)z

(
l(2)y l(1)z −l(1)y l(2)z

)
0 0

l(3)z

(
l(1)z −l(2)z

)
0 0

⎤

⎥
⎦

⎡

⎢
⎣

0 l(3)z

(
l(2)x l(1)z −l(1)x l(2)z

)
0

l(2)z

(
l(1)x l(3)z −l(3)x l(1)z

)
l(1)z

(
l(2)y l(3)z −l(3)y l(2)z

)
l(2)z

(
l(3)z −l(1)z

)

0 l(3)z

(
l(1)z −l(2)z

)
0

⎤

⎥
⎦

⎡

⎢
⎣

0 0 l(3)z

(
l(2)x l(1)z −l(1)x l(2)z

)

0 0 l(3)z

(
l(2)y l(1)z −l(1)y l(2)z

)

l(2)z

(
l(1)x l(3)z −l(3)x l(1)z

)
l(2)z

(
l(1)y l(3)z −l(3)y l(1)z

)
l(1)z

(
l(3)z −l(2)z

)

⎤

⎥
⎦

⎤

⎥
⎦ .

Thus, similar to the fundamental shadow matrix, the shadow
tritensor also has a special structure as

T = [T1,T2,T3] =
⎡

⎣

⎡

⎣
t1 t2 t3
t4 0 0
t5 0 0

⎤

⎦

⎡

⎣
0 t6 0
t7 t8 t3
0 t5 0

⎤

⎦

⎡

⎣
0 0 t6
0 0 t4
t7 t2 t9

⎤

⎦

⎤

⎦ .

(12)

It can further be verified thatT1,T2, andT3 always have rank
2 each, as required Hartley, R.I., Zisserman (2004, p. 373).

For the shadow tritensor, the correspondence condition
for shadows s̃1 = [u, v, 1]�, s̃2 = [u′, v′, 1]�, and s̃3 =
[u′′, v′′, 1]� is Hartley, R.I., Zisserman [2004, Eq. (15.7)]:

[s̃2]×
(∑

i∈{1,2,3}(s̃1)i Ti

)
[s̃3]× = 03×3,

which can be reformulated into the system shown in Eq. (13)
on the next page. Its row echelon form, which has the same
solution as the original system, is shown in Eq. (14) on the
next page„ revealing the system’s rank of 4. We thus need at
least 2 shadow correspondences and stack their matrices to
estimate the 9 unknowns of the shadow tritensor up to scale.
In contrast, general tritensor estimation requires at least 7
correspondences for the linear algorithm Hartley, R.I., Zis-
serman (2004, Algorithm 16.1).
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⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

0 v′ vv′′ v′′ vv′ 0 0 −v −v′v′′
0 0 −u′′v u − u′′ −uv′ 0 v − v′ 0 u′′v′
0 −u′′v′ 0 −uv′′ v′ (uv′′ − u′′v

)
0 v′′ (v′ − v

)
u′′v 0

0 u − u′ −uv′′ 0 −u′v v − v′′ 0 0 u′v′′
−u 0 uu′′ 0 uu′ u′′ u′ 0 −u′u′′
uv′′ u′′ (u′ − u

)
0 0 u′ (u′′v − uv′′) −u′′v −u′v′′ 0 0

0 −uv′ v′′ (uv′ − u′v
) −u′v′′ 0 v′v′′ − vv′ 0 u′v 0

uv′ 0 u′′ (u′v − uv′) u′ (u′′ − u
)

0 −u′′v′ −u′v 0 0
−uv′v′′ uu′′v′ 0 uu′v′′ 0 u′′vv′ u′vv′′ −u′u′′v 0

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

t1
t2
t3
t4
t5
t6
t7
t8
t9

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

= 09×1

(13)
⎡

⎢⎢
⎣

−u 0 uu′′ 0 uu′
0 −u′′v′ 0 −uv′′ v′ (uv′′ − u′′v

)

0 0 −u′′v u − u′′ −uv′
0 0 0 −uu′′v′′ (v

(
u − u′) + v′ (u − u′′)) uu′′v′ (uvv′′ + uv′v′′ − u′vv′′ − u′′v2

)

u′′ u′ 0 −u′u′′
0 v′′ (−v + v′) u′′v 0
0 v − v′ 0 u′′v′

u′′2vv′ (v − v′′) −u′′v′′ (v − v′) (
uv′ + v

(
u − u′)) u′′2v2

(
u − u′) u′′2v′v′′ (−uv′ + u′v

)

⎤

⎥
⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢
⎣

t1
t2
t3
t4
t5
t6
t7
t8
t9

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥
⎦

= 04×1 (14)

Hartley Normalization When normalizing input points for
better numerical stability, we again need to normalize all
images identically tomaintain the tritensor’s special structure
[Eq. (12)] and keep its parameters to 9:

⎡

⎣
un

vn

1

⎤

⎦ = N

⎡

⎣
u
v

1

⎤

⎦ ,

⎡

⎣
u′
n

v′
n

1

⎤

⎦ = N

⎡

⎣
u′
v′
1

⎤

⎦ , and

⎡

⎣
u′′
n

v′′
n

1

⎤

⎦ = N

⎡

⎣
u′′
v′′
1

⎤

⎦

with N =
⎡

⎢
⎣

1
sx

0 − dx
sx

0 1
sy

− dy
sy

0 0 1

⎤

⎥
⎦ .

3.2.3 Quadrifocal Shadow Tensor

Thequadrifocal shadow tensorQ (or “shadowquadtensor” or
“quadtensor” in the following) describes 4-view shadow cor-
respondences. The quadtensor’s form for 4 general projection
matrices Pi is Hartley, R.I., Zisserman [2004, Eq. (17.21)]

(Q)p,q,r ,s = det

⎡

⎢⎢
⎣

(P1)p,:
(P2)q,:
(P3)r ,:
(P4)s,:

⎤

⎥⎥
⎦ . (15)

Inserting light matrices for the projections yieldsQ as shown
in the left of Fig. 16 in the “Appendix”. Its exact content is
less relevant here but we note that it has the following shape
with 18 unknowns:

Q =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

[
0 0 0
0 0 −q1
0 q1 0

] [
0 0 q2
0 0 q3
q4 q5 q6

] [
0 −q2 0

−q4 q7 q8
0 q9 0

]

[
0 0 q10
0 0 q11

q12 q13 −q6

] [
0 0 −q14
0 0 0

q14 0 0

] [
q15 −q13 −q8−q11 0 0
−q9 0 0

]

[
0 −q10 0

−q12 −q7 −q16
0 q17 0

] [ −q15 −q5 q16−q3 0 0
−q17 0 0

] [
0 −q18 0

q18 0 0
0 0 0

]

⎤

⎥⎥⎥⎥
⎥⎥
⎦

(16)

The correspondence conditions Hartley, R.I., Zisserman
[2004, Eq. (17.20)] for 4 shadows s̃1 = [u, v, 1]�, s̃2 =
[u′, v′, 1]�, s̃3 = [u′′, v′′, 1]�, s̃4 = [u′′′, v′′′, 1]� are (with
the Levi-Civita symbol ε)

∑

i, j,k,l,
p,q,r ,s

(s̃1)i (s̃2) j (s̃3)k(s̃4)l εi pwε jqxεkr yεlsz(Q)p,q,r ,s = 0.

Iterating over the free variablesw, x , y, z yields 81 equations
of which 3 are zero independent of the data. The remaining
78 put in a homogeneous system are shown in Fig. 16, right,
in the “Appendix”. The system has rank 13 and stacking
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observations from ≥ 2 correspondences suffices to estimate
the 18 unknowns up to scale.

3.2.4 Distant Light

In our calibration method that we describe in Sect. 4, we
always use the unified light model for which we derived the
shadowmatrices/tensors above.Nevertheless, it is interesting
to see what properties shadow matrix/tensor estimation has
for scenes where we can assume distant light with certainty.

Inserting distant light matrices into our derivations reveals
that the shadow matrices/tensors take on specialized shapes:
Compared to their counterparts for the unified light model
[Eqs. (6), (12), and (16)], they have the same pattern of
repeated entries and zero entries, but a few additional entries
become zero. For the fundamental shadow matrix we have
f1 = 0 and the remaining 2 unknowns can be estimated
from 1 shadow correspondence. For the tritensor, we have
t3 = t5 = t9 = 0, and the system [Eq. (13)] stays rank 4;
thus, we need 2 correspondences to estimate the remaining
6 unknowns. For the quadtensor, we have q6 = q8 = q9 =
q16 = q17 = q18 = 0, the rank of the estimation system
(Fig. 16, right) drops from 13 to 11 and we need only 1 cor-
respondence to estimate the remaining 12 unknowns.

3.2.5 Shadow Correspondences Through an Uncalibrated
Camera

If the shadow observations for which we try to find a shadow
matrix/tensor or shadow correspondences, are not given in
the coordinate systemof the shadow receiver plane but only in
the image coordinates of a static, uncalibrated pinhole camera
that observes the receiver plane, the complexity of shadow
matrix/tensor estimation does interestingly not increase: We
can still estimate them from just 2 shadow correspondences.
A static pinhole camera observing coplanar shadows can be
modeled with a homography (invertible 3 × 3 matrix) H in
the shadow projection equations:

λi s̃i = HLi c̃.

Analogous to Eq. (5), we can then derive the fundamental
shadowmatrix for shadows observed through an uncalibrated
camera:

Fc = [
HL2∅HL1

]
× HL2(HL1)

+

= [
HL2∅L1

]
× HL2

see Petersen and Pedersen (2012) Eq. (214)
︷ ︸︸ ︷
(H+HL1)

+(HL1L
+
1 )+

= [
HL2∅L1

]
× HL2(H−1HL1)

+H+

= [
HL2∅L1

]
× HL2L

+
1 H

−1

=

follows from
(Ha)×(Hb)=det(H)H−�(a×b)
︷ ︸︸ ︷
det(H)H−� [

L2∅L1

]
× L2 L

+
1 H

−1

∝ H−� [
L2∅L1

]
× L2L

+
1 H

−1

= H−�FH−1,

where F is the original fundamental matrix of Eq. (5) for
the shadows given in shadow receiver plane coordinates. Fc

is also skew-symmetric and can thus be estimated from ≥
2 correspondences using Eq. (8). Analogous to Eqs. (11)
and (15), the shadow tensors become

(T )p,q,r = (−1)p+1det

⎡

⎢⎢
⎣

(HP1)1:p−1,:
(HP1)p+1:n,:

(HP2)q,:
(HP3)r ,:

⎤

⎥⎥
⎦ and

(Q)p,q,r ,s = det

⎡

⎢⎢
⎣

(HP1)p,:
(HP2)q,:
(HP3)r ,:
(HP4)s,:

⎤

⎥⎥
⎦ .

These have the same patterns of zeros and identical entries as
the original tensors [Eqs. (12), (16)] and can thus be estimated
from ≥ 2 correspondences using Eqs. (13), (14), or (16),
respectively. The counterparts of these matrices/tensors for
distant light have the same shape as those for nearby light
and they all need to be estimated from ≥ 2 correspondences.

Table 1 sums up the minimal number of correspondences
required for shadow matrix/tensor estimation.

4 ProposedMethod

Our method estimates a nearby point light’s position or a
distant light’s direction using a simple calibration target con-
sisting of a shadow receiver plane and shadow casters above
the plane (see Fig. 2). Ourmethod automatically achieves the
point light source calibration by observing the calibration tar-
get multiple times from a fixed viewpoint under a fixed point
light source while changing the calibration target’s pose. The
3D positions of the shadow casters relative to the calibration
target are treated unknown, which makes it particularly easy
to build the target while the problem remains tractable as we
will see later in this section. We now describe our proposed
calibration method.

4.1 Light Source Calibration as Bundle Adjustment

Our goal is to determine the light l in Eq. (4) by observing the
shadows cast by unknown casters. A single shadow observa-
tion s does not provide sufficient information to solve this.We
thus let the receiver plane undergo multiple poses {[Ri |ti ]}.
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Table 1 Minimal number of
shadow correspondences
required to estimate shadow
matrices/tensors

Coordinate system of the shadows Light model Shadow Shadow Shadow
F-matrix Tritensor Quadtensor

Shadow receiver Nearby/unified 2 2 2

Shadow receiver Distant 1 2 1

Observing camera Nearby/unified 2 2 2

Observing camera Distant 2 2 2

In pose i , the light position li in receiver plane coordinates
is related to l in world coordinates as

li = [
l(i)x l(i)y l(i)z

]� = R�
i l − R�

i ti .

With this index i the matrices {Li } read

Li =
⎡

⎢
⎣

−1 0 l(i)x /l(i)z 0

0 −1 l(i)y /l(i)z 0

0 0 1/l(i)z −1

⎤

⎥
⎦ .

If we use not only multiple poses {[Ri |ti ]} but also multiple
shadow casters {c j } (to increase the calibration accuracy as
we show later), we obtain shadows {si j } for each combination
of pose i and caster j . Equation (4) then becomes

λi j s̃i j = Li c̃ j .

Assuming that the target poses {[Ri |ti ]} are known, our goal
is to estimate the light position l in world coordinates and the
shadow caster locations {c j } in calibration target coordinates.
We formulate this as a least-squares objective function of the
reprojection error:

min
l,c j ,λi j

∑

i, j

∥∥λi j s̃i j − Li c̃ j
∥∥2
2 s.t. l = Ri li + ti . (17)

We solve this nonlinear least-squares problem with
Levenberg–Marquardt (Nocedal and Wright 2006). For
robust estimation we use RANSAC (Fischler and Bolles
1981): We repeatedly choose a random observation set, esti-
mate (l, c j , λi j ), and select the estimate with the smallest
residual.

4.2 Initializing the Bundle Adjustment

Equation (17) is non-convex and thus affected by the initial-
ization. To find a good initial guess, we relax our problem
into a convex one as follows.

Nearby Light For nearby light, we can write the objective
analogous to Eq. (1) as (c j − s̄i j ) × (li − s̄i j ) = 0 and then,
using li = R�

i l − R�
i ti , as

(c j − s̄i j ) × (R�
i l − R�

i ti − s̄i j ) = 0.

With c j = [
c j,x , c j,y, c j,z

]�, s̄i j = [
sx , sy, 0

]�, l =
[
lx , ly, lz

]�, R�
i =

[ r0 r1 r2
r3 r4 r5
r6 r7 r8

]
, and −R�

i ti = [
tx , ty, tz

]�,
we can rewrite this as

0 = (c j − s̄i j ) × (R�
i l − R�

i ti − s̄i j )

=
⎡

⎣
c j,x − sx

c j,y − sy

c j,z

⎤

⎦ ×
⎡

⎣
[r0, r1, r2] l + tx − sx

[r3, r4, r5] l + ty − sy

[r6, r7, r8] l + tz

⎤

⎦ .

Expanding the cross-product yields
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 = (c j,y − sy)([r6, r7, r8] l + tz) − c j,z([r3, r4, r5] l + ty − sy),

0 = c j,z([r0, r1, r2] l + tx − sx ) − (c j,x − sx )([r6, r7, r8] l + tz),

0 = (c j,x − sx )([r3, r4, r5] l + ty − sy)

− (c j,y − sy)([r0, r1, r2] l + tx − sx ),

which we can rewrite as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− sy tz = −c j,y([r6, r7, r8] l + tz) + sy [r6, r7, r8] l

+ c j,z([r3, r4, r5] l + ty − sy),

sx tz = −c j,z([r0, r1, r2] l + tx − sx ),

+ c j,x ([r6, r7, r8] l + tz) − sx [r6, r7, r8] l

sy tx − sx ty = −c j,x ([r3, r4, r5] l + ty − sy) + sx [r3, r4, r5] l

+ c j,y([r0, r1, r2] l + tx − sx ) − sy [r0, r1, r2] l.

and then write it in matrix form:

⎡

⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

r6sy −r6sx r3sx − r0sy
r7sy −r7sx r4sx − r1sy
r8sy −r8sx r5sx − r2sy
0 tz sy − ty

−tz 0 −sx + tx
−sy + ty sx − tx 0

0 r6 −r3
−r6 0 r0
r3 −r0 0
0 r7 −r4

−r7 0 r1
r4 −r1 0
0 r8 −r5

−r8 0 r2
r5 −r2 0

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

� ⎡

⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

lx
ly
lz

c j,x
c j,y
c j,z

lx c j,x
lx c j,y
lx c j,z
lyc j,x
lyc j,y
lyc j,z
lzc j,x
lzc j,y
lzc j,z

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

=
⎡

⎣
−sy tz
sx tz

sy tx − sx ty

⎤

⎦ .

(18)

Note the matrix transpose used for space reasons. This equa-
tion captures one observation, i.e., one combination of pose
i and caster j , but we need to stack equations from multiple
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observations. To simplify the following step, let us first split
Eq. (18) into sub-matrices:

[
Qi j∈ R

3×3 Wi j∈ R
3×12

] [
l∈ R

3

θ j∈ R
12

]
= [

bi j ∈ R
3
]
.

Note that here the matrix is not transposed.
Let Np and Nc be the number of target poses and casters.

The whole system of stacked equations then is

⎡

⎢⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢
⎣

Q1,1 W1,1 0 0 · · · 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

QNp ,1 WNp ,1 0 0 · · · 0
Q1,2 0 W1,2 0 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

QNp ,2 0 WNp ,2 0 · · · 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Q1,Nc 0 0 0 · · · W1,Nc

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

QNp ,Nc 0 0 0 · · · WNp ,Nc

⎤

⎥⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥
⎦

︸ ︷︷ ︸
A

⎡

⎢⎢
⎢⎢
⎢
⎣

l
θ1
θ2
.
.
.

θ Nc

⎤

⎥⎥
⎥⎥
⎥
⎦

︸ ︷︷ ︸
θ

=

⎡

⎢⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢
⎣

b1,1
.
.
.

bNp ,1
b1,2

.

.

.

bNp ,2
.
.
.

b1,Nc

.

.

.

bNp ,Nc

⎤

⎥⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥
⎦

︸ ︷︷ ︸
b

.

(19)

We have 3 + 12Nc unknowns since all observations share
l = [lx , ly, lz]� and each θ j has 12 unknowns. We solve

θ∗ = argmin
θ

‖Aθ − b‖1 (20)

using �1 minimization to be robust against outliers. For solv-
ing this equation we must fulfill

3Np Nc︸ ︷︷ ︸
#equations

≥ 12Nc + 3
︸ ︷︷ ︸
#variables

⇔ Np ≥ 4 + 1

Nc
.

Thus, observations from Np = 5 poses suffice to derive a
solution regardless of the number of casters, if the prob-
lem has a non-degenerate, unique solution. After obtaining
θ∗, we disregard the second-order variables, such as lx c j,x

and lx c j,y , and use c∗
j and l

∗ as initialization for minimizing
Eq. (17).

Distant Light For distant light,A is rankdeficient: rank(A) =
3 + 12Nc − 1, because we modeled the light with 3 degrees
of freedom (DoF) but distant light only has 2 DoF and the
shadow observations can thus be explained by an infinite set
of light vectors with same directions but different lengths.
Thus, we can unfortunately not use Eq. (18) for distant light
but we can automatically detect this case, switch to equations
for distant light, solve, and switch back to the unified bundle
adjustment of Eq. (17). So, again users do not have to choose
a light model for their scene.

Wedetect distant light by constructingmatrixA for nearby
light and detectingA’s rank degeneracy: If the ratio between
A’s largest and smallest singular value is larger than 4× 104

(in Sect. 5.1.4 we will give an analysis of this threshold), we
switch to the following distant light equations.

For distant light we can write the objective analogous to
Eq. (3) (using li = R�

i l):

(c j − s̄i j ) × R�
i l = 0.

Keeping the definitions of c j , s̄i j , R�
i , and −R�

i ti , we can
write this as

(c j − s̄i j ) × R�
i l =

⎡

⎣
c j,x − sx

c j,y − sy

c j,z

⎤

⎦ ×
⎡

⎣
[r0, r1, r2] l
[r3, r4, r5] l
[r6, r7, r8] l

⎤

⎦ = 0.

Expanding the cross-product yields

⎧
⎪⎨

⎪⎩

0 = (c j,y − sy) [r6, r7, r8] l − c j,z [r3, r4, r5] l,

0 = c j,z [r0, r1, r2] l − (c j,x − sx ) [r6, r7, r8] l,

0 = (c j,x − sx ) [r3, r4, r5] l − (c j,y − sy) [r0, r1, r2] l.

Setting l = [
lx , ly, 1

]� to reduce l to two DoF yields

⎧
⎪⎨

⎪⎩

0 =(c j,y − sy)(r6lx + r7ly + r8) − c j,z(r3lx + r4ly + r5),

0 =c j,z(r0lx + r1ly + r2) − (c j,x − sx )(r6lx + r7ly + r8),

0 =(c j,x − sx )(r3lx + r4ly + r5) − (c j,y − sy)(r0lx + r1ly + r2),

which we can rewrite as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−syr8 = − c j,y(r6lx + r7ly + r8) + sy(r6lx + r7ly)

+ c j,z(r3lx + r4ly + r5),

sxr8 = − c j,z(r0lx + r1ly + r2)

+ c j,x (r6lx + r7ly + r8) − sx (r6lx + r7ly),

syr2 − sxr5 = − c j,x (r3lx + r4ly + r5) + sx (r3lx + r4ly)

+ c j,y(r0lx + r1ly + r2) − sy(r0lx + r1ly).

This can be rewritten in matrix form as

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

r6sy −r6sx r3sx − r0sy

r7sy −r7sx r4sx − r1sy

0 r8 −r5
−r8 0 r2
r5 −r2 0
0 r6 −r3

−r6 0 r0
r3 −r0 0
0 r7 −r4

−r7 0 r1
r4 −r1 0

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

�

︸ ︷︷ ︸
Ai j

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

lx

ly

c j,x

c j,y

c j,z

lx c j,x

lx c j,y

lx c j,z

lyc j,x

lyc j,y

lyc j,z

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

︸ ︷︷ ︸
θ j

=
⎡

⎣
−syr8
sxr8

syr2 − sxr5

⎤

⎦

︸ ︷︷ ︸
bi j

.

(21)
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Again, note the matrix transpose for space saving. Split into
sub-matrices, this reads

[
Qi j ∈ R

3×2 Wi j ∈ R
3×9

] [
l∈ R

2

θ j ∈ R
9

]
= [

bi j ∈ R
3
]
.

Multiple observations get stacked in a similar manner to
Eq. (19) and solved using Eq. (20). For solving, we must
fulfill

3Np Nc︸ ︷︷ ︸
#equations

≥ 9Nc + 2
︸ ︷︷ ︸
#variables

⇔ Np ≥ 3 + 2

3Nc
.

Thus, 4 poses suffice regardless of the number of casters.
Since the formulation for distant light [Eq. (20) in conjunc-
tion with Eqs. (19) and (21)] returns a light direction for l∗
but the unified bundle adjustment requires a light position,
we need to convert from a direction to a position. We start at
one of the casters and move the light source out very far in
space:

l∗position = c + κ hc l∗direction,

where c is an arbitrary caster’s position in world coordinates
(obtained through the relaxation method), κ is a large con-
stant (we use κ = 1010), and hc is the caster’s height above
the shadow receiver plane (which takes the scale of the scene
into account).

4.3 Shadow Correspondence Search

For Eqs. (17), (18), and (21) we need to assign the same
index j to all shadows s̄i j that belong to the same caster c j in
different images {Ii }. This correspondence problem is easier
to solve if the input is structured, i.e., we have information
about the relation between the input images. If the input is a
video for example, then we can track shadows over consec-
utive frames. However, it is clearly desirable to also be able
to handle unstructured input just like regular SfM. Unstruc-
tured input occurs if separate images or multiple videos are
captured or if we record a video but some tracks break (due
to lens flare, noise, shadows leaving the field of view, etc.).

In Sect. 3.2, we developed the basis for finding shadow
correspondences in unstructured input: Shadows on a plane
from a moving point light obey correspondence condi-
tions with specialized fundamental matrices, tritensors, and
quadtensors, which we will use for finding shadow cor-
respondences and rejecting shadow misdetections. Since
quadtensors are impractical because correspondence search
in four views is very costly (unless some strong prior knowl-
edge about possible correspondences narrows the search
down), we will only cover fundamental matrices and triten-
sors in the following.

Formally, shadow correspondence search means we need
to find permutations that match corresponding shadows
between images. Let S be the shadows {s̃i } and S′ be the
shadows {s̃′i } stacked horizontally into matrices. For funda-
mental matrices we seek to find

argmin
P′,F

∑

i∈{1,...,Nc}

∥∥∥
(
(S′P′):,i

)� F (S):,i
∥∥∥

s.t. P′ is a permutation matrix. (22)

(Recall that (·):,i extracts amatrix’s i th column.) For tritensor
estimation we need to solve

argmin
P′,P′′,

T =[T1,T2,T3]

∑

i∈{1,...,Nc}

∥∥
∥∥

[
(S′P′):,i

]
× ·

( ∑

j∈{1,2,3}
(S) j,iT j

) [
(S′′P′′):,i

]
×

∥∥
∥∥

s.t. P′ and P′′ are permutation matrices. (23)

We cannot use feature descriptors to narrow the search down
since we want the shadows to be very small (to make the
shadow “center” precisely localizable) and thus cannot vary
a caster’s shape enough to make its shadows clearly dis-
tinguishable from other casters’ shadows. We thus find the
minimizer of Eq. (23) with branch and bound on the detected
shadow points without descriptors. This procedure returns a
significant fraction of wrong correspondences. Inspired by
the removal of inconsistent feature tracks in SfM [see, e.g.,
PhotoTourism (Snavely et al. 2006, Sec. 4.1)] we check the
consistency of correspondences across multiple images.

Correspondence Consistency Check We work on two
image pools; images with established shadow correspon-
dences (“established pool”) and images with unknown cor-
respondences (“unknown pool”). The established pool is
initialized with a random unknown image and the goal is
to move as many images as possible from the unknown to
the established pool.

For fundamental shadowmatrices we work in two phases:
In phase 1we randomly pick an image Ie from the established
pool and k images Ii1 , ..., Iik from the unknown pool.

Let
a�b
m (si , s j ) be a binary function that is true iff Eq. (22)’s

minimizer for images Ia and Ib, matches shadow si in Ia with
shadow s j in Ib. Then, if

∀ s j0 in Ie, s j1 in Ii1, s j2 in Ii2 , . . . , s jk in Iik :
e�i1
m (s j0 , s j1) ∧ i1 �i2

m (s j1, s j2) ∧ i2 �i3
m (s j2 , s j3) ∧ . . . ∧

ik-2 �ik-1
m (s jk-2 , s jk-1) ∧ ik-1 �ik

m (s jk-1 , s jk ) ⇒ e�ik
m (s j0 , s jk )
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holds (i.e., correspondences through the chain of images are
consistent with the direct correspondences from the first to
the last image), we move {Ii1, ..., Iik } to the established pool.
To make the constraint relatively strict, our implementation
uses k = 3. Once half of all images are in the established
pool, we switch to phase 2.

In phase 2 we assume all images in the established pool to
be consistent. Thus, if we consider one unknown image and
one shadow caster, all shadows in all established images that
correspond to that particular caster should match the same
shadow in the unknown image; and this should hold for all
shadow casters. We pick a random unknown image, verify
this criterion, and if more than half of all established images
agree on their correspondences to the unknown image, it is
moved to the established set. Elsewise, it is discarded. Phase
2 ends when the unknown pool is empty.

For shadow tritensors, we also work in two phases. In
phase 1 we randomly select one unknown image as target,
one established image, and l unknown images for testing
(l = 15 in our implementation), iterate over the test images,
and use Eq. (23) to compute the trifocal tensors for the target
image, the established image and the current test image. If
more than l

2 of the tensors agree on the correspondences
between target and established image, we move the target
image to the established pool. Once half of all images are
in the established pool, we switch to phase 2 which works
equivalent to phase 2 for fundamental matrices.

4.4 Implementation Details

To obtain our target’s pose {[Ri |ti ]}, we print ArUco mark-
ers (Garrido-Jurado et al. 2014) on a piece of paper, attach
it to the target (see Fig. 2, left), and use OpenCV 3D pose
estimation (Bradski et al. 2000). Our shadow casters are off-
the-shelf pins with a length of ∼30mm and a head diameter
of ∼3mm, which is big enough to easily detect them and
small enough to accurately localize them. We can place the
pins arbitrarily without measuring their position since the
bundle adjustment estimates their position.

For shadow detection we developed a simple template
matching scheme. For the templates we generated synthetic
images of shadows consisting of a line with a circle at the
end. To deal with varying projective transformations we use
12 rotation angles with 3 scalings each. We match the tem-
plates after binarizing the input image to extract shadowed
regions more easily. Further we use the color of the pin heads
to distinguish between heads and head shadows.

4.5 EstimatingMultiple Lights Jointly

Our method can estimate multiple lights jointly. It can
work with multiple lights that were captured

Fig. 6 Two lights casting two shadows per pin

1. Simultaneously (see Fig. 6) or
2. Separately, i.e., we switch on one light at a time and

capture its shadows. It is, of course, necessary to use
the same calibration target for all lights so that all caster
positions stay constant in calibration target coordinates.

From thebundle adjustment’s viewpoint both cases are equiv-
alent since applying the calibration target poses transforms
all shadowpositions into the same coordinate system, namely
the target’s—no matter whether they were captured simulta-
neously or separately.

For both cases the benefit over single light calibration
is improved accuracy: More captured data puts more con-
straints on the shadow caster positions, therefore the caster
position estimates will be more accurate and as a conse-
quence the light position estimateswill also bemore accurate.
An additional benefit of case 1 is that simultaneous light cap-
turing saves time. Note that, although our equations set no
theoretical limit for the number of lights to be simultane-
ously estimated, there are very strong practical limits: Since
we need to reliably detect each shadow point in the imagery,
we are limited to very few lights in practice due to the low
contrast and overlap of shadows under too many lights.

In Sect. 4.3we discussed a correspondence problem: Find-
ing all shadows s̄i j that belong to the same caster c j in
different images i . Multiple lights entail another correspon-
dence problem: finding all shadows from the same light to
couple the correct shadows s̄i, j,k , casters c j and lights lk in
our equations. For separately captured lights this is trivially
to solve since we know which light was on when a particular
shadow was captured.

For simultaneously captured light this is harder. Let us
consider the example in Fig. 7: We have a scene with 2 lights
and 3 casters. The shadow projection process is hinted at
with transparent casters and arrows. In each of the two target
poses we can use fundamental shadow matrix estimation to
separate the 6 shadows into 2 sets of 3 shadows, each cor-
responding to one of the lights. We, however, cannot match
these sets of 3 shadows across images.Wecanfind fundamen-
tal shadow matrices F1 and F2 that connect the shadow set

123



International Journal of Computer Vision (2020) 128:1889–1912 1903

Fig. 7 A scene with 2 lights and 3 casters. In each pose, fundamental
matrices enable us to split the 6 shadows into 2 sets (blue rectangles)
of 3 shadows, each set corresponding to one of the lights. However, the
fundamental matrices cannot match these shadow sets across poses due
to an ambiguity that allows connecting any pair of sets (blue arrows)
(Color figure online)

{s1, s2, s3}with {s7, s8, s9} and {s4, s5, s6}with {s10, s11, s12}
but we can also find matrices F′

1 �= F1 and F′
2 �= F2 that

connect {s1, s2, s3} with {s10, s11, s12} and {s4, s5, s6} with
{s7, s8, s9}. This is because fundamental shadow matrices
cannot distinguish whether the shadow movement resulted
from changing the calibration target pose or from changing
the light position.

When using only fundamental matrices, tritensors or
quadtensors, this is a fundamental ambiguity and not an
implementation problem. To overcome this, we require users
to capture a video and track each shadow from frame to frame.
Thereby we can follow the set {s1, s2, s3} transitioning into
{s7, s8, s9} and then assign the same light index k to them.

To sum up, estimating multiple lights jointly increases
the calibration accuracy. If multiple lights are captured sep-
arately, the data can be completely unstructured. If the
lights are captured simultaneously, additional information is
needed to resolve an ambiguity. In this casewe expect a video
as input.

5 Evaluation

We now assess our method’s accuracy using simulation
experiments (Sect. 5.1) and real-world scenes (Sect. 5.2).

5.1 Simulation

For all following simulated experiments we randomly sam-
pled target poses, caster positions and light positions (the
latter only for near light conditions) from uniform distribu-
tions within the ranges shown in Fig. 8. The casters were
randomly placed on a target of size 200 × 200. For distant
light, we sampled the light direction’s polar angle θ from
[0◦, 45◦].

We evaluated the absolute/angular error of estimated light
positions/directions while varying the distance tz between

Fig. 8 The arrows show the value ranges of our simulation experiments

Table 2 Estimation error (mean of ten random trials) in a synthetic,
noise-free setting

tz Nc Mean absolute/angular error of light
source positions/directions

Near light

500 2 6.4×10−14

500 5 9.5×10−14

500 10 5.4×10−14

1000 2 3.5×10−13

1000 5 7.0×10−14

1000 10 2.6×10−13

Distant light

∞ 2 1.2×10−12 deg.

∞ 5 2.4×10−15 deg.

∞ 10 1.4×10−12 deg.

light and calibration target and the number of casters Nc.
Table 2 shows that each configuration’s mean error is ≥ 14
orders ofmagnitude smaller than the scene extent, confirming
that our method solves the joint estimation of light posi-
tion/direction and shadow caster positions accurately in an
ideal setup. In our experience, the difference between using
the unified light model and using one of the specialized mod-
els (nearby or distant) is negligible.

In practice, light source estimates will be deteriorated by
two main error sources: (1) Shadow localization and (2) the
marker-based target pose estimation.

5.1.1 Shadow Localization Errors

To analyze the influence of shadow localization, we per-
turbed the shadow positions with Gaussian noise. In this and
the following experiments we set tz = 500 so that our syn-
thetic scenes’ proportionsmatch those of ourmain real-world
scene E1 (see Fig. 13) that we introduce later, with 1 syn-
thetic length unit corresponding to 1mm. Figure 9 shows
the estimation accuracy of the convex relaxation [Eq. (20)]
compared to the accuracy of full bundle adjustment [Eq. (17)
after initialization with convex relaxation] for near and dis-
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Fig. 9 Estimation error for synthetic near and distant light with Gaus-
sian noise added to the shadow positions. Each data point is the median
of 500 random trials. Top row: Np = 10 and Nc = 5. The noise’s

standard deviation σ is on the x-axis. Middle row: Np = 5 and Nc is
on the x-axis. Bottom row: Nc = 5 and Np is on the x-axis

tant light, varying Np and Nc, and varying standard deviation
σ for the shadow position noise.

Figure 9’s top row confirms that larger shadow posi-
tion noise results in larger error and full bundle adjustment
mitigates the error compared to solving only the convex
relaxation. Increasing the number of casters or target poses
makes Eqs. (20) and (17) more overconstrained and thus
reduces the error from noisy shadow locations as Fig. 9’s
middle and bottom row confirm.

5.1.2 Target Pose Estimation Errors

To simulate errors in the target pose estimation,weperformed
an experiment where we added Gaussian noise to the tar-
get’s roll, pitch, and yaw. Figure 10’s top row shows that the
error is again higher for stronger noise and the bundle adjust-
ment mitigates the error of the convex relaxation. In Fig. 10’s

middle and bottom row we increased the number of casters
and target poses again. Bundle adjustment and increasing the
number of poses reduce the error, but increasing the num-
ber of casters does not. This is not surprising since adding
constraints to our system only helps if the constraints have
independent noise. Here, the noises for all shadows s̄i, j of
the same pose i stem from the same pose noise and are thus
highly correlated. Thus, increasing the number of poses is
more important for improving the accuracy than increasing
the number of casters.

5.1.3 Combined Shadow Localization and Target Pose
Estimation Errors

Previously, we studied the effect of shadow localization
errors and target pose errors separately. In this section we
show simulation results where we added both types of noise
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Fig. 10 Estimation error for synthetic near and distant light with Gaus-
sian noise added to the target orientation (in deg.). Each data point is
the median of 500 random trials. Top row: Np = 10 and Nc = 5. The

noise’s standard deviation σ is on the x-axis. Middle row: Np = 5 and
Nc is on the x-axis. Bottom row: Nc = 5 and Np is on the x-axis

at the same time. Comparing the top rows of Figs. 9 and 10,
we can see that shadow localization noise causes errors
roughly twice as big as those from target pose noise. In this
experiment we thus set the standard deviation for shadow
localization noise to σshadows = 0.01 and for target pose
noise to σpose = 0.005.

For the number of shadow casters varying from 1 to 9 and
the number of poses varying from 5 to 100, Fig. 11 shows
color-coded (log-scale) median error in the top row and stan-
dard deviation in the bottom row. Again, bundle adjustment
and more poses and casters decrease the error. If the applica-
tion at hand dictates one of the two parameters, e.g., if time
restrictions forbid increasing Np beyond 20, this can always
be countered by increasing the other parameter. Even though
theminimal conditions for solving the calibration are 1 caster
and 4 or 5 poses, the data suggests that users should prob-

ably always use 3 or more casters and 20 or more poses in
practice.

5.1.4 Discerning Nearby from Distant Light

As discussed in Sect. 4.2, we can discern nearby and distant
light based on the condition number of A. In a noise-free
setup, the condition number becomes larger than 1015 for
distant light and smaller than 105 for near light even in the
hardest setting: Np = 5. Thus, near and distant light can
easily be discerned.

For noisy input, our method requires more poses for a
clear distinction: Fig. 12 shows histograms of the condition
numbers for Np = 5, 20, and 50.We can see that for Np = 20
and 50, near and distant light can clearly be separated using
a threshold of 4 × 104 while for Np = 5 the blue histogram
of near light extends well beyond 4 × 104 and thus cannot
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Fig. 11 Estimation error for synthetic near and distant light with Gaus-
sian noise added to shadow positions (σshadows = 0.01) and target
orientation in degrees (σpose = 0.005). Np is on the x-axis and Nc
is on the y-axis. For each data point we performed 500 random trials.
Top row: The median of the absolute error (near light)/angular error in
degrees (distant light). Bottom row: The error’s standard deviation

Fig. 12 Histograms of A’s condition number for Np = 5 (top), Np =
20 (middle), and Np = 50 (bottom). Each histogram is the aggregate
of 100 random trials with σshadows = 0.01, 0.1, 1.0. As in the previous
experiment of Sect. 5.1.3 we set σpose = 1

2σshadows (Color figure online)

be discerned from distant light. Based on this, we set the
threshold to 4 × 104 and suggest working with Np ≥ 20
target poses.As already discussed,we recommend increasing
Np as the primary way of error reduction. 20–50 poses are
captured rather quickly.

5.2 Real-World Experiments

We created 4 real-world environments, see Fig. 13. In all
experiments we calibrated the intrinsic camera parameters
beforehand and removed lens distortions.

Environments E1 and E2 have near light, and E3 and
E4 have distant light. In E1 we fixed four LEDs to positions
around the camerawith a 3D printed frame and calculated the
LED’s ground truth locations from the frame geometry. We
used a FLIR FL2G-13S2C-C camera with a resolution of
1280×960. In E2 we separately calibrated two smartphones
(Sony Xperia XZ1 andHuawei P9) to potentially open up the
path for inexpensive, end user-oriented physics-basedmodel-
ing with phones. Both phones have a 1920×1080px camera
and an LED light. We assumed that LED and camera are
in a plane orthogonal to the camera axis and through the
optical center, and measured the distance between LED and
camera to obtain the ground truth. In E3 we placed the tar-
get under direct sun light and took datasets at three different
times to obtain three light directions. In E4 a floodlight was
fixed about 3m away from the target to approximate distant
lighting. In both E3 and E4 we used a Canon EOS 5D
Mark IV with a 35mm single-focus lens and a resolution
of 6720×4480 and obtained the ground truth light directions
from measured shadow caster positions and hand-annotated
shadow positions. In all environments, we used an A5-sized
calibration target with Nc = 5 pins.

Table 3 shows the achieved estimation results. The light
position errors are 1.5% of the target-camera distance for E1
and 1.2% for E2, the light direction errors are ∼1◦, and
the caster position errors are <2.5mm. Figure 14 shows
how increasing the number of target poses monotonously
decreases the estimation error on two of our real-world
scenes.

5.3 Fundamental ShadowMatrix Versus Shadow
Tritensor

We now analyze the shadow correspondence search and
verification based on fundamental shadow matrices and tri-
focal shadow tensors described in Sect. 4.3. We picked 200
images from E1-1 and obtained ground truth correspon-
dences through video tracking. The fundamental matrix-
based method returned correspondences for 145 images
of which 143 were correct and the tritensor-based method
returned 152 images of which 151 were correct. Thus, the
found correspondences are almost perfect (because we chose
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Fig. 13 Our real-world environments. E1 has 4 LEDs fixed around the camera. In E2 we use a smartphone’s camera and LED. In E3 we observe
the target under sun light. E4 has a floodlight fixed about 3m away from the target

Table 3 Estimation errors in our four real-world scenes

Scene Number of experiments Light error Caster error

Mean (relative) Std. deviation Mean (mm) Std. deviation (mm)

E1 4 lights 7.7mm (1.5 %) 1.1mm 1.1 0.46

E2 2 phones 3.7mm (1.2%) 0.27mm 0.87 0.39

E3 3 sun positions 1.2deg. 0.42deg. 1.4 0.42

E4 1 light 0.88deg. – 2.4 0.48

Percentages in the mean light error are relative errors compared to the target-to-camera distance

all consistency check criteria and parameters to be rather
strict to discard a lot of frames and prefer to capture more
frames instead), the number of matched images was by far
sufficient for the subsequent calibration steps, and both con-
sistency check methods performed almost identical. Note
that we cannot deduce from this that fundamental shadow
matrices and shadow tritensors themselves perform equally,
because they are embedded in different consistency checks.
We prefer working with fundamental matrices because their
correspondence search runs an order of magnitude faster.

In certain situations users may, however, prefer triten-
sors over fundamental matrices or vice versa: The tritensor
restricts the positions of shadows more and thus works well
if the shadow detector detects the correct shadow but also has
misdetections in the correct shadow’s vicinity. The tritensor
can rule out almost all of those misdetections. If there are no
misdetections but the correct shadow’s detected position has

Fig. 14 Estimation error for the first light of scene E1 and for scene E4.
For each scene we captured 200 images, randomly picked Np images
from these, and estimated the light and caster positions. The gray bars
and error bars represent median and interquartile range of 100 random
iterations of this procedure

large noise, the tritensor may be too unforgiving and a user
may prefer the fundamental matrix instead.

5.4 EstimatingMultiple Lights Simultaneously

Capturing and estimatingE1’s two top lights (reliably detect-
ing shadows of more than two lights requires a better
detector) simultaneously as described in Sect. 4.5 reduces
the mean light and caster position errors from 6.9 and 1.1 to
5.1 and 0.6mm, respectively.

As mentioned, we can also jointly calibrate lights whose
image sets were captured separately, as long as they were all
captured with the same calibration target. This necessitates
the use of fundamental shadow matrices/shadow tritensors
since there is (currently) no other method for matching shad-
ows across image sets. For E1, joint calibration decreased
the errors as shown in Table 4.

We can even jointly estimate nearby and distant light that
was captured separately. We put the data from nearby and
distant light separately through the convex relaxation, run
bundle adjustment on them separately, and then run joint bun-
dle adjustment. Picking one light from E1 and one light from
E3, this procedure reduced the light position and direction
errors and mean caster position error from 7.1mm, 0.71deg.
and 1.21mm to 3.8mm, 0.53deg. and 1.15mm, respectively.

5.5 Comparison with ExistingMethod

To put our method’s accuracy into perspective, Ackermann
et al. (2013) achieved accuracies of about 30–70 mm on
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Table 4 Average estimation
errors (all units in mm) in scene
E1 for 2, 3, and 4 lights captured
separately and calibrated
separately or simultaneously

Number of lights Calibration Light error Caster error

Mean Stdev. Mean Stdev.

2 Separately 6.91 0.20 1.13 0.51

2 Simultaneously 6.29 1.23 0.79 0.25

3 Separately 7.11 0.33 1.18 0.47

3 Simultaneously 5.2 0.54 1.03 0.29

4 Separately 7.72 1.09 1.10 0.46

4 Simultaneously 7.40 0.58 1.06 0.30

The better results for each condition (separately or simultaneously) are given in bold

Table 5 Estimation error in
scene E1 (averaged over E1’s 4
lights) for Ours and Shen

Method Mean of light error (mm) Stdev. of light error (mm)

Ours, shadows hand-annotated 9.45 1.06

Ours, shadows detected 15.4 7.45

Shen, highlights hand-annotated 18.6 5.33

scenes 2–3 times as big as ours despite alsominimizing repro-
jection error (thus being theoretically more accurate than
methods based on simpler triangulation schemes according
to Hartley and Sturm (1997) with very careful experiment
execution. We believe this is at least partially due to their
usage of spheres.

In this section we compare our calibration method—
denoted as Ours –with an existing method. Because of
Ackermann’s achieved accuracy we ruled out spheres and
compared to a reimplementation of a state-of-the-art method
based on a planar mirror (Shen and Cheng 2011)—denoted
as Shen. Their method observes the specular reflection of
the point light in the mirror, also models the mirror with
perspective projection and infers parameters similar to cam-
era calibration. In our implementation of Shen we again
used ArUco markers to obtain the mirror’s pose and we
annotated the highlight positionsmanually. For a fair compar-
ison we also annotated the shadow positions for our method
manually. For all hand annotations, we zoomed in on the
specular/shadow area of an image and carefully picked up
the specularity’s/shadow’s centroid.

In both methods we used an A4-sized target and observed
the target while varying its pose ∼500mm away from the
light source.We captured 30 poses for eachmethod and anno-
tated the shadows/reflections. Table 5 shows the estimation
error of light source positions for Ours and Shen in scene
E1. Ours with hand-annotated shadows as well as detected
shadows outperforms Shen with annotated highlights.

6 Conclusions

Theoretic Contributions In this paper we explored the con-
nections between point lights and pinhole cameras: Single

(a)(b)

Fig. 15 a With a small baseline between camera and light, the caster
may occlude the shadow as seen from the camera. b To solve this, we
use a smaller shadow caster, bring the target closer to the camera and
make the target smaller so the camera can capture it fully

view shadow projection from point lights follows the same
principles as pinhole camera projection but with more spe-
cialized projectionmatrices.Wedevised a unified lightmodel
that smoothly interpolates between projection from a nearby
light and distant light and thereby spares users having to
choose between light models. As a consequence of point
lights behaving like pinhole cameras, we saw that multi-view
shadow correspondences follow the principles of epipolar
geometry. Their fundamental matrices, trifocal and quadri-
focal tensors have specialized shapes that allow estimating
them from as few as 2 correspondences, and there is no gen-
eral degeneracy in estimating fundamental shadow matrices
from coplanar scene points. Shadow matrices/tensors allow
us to establish point correspondences from unstructured sets
of images without the use of tracking or feature matching.
We further saw, that point lights and shadow caster positions
can be simultaneously estimated using structure frommotion
and bundle adjustment.

We want to add a thought on calibration target design:
Ackermann et al. (2013) pointed out that, analogous to the
large depth uncertainty in narrow-baseline stereo, narrow
baseline calibration targets such as Powell’s (2001) have a
large light position uncertainty along the light direction. This
can be decreased by either building a staticwide-baseline cal-
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ibration target, or by moving the target in the scene as we do.
So, again our method is strongly connected to SfM where
camera movement is key to reducing depth uncertainty.

Experimental Results Our noise-free simulation experi-
ments showed that our formulation is correct and the solution
method derives accurate estimates with negligible numeri-
cal errors. Thus, the solution quality is rather governed by
the inaccuracy of target pose estimation and shadow detec-
tion.We showed on synthetic and real-world scenes that even
with these inaccuracies ourmethod accurately estimates light
source positions/directions with measurements from a suf-
ficient number of shadow casters and (more importantly)
target poses, which can easily be collected by moving the
proposed calibration target in front of the camera. Further, we
showed that we can increase the calibration accuracy by esti-
mating multiple lights simultaneously. Regarding the choice
between fundamental shadow matrices and trifocal shadow
tensors, we saw that both yield approximately equally accu-
rate results.

A comparison with a state-of-the-art method based on
highlights on a mirror plane showed our method’s superior
accuracy. We believe the reason lies in our pin shadows’
accurate localizability. As discussed in Sect. 2, highlights are
hard to localize accurately. In contrast, our pin shadows do
not “bleed” into their neighborhood and we can easily con-
trol their size through the pin head size. If higher localization
accuracy is required, one can choose pins smaller than ours.

Practical Implications In contrast to related work, our
method requires no tedious, error-prone hand annotations
of, e.g., sphere outlines, no precisely fabricated objects such
as precise spheres, and no precise measurements of, e.g.,
sphere positions. Users need not even choose between the
two different light models (nearby and distant) since our cal-
ibration method infers this automatically. Further, shadow
matrices/tensors even allow unstructured image sets and

not just videos to be used as input for the calibration. The
construction of our calibration target is simple, fast and
cheap and most calibration steps (e.g., target pose estima-
tion and shadow detection/matching) run automatically. The
only manual interaction—capturing images or a video while
moving the target—is simple. To our knowledge no other
method combines such simplicity and accuracy.

Limitations Our method cannot be used for scenes where
light and camera are so close together that the caster occludes
the image of the shadow (see Fig. 15a). The solution is to
effectively increase the baseline between camera and light
by using a smaller target and bringing it closer to the camera,
as shown in Fig. 15b.

Future Work It may be possible to alleviate the occlusion
problem above with a shadow detection that handles par-
tial occlusions. Further, we want to analyze degenerate cases
where our equations are rank deficient, e.g., a target with one
caster being moved such that its shadow stays on the same
spot.

The source code for this project can be downloaded from:
github.com/hiroaki-santo/light-structure-
from-pin-motion.
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Fig. 16 Left: The quadrifocal tensor Q. Right: The equation system whose solution gives the parameters q1, . . . , q18 of Q
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