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Abstract
Generative adversarial networks (GANs) successfully generate high quality data by learning a mapping from a latent vector
to the data. Various studies assert that the latent space of a GAN is semantically meaningful and can be utilized for advanced
data analysis and manipulation. To analyze the real data in the latent space of a GAN, it is necessary to build an inference
mapping from the data to the latent vector. This paper proposes an effective algorithm to accurately infer the latent vector
by utilizing GAN discriminator features. Our primary goal is to increase inference mapping accuracy with minimal training
overhead. Furthermore, using the proposed algorithm,we suggest a conditional image generation algorithm, namely a spatially
conditionedGAN.Extensive evaluations confirmed that the proposed inference algorithmachievedmore semantically accurate
inference mapping than existing methods and can be successfully applied to advanced conditional image generation tasks.

Keywords Generative adversarial networks · Inference mapping ·Conditional image generation ·Quality metric for inference
mapping · Spatial semantic manipulation

1 Introduction

Generative adversarial networks (GANs) have demonstrated
remarkable progress in successfully reproducing real data
distribution, particularly for natural images. Although GANs
impose few constraints or assumptions on their model defini-
tion, they are capable of producing sharp and realistic images.
To this end, training GANs involves adversarial competition
between a generator and discriminator: the generator learns
the generation process formulated bymapping from the latent
distribution Pz to the data distribution Pdata; and the dis-
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criminator evaluates the generation quality by distinguishing
generated images from real images. Goodfellow et al. (2014)
formulated the objective of this adversarial training using the
minimax game

min
G

max
D

E
x∼Pdata

[log(D(x))] + E
z∼Pz

[log(1 − D(G(z))], (1)

where E denotes expectation; G and D are the generator and
discriminator, respectively; and z and x are samples drawn
from Pz and Pdata, respectively. Once the generator learns
the mapping from the latent vector to the data (i.e., z → x),
it is possible to generate arbitrary data corresponding to ran-
domly drawn z. Inspired by this pioneering work, various
GAN models have been developed to improve training sta-
bility, image quality, and diversity of the generation.

In addition to image generation, GAN models are an
attractive tool for building interpretable, disentangled rep-
resentations. Due to their semantic power, several studies
(Radford et al. 2016;Berthelot et al. 2017) show that data aug-
mentation or editing can be achieved by simple operations in
the GAN latent space. To utilize the semantic representation
derived by the GAN latent space, we need to establish infer-
ence mapping from the data to the latent vector (i.e., x → z).
Previous studies generally adopt acyclic or cyclic inference
mapping approaches to address the inference problem.
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Acyclic inference models develop inference mapping
x → z independently from generation mapping (i.e., GAN
training). Consequently, learning this inference mapping can
be formulated as minimizing image reconstruction error
through latent optimization. Previous studies (Liu and Tuzel
2016; Berthelot et al. 2017) solve this optimization problem
by finding an inverse generation mapping, G−1 (x), using
a non-convex optimizer. However, calculating this inverse
path suffers from multiple local minima due to the genera-
tor’s non-linear and highly complex nature; thus it is difficult
to reach the global optimum. In addition, the consequentially
heavy computational load at runtime limits practical appli-
cations. To alleviate computational load at runtime, iGAN
(Zhu et al. 2016) first proposed a hybrid approach, estimat-
ing from x → z0 and then z0 → z, where z0 is the initial
state for z. Specifically, iGAN predicted the initial latent vec-
tor for x using an encoder model (x → z0), then used it as
the initial optimizer value to compute the final estimate z
(z0 → z). Although the encoder model accelerates execu-
tion time for the testing phase, this initial estimate x → z0 is
often inaccurate due to disadvantage of its encoder models,
and consequential image reconstruction loss presents perfor-
mance limitations that result in missing important attributes
of the input data. Section 3.1 presents a detailed discussion
of various inference models.

Cyclic inference models (Dumoulin et al. 2017; Donahue
et al. 2017) consider bidirectional mapping, x ↔ z. That is to
say, inference learning and generation mapping are consid-
ered simultaneously. In contrast to acyclic inference, cyclic
inference aims to train the generator using feedback from
inference mapping. For example, Dumoulin et al. (2017) and
Donahue et al. (2017) develop a cyclic inference mapping
to alleviate the mode collapse problem. However, its perfor-
mance is relatively poor in terms of both generation quality
and inference accuracy, which leads to blurry images and the
consequential poor inference results in inaccurate inference
mapping.

This paper proposes a novel acyclic discriminator feature
based inference (DFI) algorithm that exceeds both accuracy
and efficiency of inference mapping for current techniques
(Fig. 1). To improve inference accuracy, we suggest (1)
replacing image reconstruction loss (evaluated with x ∼
Pdata) with latent reconstruction loss (evaluated with z ∼ Pz)
as an objective function for inference mapping, and (2) sub-
stituting the encoder with the discriminator as the feature
extractor to prevent sample bias caused by latent reconstruc-
tion loss. Section 3.1 discusses this issue in detail.

Consequently, the proposed algorithm performs inference
in the order of x → Df and then Df → z, where Df implies
the discriminator feature. Fortunately, since the pre-trained
discriminator reveals x → Df , we only focus on finding
Df → z. Since this mapping is a low-to-low dimensional
translation, it is much more efficient than direct encoder

based approaches of x → z in terms of model parameters.
Thus, the proposed algorithm achieves computational effi-
ciency in training.

We need to consider two aspects to evaluate inference
mapping: how accurately the reconstructed image preserves
semantic attributes, i.e., fidelity, and reconstructed image
quality after applying the inference mapping. To quantify
these two aspects, we evaluated inference models with five
metrics: peak signal-to-noise ratio (PSNR), structural simi-
larity index (SSIM), learned perceptual image patch similar-
ity (LPIPS) (Zhang et al. 2018b), face attribute classification
accuracy, and Fréchet inception distance (FID) (Dowson
and Landau 1982). We use multiple metrics for evaluation
because no single metric is sufficient to quantify both aspects
simultaneously. The comparison confirmed that the proposed
DFI outperformed existing cyclic and acyclic inference in
terms of both fidelity and quality.

As a new and attractive application using the proposed
inference mapping, we developed a spatially conditioned
GAN (SCGAN) that can precisely control the spatial seman-
tics for image generation. SCGAN successfully solves the
spatially conditioned image generation problem due to the
accurate and efficient latent estimation from the proposed
inference model.

Extensive comparisons with current inference models and
experimental analysis confirmed that the proposed inference
algorithm provided accurate and efficient solutions for infer-
ence mapping.

2 Preliminaries

The following sections describe acyclic and cyclic inference
models.

2.1 Acyclic Inference Models

An acyclic inference model develops an inference mapping
on top of a pre-trained GAN model. Thus, it consists of two
steps.

1. Generation mapping is established by training a baseline
GAN model.

2. For inference mapping, the inference model is trained
by minimizing the difference between x and its recon-
structed image x ′, where x ′ is G(z′), G is determined at
step (1), and z′ is the result of the inference model.

Since all generator and discriminator parameters are fixed
during the inference mapping step, acyclic inference models
leave baseline GAN performance intact.

CoGAN (Liu and Tuzel 2016) and BEGAN (Berthelot
et al. 2017) formulate inferencemapping through a searching
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Fig. 1 Network architecture for the proposed discriminator feature based inference (DFI) model, comprising a discriminator and connection
network. The discriminator extracts feature Df (x) of input image x , and then the connection network infers the latent vector ẑ of the input image

problem. Specifically, they search latent z, which is associ-
ated with the image most similar to target image x . They use
a pixel-wise distance metric to measure the similarity, and
hence this problem is defined as

min
z

d(x, G(z)), z ∼ Pz, z
0 ∈ R|z|, (2)

where d(·) is the distance metric and z0 is the initial value for
optimization. Equation 2 can be solved using advanced opti-
mization algorithms, such as L-BFGS-B (Byrd et al. 1995u)
or Adam (Kingma and Ba 2015). Although this inference
process is intuitive and simple, its results are often inaccu-
rate and generally inefficient. This non-convex optimization
easily falls into spurious local minima due to the generator’s
non-linear and highly complex nature, and estimation results
are significantly biased by the particular z0 selected. The opti-
mization based inference algorithm also requires intensive
computational effort in the testing phase, which is prohibitive
for real-time applications.

To mitigate these drawbacks, iGAN (Zhu et al. 2016)
focused on providing a good initial z0 to assist the opti-
mization search in terms of both effectiveness and efficiency,
proposing a hybrid method combining an encoder model and
optimization module sequentially. The method first predicts
z0 for the input x using an encoder model, and the best esti-
mate for subsequent z is approximated by minimizing pixel
difference between G(z) and x . Thus, the first step for train-
ing the encoder model E is defined as

min
E

E
x∼Pdata

[d(x, G(E(x)))]. (3)

The second step is the same optimizing Eq. 2 except that
the predicted latent vector is used as an initial value, z0 =
E(x). Consequently, iGAN reduces computational complex-
ity for inference mapping at runtime. However, since the
encoder training utilizes samples from the data distribution,
inference accuracy is severely degraded by the pre-trained
generator having a mode missing problem, i.e., the genera-
tor is incapable of representing the minor modes. Section 3.1
discusses this issue inmore detail. Due to this accuracy issue,
iGAN often misses important input data attributes, which are
key components for interpreting the input.

2.2 Cyclic Inference Models

Cyclic inference models learn inference and generation
mapping simultaneously. Variational (VAE) (Kingma and
Welling 2013) and adversarial (AAE) (Makhzani et al. 2016)
autoencoders are popularly employed to learn bidirectional
mapping between z and x . Their model architectures are
quite similar to autoencoders (Baldi 2012), comprising an
encoder, i.e., the inverse generator, and a decoder, i.e.,
the generator. In contrast to autoencoders, VAE and AAE
match latent distributions to prior distributions (Wainwright
et al. 2008), enabling data generation. Whereas VAE uti-
lizes Kullback–Leibler divergence to match latent and prior
distributions, AAE utilizes adversarial learning for latent
distribution matching. Although both algorithms establish
bidirectional mapping between the latent and data distribu-
tions through stable training, their image quality is poorer
than for unidirectional GANs. Specifically, generated images
are blurry with lost details.
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The ALI (Dumoulin et al. 2017) and BiGAN (Donahue
et al. 2017) bidirectional GANs jointly learn bidirectional
mapping between z and x in an unsupervised manner. They
use a generator to construct forward mapping from z to x ,
and then an encoder to model inference mapping from x
to z. To train the generator and the encoder simultaneously,
they define a new objective function for the discriminator to
distinguish the joint distribution, {G(z), z}, from {x,E(x)}.
Thus, the ALI and BiGAN objective function is

min
G

max
D

E
x∼Pdata

[
log (D(x,E(x)))

] + E
z∼Pz

[
log(1 − D(G(z), z))

]
.

(4)

Although these models can reconstruct the original image
from the estimated latent vector, generation quality is poorer
than that for unidirectional GANs due to convergence issues
(Li et al. 2017). In contrast, they alleviate the unidirectional
GANmode collapse problemby utilizing inferencemapping.

The VEEGAN (Srivastava et al. 2017) and ALICE (Li
et al. 2017) introduce an additional constraint that enforces
the reconstructed image (or the latent vector) computed from
the estimated latent vector (or image) to match the original
image (or latent vector). This improves either mode collapse
or training instability for bidirectional GANs. Specifically,
VEEGAN utilizes cross-entropy between Pz and E(x),
defined as the reconstruction penalty in the latent space, to
establish joint distribution matching; whereas ALICE aims
to improve GAN training instability by adopting conditional
entropy, defined as cycle consistency (Zhu et al. 2017).
Although both methods improve joint distribution matching
performance, they still suffer from discrepancies between
theoretical optimum and practical convergence (Li et al.
2017), resulting in either slightly blurred generated images
or inaccurate inference mapping.

3 Discriminator Feature Based Inference

The proposed algorithm is an acyclic inferencemodel, in that
the training process is isolated from GAN training, i.e., both
the generator and discriminator are updated. This implies
that baseline GAN model performance is not affected by
inference mapping. Our goal with the proposed pre-trained
GAN model, is to (1) increase inference mapping accuracy
and (2) build a real-time inference algorithm with minimal
training overhead.

Therefore, we propose a discriminator feature based infer-
ence algorithm to achieve these goals. Specifically,we build a
connection network that establishes the mapping from image
features to the latent vector by minimizing latent recon-
struction loss. We formulate the objective for learning the
connection network as

min
CN

E
z∼Pz

[d(z, CN(Df(G(z))))], (5)

where CN is the connection network, and Df(x) indicates
the discriminator feature vector of x , extracted from the last
layer of the discriminator.

In our framework, the generated image from z is projected
onto the discriminator feature space, and this feature vector
then maps to the original z using the connection network. It
is important to understand that correspondences between the
latent vector z and discriminator features Df(x) are automati-
cally set for arbitrary z once both generator and discriminator
training ends. Hence, the connection network is trained to
minimize the difference between z and its reconstruction by
the connection network.

The following sections provide the rationale for the
proposed algorithm (Sect. 3.1), suggest a new metric for
inference mapping (Sect. 3.2), and then introduce a spatially
conditioned GAN (SCGAN) practical application of the pro-
posed DFI (Sect. 3.3). We stress that SCGAN addresses
spatial conditioning for image generation for the first time.

3.1 Rationale

Why DFI is Superior to Previous Acyclic Algorithms The
classic iGAN acyclic inference algorithm uses an encoder
based inference model that minimizes image reconstruction
loss in Eq. 3 in the first stage. In contrast, the proposed DFI
aims to minimize latent reconstruction loss for training the
connection network. These approaches are identical for an
ideal GAN, i.e., perfect mapping from z to x . However, prac-
tical GANs notoriously suffer frommode collapse; where the
generator only covers a few major modes, ignoring the often
many minor modes.

Suppose that the distribution reproduced by the generator
Pg does not cover the entire distribution of Pdata, i.e., mode
collapse. Then, consider the sample x , where Pg(x) = 0 and
Pdata(x) �= 0. For such a sample, image reconstruction loss
between x and x ′ = G(E(x)) by Eq. 3 is ill-specified (Srivas-
tava et al. 2017), where E is an inference algorithm that maps
an image to a latent vector, since x ′ is undefined by the gener-
ator. Any inference model trained with image reconstruction
loss inevitably leads to inaccurate inference mapping, due to
those undefined samples. In other words, the image recon-
struction suffers from noisy annotations since it learns the
mapping from the real image to its latent code, which are
latent codes for real images not covered by the generator.
This leads to inference accuracy degradation, e.g. attribute
losses and blurry images.

In contrast, latent reconstruction loss only considers the
mapping from z′ = E(G(z)) to z ∼ Pz, i.e., latent recon-
struction loss does not handle samples not covered by the
generator. Thus, Eq. 5 solves a well-specified problem: a
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set of accurate image-annotation pairs are used for training.
This can significantly influence inference accuracy, and is
critical for acyclic inference models developed with a pre-
trained generator having practical limitations, such as mode
collapse.

We stress that inference mapping using a fixed generator
is trained via a set of image-latent pairs in a fully super-
visedmanner. Since supervised learning performance largely
depends on annotation quality, refining the training dataset
to improve annotation accuracy often improves overall per-
formance. In this regard, the proposed latent reconstruction
loss can be interpreted as the improving annotation qual-
ity, because it tends to train inference mapping using correct
image-latent pairs.

Why the Discriminator is a Good Feature Extractor for DFI
Although the discriminator is typically abandoned afterGAN
training, we claim it is a useful feature extractor for learn-
ing the connection network. The previous study (Radford
et al. 2016) empirically showed that discriminator features
are powerful representations for solving general classifica-
tion tasks. The discriminator feature representation is even
more powerful for inference mapping, for the following rea-
sons.

To train the connection network using latent reconstruc-
tion loss, all training samples are fake samples, drawn from
z ∼ Pz, as described inEq. 5.Although utilizing latent recon-
struction loss is useful to construct a well-specified problem,
this naturally leads to sample bias, i.e., a lack of real sam-
ples, x ∼ Pdata, during training. Tomitigate training bias, we
utilize the discriminator as a feature extractor, because the
discriminator feature space already provides comprehensive
representation for both real and fake samples. Thus, the pre-
trained discriminator learns to classify real and fake samples
during training. Consequently, we expect that the discrimi-
nator feature space can bridge the discrepancy between real
and fake samples, helping to alleviate sample bias.

3.2 Metrics for Assessing Inference Accuracy

Although several metrics are available for evaluating GAN
models, an objective metric for assessing inference mod-
els has not been established. Developing a fair metric is
beneficial to encourage constructive competition, and hence
escalate the advance of inference algorithms.

Two aspects should be considered to evaluate infer-
ence algorithm accuracy: semantic fidelity and reconstructed
image quality.Weutilize LPIPS (Zhang et al. 2018b) and face
attribute classification (FAC) accuracy (Liu et al. 2019) to
measure reconstructed image semantic fidelity, i.e., similar-
ity to the original image. Section4.2 empirically discusses the
high correlation between LPIPS and FAC accuracy. There-
fore, we employ LPIPS as the measure for semantic fidelity

for further experiments because FAC accuracy is not flexible
enough to apply on various datasets. In addition, We sug-
gest FID (Dowson and Landau 1982) to measure the image
quality, i.e. how realistic the image is. We emphasize that
LPIPS is more suitable to measure the fidelity of the recon-
structed image while FID is more suitable to measure the
image quality of the reconstructed image.

LPIPS The learnedperceptual imagepatch similarity (LPIPS)
metric for image similarity utilizes a pre-trained image
classification network e.g. AlexNet (Krizhevsky 2014),
VGG(Simonyan andZisserman2015), andSqueezeNet (Ian-
dola et al. 2016) to measure feature activation differences
between two images, and returns a similarity score using
learned linear weights. LPIPS can capture semantic fidelity
because both low and high level features of the pre-trained
network influence similarity.

FID Although LPIPS is a powerful metric for semantic
fidelity, it does not reflect reconstructed image quality. We
need to consider whether the reconstructed image is on the
image manifold to measure quality. FID is a popular met-
ric that quantifies sample quality and diversity for generative
models, particularly GANs (Lucic et al. 2018; Zhang et al.
2018a; Brock et al. 2018), where smaller FID score indicates
fake samples have (1) high quality (i.e., they are sharp and
realistic) and (2) various modes similar to real data distribu-
tion.

FID represents the Fréchet distance (Dowson and Landau
1982) between the moments of two Gaussians, represent-
ing the feature distribution of real images and randomly
drawn fake images. We also utilize FID for evaluating infer-
ence algorithms. For that, the Fréchet distance between
moments of two Gaussians are measured where two Gaus-
sians represent feature distributions for real images and their
reconstructed images.

The FID for the inference algorithm can be expressed as

d2((μ,�), (μR, �R)) = ||μ − μR||22
+Tr

(
� + �R − 2 (��R)1/2

)
, (6)

where (μ,�) (or (μR, �R)) indicates the mean vector and
covariance matrix for the Inception features computed from
real images (or reconstructed images obtained by inference
mapping).

It is important to note that the FID for the inference algo-
rithm is anunbiased estimator since each reconstructed image
has its real image pair. Thus, the FID for the inference algo-
rithm provides a deterministic score for given real image set,
reliable even for small test samples.

123



International Journal of Computer Vision (2020) 128:2436–2458 2441

Fig. 2 Fish-eye distortion examples. Each column depicts distorted
results with distortion coefficient 0.0 (original), 0.1, 0.2, 0.3, 0.4, and
0.5

Rationale of Using Both Metrics To justify the above men-
tionedproperties ofLPIPSandFID,weprovide one exemplar
case and two empirical studies. First, the advantage of LPIPS
can be clearly demonstrated by the following example. Note
that LPIPS guarantees the ideal reconstruction if its score is
zero. Meanwhile, any permutation of perfect reconstruction
can yield zero FID. This indicates that LPIPS is reliable to
measure faithful reconstruction; FID is not.

Contrary, LPIPS is overly sensitive to structural perturba-
tions between the two images, thus not suitable to assess the
general image quality. In fact, such a sensitivity is natural
because LPIPS directly measures the pixel-level difference
between two feature activations across all scales. It should
be noted that FID is robust against the structural perturba-
tions because it does not evaluate the pixel-level difference
between the featuremaps of the two images, but evaluates the
statistical differences of the two high-level feature distribu-
tions. To demonstrate the advantage of FID, we carry out two
experiments; measuring LPIPS and FID between (1) the real
images and their fish-eye distorted images, and (2) the real
images and their translated images. The experiment utilizing
fish-eye distortions is also conducted in Zhang et al. (2018b).
Figure 2 depicts several distorted images. From the left to the
right, the fish-eye distortion parameter increases(the larger
the parameters, the harsher the distortion). Figure 3 shows
LPIPS and FID scores when distortion parameters increases.
We observe that FID does not change much for the images
with small distortions while the score exponentially increase
for the images with large distortions. This makes sense and is
analogous to howhuman evaluates the difference between the
two images; the three images corresponding to small distor-
tions in Fig. 3 (parameter 0.1, 0.2 and 0.3) are more similar to
the original while the last two images (parameter 0.4 and 0.5)
are clearly different from the original. Unlike FID, LPIPS are
linearly increases as the distortion parameter increases. That

Fig. 3 Quantitative comparison between LPIPS and FID. Each score
is computed using the real images and their distorted images where the
fish-eye distortion coefficient gradually increases from 0 to 0.5

Fig. 4 Translation examples with two different padding strategies. First
image is an original image. From the second to fourth, each image
depicts the result of translation (0, 0), (21, 21) with raw padding, and
(21, 21) with reflection padding respectively.

means, LPIPS is not robust against small structural perturba-
tions.

We further investigate the property of FID and LPIPS
by applying random translation in real images. For padding
after translation, we select two strategies; raw padding and
reflection padding. For raw padding, we center crop image
after shifting the original real image. For reflection padding,
we center-crop image first and shift the cropped image
with reflection padding. As seen from Fig. 4, raw padding
results in realistic images whereas reflection padding cre-
ates creepy and unrealistic faces. We apply random shift
for both vertical and horizontal axis of the image within the
range (− t,− t) ∼ (t, t) where t is a translation coefficient.
Figure 5 describes LPIPS and FID score as the translation
coefficient increases. Interestingly, we observe that the dif-
ference between LPIPS scores for the two padding strategies
are marginal. Contrary, the difference between the two FID
scores for the two different padding strategies is consider-
able. Specifically, the translation using raw padding leads
extremely small FID scores (FID less than 2 is almost neg-
ligible) while the translation using reflection padding yields
meaningful difference in FID scores. These results present
that the FID is more suitable to measure image quality, i.e.,
how realistic the generated samples are, than LPIPS.

From two empirical studies, we conclude that FID is more
robust to small structural perturbations in images thanLPIPS.
Owing to this attractive properties, we confirm that FID bet-
ter evaluates the image quality than LPIPS. Considering the
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Fig. 5 Quantitative results of LPIPS and FID score between the real
images and their translated images according to the random translation
coefficient. To clearly visualize the difference in LPIPS scores for two
padding strategies, LPIPS scores are overlaid to each point

advantages of FID and LPIPS in different aspects, we claim
that both FID and LPIPS should be used for assessing infer-
ence algorithms. For this reason, we report both scores as
quantitative measures for various inference algorithms.

Although we include PSNR and SSIM metrics, their
scores do not reflect perceptual quality well. We argue that
LPIPS and FID can better assess inference algorithm model-
ing power. Section 4.2 empirically shows PSNR and SSIM
demerits as accuracy measures for inference algorithms.

3.3 Spatially Conditioned Image Generation

Semantic features are key components for understanding and
reflecting human intentions because they are closely related
to human interpretation. Indeed, theway humans define tasks
is never specificbut is rather abstract or onlydescribes seman-
tic characteristics. For example, human facial memorizing
does not rely on local details, such as skin color or rough-
ness, but focusesmore on facial shape, hair color, presence of
eyeglasses, etc. Therefore, from the human viewpoint, use-
ful image analysis and manipulation should be associated
with extracting semantic attributes of the data and modify-
ing them effectively. Since the proposed inference algorithm
developed by the connection network establishes semanti-
cally accurate inference mapping, combining this inference
algorithm with standard GANs can provide strong baseline
models for data manipulation and analysis applications.

Therefore, we suggest a new conditional image generation
algorithm: spatially conditioned GAN (SCGAN). SCGAN
extracts the latent vector of input using the proposed infer-
ence algorithm and uses it for spatially conditioned image
generation.

In particular, we specify the position input image posi-
tion, and then generate the surroundings using SCGAN. In
this process, the generated surrounding region should nat-
urally and seamlessly match the input image. Among the

infinite methods to generate the outside regions, our goal is
to achieve semantically seamless results. Therefore, SCGAN
firstmaps the input image to its latent vector usingDFI,which
encodes the semantic attributes. Given the latent vector of
input, spatially conditioned image generation is conducted
by generating the large image (full size) such that the image
region at the input position is the reconstructed input and its
surroundings are newly generated. The generated surround-
ings should seamlessly match the semantics of the input with
reasonably visual quality. Since many possible surroundings
can match the input, we formulate the latent vector of the
generated image by concatenating the random vector with
the latent vector of input. Thus, SCGAN maintains input
semantic attributes while allowing diverse image surround-
ings.

Figure 6 illustrates the proposed SCGAN architecture. To
extract the latent vector for input image xcenter , we first train
baseline GANs, comprising a generator Gcenter and discrimi-
nator Dcenter , and then fix the GANs and train the connection
network (CN) to utilize DFI. Given the fixed Dcenter and CN,
we compute ẑcenter , the estimated latent vector for xcenter . To
account for diverse surroundings, we concatenate a random
latent vector zedge with ẑcenter and feed this into the genera-
tor Gfull. This network learns to map the concatenated latent
vector to full size image yfull, which is the final output image.

We train Gfull to satisfy ycrop: the image center of yfull
should reconstruct xcenter ; and yfull should have a diverse
boundary region and sufficiently high overall quality. Tomeet
the first objective, the naïve solution is to minimize L1/L2
distance between ycrop and xcenter . However, as reported pre-
viously (Larsen et al. 2015), combining image-level losswith
adversarial loss increases GAN training instability, resulting
in quality degradation. Hence, we define reconstruction loss
in the latent space, i.e., we map ycrop onto its latent vector via
DFI (Dcenter and CN), then force it to match ẑcenter . Thus, the
semantic similarity between the input and its reconstruction
is preserved.

To ensure seamless composition between reconstructed
and generated regions, adversarial loss for Gfull consists of
feedback from yfull and yglue. yglue is obtained by substitut-
ing the generated image center ycrop with the reconstructed
input ycenter . This term for yglue helps generate visually pleas-
ing images, i.e., reconstructed input and its surroundings are
seamlesslymatched.Thus, generator loss includes twoadver-
sarial losses and latent reconstruction loss,

min
Gfull

0.5 Ladv
G + α Lrecon, (7)

Lrecon = ∥∥ẑcenter − CN(Dcenter(ycrop))
∥∥
1 ,
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Fig. 6 Network architecture for
the proposed SCGAN.

⊕

denotes concatenation of latent
vectors.

⊗
denotes image

replacement. yglue is identical to
yfull except the image center
(square area outlined by red
dots), which was replaced with
ycenter . The design choice for D
was motivated by Iizuka et al.
(2017), and includes a global
discriminator Dfull and local
discriminator Dcenter (Color
figure online)

and

Ladv
G = E

zedge∼Pz

[
log(1 − D(yfull))

+ log(1 − D(yglue))
]
,

respectively.
Semantic consistency between reconstructed and gener-

ated regions is important to create natural images. To obtain
locally and globally consistent images, we utilize local and
global discriminator D (Iizuka et al. 2017) architecture that
uses discriminator features from both Dcenter and Dfull. We
also employ PatchGAN (Isola et al. 2017) architecture to
strengthen the discriminator, accounting for semantic infor-
mation from patches in the input, and apply the zero-centered
gradient penalty (0GP) (Mescheder et al. 2018) to Dfull

to facilitate high resolution image generation. Considering
adversarial loss and zero-centered gradient penalty, discrim-
inator loss can be expressed as

max
Dfull

Ladv
D + 0.5 Ladv

G + LGP (8)

Ladv
D = E

x∼Pdata
[logD(x)], and LGP = γ

2
E

x∼Pdata
[‖∇D(x)‖2].

4 Experimental Results

For a concise expression,we use the abbreviation for network
combinations for the rest of the paper. Table 1 summarizes
the component of each network model and its abbreviation.
For additional optimization, each baseline model first infers
initial z0 and then optimize z by following Eq. 2 for 50 iter-
ations (Zhu et al. 2016).

Metrics for Quantitative Evaluation We employed PSNR,
SSIM, LPIPS, face attribute classification (FAC) accuracy,
FID, and a user study to quantitatively evaluate various

inference algorithms. For the user study, 150 participants
compared real imageswith their reconstruction fromall infer-
ence models to select the one that most similar to the real
image. Each participant then responded to three questions.

1. Weprovided seven images: the original and reconstructed
images from (a) ENCimage, (b) ENC

opt
image (iGAN), (c)

ENClatent, (d)ENC
opt
latent, (e)DFI, and (f)DFI

opt.Weasked
the participant to select the image most similar to the
original image from among the six reconstructed images.

2. The participant was asked to explain the reason for their
choice.

3. We provided DFI and DFI − VGG16 (discussed in
Sect. 4.6) images, and asked participants to select the
one most similar to the original.

This was repeated 25 times using different input images.

State-of-the-Art Inference Algorithms for Comparison
Experimental comparisons are conducted for acyclic and
cyclic inference models. First, we compare the proposed
inference algorithm with three acyclic inference algorithms:
naïve encoder (ENCimage and ENClatent), hybrid inference

by iGAN (Zhu et al. 2016) (ENCopt
image), and hybrid infer-

ence combined with DFI (DFIopt). The proposed DFI model
outperformed all three acyclic models for all four evaluation
methods (LPIPS, FAC accuracy, FID, and user study).

We then compared current cyclic models
(VAE, ALI/BiGAN, and ALICE) with the proposed DFI
based model upon various baseline GAN models. Cyclic
model inference mapping influences baseline GAN perfor-
mance, whereas acyclic model (i.e., DFI) inference mapping
does not.We combined six different baselineGANswithDFI
for this evaluation: DCGAN (Radford et al. 2016), LSGAN
(Mao et al. 2017), DFM (Warde-Farley and Bengio 2017),
RFGAN (Bang and Shim 2018), SNGAN (Miyato et al.
2018), and WGAN-GP (Gulrajani et al. 2017). These six
were selected because they are significantly different from
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Table 1 The abbreviation for various baseline models and the variants of the proposed models

Training loss Architecture Additional optimization

Image recon-
struction loss

Latent recon-
struction loss

Encoder trained
from scratch

Discriminator
(Df ) + CN net-
work

ENCimage � �
ENCopt

image (iGAN) � � �
ENClatent � �
ENCopt

latent � � �
DFIimage � �
DFIoptimage � � �
DFI (proposed) � �
DFIopt � � �

each other in terms of loss functions or network architec-
tures. We evaluated all results with ≤ (64, 64, 3) resolution
since cyclic models are unstable for high resolution images.
To illustrateDFI scalability, we build inferencemappingwith
high resolution GANs (Mescheder et al. 2018; Miyato et al.
2018) combined with DFI, and observed similar tendency
in terms of inference accuracy for (128, 128, 3) resolution
images.

Qualitative Evaluation for DFI Generators learn rich linear
structure in representation space due to the power of semantic
representations of GAN latent space (Radford et al. 2016).
To qualitatively evaluate semantic accuracy for the proposed
DFI, we conducted two simple image manipulation tasks:
latent space walking and vector arithmetic.

Model Architecture for Fair Comparison To ensure fair eval-
uation, we based baseline GAN architectures on DCGAN
for low resolution and SNGAN for high resolution experi-
ments, i.e., number of layers, filter size, hyper-parameters,
etc. The connection network included just two fully con-
nected (FC) layers: 1024—group normalization (GN) (Wu
and He 2018)—leaky rectified linear unit (Leaky ReLU)—
1024 FC—GN—Leaky ReLU—dimension of Pz FC.

Datasets One synthetic and three real datasets were used for
both qualitative and quantitative evaluations. We generated
eight Gaussian spreads for the synthetic dataset distribu-
tion. Real datasets included Fashion MNIST (Xiao et al.
2017), CIFAR10 (Krizhevsky andHinton 2009), and CelebA
(Liu et al. 2015), and were all normalized on [−1, 1]. Input
dimensionality for Fashion MNIST = (28, 28, 1); CIFAR10
= (32, 32, 3); and CelebA = (64, 64, 3) and (128, 128, 3)
for low and high resolution GANs, respectively. Quantita-
tive experiments for high resolution GANs included 10,000
images in the test set.

4.1 DFI Verification Using the Synthetic Dataset

Figure 7 (left) compares performance for the acyclic infer-
ence algorithms using the synthetic dataset. The dataset
consisted of eight Gaussian spreads with standard devia-
tion = 0.1. We reduced the number of samples from two
Gaussian spreads at the second quadrant to induce minor
data distribution modes, and then trained the GANs using
real samples (green dots). The generator and discriminator
included three FC layers with batch normalization. Subse-
quently, we obtained generated samples (orange dots) by
randomly producing samples using the generator. The dis-
tributions confirm that GAN training was successful, with
generated samples covering all data distribution modes.

Although the pre-trained GANs covered all modes, two
modes on the second quadrant were rarely reproducible. This
commonly incurs in GAN training, leading to poor diver-
sity in sample generation. Using this pre-trained GANs, we
trained (1) ENCimage, (2) ENClatent (the degenerated ver-
sion of the proposed algorithm), and (3) DFI (the proposed
algorithm). Hyper-parameters and network architecture were
identical for all models, i.e., DFI included the discrimi-
nator (two FC layers without the final FC layer) and the
connection network (two FC layers), whereas the encoders
(ENCimage and ENClatent) included four FC layers with the
same architecture and model parameters as DFI. Each infer-
ence algorithm calculated corresponding latent vectors from
the test samples (gray dots), and then regenerating the test
samples from the latent vectors. For sufficient training, we
extract the results after 50K iterations.

Figure 7 (right) compares performance for the inference
algorithmswith sample reconstruction results. TheENCimage

(the red dots) tends to recover the right side of test samples
but is incapable of recovering samples on the left side, and
only five modes were recovered in this experiment; whereas
ENClatent (cyan and blue dots) recover many more modes

123



International Journal of Computer Vision (2020) 128:2436–2458 2445

Fig. 7 Inference algorithm
performances using a synthetic
dataset with eight Gaussian
spreads: (left) green dots are
training (real) samples, orange
dots are generated samples from
baseline GAN generators;
(right) gray dots are ground
truth (real) test samples, red dots
are reconstructed samples by the
ENCimage, the cyan dots are
reconstructed samples by the
ENClatent , and the blue dots are
reconstructed samples by the
proposed DFI (Color figure
online)

Training (real) sample
Generated sample
Ground truth (real) sample

Reconstructed sample: ENC
Reconstructed sample: ENC
Reconstructed sample: DFI (proposed)

after reconstruction. This visual comparison clearly demon-
strates the ENCimage drawbacks.

For inference algorithms with the same latent reconstruc-
tion loss, DFI significantly outperforms the algorithm using
the ENClatent. In particular, the reconstructed samples using
the ENClatent are inaccurate in terms of reconstruction accu-
racy because considerable portions of reconstructed samples
(e.g. cyan dots in the middle) are far from all eight Gaussian
spreads. DFI reconstructed samples are much closer to the
original Gaussian spreads, i.e., more accurate results.

Thus, latent reconstruction loss was more effective than
image reconstruction loss to derive accurate acyclic infer-
ence algorithms. Utilizing the pre-trained discriminator as
a feature extractor also helped to further increase infer-
ence mapping accuracy. Therefore, the proposed approach
to employ latent reconstruction loss with the discriminator
as a feature extractor is an effective and efficient solution for
inference algorithms.

4.2 Comparison with Acyclic InferenceModels

In Fig. 8, we use various objective metrics for quantitatively
evaluating the inference algorithms. Specifically, PSNR,
SSIM, LPIPS, face attribute classification (FAC) accuracy,
FID and user study results are reported for comparing DFI
with the other acyclic models. For the FAC accuracy, we
utilize the same classifier as STGAN (Liu et al. 2019), that
uses 13 attributes in CelebA dataset to measure accuracy.
For the experimental results in CelebA, LPIPS exhibits sim-
ilar tendency to FAC accuracy. Therefore, we choose LPIPS
to assess inference algorithm semantic similarity for the
remaining experiments since if canmeasure semantic fidelity
on various datasets.

LPIPS, FAC accuracy, FID and the user study scores indi-
cate DFI based models to be significantly superior. Although
PSNR and SSIM scores from methods using image recon-
struction loss are significantly higher than for DFI models,
significant gaps in the user study confirm that PSNR and
SSIM are not reliable metrics for this application. Inference
algorithms with image reconstruction loss are expected to
have higher PSNR and SSIM scores, simply because their
objectives, i.e., minimizing pixel-level difference exactly
match the metrics.

ENClatent and ENCopt
latent results do not provide accurate

fidelity (lower LPIPS). The ENClatent utilizes only fake sam-
ples for training the feature extractor, i.e., convolutional
layers, whereasDFI exploits the discriminator feature extrac-
tor,which was trained with real and fake samples. Thus, the
ENClatent model is incapable of capturing a common feature
to represent real and fake images. Consequently, reconstruc-
tion fidelity is significantly degraded. On the other hand, their
image quality, i.e., realistic and sharp, exceeds other meth-
ods using image reconstruction loss, because the inference
algorithm learns to reduce image level distance regardless
of the image manifold. Consequently, it tends to produce
blurry images without distinct attributes, leading to qual-
ity degradation. In contrast, inference algorithms with latent
reconstruction loss generally provide high quality images
after inference mapping. Thus, latent distance is more favor-
able to retain samples onto the image manifold, helping to
improve image quality.

All LPIPS, FID assessments, and user study scores con-
firm that DFI and DFIopt outperform the other models. Other
inference mappings are particularly degraded when the input
images include distinctive attributes, such as eyeglasses or
a mustache; whereas the proposed DFI inference mapping
consistently performs well, increasing the performance gap

123



2446 International Journal of Computer Vision (2020) 128:2436–2458

Fig. 8 Qualitative and
quantitative comparison of
various inference algorithms.
Column 1 includes target (real)
images and the remaining
columns include reconstructed
images by each method in the
order shown in the table. All
images were computed after
40K training steps. The table
summarizes quantitative
metrics. We used
AlexNet(lin) (Zhang et al.
2018b) environment for LPIPS
perceptual loss. FAC indicates
face attribute classification
accuracy using 13 attributes in
CelebA dataset. Smaller LPIPS
and FID indicate more accurate
and realistic results. User study
participants selected the image
most similar to the target among
six reconstructed images. The
number of votes in percentage is
reported in the table
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Fig. 9 Qualitative comparisons for various inference algorithms. Column 1 includes target (real) images and remaining columns include recon-
structed images by each method in the order of Fig. 8. All images were computed after 40K training steps

123



2448 International Journal of Computer Vision (2020) 128:2436–2458

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Fig. 10 Qualitative comparison with cyclic inference algorithms and
DFI variants using FashionMNIST and CIFAR-10 datasets. Column
(1) includes target (real) images, and the remainder include recon-

structed images by (2) VAE, (3) ALI/BiGAN, (4) ALICE, DFI with
{(5) DCGAN, (6) LSGAN, (7) DFM, (8) RFGAN, (9) SNGAN, and
(10) WGAN-GP}
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(1) (2) (3) (5) (6) (7) (8) (9) (10) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)(4)

Fig. 11 Qualitative comparison with cyclic inference algorithms and
DFI variants using the CelebA dataset. Column (1) includes target (real)
images and the remainder include reconstructed images by (2) VAE,

(3) ALI/BiGAN, (4) ALICE, DFI with {(5) DCGAN, (6) LSGAN, (7)
DFM, (8) RFGAN, (9) SNGAN, and (10) WGAN-GP}

between the proposed DFI mapping and others approaches
for samples with distinctive attributes. Therefore, the pro-
posed inference mapping was effective in restoring semantic
attributes and reconstruction results were semantically more
accurate than other inference mappings.

Figure 9 compares the proposed DFI method with (1)
encoder mapping (ENCimage and ENClatent), (2) hybrid infer-

ence as suggested by iGAN (Zhu et al. 2016) (ENCopt
image and

ENCopt
latent), and (3) DFI

opt. To investigate the effect of latent
reconstruction loss, we modified the encoder objective func-
tion in (1) and (2) from image reconstruction loss to latent
reconstruction loss.

Reconstruction results using image reconstruction loss
(Columns 2 and 3 from Figs. 8, 9) are generally blurred
or have missing attributes, e.g. eyeglasses, mustache, gen-
der, wrinkles, etc., comparedwithDFI reconstruction results.
These results support our argument in Sect. 3.1: latent recon-
struction loss provides more accurate inference mapping
than image reconstruction loss. Previous iGAN studies have
shown that additional latent optimization after inference
mapping (in both ENCopt

image andDFI
opt) effectively improves

inference accuracy. The current study found that optimiza-

tionwas useful to better restore the original color distribution,
based on feedback from the user study.

However, although the additional optimization fine tunes
the inference mapping, it still has computational efficiency
limitations. Therefore, we choseDFIwithout additional opti-
mization for subsequent experiments to trade-off between
accuracy and computational efficiency.

The last row in Figs. 8 and 9 present examples where all
inferencemethods performedpoorly. These poor resultswere
due to baseline GAN performance limitations rather than
the inference algorithms. However, despite the inaccurate
reconstruction, the proposed DFI approach recovered many
original semantic attributes, e.g. glasses on the right side and
mustache on the left.

4.3 Comparison with Cyclic InferenceModels

Figures 10 and 11 compare the proposed DFI approach with
VAE, ALI/BiGAN, and ALICE representative generative
models that allow inference mapping adopting the six base-
line GANs discussed above. Table 2 shows corresponding
reconstruction accuracy in terms of LPIPS and FID.
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Table 3 Quantitative comparison of cyclic inference algorithms and
DFI variants for the CelebA dataset using LPIPS and FID: top score
among high resolution (HR) GANs

Metric DCGAN-0GP SNGAN SNGAN-0GP

LPIPS 0.2147 ± 0.0014 0.2116 ± 0.0002 0.1931 ± 0.0015

FID 15.10 ± 0.54 16.09 ± 0.30 8.91 ± 0.12

Bold values indicate Top-1 scores for each metric

Reconstructed images from VAE are blurry and lose
detailed structures because it was trained with image recon-
struction loss. Less frequently appearing training dataset
attributes, e.g. mustache or baldness, were rarely recov-
ered due to popularity bias. ALI/BiGAN and ALICE restore
sharper images than VAE, but do not effectively recover
important input image characteristics, e.g. identity, and
occasionally generate completely different images from the
inputs.

In contrast, reconstructed images from DFI variants
exhibit consistently better visual quality than VAE,
ALI/BiGAN, and ALICE. DFI training focused on accu-
rate inference mapping, without influencing baseline GAN
performance. Hence, reconstructed image quality from DFI
models is identical to that of the baseline unidirectional
GANs: sharp and realistic. DFI variants consistently provide
more accurate reconstructions, i.e., faithfully reconstruct the
input images including various facial attributes; whereas
VAE, ALI/BiGAN, and ALICE often fail to handle these
aspects. Thus, the proposed algorithm accurately estimates
the latent vector corresponding to the input image and retains
image quality better than competitors.

Table 2 confirms that inference accuracy for DFI based
models significantly outperform VAE, ALI/BiGAN, and
ALICE for LPIPS and FID metrics, similar to the case
for qualitative comparisons. In addition, Table 3 supports
the scalability of DFI for high resolution GANs. Unlike
other cyclic inference algorithms, our DFI does not influence
(degrade) the generation quality of baseline GANs and still
provides the robust and consistent performance in inference
mapping.

4.4 Ablation Study on DFI

To understand the effect of latent reconstruction on DFI, we
conduct two experiments; (1) DFIimage and (2) DFI

opt
image. For

both experiments, the training strategy is identical to DFI,
i.e. a fixed discriminator for Df and a trainable CN network.
DFIimage utilizes the image reconstruction loss instead of the

latent reconstruction loss. DFIoptimage performs an additional
optimization on top of DFIimage.

Figure 12 demonstrates qualitative and quantitative com-
parisons. Compared to the results with the latent recon-
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Target (Real) (1) (2) (3) (4)

Fig. 12 Ablation study on proposed DFI. The first column includes
the target (real) images, (1) includes DFI reconstructed images, (2)
includes DFIopt reconstructed images, (3) includes DFIimage recon-

structed images, and (4) includes DFIoptimage reconstructed images,
respectively. Experimental setting and metrics are identical to those
for Fig. 8

struction loss, the results from DFIimage and DFIoptimage lose
semantic details and quality. Even though some samples
show reasonable quality, they generally lose details such as
facial expressions and glasses. For example, in the fourth
row in Fig. 12, the results with the image reconstruction loss
do not preserve details, whereas the results with the latent
reconstruction loss do so. In table in Fig. 12, the LPIPS score
of DFIimage is better than the proposed DFI. However, its
FID score is worse than DFI. This is because the methods
with the image reconstruction loss are optimized to reduce
the pixel-level distance that leads high structural similarity
regardless of its quality. Meanwhile, FID is more robust to
small structural difference than LPIPS, thereby more appro-
priate tomeasure semantic similarity. This is analogouswhen
the examples using the image reconstruction loss are com-
pared with the examples using the latent reconstruction loss;
the method using the latent reconstruction loss preserves
image quality better. Similarly, despite DFIimage achieves the
best LPIPS score among all methods that do not utilize the
optimization, the image quality of DFIimage is worse than
that of DFI. Comparing DFIimage and ENCimage, we observe
similar visual quality and tendency. This result is consistent
with our statement in Sect. 3.1 and the simulation experiment
in Sect. 4.1. Because the image reconstruction loss utilizes
real data for training the inference model although the gen-

laeR.noceR.noceRlaeR Linearly interpolated

Fig. 13 Column (1) includes input images, (2)–(6) include generated
images using linearly interpolated latent vector, and (7) include latent
space walking results for two inferred latent spaces using column(1)
images

erator may not be able to create them (i.e. undefined data),
both DFIimage and ENCimage suffer from the inevitable errors
caused by those undefined data. Despite the limitation of the
image reconstruction loss, we observe that DFIimage enjoys
the quantitative improvement over ENCimage owing to the
effective feature extractor (i.e. a discriminator).

4.5 DFI Qualitative Evaluation

To verify that DFI produced semantically accurate infer-
ence mapping, we applied latent space walking on the
inferred latent vector. For two real images x1 and x2, we
obtained inferred latent vectors z′1 and z′2 using DFI. Then
we linearly interpolated z′L = αz′1 + (1 − α)z′2, where
α ∈ [0, 1]. Figure 13 shows images generated using z′L ,
where columns (2)–(6) include interpolated images for α =
0.00, 0.25, 0.50, 0.75, 1.00, respectively. If DFI incorrectly
mapped the real images to the latent manifold, reconstructed
images would exhibit transitions or unrealistic images. How-
ever, all reconstructed images exhibit semantically smooth
transitions on the image space, e.g. skin color, hair shape,
face orientation and expressions all change smoothly.

Figure 14 show vector arithmetic results for adding eye-
glasses and mustache vector attributes (vE and vM , respec-
tively):

vE = 1

2

(
vmaleEO − vmaleOO

)
+ 1

2

(
v
female
EO − v

female
OO

)
, (9)

vM = vmale
OM − vmale

OO ,

where v with any superscripts and subscripts are mean sam-
ple vectors inferred by DFI; E and M in subscripts indicate
eyeglasses and mustache attributes presence, respectively, in
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++ +( + )Real Recon.

Fig. 14 Semantic image editing results using vector arithmetic onGAN
latent space. Column (1) includes the original input image, (2) includes
the reconstructed image using inferred latent vector by DFI, (3)–(5)
include results from adding eyeglasses, mustache, and both vectors to
the latent vector, respectively

sample images, and O indicates non-presence of an attribute.
Weused20 images to obtain themean inferred vector for each
group. Thus, Simple vector arithmetic on the latent vector
can manipulate images, e.g. adding eyeglasses, mustache, or
both. Therefore, DFI successfully establishes semantically
accurate mapping from image to latent space.

4.6 Feature Extractor Effects

To confirm the discriminator as a good feature extractor, we
compared several DFI versions: original DFI (discrimina-
tor with CN network), DFI − VGG16 (pre-trained VGG16
(Simonyan and Zisserman 2015) using Pool5 feature as
CN network input), and DFI − ResNet (pre-trained resid-
ual based network (He et al. 2016) using features before
GAP as CN network input). Among the pre-trained mod-
els, we empirically observe that DFI − VGG16 outperforms
DFI − ResNet (e.g. ResNet34,ResNet50, andResNet101) in
all quantitativemetrics, thuswemainly reportDFI − VGG16
results. Please note that VGG16 and ResNet are well-known,
powerful feature extractors with an excessive number of
parameters, and should be much more powerful feature
extractors for general purposes.

Figure 15 shows several reconstruction examples with
quantitative evaluation results (after 40K training iteration

Fig. 15 Proposed DFI feature extractor effects. Column (1) includes
the target (real) images, (2) includes DFI reconstructed images, and (3)
includes images reconstructed from a DFI − VGG16 using VGG16 as
the feature extractor. Experimental setting and metrics were identical
to those for Fig. 8

steps) using LPIPS, FID and the user study. Surprisingly,
the original DFI produces more accurate reconstructions
than the DFI − VGG16 in both qualitative and quantitative
comparisons. DFI − VGG16 results are sharp and realis-
tic, similar to the proposed DFI alone approach. However,
considering semantic similarity, the original DFI can restore
unique attributes, e.g. mustache, race, age, etc., better than
theDFI − VGG16.AlthoughLPIPS and FID scores from the
two methods are quite close, the original DFI significantly
outperforms DFI − VGG16 in user study results.

Although the pre-trained VGG16 is a powerful feature
extractor in general, the deep generalized strong feature
extractor might not outperform the shallow but data specific
and well-designed feature extractor for inference mapping
using the specific training dataset (CelebA). Most impor-
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Fig. 16 Visualizations for Df (x) and Df (G(z)) using two most significant principal component axis projection. Columns (2) and (3) show real and
fake samples separately, respectively, with the same axis scale as first column to more easily visualize the overlap area (Color figure online)

tantly, the pre-trained classifier never experiences the GAN
training dataset, and hence cannot exploit training data char-
acteristics. If the VGG16 model was finetuned with GAN
training data, we would expect it to exhibit more accurate
inferencemapping.However, thatwould be beyond the scope
of the current paper because VGG16 already requires many
more parameters than the proposed DFI approach. Our pur-
pose was to show that DFI was as powerful as VGG16
although requiring significantly less computing resources
without additional overheads required for feature extrac-
tion. Quantitative comparisons confirm that the original DFI
(utilizing discriminator features) performs better than the
DFI − VGG16 (utilizing VGG16 features) when the same
training iterations are set. Thus, the original DFI is more
efficient than the DFI − VGG16 for inference mapping.

One might consider that discriminator feature Df distri-
butions for real and fake images should not overlap because
the discriminator objective is to separate fake images from
generated and real images. The distributions may not overlap
if the discriminator was trained in a stationary environment
or the discriminator defeats the generator, i.e., the genera-
tor fails. However, the proposed approach simultaneously
trains the generator to deceive the discriminator, hence the
GAN training is not stationary. Therefore, if the generator is
successfully trained, the generated sample distribution will
significantly overlap the real sample distribution, i.e., the
generator produces realistic samples. Ideally, training is ter-
minated when the discriminator cannot tell the difference
between real and fake images, but for practical GANs, the
discriminator is not completely deceived.

Suppose the generator produces highly realistic fake sam-
ples, indistinguishable from real samples. Then Df for fake
samples will significantly overlap with Df for real samples.
If the generator is not performing well, e.g. under-training,
or small network capacity, Df for real and fake samples will
not overlap because the discriminator defeated the generator.
However, in this situation GAN training fails, i.e., none of
the inference algorithms can reconstruct the given image.

To empirically show that Df for real and fake images
overlap, Fig. 16 projects Df on to the two most significant
principal component axes using the LSGAN discriminator.
The Df for real (blue) and fake images (orange) have sig-
nificant overlap, with the real sample distribution having
wider coverage than for the fake samples due to limited diver-
sity, i.e., mode collapse. Therefore, the discriminator offers a
meaningful feature extractor for both real and fake images.

4.7 Toward a High Quality DFI

To improve inference mapping accuracy, we modified the
DFI by selecting the layer for extracting discriminator fea-
tures Df ; and increasing the connection network capacity.
We first introduce a method to improve Df by using a middle
level discriminator feature, improving DFI accuracy. Then
we investigated inference accuracy with respect to connec-
tion network capacity, confirming that higher connection
network capacity does not degrade DFI accuracy.

Since the discriminator feature is extracted from the last
layer of the discriminator, it corresponds to a large receptive
field. This is advantageous to learn high level information,
but incapable of capturing low level details, such as wrin-
kles, curls, etc. For reconstruction purposes, this choice is
clearly disadvantageous to achieve high quality reconstruc-
tion. To resolve this limitation, we transfer knowledge from
the intermediate feature map discriminator to the connection
network.

In particular, we calculated global average pooling (GAP)
(Zhou et al. 2016) for the intermediate feature map as the
compact representation for the intermediate feature map
to achieve computational efficiency. We then concatenated
GAP outputs extracted from specific layers of the discrimi-
nator with the last discriminator feature.We utilized SNGAN
architecture (Miyato et al. 2018) for the experiments.

Table 4 shows the network architecture and feature map
names, Table 5 shows LPIPS and FID scores for several
combinations of extracted GAP layers, and Fig. 17 shows
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Table 4 Network architecture for SNGAN, using architecture is based
on Table 3 of Miyato et al. (2018).

Generator

z ∈ R
128 ∼ N (0, I )

Fully connected layer → 16 × 16 × 512

4×4, stride=2 transposed conv. BN 256 ReLU

4×4, stride=2 transposed conv. BN 128 ReLU

4×4, stride=2 transposed conv. BN 64 ReLU

3×3, stride=1 conv. 3 Tanh

Discriminator

RGB images ∈ R
128×128×3

Actv128-0 3×3, stride=1 conv 64 Leaky ReLU

Actv64-0 4×4, stride=2 conv 64 Leaky ReLU

Actv64-1 3×3, stride=1 conv 128 Leaky ReLU

Actv32-0 4×4, stride=2 conv 128 Leaky ReLU

Actv32-1 3×3, stride=1 conv 256 Leaky ReLU

Actv16-0 4×4, stride=2 conv 256 Leaky ReLU

Actv16-1 (last feature) 3×3, stride=1 conv 512 Leaky ReLU

Fully connected layer → 1

Table 5 Reconstructionperformance for combinations of extracted lay-
ers of GAP (top)

DFI Actv128-0 Actv64-1 Actv32-1 LPIPS FID

� 0.1931 8.91

� � 0.1920 10.34

� � 0.1903 8.54

� � 0.1917 8.83

� � � 0.1902 9.78

� � � 0.1897 9.35

� � � � 0.1887 10.32

LPIPS and FID scores are the average of the best performance among
50K training iterations with 10K steps each trial
Bold values indicate Top-1 scores for each metric

several reconstruction examples for DFI with the GAP layer.
Reconstructions fromDFI with the GAP layer preserve more
attributes attribute, e.g. expressions, eyeglasses, etc. When
utilizing features from a single layer, we found that apply-
ing Actv64-1 produced the best accuracy in terms of
both LPIPS and FID. Combining features from multiple lay-
ers, accuracy (LPIPS) increases with increasing number of
combinations, whereas FID decreases. Considering fidelity,
quality, and computational efficiency, we suggest applying
Actv64-1 to obtain additional accuracy.

Although the GAP requires low computational cost, spa-
tial information about the feature is completely missing
becauseGAP reduces the featuremap spatial dimension1×1.
Therefore, we should consider average pooling layer vari-
ants, considering feature map spatial information. To this
end, we designed an average pooling to output (R, R,C)

Fig. 17 Qualitative comparison between DFI and DFI with GAP. Col-
umn (1) includes target (real) images, (2) and (3) include images
reconstructed by DFI and DFI with GAP on the Actv64-1 layer,
respectively

feature map, with R × R final feature map resolution and C
is the channel dimension for the intermediate feature map.
Larger R preserves more feature map spatial information,
and it is equivalent to GAP when R = 1, i.e., 1× 1×C . We
used the Actv64-1 layer in this experiment, since that pro-
vided the highest score in single layer combination as well
as the FID score.

Table 6 shows LPIPS and FID scores corresponding to the
average pooling layer using the final R×R resolution feature
map. Thus, average pooling preserving spatial information
can empirically improve both fidelity and quality compared
with GAP. However, both scores increase when R > 4. We
suggest this is due to the large number of parameters, which
leads to DFI overfitting the training data.

The DFI modeling power solely depends on the con-
nection network capacity because both the generator and
discriminator are fixed when training the connection net-
work. Training high capacity networks commonly suffer
from overfitting with limited datasets. Therefore, the pro-
posed inference algorithm may also experience overfitting
on training data if the high capacity model was selected for
the connection network. Fortunately, in the training scenario
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Table 6 Reconstruction performance with respect to average pooled
feature map size, R

DFI Average pooling LPIPS FID

� 1×1 0.1903 8.54

� 2×2 0.1894 8.29

� 4×4 0.1835 8.26

� 8×8 0.1858 8.77

Average pooling was conducted on feature map Actv64-1. 1 × 1
denotes GAP and R×R denotes average pooling with the feature map.
FID scores are average of the best performance among 50K training
iterations with 10K steps each trial

Table 7 Reconstruction performance with respect to number of FC
layers in the connection network

No. FC layers LPIPS FID

1 0.1942 8.96

2 (default) 0.1931 8.91

3 0.1943 8.92

4 0.1948 8.85

5 0.1946 8.73

LPIPS and FID scores are average score of best performance among
50K training iterations with 10K steps each trial

using the proposed latent reconstruction loss, we can utilize
unlimited training samples because their seed, i.e., a latent
code, can be drawn from a continuous prior distribution and
their images can be created by the generator. Thus, regardless
of network capacity, we will have sufficient training data to

avoid overfitting. Consequently, the network capacity (pro-
vided it includes more than two FC layers) does not affect
inference mapping accuracy.

To verify this, we investigated inference accuracy with
respect to the number of connection network layers, i.e.,
connection network capacity. The default setting for other
experiments reported here was two FC layers. Table 7 sum-
marizes LPIPS and FID scores for various numbers of FC
layers in the connection network. Thus we experimentally
verify that connection network complexity does not signifi-
cantly influence inference accuracy.

4.8 SCGAN Experimental Results

We verified spatially conditioned image generation feasibil-
ity using the proposed SCGAN approach for the CelebA (Liu
et al. 2015) and cat head (Zhang et al. 2008) dataset. All
experiments set center image size (input) = (64, 64, 3) and
full image size = (128, 128, 3). We assigned the input patch
location to the middle left for the CelebA dataset and top left
for the cat head dataset. Latent vector dimension = 128 for
zfull and 64 for both zcenter and zedge. SCGAN baseline archi-
tecture was built upon SNGAN (Miyato et al. 2018), where
only spectral normalization was applied to the discriminator.
Throughout all SCGAN experiments, we used hyperparam-
eter α = 10 for Lrecon and γ = 10 for LGP.

Two evaluation criteria were employed for spatially con-
ditioned image generation: reconstruction accuracy and gen-
eration quality. To assess reconstruction quality we adopted

Fig. 18 Spatially conditioned image generation for the CelebA dataset using the proposed SCGAN approach. Row (1) includes input images (inside
box) and outer images (outside box), (2) and (3) include SCGAN generated images
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Fig. 19 Spatially conditioned image generation using the proposed SCGAN approach for the cat head dataset. Row (1) includes input images
(inside box) and their original outer images (outside box), (2) and (3) include SCGAN generated images

Fig. 20 Proposed SCGAN compared with PICNet state-of-the-art image completion technique. Column (1) and (4) include input images, (2), (3),
(5), and (6) include PICNet and SCGAN generations, respectively

LPIPS and FID. First, we measured LPIPS and FID scores
between xcenter and ycenter , reconstructed by the proposed
DFI inference algorithm, using 10k test images from CelebA
and 1k test images from the cat head dataset. These scores,
(0.1673, 31.24) and (0.1669, 32.64), respectively, served as
the baseline for SCGAN reconstruction quality. We then cal-
culated both scores between xcenter and ycrop (reconstructed
by SCGAN), achieving (0.1646, 31.70) and (0.1653, 33.03)
respectively, which are comparable with the baseline LPIPS
and FID scores. Hence SCGAN reconstruction ability is sim-
ilar to the proposed inference algorithm.

To qualitatively assess generation quality, we examined
whether generated images were diverse, semantically con-
sistent with the reconstructed image, and visually pleasing.
Figures 18 and 19 show example spatially conditioned
images using SCGAN.Row (1) includes input images (inside
box) with their surrounding regions, and rows (2) and (3)
include various image generation results from the same input,
i.e., the same input latent vector, ẑcenter , but with a different
zedge latent vectors. Figure 18 shows six generated results
for different zedge are clearly different from each other, pre-
senting various facial shapes, hairstyles, or lips for the same
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input. However, all reconstructions have acceptable visual
quality and match input image semantics well in terms hair
color, skin tone, or eye and eyebrow shape. Figure 19 shows
four generated cat head dataset reconstructions with simi-
lar tendencies to CelebA results. Each cat has a different
face shape, hair color, and expression, with reasonable visual
quality. However, the input is correctly reconstructed, and the
generated surroundings are semantically seamless with the
input.

Thus, SCGAN successfully controlled spatial conditions
by assigning input position, producing various high quality
images.

Finally, we compared the proposed approach with the
PICNet state-of-the-art image completion technique (Zheng
et al. 2019) under the same conditions, as shown in Fig. 20.
SCGAN can generate realistic entire faces, whereas PICNet
cannot maintain consistent quality across the entire image
region. This is due to the surrounding regions requiring
extrapolation,whereas PICNet image completion is designed
to solve image interpolation. Unlike various image comple-
tion models such as PICNet, SCGAN possesses the strong
generation capability of GANs, producing the images from
the latent codes, despite it can faithfully keep the input patch
by utilizing inference mapping. As a result, SCGAN solves
image extrapolation, which is not possible by previous image
completion models.

5 Conclusion

This study proposed an acyclic inference algorithm to
improve inference accuracy with minimal training overhead.
We introduced discriminator feature based inference (DFI)
to map discriminator features to the latent vectors. Exten-
sive experimental evaluations demonstrated that the proposed
DFI approach outperforms current methods, accomplishing
semantically accurate and computationally efficient infer-
ence mapping.

We believe the accuracy gain is achieved by the well-
defined objective function, i.e., latent reconstruction loss;
and the powerful feature representation from the discrimina-
tor. The computational problem was simplified into deriving
the mapping from low dimensional representation to another
low dimensional representation by adopting discriminator
features. Consequently, the proposed approach also provides
computational efficiency in training by significantly reducing
training parameters.

We also introduced a novel conditional image genera-
tion algorithm (SCGAN), incorporating the proposed DFI
approach. SCGANcangenerate spatially conditioned images
using accurate semantic information inferred from the pro-
posed inference mapping. We experimentally demonstrated
that spatial information about the image can be used as a

conditional prior, in contrast to traditional priors, e.g., class
labels or text.We expect the proposedmodel architecture can
be extended to solve image extrapolation and editing prob-
lems.
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