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Abstract
Facial attribute analysis has received considerable attention when deep learning techniques made remarkable breakthroughs in
this field over the past few years. Deep learning based facial attribute analysis consists of two basic sub-issues: facial attribute
estimation (FAE), which recognizes whether facial attributes are present in given images, and facial attribute manipulation
(FAM), which synthesizes or removes desired facial attributes. In this paper, we provide a comprehensive survey of deep
facial attribute analysis from the perspectives of both estimation andmanipulation. First, we summarize a general pipeline that
deep facial attribute analysis follows, which comprises two stages: data preprocessing and model construction. Additionally,
we introduce the underlying theories of this two-stage pipeline for both FAE and FAM. Second, the datasets and performance
metrics commonly used in facial attribute analysis are presented. Third, we create a taxonomy of state-of-the-art methods and
review deep FAE and FAM algorithms in detail. Furthermore, several additional facial attribute related issues are introduced,
as well as relevant real-world applications. Finally, we discuss possible challenges and promising future research directions.
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1 Introduction

Facial attributes represent intuitive semantic features that
describe human-understandable visual properties of face
images, such as smiling, eyeglasses, and mustache. There-
fore, as vital information of faces, facial attributes have
contributed to numerous real-world applications, e.g., face
verification (Kumar et al. 2009; Berg and Belhumeur 2013;
Song et al. 2014; Zhang et al. 2018c; Chen et al. 2018), face
recognition (He et al. 2018c; Shi et al. 2015; He et al. 2018b;
Song et al. 2018b; Rao et al. 2018), face retrieval (Li et al.
2015; Nguyen et al. 2018; Fang and Yuan 2018; Toderici
et al. 2010), and face image synthesis (Huang et al. 2018a, b;
Cao et al. 2019b; Song et al. 2019; Egger et al. 2018).
Facial attribute analysis, aiming to build a bridge between
human-understandable visual descriptions and abstract fea-
ture representations required by real-world computer vision
tasks, has attracted increasing attention and has become a hot
research topic. Recently, the development of deep learning
techniques has made excellent progress in learning abstract
feature representations, leading to significant performance
improvements of the current algorithms in the field of deep
facial attribute analysis.

Deep facial attribute analysis mainly consists of two
sub-issues: facial attribute estimation (FAE) and facial
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(a) FAE (b) FAM

Fig. 1 Illustrations of the two sub-issues in deep facial attribute analy-
sis, i.e., FAE and FAM (a comes from CelebA dataset (Liu et al. 2015),
and b comes from Xiao et al. (2018))

attribute manipulation (FAM). Given a face image, FAE
trains attribute classifiers to recognize whether a specific
facial attribute is present, and FAM modifies face images
to synthesize or remove desired attributes by constructing
generative models. We provide concise illustrations of these
two sub-issues in Fig. 1.

Deep FAE methods can generally be categorized into two
groups: part-based methods and holistic methods. Part-based
FAEmethods first locate the positions of facial attributes and
then extract features according to the obtained localization
cues for the subsequent attribute prediction. According to
the different schemes for locating facial attributes, part-based
methods can be further classified into two subcategories: sep-
arate auxiliary localization based methods and end-to-end
localization based methods. Specifically, separate auxiliary
localization based FAE methods seek help from existing
part detectors or auxiliary localization algorithms, e.g., facial
key point detection (Mahbub et al. 2018; Wu and Ji 2017)
and semantic segmentation (Kalayeh et al. 2017; Gonzalez-
Garcia et al. 2018). Then, corresponding features from
different positions can be extracted for further estimation.
Note that the localization and the estimation are performed
in a separate and independent manner. On the contrary,
end-to-end localization based methods exploit the locations
of attributes and predict their presence simultaneously in
end-to-end frameworks. In contrast to part-based methods,
holistic methods focus more on learning attribute relation-
ships and estimating facial attributes in a unified framework
without any additional localization modules. By assigning
shared and specific attribute learning to different layers of
networks, holistic methods model correlations and distinc-
tions among facial attributes to explore the complementary
information. During this process, holistic FAE algorithms
resort to additional prior or auxiliary information, such as
attribute grouping or identity information (Cao et al. 2018),
to customize their network architectures.

Deep FAMmethods are mainly constructed based on gen-
erative models, of which generative adversarial networks
(GANs) (Goodfellow et al. 2014; Mirza and Osindero 2014;
Chen et al. 2016) and variational autoencoders (VAEs)

(Kingma and Welling 2013; Huang et al. 2018a, b) serve
as the backbones. Furthermore, deep FAM algorithms can
be divided into two groups: model-based methods and
extra condition-based methods, where the main difference
between them is whether extra conditions are introduced.
Model-based methods construct a model without any extra
conditional inputs and learn a set of model parameters that
only correspond to one attribute during a single training pro-
cess. Thus, when editing another attribute, another training
process needs to be executed in the same way. In this case,
multiple attributemanipulations correspond tomultiple train-
ing processes, resulting in expensive computation costs. In
contrast, extra condition-based methods take extra attribute
vectors or reference images as input conditions, and they
can alter multiple attributes simultaneously by changing the
corresponding values of attribute vectors or taking multiple
exemplars with distinct attributes as references. Specifically,
given an original image, an extra conditional attribute vec-
tor, such as a one-hot vector indicating the presence of
the attribute, is concatenated with the latent original image
codes. By comparison, extra conditional reference exemplars
exchange specific attributes with the original image in the
framework of image-to-image translation. Note that these
reference images do not need to have the same identity as the
original image. Hence, rather than merely altering the values
of attribute vectors to edit facial attributes, attribute transfer
based on reference images can discover more specific details
of references and yield more faithful facial attribute images
(Zhou et al. 2017; Xiao et al. 2018; Ma et al. 2018). Due to
more abundant facial details and more photorealistic perfor-
mance of generated images, this type of method has attracted
much attention of current researchers.

In summary, we create a taxonomy of contemporary deep
facial attribute analysis algorithms in a tree diagram in Fig. 2.
Furthermore, aiming to summarize the progress in deep facial
attribute analysis, milestones of both deep FAE and FAM
methods are listed in Figs. 3 and 4, respectively.

As shown in Fig. 3, part-based FAE methods and holistic
FAE methods share two parallel routes. The study of deep
FAE can be traced back to the earliest part-based work of
Zhang et al. (2014), who take the whole person images as
inputs.

Then, LNet+ANet (Liu et al. 2015) pushes deep FAE into
an independent research branch, where only face images are
taken as inputs for merely estimating face-related attributes.
In addition, two large-scale face datasets, i.e., CelebA and
LFWA,with 40 labeled attributes, are released to provide data
support for deep FAE methods. Then, part-based and holis-
tic methods share joint development and success but have
distinct directions and trends. Part-based methods extremely
emphasize facial details for discovering localization cues
(Kalayeh et al. 2017; Mahbub et al. 2018), whereas holistic
methods incline to employ attribute relationships to cus-
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Fig. 2 Tree diagram for diverse
categories of deep facial
attribute analysis algorithms

Fig. 3 The evolution of deep FAE methods (best viewed by zooming in the electronic version)

tomize networks for learning more discriminative features
(Rudd et al. 2016; Hand et al. 2017; Cao et al. 2018).

We outline the development of deep FAM methods in
Fig. 4. Note that, model-based methods and two types of
extra condition-based methods have their own evolutionary
processes, but all follow the advances in GANs or VAEs. The
earliest deep FAMworkDIAT (Li et al. 2016), amodel-based
method, first attempts to utilize simple GANs to generate
facial attributes. Meanwhile, conditional GAN (Perarnau
et al. 2016) and VAE (Yan et al. 2016) dominate extra
condition-based FAMmethods by taking attribute vectors as
conditions. Though extra attribute vector basedmethods have
the remarkable advantage of changing multiple attributes
simultaneously, they cannot guarantee that the remaining
details that are irrelevant to manipulated attributes keep
unchanged. Model-based methods can overcome this prob-
lem, but they cannotmanipulatemultiple attributes in a single
training process. In light of these issues,methods conditioned
on reference exemplars come into researchers’ attention.
They can balance the change of multiple interested attributes
and the preservation of other irrelevant attributes; mean-
while, generate more photorealistic facial attribute images.
Hence, exemplar-guided FAMmethods are becoming a pop-
ular research trend.

Although a large number of methods achieve appealing
performance in deep FAE and FAM methods, there are still
several severe challenges for future deep facial attribute anal-
ysis. Therefore, we summarize these urgent challenges and
analyze possible opportunities in terms of data, algorithms,
and applications. The corresponding overview is described
in Fig. 5.

First, from the perspective of data, contemporary deep
FAE methods suffer from the problem of insufficient train-
ing data. The most commonly used two datasets come from
celebrities or news (Liu et al. 2015), where attribute types,
illumination, views, and poses, all have significant differ-
ences from real-world data (Hand et al. 2018a). Therefore,
future deep FAE models would have high demands for
diverse data sources and excellent data quality [e.g., video
data (Wang et al. 2016; Hand et al. 2018b)]. Future facial
attribute images need to cover more real-world scenarios
and wider-range attribute types. In this way, models can bet-
ter capture representative features that conform to real-world
data distribution. In addition, imbalanced data distribution of
facial attribute images highlights in two aspects: the attribute
category imbalance over a single dataset and the domain gaps
between different training and testing datasets. The former
called class-imbalance issuemakes FAEmodels bias towards
the majority samples and ignore the minority ones, resulting
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Fig. 4 The evolution of deep FAM methods (Best viewed by zooming in the electronic version)

Fig. 5 Summary of challenges and opportunities in deep facial attribute
analysis

in the degraded performance in minority sample recognition.
In contrast, the latter called domain adaption issue, which has
not been fully explored in current deep FAE algorithms yet,
is related to the generalization of models, especially when
testing over unseen data.

Regarding the data challenges and opportunities in deep
FAM, the rapid development of multimedia in the era of big
data has given rise to rich video data. However, tracking and
annotating facial attributes in videos is difficult because of
spatial and temporal dynamics (Saito et al. 2017). Hence,
video attribute manipulation is still a task to be addressed
due to the lack of available training data. In addition, a large

proportion of current algorithms evaluate the quality of their
generated facial attribute images based on the visual fidelity
(Li et al. 2016; Perarnau et al. 2016; Zhang et al. 2017a;
Xiao et al. 2018). Because of the lack of established proto-
cols and standards, such measurements might have adverse
effects on the performance evaluation of deep FAMmethods.
Therefore, it would be a thorny problem to seek unified and
standard data metric schemes that achieve both qualitative
and quantitative analyses.

Second, from the perspective of algorithms, deep part-
based FAEmethods mainly focus on two aspects. The first is
to integrate multiple face-related tasks, such as attribute esti-
mation and face recognition, into a unified framework. In this
way, the complementary information among different tasks
could be fully exploited to improve all of them. For the sec-
ond aspect, future part-based FAE algorithms are expected to
discover more relationships among different attribute loca-
tions to handle in-the-wild data with complex environmental
variations. For deep holistic FAE algorithms, current algo-
rithms discover attribute relationships with the help of the
prior information, e.g., human-made facial attribute groups.
Such artificial partitions would limit the generalization abil-
ity of models. Hence, the critical challenge that holistic FAE
methods face is to design adaptive attribute partition schemes
for automatically exploring attribute relationships during the
training processes.

With regard to the algorithm challenges and opportunities
in deep FAM,model-basedmethods have a severe drawback:
they cannot keep other attribute-irrelevant details unchanged
as supervised information only comes from the target images
with desired attributes. In terms of extra condition-based
FAM methods, on the one hand, attribute vector based
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algorithms need to work harder to manipulate attributes
continuously, where interpolation schemes might be a solu-
tion worth considering. On the other hand, future reference
exemplar-based algorithms are expected to generate more
diverse attribute styles in more faithful and photorealistic
face images.

Finally, from the perspective of applications in deep FAE,
face images with different viewpoints might have different
attributes for the same person. It is possible that an attribute
shown on the front face is not emphasized on the profile.
This is called attribute inconsistency issue. By filtering more
confident images to make the prediction (Lu et al. 2018a),
existing methods might neglect rich information in multi-
view face images. Therefore, how to keep attributes from
the same identity consistent, while taking full advantage of
information for capturing features with multiple views are
important questions for the future. Second, biometric verifi-
cation (Hadid et al. 2007; Günther et al. 2013; Fathy et al.
2015; Samangouei et al. 2017; Trokielewicz et al. 2019) is a
developing application for digitalmobile devices to resist var-
ious attacks in the real world. Compared with full-face based
biometric verification (Fathy et al. 2015;Günther et al. 2013),
facial attributes contain more detailed characteristics and can
better facilitate active authentication. The main obstacles lie
in the following two aspects: the first is to introduce facial
attributes into the task of active authentication appropriately
and efficiently (Samangouei et al. 2017), and the second is
to explore the available deep features and classifiers with
the trade-off between the verification accuracy and mobile
performance.

Regarding the application challenges and opportunities in
deep FAM, facial makeup (Li et al. 2018c; Chang et al. 2018;
Cao et al. 2019a) and aging (Suo et al. 2010; Nhan Duong
et al. 2019; Liu et al. 2019) have become hot topics in
computer vision. The two tasks focus more on subtle facial
details related tomakeup and age attributes.Due to promising
performance in mobile devices entertainment and identity-
relevant verification, they have turned into crucial study
branches independent of general deep FAM methods, and
have shown significant potentials to facilitate more practi-
cal applications (Hu et al. 2018; Lu et al. 2018b; Song et al.
2018a). In addition, contemporary deep FAM research only
works well with a limited range of resolutions and under lab-
oratory conditions. On the one hand, such a limitation leads
to more difficult high-resolution and low-quality face image
manipulation in real-world applications; on the other hand,
it provides an opportunity to integrate face super-resolution
into attributemanipulation (Lu et al. 2018a;Dorta et al. 2018)
in future research.

In addition, the relationships between deep FAE and FAM
might contribute to improving both tasks. On the one hand,
FAM is a vital scheme of data augmentation for FAE, where
generated facial attribute images can significantly increase

the amount of data to further relieve the overfitting issue. On
the other hand, FAE can be a significant quantitative perfor-
mance evaluation criterion for FAM, where the accuracy gap
between real images and generated images can reflect the
performance of deep FAM algorithms.

In this paper, we conduct an in-depth survey of facial
attribute analysis based on deep learning, including FAE
and FAM. The primary goal is to provide an overview of
the two issues, and to highlight their respective strengths
and weaknesses to provide newcomers prime skills. The
remainder of this paper is organized as follows. In Sect. 2,
we summarize a general two-stage pipeline that deep facial
attribute analysis follows, including data preprocessing and
model construction. The corresponding preliminary theories
are also introduced for both FAE and FAM. In Sect. 3, we list
commonly used publicly available facial attribute datasets
and metrics. Sections 4 and 5 provide detailed overviews
of state-of-the-art deep FAE and FAM methods, as well as
their advantages and disadvantages, respectively. Additional
related issues, as well as challenges and opportunities, are
discussed in Sects. 6 and 7, respectively. Finally, we con-
clude this paper in Sect. 8.

2 Facial Attribute Analysis Preliminaries

Deep facial attribute analysis follows a general pipeline
consisting of two stages: data preprocessing and model con-
struction, as shown in Fig. 6.

In this section, we first introduce two commonly used data
preprocessing strategies for both FAE and FAM, including
face detection and alignment, as well as data augmentation.
Second, we introduce the general processes of model con-
struction for deep FAE and FAM, respectively. Specifically,
we provide the basics about feature extraction and attribute
classification, which are two crucial steps when designing
deep FAE models. For deep FAM methods, we review the
underlying theories of backbone networks, i.e., VAEs and
GANs, as well as their corresponding conditional versions.

2.1 Data Preprocessing

2.1.1 Face Detection and Alignment

Before the databases with more facial attribute annotations
were released, most of the attribute prediction methods
(Zhang et al. 2014; Kumar et al. 2008; Gkioxari et al. 2015)
took whole human images (faces and torsos) as inputs. Only
several well-marked facial attributes could be estimated, i.e.,
smile, gender, and has glasses. However, torso regions con-
tain considerable face-irrelevant information, resulting in
redundant computations. Hence, face detection and align-
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Fig. 6 Two-stage pipeline of deep facial attribute analysis (face images above come from Li et al. (2018b), Günther et al. (2017), He et al. (2019),
Liu et al. (2015))

ment become crucial steps to locate face areas for reducing
the adverse effects of facial attribute-irrelevant areas.

For face detection, Ranjan et al. (2017) first recognize
the gender attribute with a HyperFace detector that locates
faces and landmarks, and then Günther et al. (2017) further
extend this approach to predict 40 facial attributes simul-
taneously with the same HyperFace detector. In contrast,
Kumar et al. (2008) use a poselet part detector (Bourdev and
Malik 2009) to detect different parts corresponding to differ-
ent poses, where the face is an important part of the whole
person image. Compared with the poselet detector operated
over conventional features, Gkioxari et al. (2015) propose a
‘deep’ version of the poselet, which trains a sliding window
detector operated on deep feature pyramids. Specifically, the
deep poselet detector divides the human body into three parts
(head, torso, and legs) and clusters fiducial key points of each
part into many different poselets. However, because all exist-
ing face detectors are used to find rough facial parts, facial
attributes in more subtle areas, such as eyebrows, cannot be
well predicted.

For facial alignment, well-aligned face databases with
fiducial key points could alleviate the adverse effects of mis-
alignment errors on both FAE and FAM when more specific
facial regions of attributes can be located through these key
points. The All-in-One Face algorithm (Ranjan et al. 2017)
can be utilized to obtain fiducial key points and full faces.
Based on this algorithm, Mahbub et al. (2018) divide a face

into 14 segments related to different facial regions, and solve
the problem of the attribute prediction in partial face images.
Kumar et al. (2008) artificially divide a face into 10 functional
parts including hair, forehead, eyebrows, eyes, nose, cheeks,
upper lip, mouth, and chin. These facial areas are wide and
robust enough to address discrepancies among individual
faces, and the geometry characteristics shared by different
faces can be well exploited.

Recently, researchers have tended to integrate face detec-
tion and alignment into the training process of facial attribute
analysis. He et al. (2017) take face detection as a special case
of general semi-rigid object detection and design joint net-
work architectures to ensure the performance improvement
in both face detection and attribute estimation. More impor-
tantly, this approach canhandle in-the-wild input imageswith
complex illumination and occlusions, and no extra cropping
and aligning operations are needed. Ding et al. (2018) pro-
pose a cascade network to locate face regions according to
different attributes and perform FAE simultaneously with no
need to align faces (Günther et al. 2017). Li et al. (2018b)
design anAFFAIR network for learning a hierarchy of spatial
transformations and predicting facial attributes without land-
marks. In summary, integrating face detection and alignment
into the network training process is becoming a beneficial
research trend.
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2.1.2 Data Augmentation

For most face processing tasks, data augmentation is a vital
strategy for solving the problems of insufficient training data
and overfitting in deep learning. Face attribute analysis is
not an exception. By imposing perturbations and distortions
on the input images, data can be extended to improve deep
learning models.

Günther et al. (2017) propose an alignment-Free facial
attribute classification technique (AFFACT) with data aug-
mentation. More specifically, AFFACT leverages shifts,
rotations, and scales of images to make facial attribute fea-
ture extraction more reliable in the training stage and the
testing stage. In the training stage, face images are first
rotated, scaled, cropped, and horizontally flipped with 50%
probability with defined coordinates. Then, a Gaussian fil-
ter is applied to emulate smaller image resolutions and yield
blurred upscaled images. In the testing stage, AFFACT first
rescales the test images and then transforms these images into
10 crops, including a center one, four corners of the origi-
nal images, and their horizontally flipped versions. Finally,
AFFACT averages the scores from the deep network per
attribute over the ten crops to make the final prediction. In
addition to taking crops, AFFACT also uses all combina-
tions of shifts, scales, and angles, as well as their mirrored
versions. All these data augmentation schemes contribute to
the progressive performance of deep FAE models.

2.2 Basis of FAEModel Construction

2.2.1 Feature Extraction

Deep convolutional neural networks (CNNs) play signif-
icant roles in learning discriminative representations and
have achieved attractive performance in deep FAE. In gen-
eral, arbitrary classical CNN networks, such as VGG (Parkhi
et al. 2015) and ResNet (He et al. 2016b), can be used to
extract deep facial attribute features. For example, Zhong
et al. (2016a) directly apply FaceNet and VGG-16 networks
to capture attribute features of face images.

Considering that the features at different levels of the net-
workmight have different effects on the performance of deep
FAEmethods, Zhong et al. (2016b) take mid-level CNN fea-
tures as an alternative to high-level features. The experiments
demonstrate that even early convolution layers achieve com-
parable performance in most facial attributes with that of
state-of-the-art methods, and mid-level representations can
yield improved results over high-level abstract features. The
reason for this superiority is that mid-level features can break
the bounds of the inter-connections between convolutional
and fully connected (FC) layers. Consequently, the CNN
model can accept arbitrary receptive sizes for capturing rich
information of face images.

In addition to using or combining classical deep networks,
several methods design customized network architectures for
learning discriminative features. Lu et al. (2017) design an
automatically constructed compact multi-task architecture,
which starts with a thin multi-layer network and dynamically
widens in a greedy manner. Belghazi et al. (2018) build a
hierarchical generative model and a corresponding inference
model through the adversarial learning paradigm.

2.2.2 Attribute Classification

Early methods learn feature representations with deep net-
works but make the prediction with traditional classifiers,
such as support vector machines (SVMs) (Cortes and Vapnik
1995; Bourdev et al. 2011), decision trees (Luo et al. 2013),
and k-nearest neighbor (kNN) classifier (Huang et al. 2016,
2019). For example, Kumar et al. (2009) trainmultiple SVMs
(Cortes and Vapnik 1995) with radial basis function (RBF)
kernels to predict multiple attributes, where each SVMcorre-
sponds to one facial attribute. Bourdev et al. (2011) present
a feedforward classification system with linear SVMs and
classify attributes at the image patch level, the whole image
level, and the semantic relationship level. Luo et al. (2013)
construct a sum-product decision tree network to yield facial
attribute region locations and classification results simulta-
neously. Huang et al. (2016, 2019) adopt kNN algorithm to
solve the class-imbalance attribute estimation problem.

In terms of the classifiers based on deep learning, sev-
eral convolutional layers followed by FC layers constitute
a deep attribute classifier, which can be attached to the end
of deep feature extraction networks to make the prediction.
Then, the specific loss function is used to measure the dis-
crepancy between the outputs of FC layers and the ground
truths for reducing classification errors. Below, we introduce
two commonly used loss functions for deep FAE models.

The most prevalent loss function is the sigmoid cross-
entropy loss, which makes a binary classification for each
attribute (Hand et al. 2017). For example, Hand et al. (2017)
adopt the sigmoid cross-entropy loss to evaluate its network
output and calculate the scores of all facial attribute. Besides,
Rudd et al. (2016) consider multiple facial attribute classi-
fication as a regression issue to minimize the mean squared
error (MSE) loss, i.e., theEuclidean loss, bymixing the errors
of all attributes. In this way, multiple attribute labels can
be obtained simultaneously via a single deep convolutional
neural network (DCNN). In contrast, Rozsa et al. (2016) also
adopt theEuclidean loss but train a set ofDCNNs,where each
network predicts a facial attribute. Despite higher prediction
accuracy that DCNNs achieve for facial attributes, they have
the severe problem of high computation and memory costs.

To explore the effects of different loss functions on deep
facial attribute classifiers, Günther et al. (2017) test and com-
pare the Euclidean loss and the sigmoid cross-entropy loss.
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The experiments over the same network but different loss
functions demonstrate that the two loss functions are capable
of achieving comparable performance for attribute estima-
tion. Therefore, future researchers can choose either of these
loss functions according to their tasks with little performance
change.

2.3 Basis of FAMModel Construction

2.3.1 Variational Autoencoder

In general, a variational autoencoder (VAE) has two compo-
nents: the generator, which samples the variables x param-
eterized by θ with given latent variables z, i.e., pθ (x |z); the
encoder, which maps the variables x to the latent variables
z that approximate a prior p(z), i.e., qφ(z|x) parameterized
by φ. The key of VAE is training to maximize the variational
lower bound LV AE (Huang et al. 2018a):

LV AE = Ez∼qφ(z|x) log pθ (x |z) − DKL
(
qφ (z|x) ||p (z)

)
,

(1)

where DKL denotes Kullback–Leibler divergence.
For the conditional version of VAE, given the attribute

vector y and latent representation z, it aims to build a model
pθ (x |y, z) for generating images x that contain desired
attributes, taking y and z as conditional variables. This image
generation task follows a two-step process: the first step is
randomly sampling the latent variables z from the prior dis-
tribution p(z), and the second step is generating an image
according to the given conditional variables. Hence, the vari-
ational lower bound of conditional VAE can be written as
(Yan et al. 2016)

LCV AE = Ez∼qφ(z|x,y) log pθ (x |y, z)
− DKL

(
qφ (z|x, y) ||p (z)

)
,

(2)

where qφ(z|x, y) is the true posterior from the encoder.

2.3.2 Generative Adversarial Network

A generative adversarial network (GAN) consists of two
parts: the generator G and the discriminator D, where G
attempts to synthesize data from a random vector z obeying
a prior noise distribution z ∼ p (z), and D attempts to dis-
criminate whether data is from the realistic data distribution
or from G. Given data x ∼ pdata(x), G and D are trained in
an adversarial manner with a min-max game as (Goodfellow
et al. 2014)

min
G

max
D

LGAN = Ex∼pdata(x) log (D (x))

+ Ez∼p(z) log (1 − D (G (z))) .
(3)

The conditional version of GAN is more frequently used
by feeding the attribute vector y into bothG and D in different
ways. Specifically, the attribute vector y is concatenated with
the prior input noise p(z) in the generator. Meanwhile, it is
taken as an input along with x into a discriminative function.
Therefore, themin-max game of conditional GAN is denoted
as (Mirza and Osindero 2014)

min
G

max
D

LCGAN = Ex∼pdata(x) log (D (x |y))
+ Ez∼p(z) log (1 − D (G (z|y))) .

(4)

3 Facial Attribute Analysis Datasets and
Metrics

3.1 Facial Attribute Analysis Datasets

We present an overview of publicly available facial attribute
analysis datasets for both FAE and FAM, including data
sources, sample sizes, and test protocols. More details of
these datasets are listed in Table 1.

FaceTracer dataset is an extensive collection of real-
world face images collected from the internet. There are
15,000 faces with fiducial key points and 10 groups of
attributes, where 7 groups of facial attributes are composed
of 19 attribute values, and the remaining 3 groups denote the
quality of images and the environment. This dataset provides
the URLs of each image for considering privacy and copy-
right issues. In addition, FaceTracer takes 80% of the labeled
data as training data, and the remaining 20% as testing data
with 5-fold cross-validation.

The Labeled Faces in the Wild (LFW) dataset consists
of 13,233 images of cropped, centered frontal faces derived
fromMiller et al. (2007). This dataset is collected from 5749
people using online news sources, and there are 1680 peo-
ple that have two or more images. Kumar et al. (2009) first
collect 65 attribute labels through Amazon Mechanical Turk
(AMT)1 and then expand to 73 attributes (Kumar et al. 2011).
We denote them as LFW-65 and LFW-73 in Table 2. Liu et al.
(2015) extract 40 attribute labels automatically by binarizing
corresponding values of labels in LFW dataset, instead of
labeling by manual. Moreover, they annotate 5 fiducial key
points, leading to LFWA dataset, which is partitioned into
half for training (6263 images) and the remains for testing.

PubFig dataset is a large, real-world face dataset contain-
ing 58,797 images of 200 people collected from the internet
under uncontrolled situations. Thus, this dataset covers con-
siderable variations in poses, lights, expressions, and scenes.
PubFig dataset labels 73 facial attributes, as many as LFW-
73, but it includes fewer individuals. Besides, this dataset

1 Amazon Mechanical Turk. https://www.mturk.com/.
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Table 1 An overview of facial attribute datasets

Dataset Resources Identities/samples Number of attributes Protocol

FaceTracer (Kumar et al. 2008)a Internet 15,000/15,000 10 Tra: 80%

Tet: 20%

5-fold cross-validation

LFW (Huang et al. 2008)b Names and faces (Miller et al.
2007)

5749/13,233 65/73 Tra: 50% (6263)

Tet: 50% (6970)

LFWA (Liu et al. 2015)b LFW 5749/13,233 40 Tra: 50% (6263)

Tet: 50% (6970)

PubFig (Kumar et al. 2009)c Internet 200/58,797 73 Tra: 60 ids

Tet: 140 ids

CelebA (Liu et al. 2015)d Celeb-Faces 10,177/202,599 40 Tra: 8000 ids (160,000)

Tet: 1000 ids (20,000)

Berkeley human attributes
(Bourdev et al. 2011)e

H3D (Bourdev and Malik 2009) –/8053 9 Tra: 2003

PASCAL VOC 2010 (Wang et al.
2016)

Tet: 4022

Val: 2010

Attributes 25K (Zhang et al. 2014) Facebook 24,963/24,963 8 Tra: 8737 ids

Tet: 7489 ids

Val: 8437 ids

Ego-humans (Wang et al. 2016) Videos –/2714 17 Tra: 80%

Tet: 20%

UMA-ADE (Hand et al. 2018a)f Image research –/2800 40 All used for test

YouTube Faces Dataset (Wolf et al.
2011)g (with attribute labels)
(Hand et al. 2018b)

Videos from YouTube 1595/3425 40 10-fold cross-validation

Tra train, Tet test
awww.cs.columbia.edu/CAVE/databases/facetracer/
bhttp://vis-www.cs.umass.edu/lfw/
chttp://www.cs.columbia.edu/CAVE/databases/pubfig/download/
dhttp://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
ehttps://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/poselets/
f https://www.cs.umd.edu/~emhand/research.html
ghttps://www.cs.tau.ac.il/~wolf/ytfaces/

divides the development set and the evaluation set, contain-
ing 60 identity images and 140 identities, respectively.

Celeb-Faces Attributes (CelebA) dataset is constructed
by labeling images selected from Celeb-Faces (Sun et al.
2014), which is a large-scale face attribute dataset cover-
ing large pose variations and background clutter. There are
10,177 identities, 202,599 face images with 5 landmark loca-
tions, and 40 binary attribute annotations per image. In the
experiment, CelebA is partitioned into three parts: images of
the first 8000 identities (with 160,000 images) for training,
images of another 1000 identities (with 20,000 images) for
validation and the remains for testing.

Berkeley Human Attributes dataset is collected from
H3D (Bourdev and Malik 2009) dataset and PASCAL VOC
2010 (Wang et al. 2016) training and validation datasets,

containing 8053 images centered on full bodies of persons.
There are wide variations in poses, viewpoints, and occlu-
sions. Thus, many existing methods that work on front faces
do not perform well on this dataset. AMT is also used to
provide labels for all 9 attributes by 5 independent annota-
tors. The dataset partitions 2003 images for training, 2010
for validation and 4022 for testing.

Attribute 25Kdataset is collected fromFacebook,which
contains 24,963 people split into 8737 training, 8737 valida-
tion and 7489 test examples. Since the images have large
variations in viewpoints, poses and occlusions, not every
attribute can be inferred from every image. For instance, we
cannot label the wearing hat attribute when the head of the
person is not visible.
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Ego-Humans dataset draws images from videos that
track casual walkers with the OpenCV frontal face detec-
tor and facial landmark tracking in New York City over
two months. What makes it different from other datasets is
that it covers the location and weather information through
clustering GPS coordinates. Moreover, nearly five million
face pairs along with their same or not same labels are
extracted under the constraints of temporal information and
geolocations. Wang et al. (2016) manually annotate 2714
imageswith 17 facial attributes randomly selected from these
five million images. For the testing protocol, 80% images
are selected randomly for training and the remaining for
testing.

University of Maryland Attribute Evaluation Dataset
(UMA-AED) comes from image searches taking40attributes
as search terms and the HyperFace as face detector (Ran-
jan et al. 2017). UMD-AED serves as an evaluation dataset
and contributes to class-imbalance learning in deep facial
attribute estimation. It is composed of 2800 face images
labeled with a subset of 40 attributes from CelebA and
LFWA. Each attribute has 50 positive and 50 negative
samples, which means that not every attribute is tagged
in each image. In addition, compared with CelebA con-
taining mostly frontal, high-quality, and posed images,
UMD-AED comprises a large number of variations, e.g.,
distinct image quality, varying lights and poses, wide
age ranges, and different skin tones. UMD-AED offers
a much more unbiased metric for real-world data, and
it can be used to evaluate whether the attribute estima-
tion models have learned discriminative feature representa-
tions.

YouTube Faces Dataset (with attribute labels) Origi-
nal YouTube Faces Dataset contains 3245 videos from 1595
celebrities with 620,000 frame images (Wolf et al. 2011) for
face verification. Hand et al. (2018b) further extend it for the
video-based facial attribute prediction issue. They label 40
attributes from CelebA in the first of four frames from every
video, where the remaining three frames without attribute
labels come fromone third, two-thirds, and the last of theway
per video, respectively. As a result, this dataset makes it pos-
sible for exploring deep FAE methods merely with weakly
labels. Ten-fold cross-validation is adopted for the protocol.
Then, all the testing experiments need to be conducted on the
labeled frames of the testing splits with the average of all 10
splits.

To provide a more comprehensive overview of all exist-
ing attribute labels, we list all the labels in LFW-73 dataset
with the maximum number of attributes in Table 2. Differ-
ent facial attribute datasets contain different subsets of these
attribute annotations for deep FAE and FAM. Note that in
Table 2, There are 40 facial attributes in two commonly used
facial attribute analysis datasets, i.e., CelebA and LFWA.
The remaining 33 attributes are also labeled and used in Ta
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other datasets, e.g., LFW with 65 attributes mentioned in
Table 1.

3.2 Facial Attribute Analysis Metrics

3.2.1 Facial Attribute Estimation Metrics

Below,we list the frequently usedmetrics for FAEalgorithms
and provide detailed descriptions of these metrics in terms
of definitions and formulas.

• Accuracy and Error Rate (Acc and ER)

The classification accuracy and the error rate are the most
commonly used measures for evaluating classification tasks.
Facial attribute estimation is not an exception, and its accu-
racy can be defined as (Rudd et al. 2016)

Accuracy = ((
tp + tn

)
/
(
Np + Nn

))
. (5)

where Np and Nn denote the numbers of positive andnegative
samples, respectively, and tp and tp denote the numbers of
true positives and true negatives (Huang et al. 2016). Mean-
while, the error rate can be defined as

Error rate = 1 − Accuracy. (6)

• Balanced Accuracy and Error Rate (BAcc and BER)

When dealing with class-imbalance data, the traditional
classification accuracy is not befitting due to the bias of the
majority class. Hence, a balanced classification accuracy is
defined as (Rudd et al. 2016)

Balanced Accuracy = 1

2

(
tp/Np + tn/Nn

)
. (7)

Similarly, the balanced error rate can be defined as Balanced
Error Rate=1−Balanced Accuracy. When addressing the
imbalance issue from the perspective of source and target
distributions (Rudd et al. 2016), the balanced error rate is
defined as

Balanced Error Rate∗ = (
T+ (

tp/Np
) + T− (tn/Nn)

)
,

(8)

where T+ and T− denote the target domain distributions
of positive and negative examples, respectively. The super-
script ∗ is used to indicate the balanced version of error rate.
Besides, more details of the class-imbalance issue are intro-
duced in Sect. 6.1.

• mean Average Precision (mAP)

As there is more than one label in multi-label image clas-
sification, the mean Average Precision (mAP) becomes a
prevalent metric (Yue et al. 2007; Philbin et al. 2007), which
computes the average of the precision–recall curve from the
recall 0 to recall 1. Moreover, mAP is the mean of Aver-
age Precision (AP) for a set of categories, while AP is the
more general version that combines the recall and precision
to yield prediction results for a single class.

3.2.2 Facial Attribute Manipulation Metrics

There are two types of measurements in deep FAM: qual-
itative metrics and quantitative metrics, where the former
evaluates the performance of generated images through sta-
tistical surveys, and the latter measures the preservation
degree of the face detail related information after attribute
manipulation.Weprovidemore detailed descriptions of these
two types of metrics below.

• Qualitative Metrics

Statistical survey is themost intuitiveway to qualitatively
evaluate the quality of generated images in most genera-
tive tasks. By establishing specific rules in advance, subjects
vote for generated images with appealing visual fidelity, and
then, researchers drawconclusions according to the statistical
analysis of votes. For example, Choi et al. (2018) quan-
titatively evaluate the performance of generated images in
a survey format via AMT (see footnote 1). Given an input
image, the workers are required to select the best generated
images according to instructions based on perceptual real-
ism, quality of manipulation in attributes, and preservation
of original identities. Each worker is asked a set number of
questions for validating human effort.

Zhang et al. (2017b) conduct a statistical survey that
asks volunteers to choose the better result from their pro-
posed CAAE or existing works. Sun et al. (2018c) instruct
volunteers to rank several deep FAM approaches based
on perceptual realism, quality of transferred attributes, and
preservation of personal features. Then, they calculate the
average rank (between 1 and 7) of each approach. Lam-
ple et al. (2017) perform a quantitative evaluation on two
different aspects: the naturalness measuring the quality of
generated images, and the accuracy measuring the degree of
swapping an attribute reflected in the generation.

• Quantitative Metrics

Distribution difference measure calculates the differ-
ences between real images and generated face images. Xiao
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et al. (2018) achieve this goal by the Fréchet inception
distance (Heusel et al. 2017) (FID)with themeans and covari-
ance matrices of two distributions before and after editing
facial attributes. Wang et al. (2018) compute the peak signal
to noise ratio (PSNR) to measure the pixel-level differences.
They also calculate the structure similarity index (SSIM) and
its multi-scale version MS-SSIM (Wang et al. 2004) to esti-
mate the structure distortion and the identity distance. All
these measurements contribute to evaluating the high-level
similarity of two face images. In addition, He et al. (2019) use
an Inception-ResNet (Szegedy et al. 2017) to train a face rec-
ognizer for measuring the identity preservation ability with
rank-1 recognition accuracy. Therefore, face identity preser-
vation is becoming a promisingmetric because it can indicate
whether models have excellent performance in preserving
facial details outside of manipulated attributes.

Facial landmark detection gain uses the accuracy gain
of landmark detection before and after attribute editing to
evaluate the quality of synthesized images. For example, He
et al. (2016a) adopt an ERT method (Kazemi and Sullivan
2014 ), which is a landmark detection algorithm trained
on 300-W dataset (Sagonas et al. 2013). During testing, they
divide the test sets into three components: the first containing
images with the positive attribute labels, the second contain-
ing images with the negative labels, and the last containing
the manipulated images from the first part. Then, the aver-
age normalized distance error is computed to evaluate the
discrepancy of landmarks between the generated images and
the ground truths.

Facialattribute estimation constructs additional attribute
prediction networks to measure the performance of FAM
according to the classification accuracy. Perarnau et al.
(2016) first design an Anet to predict facial attributes on
the manipulated face images. If the outputs of the Anet are
closer to the desired attribute labels, the generator can be con-
sidered to have satisfactory generation performance. Larsen
et al. (2016) train a regressor attribute prediction network
to calculate the attribute similarity between the conditional
attributes and generated attributes. Note that FAE models
used for the evaluation are independent of FAM’s training
processes, which means that they have to be trained well in
advance and have base accuracy performance over all facial
attributes.

4 State-of-the-Art Facial Attribute
EstimationMethods

Generally, state-of-the-art deep FAEmethods can be divided
into two main categories: part-based methods and holistic
methods. In this section, we provide detailed introductions
to these two types of methods in terms of algorithms,

performance, as well as their respective advantages and dis-
advantages. The overview is provided in Table 3.

4.1 Part-Based Deep FAEMethods

As shown in Fig. 7, part-based deep FAE methods first
locate the areas where facial attributes exist through localiza-
tion mechanisms. Then, features corresponding to different
attributes on each highlighted position can be extracted and
further predicted with multiple attribute classifiers. Hence,
the key of part-based methods lies in the localization mech-
anism. In light of this point, part-based deep FAE methods
can be further divided into two subgroups: separate auxiliary
localizationbasedmethods and end-to-end localizationbased
methods. Corresponding details are provided as follows.

4.1.1 Separate Auxiliary Localization based Methods

Since facial attributes describe subtle details of face represen-
tations based on human vision, locating the positions of facial
attributes enforces subsequent feature extractors and attribute
classifiers to focus more on attribute-relevant regions. The
most intuitive approach is to take existing face part detectors
as auxiliaries.

Poselet (Bourdev and Malik 2009; Bourdev et al. 2011)
is a valid part detector that describes a part of the human
pose under a given viewpoint. Because these parts include
evidences from different areas of the body at different
scales, complementary information can be learned to benefit
attribute prediction. Typically, given a whole person image,
poselet detector (Zhang et al. 2014) is first used to decompose
an image into several image patches, named poselets, under
various viewpoints and poses. Then, a PANDA network is
proposed to train a set of CNNs for each poselet and the
whole image. Then, the features from all these poselets are
concatenated to yield final feature representations. Finally,
PANDA branches out multiple binary classifiers where each
recognizes an attribute by the binary classification. Based
on PANDA, Gkioxari et al. (2015) introduce a deep version
of the Poselet detector and build a feature pyramid, where
each level computes a prediction score for the corresponding
attribute.

However, the poselet detector only discovers coarse body
parts and cannot explore subtle local details of face images.
Considering that the probability of an attribute appearing in
a face image is not uniformed in the spatial domain, Kalayeh
et al. (2017) propose employing semantic segmentation as
a separate auxiliary localization scheme. They exploit the
location cues obtained by semantic segmentation to guide
the attention of attribute prediction to the naturally occurring
areas of attributes. Specifically, a semantic segmentation net-
work is first designed in an encoder-decoder paradigm and
trained over Helen face dataset (Le et al. 2012). During this
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Fig. 7 The illustration of deep
part-based FAE methods
[images are from Ding et al.
(2018)]

process, the semantic face parsing (Smith et al. 2013; Lu et al.
2018b) is performed as an additional task to learn detailed
pixel-level location information. After discovering the loca-
tion cues, the semantic segmentation based pooling (SSP)
and gating (SSG) mechanisms are presented to integrate
the location information into the attribute estimation. SSP
decomposes the activations of the last convolutional layer
into different semantic regions and then aggregates those
regions that only reside in the same area. Meanwhile, SSG
gates the output activations between the convolutional layers
and the batch normalization (BN) operation to control the
activations of neurons from different semantic regions.

In contrast, Mahbub et al. (2018) utilize key points to
segment faces into several image patches, which is a more
straightforward way compared with semantic segmentation.
Then, these segments are fed into a set of facial segment net-
works to extract corresponding feature representations and
learn prediction scores, where the whole face image is fed
into a full-face network. A global predictor network fuses the
features from these segments, and two committee machines
merge their scores for the final prediction.

Compared with the above methods that search for loca-
tion clues of attributes directly, He et al. (2018a) resort
to synthesized abstraction facial images that contain local
facial parts and texture information to achieve the same goal
indirectly.A designedGAN is used to generate facial abstrac-
tion images before inputting them into a dual-path facial
attribute recognition network, where the real original images
are together fed into this recognition network. The dual-path
network propagates the feature maps from the abstraction
sub-network to the real original image sub-network and con-
catenates the two types of features for the final prediction.
Despite the abundant location and textual information that is
contained in generated facial abstraction images, the quality
of these images may have a significant impact on perfor-
mance, especially when some attribute related information
is lost in image abstraction.

Note that all the separated auxiliary localization based
deep FAE methods share a common drawback: relying
too much on accurate facial landmark localization, face
detection, facial semantic segmentation, face parsing, and
facial partition schemes. If these localization strategies are

imprecise or landmark annotations are unavailable, the per-
formance of the subsequent attribute estimation task would
be significantly affected.

4.1.2 End-to-End Localization Based Methods

Compared with the separate auxiliary localization based
methods that locate attribute regions and make the attribute
prediction separately and independently, end-to-end local-
ization based methods jointly exploit location cues where
facial attributes appear and predict their presence in a unified
framework.

Liu et al. (2015) first propose a cascaded deep learning
framework for joint face localization and attribute prediction.
Specifically, the cascaded CNN is made up of an LNet and
an ANet, where the LNet locates the entire face region and
the ANet extracts the high-level face representation from the
located area. LNet is first pretrained by classifying massive
general object categories to ensure excellent generalization
capability, and then it is fine-tuned using the image-level
attribute tags of training images to learn features for face
localization in a weakly supervised manner. Note that the
main difference between LNet and separated auxiliary local-
ization basedmethods is LNet does not require face bounding
boxes or landmark annotations. Meanwhile, ANet is first
pretrained by classifying massive face identities to handle
the complex variations in unconstrained face images, and
then it is fine-tuned to extract discriminative facial attribute
representations. Furthermore, rather than extracting features
patch-by-patch, ANet introduces an interweaved operation
with locally shared filters to extract multiple feature vec-
tors in a one-pass feed-forward process. Finally, SVMs are
trained over these features to estimate attribute values per
attribute, and the terminal prediction is made by averaging
all these values for addressing the small misalignment of face
localization. The cascaded LNet and ANet framework shows
the benefit of pretraining with massive object categories and
massive identities in enhancing the feature representation
learning.With such customized pretraining schemes and cas-
caded network architecture, this method exhibits outstanding
robustness to backgrounds and face variations.
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Fig. 8 The illustration of deep
holistic FAE methods [face
image comes from Ding et al.
(2018)]

However, coarse entire face regions discovered by LNet
cannot be used to explore more local attribute details. Hence,
Ding et al. (2018) propose a cascade network to jointly
locate facial attribute-relevant regions and perform attribute
classification. Specifically, they first design a face region
localization network (FRL) that builds a branch for each
attribute to automatically detect a corresponding relevant
region. Then, the following parts and whole (PaW) attribute
classification network selectively leverages information from
all the attribute-relevant regions for the final estimation.
Moreover, in terms of the attribute classification, Ding et al.
define two FC layers: the region switch layer (RSL) and the
attribute relation layer (ARL). The former selects the relevant
prediction sub-network and the latter models attribute rela-
tionships. In summary, the cascaded FRL and PaWmodel not
only discovers semantic attribute regions but also explores
rich relationships among facial attributes. Besides, since this
model automatically detects face regions, it can achieve out-
standing performance on unaligned datasets without any
pre-alignment step.

Note that FRL-PaW method learns a location for each
attribute, which makes the training process redundant and
time-consuming. This is because several facial attributes gen-
erally exist in the same area. However, to the best of our
knowledge, there is currently no specific solution for tack-
ling this issue. We expect that future research would reduce
computation costs; meanwhile, make the prediction accord-
ing to attribute locations as accurately as possible.

In summary, part-based deep FAE methods first locate
the positions where facial attributes appear. Two strategies
can be adopted: separate auxiliary localization and end-to-
end localization. The former leverages existing part detectors
or auxiliary localization-related algorithms, and the latter
jointly exploits the locations in which facial attributes exist
and predicts their presences. Compared with the separate
auxiliary localization based methods operating separately
and independently, end-to-end localization based methods
locate and predict in a unified framework. After obtaining
the location clues, features corresponding to certain attribute
areas can be extracted and further be fed into attribute clas-

sifiers to make the estimation. Recently, researchers are
currently more inclined to shift their focus on holistic FAE
algorithms when the part-based counterparts are generally
distracted and affected by attribute localization mechanisms.

4.2 Holistic Deep FAEMethods

In contrast to part-based FAE approaches that detect and
utilize facial components, holistic deep FAE methods focus
more on exploring the attribute relationships and extracting
features from entire face images rather than facial parts. A
schematic diagram of holistic FAE models is provided in
Fig. 8.

As shown in Fig. 8, the key to modeling attribute rela-
tionships is learning common features at low-level shared
layers and capturing attribute-specific features at high-level
separated layers. Each separated layer corresponds to an
attribute group. In general, these attribute groups are obtained
manually according to semantics or attribute locations. By
assigning different shared layers and attribute-specific lay-
ers, complementary information among multiple attributes
can be discovered such that more discriminative features can
be learned for the following attribute classifiers.

In general, there are two crucial issues that holistic deep
FAEmethods need to address when designing network archi-
tectures: (1) how to properly assign shared information and
attribute-specific information at different layers of networks,
and (2) how to explore relationships among facial attributes
for learning more discriminative features. Taking these two
problems as the main focus, we provide a brief review of
holistic FAE methods in the following parts.

To the best of our knowledge,MOON (Rudd et al. 2016) is
one of the earliest holistic FAE methods with the multi-task
framework. It has a mixed objective optimization network
that learns multiple attribute labels simultaneously via a sin-
gle DCNN. MOON takes deep FAE as a regression problem
for the first time and adopts a 16-layer VGG network as the
backbone network, in which abstract high-level features are
shared before the last FC layer. Multiple prediction scores
are calculated with the MSE loss to reduce the regression
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error. Similarly, Zhong et al. (2016b) replace the high-level
CNN features in MOON with mid-level features to identify
the best representation for each attribute.

In contrast to splitting networks at the last FC layer, the
multi-task deep CNN (MCNN) (Hand et al. 2017) branches
out to multiple groups at the mid-level convolutional layers
for modeling the attribute correlations. Specifically, based on
the assumption that many attributes are strongly correlated,
MCNN divides all 40 attributes into 9 groups according to
semantics, i.e., gender, nose, mouth, eyes, face, around head,
facial hair, cheeks, and fat. For example, big nose and pointy
nose are grouped into the ‘nose’ category, and big lips, lip-
stick, mouth slightly open and smiling are clustered into the
‘mouth’ category. Therefore, each group consists of similar
attributes and learns high-level features independently. At the
first two convolutional layers of MCNN, features are shared
by all attributes. Then, MCNN branches out several forks
corresponding to different attribute groups. That means each
attribute group occupies a fork. At the end of the network,
an FC layer is added to create a two-layer auxiliary network
(AUX) to facilitate attribute relationships. AUX receives the
scores from the trainedMCNN and yields the final prediction
results. Hence, MCNN-AUX models facial attribute rela-
tionships in three ways: (1) sharing the lowest layers for all
attributes, (2) assigning the higher layers for spatially related
attributes, and (3) discovering score-level relationships with
the AUX network.

However, MCNN has a significant limitation: shared
information at low-level layers may vanish after network
splitting. One solution to overcome this limitation is jointly
learning shared and attribute-specific features at the same
level rather than in order of precedence.

Therefore, Cao et al. (2018) design a partially shared
structure based on MCNN, i.e., PS-MCNN. It divides all 40
attributes into 4 groups according to attribute positions, i.e.,
upper group, middle group, lower group, and whole image
group. Note that the entire partition process is performed by
hand, and this artificial grouping strategy can be regarded
as the prior information based on human knowledge. The
partially shared structure connects four attribute-specific net-
works (TSNets) corresponding to four different groups of
attributes and one shared network (SNet) sharing features
among all the attributes. Specifically, each TSNet learns fea-
tures for a specific group of attributes.Meantime, SNet shares
informative features with each task. In terms of the connec-
tion mode between the SNet and the TSNets, each layer of
SNet receives additional inputs from the previous layers of
TSNet. Then, features from SNet are fed into the next layers
of shared and attribute-specific networks. At a certain level
of PS-MCNN, both task-specific features and shared fea-
tures are captured in different branches. In addition, shared
features at a specific layer are closely related to the features

of all of its previous layers. This connection mechanism con-
tributes to informatively shared feature representations.

Apart from attribute correlations, Han et al. (2017) intro-
duce the concept of attribute heterogeneity. They note that
individual attributes could be heterogeneous concerning data
type and scale, as well as semantic meaning. In terms of
data type and scale, attributes can be grouped into ordinal
versus nominal attributes. For instance, if attributes age and
hair length are ordinal, then attributes gender and race are
nominal. Note that the main difference between ordinal and
nominal attributes is ordinal attributes have an explicit order-
ing of their variables, whereas nominal attributes generally
have two or more classes and there is no intrinsic order-
ing among the categories. In terms of semantic meaning,
attributes such as age, gender, and race are used to describe
the characteristics of the whole face, and pointy nose and
big lips are mainly used to describe the local characteris-
tics of facial components. Therefore, these two categories of
attributes are heterogeneous and can be grouped into holistic
versus local attributes for the prediction of different parts of
a face image. Therefore, taking both the attribute correlation
and heterogeneity into consideration, Han et al. design a deep
multi-task learning (DMTL) CNN to learn shared features of
all attributes and category-specific features of heterogeneous
attributes. The shared feature learning naturally exploits the
relationship among attributes to yield discriminative feature
representations, whereas the category-specific feature learn-
ing aims to fine-tune the shared features towards the optimal
estimation of each heterogeneous attribute category.

Note that existing multi-task learning methods make no
distinction between low-level and mid-level features for dif-
ferent attributes. This is unreasonable because features at
different levels of the network may have different relation-
ships. Besides, the above methods share features across tasks
and split layers that encode attribute-specific features by
hand-designed network architectures. Such a manual explo-
ration in the space of possible multi-task deep architectures
is tedious and error-prone because possible spaces might be
combinatorially large.

In light of this issue, Lu et al. (2017) present the automatic
design of compact multi-task deep learning architectures,
with no need to artificially discover possiblemulti-task archi-
tectures. The proposed network learns shared features in
a fully adaptive way, where the core idea is incrementally
widening the current design in a layer-wise manner. During
the training process, the adaptive network starts with a thin
multi-layer network (VGG16) and dynamically widens via a
top-down layer-wise model widening strategy (Tropp et al.
2006). It decides withwhom each task shares features in each
layer, yielding corresponding branches in this layer. Finally,
the number of branches at the last layer of the model is equal
to that of the attribute categories to be predicted. Conse-
quently, this training scheme considers both task correlations
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and the complexity of the model for facilitating task group-
ing decisions at each layer of the network. Therefore, the
fully-adaptive network allows us to estimate multiple facial
attributes in a dynamic branching procedure through its self-
constructed architecture and feature sharing strategy.

To summarize, holistic methods take the entire face
images as inputs and mainly work on exploring attribute
relationships. Many methods design various network archi-
tectures to model the correlations among different attributes.
The key to this idea is learning shared features at low-level
layers and attribute-specific features at high-level layers.
Thus, holistic FAE methods need to address two main
problems: one is assigning different layers for learning corre-
sponding features with different characteristics, and another
is learning more discriminative features though discovering
attribute relationships under customized networks. What can
be observed from contemporary research is that attribute
grouping by hand has become a prevalent scheme in holistic
FAE.We expect that an automatic attribute grouping strategy
would attract more attention in future work, and it should
adaptively learn proper group partition criteria and adjust
them according to models’ performance during the training.

5 State-of-the-Art Facial Attribute
ManipulationMethods

In this section, we provide an overview of model-based FAM
methods and extra condition-based FAMmethods in terms of
algorithms, network architectures, advantages and disadvan-
tages. The summary of this overview is provided in Table 4.

5.1 Model-Based Deep FAMMethods

Model-based methods map an image in the source domain
to the target domain and then distinguish the generated tar-
get distribution with the real target distribution under the
constraint of an adversarial loss. Therefore, model-based
methods are greatly task-specific and have excellent perfor-
mance in yielding photorealistic facial attribute images.

Li et al. (2016) first propose a DIAT model following
the standard paradigm of model-based methods. DIAT takes
unedited images as inputs to generate target facial images
with an adversarial loss and an identity loss. The first loss
ensures to obtain desired attributes, and the second encour-
ages the generated images to have the same or similar identity
as the input images. Zhu et al. (2017) add an inverse map-
ping from the target domain to the source domain based on
DIAT and propose a CycleGAN,where the twomappings are
coupled with a cycle consistency loss. This design is based
on the intuition that if we translate from one domain to the
other and back again, we should arrive where we start. Based
on CycleGAN, Liu et al. (2017) propose a UNIT model that

maps the pair of corresponding images in the source and the
target domains to the same latent representation in a shared
latent space. Each branch from one of the domains to the
latent space performs an analogous CycleGAN operation.

However, all of the above methods directly operate on
the entire face image. That means when a certain attribute
is edited, the other relevant attributes may also be changed
uncontrollably.

Therefore, tomodify attribute-specific face areas and keep
the other parts unchanged, Shen and Liu (2017) present
learning residual images, which are defined as the difference
between images before and after attribute manipulation. In
this way, face attributes can be efficiently manipulated with
modest pixel modification over the attribute-specific regions.
They design a ResGAN consisting of two image transforma-
tion networks and a discriminative network to learn residual
representations of desired attributes. Specifically, two image
transformation networks, denoted as G0 and G1, first take
two images with opposite attributes as inputs in turn and
then perform the inverse attribute manipulation operation for
outputting residual images. Subsequently, the obtained resid-
ual images are added to the original input images, yielding
the final outputs with manipulated attributes. In the end, all
these images, i.e., the two original input images and the two
images from the transformation networks, are fed into the dis-
criminative network, which classifies these images into three
categories: images generated from the two transformation
networks, original images with positive attribute labels, and
original images with negative attribute labels. Note that G0

and G1 constitute a dual learning cycle. Given an image with
a negative attribute label,G0 synthesizes the desired attribute,
and G1 removes the corresponding attribute that is gener-
ated by G1. Then, G1’s output is expected to have the same
attribute label as the original given image. The experiments
demonstrate that such a dual learning process is beneficial for
the generation of high-quality images, and residual images
could enforce the attribute manipulation process to focus on
the local areaswhere attributes show up. Therefore, ResGAN
is able to generate attractive images especially on local facial
attributes.

However, model-based methods can only edit an attribute
during a training process with a set of corresponding model
parameters. The whole manipulation is only supervised by
discriminating real or generated images with the adversarial
loss. Thatmeanswhenmultiple attributes need to be changed,
multiple training processes are inevitable, resulting in signif-
icant time consumption and computation costs.

In contrast, manipulating facial attributes with extra
conditions is a more prevalent approach since multiple
attributes can be edited through a single training process.
Hence, extra condition-based methods attract more attention
from researchers, where extra attribute vectors and refer-
ence exemplars are taken as input conditions. Specifically,
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attribute vectors can be concatenated with the latent image
codes to control facial attributes, whereas reference exem-
plars exchange specific attributes with the to-be-manipulated
images in the image-to-image translation framework. More
details about the extra condition-based deep FAM methods
are introduced below.

5.2 Extra Condition-Based Deep FAMMethods

Deep FAM methods conditioned on extra attribute vectors
alter desired attributes with given conditional attribute vec-
tors, such as one-hot vectors indicating the presence of
corresponding facial attributes. During the training process,
the conditional vectors are concatenated with the to-be-
manipulated images in latent encoding spaces. Moreover,
conditional generative frameworks dominate the model con-
struction of deep FAM. Various efforts have been made to
edit facial attributes based on autoencoders (AEs), VAEs,
and GANs.

Zhang et al. (2017b) propose a conditional adversarial
autoencoder (CAAE) for age progression and regression.
CAAE first maps a face image to a latent vector through
an encoder. Then, the obtained latent vector concatenated
with an age label vector is fed into a generator for learning a
face manifold. The age label condition controls altering the
age. Meanwhile, the latent vector ensures that the personal-
ized face features are preserved. Yan et al. (2016) introduce
a conditional variational autoencoder (CVAE) to generate
images from visual attributes. CVAE disentangles an image
into the foreground and the backgroundparts,where eachpart
is combined with the defined attribute vector. Consequently,
the quality of generated complex images can be significantly
improved when the foreground areas attract more attention.
Perarnau et al. (2016) propose an invertible conditional GAN
(IcGAN) to edit multiple facial attributes with determined
specific representations of generated images. Given an input
image, IcGAN first learns a representation consisting of a
latent variable and a conditional vector via an encoder. Then,
IcGANmodifies the latent variable and conditional vector to
regenerate the original input image through the conditional
GAN (Mirza and Osindero 2014). In this way, by changing
the encoded conditional vector, IcGAN can achieve arbitrary
attribute manipulation.

Apart fromautoencoders,VAEs,GANs, and their variants,
Larsen et al. (2016) combine the VAE and the GAN into
a unified generative model, VAE/GAN. In this model, the
GAN discriminator learns feature representations taken as
the basis of the VAE reconstruction objective, which means
that the VAE decoder and the GAN generator are collapsed
into one by sharing parameters and joint training. Hence,
this model consists of three parts: the encoder, the decoder,
and the discriminator.By concatenating attribute vectorswith

features from these three components, VAE/GAN performs
better than either plain VAEs or GANs.

Recently, taking the multiple attribute manipulation as a
domain transfer task, Choi et al. (2018) propose a StarGAN
to learnmappings amongmultiple domainswith only a single
generator and a discriminator trained from all domains. Each
domain corresponds to an attribute and the domain infor-
mation can be denoted by one-hot vectors. Specifically, the
discriminator first distinguishes the real and the fake images
and classifies the real images to their corresponding domains.
Then, the generator is trained to translate an input image into
an output image conditioned on a target domain label vec-
tor, which is generated randomly. As a result, the generator
is capable of translating the input image flexibly. In sum-
mary, StarGAN takes the domain labels as extra supervision
conditions. This operation makes it possible to incorporate
multiple datasets containing different types of labels simul-
taneously.

However, all the above methods edit multiple facial
attributes simultaneously by discretely changing multiple
values of attribute vectors. None of them can alter facial
attributes continuously.

In light of this, Lample et al. (2017) present a Fader net-
work using continuous attribute values to modify attributes
through sliding knobs, like faders on a mixing console. For
example, one can gradually change the values of gender to
control the transition process from man to woman. Fader
network is composed of three components: an encoder, a
decoder, and a discriminator. With an image-attribute pair as
the input, Fader networkfirstmaps the image to the latent rep-
resentation by its encoder and predicts the attribute vector by
its discriminator. Then, the decoder reconstructs the image
through the learned latent representation and the attribute
vector. During testing, the discriminator is discarded, and dif-
ferent images with various attributes can be generated with
different attribute values.

Note that all the above methods edit attributes over the
whole face images. Hence, attribute-irrelevant details might
also be changed. To address this issue, Zhang et al. (2018a)
introduce the spatial attention mechanism into GANs to
locate attribute-relevant areas and propose a SaGAN for
manipulating facial attributes more precisely. SaGAN fol-
lows the standard adversarial learning paradigm, where a
generator and a discriminator play a min-max game. To
keep attribute-irrelevant regions unchanged, SaGAN’s gen-
erator consists of an attribute manipulation network (AMN)
and a spatial attention network (SAN). Given a face image,
SAN learns a spatial attention mask where attribute-relevant
regions have non-zero attention values. In thisway, the region
where the desired attribute appears can be located. Then,
AMN takes the face image and the attribute vector as inputs,
yielding an image with the desired attribute in the specific
region located by SAN.
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Rather than taking the attribute vectors as extra condi-
tions, deep FAM methods conditioned on reference exem-
plars consider exchanging specific attributes with the to-
be-manipulated images in the image-to-image translation
framework. Note that these reference images do not need
to have the same identity as the original to-be-manipulate
images, and all the generated attributes are present in the real
world. In this way, more specific details that appear in the
reference images can be explored to generate more realistic
images.

Zhou et al. (2017) first design a GeneGAN to achieve
the basic reference exemplar-based facial attribute manipu-
lation. Given an image, it is encoded into two complement
codes: attribute-specific codes and attribute-irrelevant codes.
By exchanging the attribute-specific codes and preserv-
ing the attribute-irrelevant codes, desired attributes can be
transferred from the reference exemplar image to the to-be-
manipulated image.

Considering that GeneGAN only transfers one attribute in
a single manipulation process, Xiao et al. (2018) construct
an ELEGANTmodel to exchange latent encodings for trans-
ferring multiple facial attributes by exemplars. Specifically,
since all the attributes are encoded in the latent space in a
disentangled manner, one can exchange the specific part of
encodings and manipulate several attributes simultaneously.
Besides, the residual image learning and the multi-scale
discriminators for adversarial training enable the proposed
model to generate high-quality images with more delicate
details and fewer artifacts. At the beginning of training,
ELEGANT receives two sets of training images as inputs,
i.e., a positive set and a negative set, which do not need
to be paired. Second, an encoder is utilized to obtain the
latent encodings of both positive and negative images. Then,
if the i-th attribute is required to be transferred, the only
step is to exchange the i-th element in the latent encodings
of positive and negative images. Once the encoding step is
finished, ELEGANT constructs an image generator that con-
sists of a decoder and the encoder from the previous step
to decode recombined latent encodings into images. Finally,
two discriminators with identical network structures work at
different scales to obtain manipulated attribute images.

6 Additional Related Issues

6.1 Imbalance Learning in Facial Attribute Analysis

Face attribute data exhibits an imbalanced distribution in
terms of different categories. It is normally called the class-
imbalance issue, which means in a dataset, some of the facial
attribute classes have a much higher number of samples than
others, corresponding to themajority class andminority class
(Haixiang et al. 2017), respectively. For example, the largest

imbalance ratio between the minority and majority attributes
in CelebA dataset is 1:43. Learning from such imbalanced
facial attribute labels can lead to biased classifiers, which
tend to favor the majority and fail to discriminate the fea-
tures learned from the minority. Even in the extreme case,
the learned classifiers can hardly identify the minority sam-
ples.

One typical scheme to solve this problem is using an
assumed balanced target distribution to guide the imbalanced
source distribution byweighting objective functions.MOON
(Rudd et al. 2016) weights the back-propagation error in a
cost-sensitive way. A probability is assigned to each class
by counting the relative numbers of positive and negative
samples for both source and target domains. Then, these
probabilities could be used as weights to incorporate the dis-
tribution discrepancy into the loss function.

However,MOONoverlooks the label imbalance over each
batch, which means that the batch-wise training scheme of
deep networks is not fully utilized. In light of this, AttCNN
(Hand et al. 2018a) proposes a selective learning algorithm to
address the distribution discrepancy at the batch level. If the
original batch in the source domainhasmorepositive samples
and fewer negative samples than the target distribution, the
selective learning algorithm resamples a random subset from
the positive instances. Meanwhile, it proportionally weights
the negative counterparts to match the target distribution.
By aligning the distributions between the source and target
domains in each batch, AttCNN yields the state-of-the-art
class-imbalance attribute prediction performance.

In addition, another more frequently used scheme for
class-imbalance learning is data resampling for deep FAE
methods. Huang et al. (2016) adopt the resampling strat-
egy, namely large margin local embedding (LMLE), and
formulate a quintuple sampling term associated with the
triple-header loss. LMLE enforces the preservation of local-
ity across clusters and the discrimination between classes.
Then, a fast cluster-wise kNN algorithm is executed, fol-
lowed by a local large margin decision. In this way, LMLE
learns embedded features that are discriminative enough
without any possible local class imbalance. On this basis,
Huang et al. (2019) further propose a rectified version of
LMLE, i.e., cluster-based large margin local embedding
(CLMLE). CLMLE designs a loss to preserve the inter-
cluster margins both within and between classes. In contrast
to LMLE enforcing the Euclidean distance on a hypersphere
manifold, CLMLE adopts angularmargins enforced between
the involved cluster distributions and uses spherical k-means
for obtainingK clusterswith the same size,which contributes
to better performance.

On the other hand, Dong et al. (2017) take an online
regularization strategy to address the facial attribute based
class-imbalance issue. In detail, they exploit a batch-wise
incremental hard mining on minority attribute classes, and

123



International Journal of Computer Vision (2020) 128:2002–2034 2025

formulate a class rectification loss (CRL) based on the mined
minority examples. For the hard mining strategy, researchers
first provide the profiles of hard positives and hard neg-
atives for the minority. Then, according to the predefined
profiles and model, they selectK hard positives (or hard neg-
atives) as the bottom-K (or top-K) scores on the minority
class for a specific attribute. This process is executed at the
batch level and incrementally over subsequent batches. Such
batch-wise incremental hard mining guarantees CRL strong
class-imbalance learning ability and satisfactory attribute
estimation performance.

6.2 Relative Attribute Ranking in Facial Attribute
Analysis

Relative attribute learning aims to formulate functions to rank
the relative strengthof attributes (Chen et al. 2014),which can
be widely applied in object detection (Fan et al. 2013), fine-
grained visual comparison (Shi and Tao 2018), and facial
attribute estimation (Li et al. 2018b). The general insight in
this line of work is learning global image representations in a
unified framework (Lampert et al. 2009; Parikh andGrauman
2011) or capturing part-based representations via pretrained
part detectors (Bourdev et al. 2011; Sandeep et al. 2014;
Zhang et al. 2014). However, the former ignores the local-
izations of attributes, and the latter ignores the correlations
among attributes. Consequently, both the two might collapse
the performance of relative attribute ranking.

Xiao and Jae Lee (2015) first propose automatically
discovering the spatial extent of relevant attributes by estab-
lishing a set of visual chains indicating the local and transitive
connections. In this way, the locations of attributes can be
learned automatically in an end-to-end way. Although no
pretrained detectors are used, the optimization pipeline still
contains several independent modules, resulting in a subop-
timal solution.

To tackle this issue, Singh and Lee (2016) construct
an end-to-end deep CNN for simultaneously learning fea-
tures, localizations, and ranks of facial attributes with weakly
supervised pair-wise images. Specifically, given pairs of
training images ordered according to the relative strength
of an attribute, two Siamese networks receive these images,
where each takes one of a pair as input and builds a sin-
gle branch. Each branch contains two components: the
spatial transformer network (STN), which generates image
transformation parameters for localizing the most relevant
regions, and the ranker network (RN), which outputs the
predicted attribute scores. The qualitative experiment results
over LFW-10 dataset show excellent performance in attribute
region localization and ranking accuracy.

To model the pair-wise relationships between images for
multiple attributes, Meng et al. (2018) construct a graph
model, where each node represents an image and edges indi-

cate the relationships between images and attributes, as well
as between images and images. The overall framework con-
sists of two components: the CNN for extracting primary
features of the node images, and the graph neural network
(GNN) for learning the features of edges and following
updates. Thus, the relationships among all the images are
modeled by an fully-connected graph over the learned CNN
features. Then, a gated recurrent unit (GRU) takes the node
and its corresponding information as inputs and outputs the
updated node. As a result, the correlations among attributes
can be learned by using information from the neighbors of
the node, aswell as by updating its state based on the previous
state.

6.3 Adversarial Robustness in Facial Attribute
Analysis

Adversarial images, which are generated from the network
topology, training process, and hyperparameter variation by
adding slight artificial perturbations, can be used as inputs
of deep facial attribute analysis models. By classifying the
original inputs correctly and misclassifying the adversarial
inputs, the robustness of models can be improved. Szegedy
et al. (2014) first propose that neural networks can be induced
tomisclassify an imagebycarefully chosenperturbations that
are imperceptible to human. Following this work, the study
of adversarial images is entering the horizons of researchers.

Rozsa et al. (2017) induce small artificial perturbations on
existing misclassified inputs to correct the results of attribute
classification. Specifically, the adversarial images are gen-
erated over a random subset of CelebA dataset via the fast
flipping attribute (FFA) technique. FFA algorithm leverages
the back-propagation of the Euclidean loss to generate adver-
sarial images. During this process, it flips the binary decision
of the deep networkwithout ground-truth labels. Through the
robustness analysis, FFA has better performance in generat-
ing more adversarial examples than the existing fast gradient
sign (FGS) method (Goodfellow et al. 2015) on the designed
separate attribute networks (Rozsa et al. 2016). Moreover,
FFA algorithm is extended to an iterative version, namely
iterative FFA, to ensure the use for multi-objective networks,
e.g., MOON (Rudd et al. 2016). The experiments demon-
strate that the quality of adversarial examples of iterative FFA
is more satisfactory than its base version, and iterative FFA
can flip attribute prediction results more frequently. Despite
the promising performance of these two types of FFAs, sev-
eral attributes still could not be flipped over on separately
trained deep models.

In addition, attribute anonymity, which conceals specific
facial attributes that an individual does not want to share,
is another adversarial robustness related task. When hiding
corresponding attributes, the remaining attributes should be
maintained, and the visual quality of images should not be
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damaged. Chhabra et al. (2018) achieve this basic target by
adding adversarial perturbations to an attribute preservation
set and an attribute suppression set. Consequently, the pre-
diction of a specific attribute from the true category can be
classified into a different target category.

In summary, the study of adversarial robustness con-
tributes to improving the representational stability of current
deep FAE algorithms. Additionally, due to the attack of
adversarial examples, the robustness of deep facial attribute
analysis models is moving towards a promising direction.

7 Challenges and Opportunities

Despite the promising performance of many algorithms in
deep facial attribute analysis, there are still several challeng-
ing issues that deserve more attention. On the other hand,
these challenges also bring hopeful opportunities for the
development of this field. Therefore, in this section, we dis-
cuss challenges and future opportunities for both deep FAE
and FAM, from the perspectives of databases, algorithms,
and real-world applications.

7.1 Discussion of Facial Attribute Estimation

7.1.1 Data

The development of deep neural networks makes FAE a
data-driven task. That means large numbers of samples
are required for training deep models to capture attribute-
relevant facial details. However, contemporary studies suffer
from insufficient training data. In this case, deep neural net-
works would easily fit the data characteristics contained only
in a small number of images and have degraded perfor-
mance. In the following, taking two commonly used datasets
as examples (i.e., CelebA and LFWA), we analyze the data
challenges that exist in current facial attribute databases from
the perspectives of data sources, data quality, and imbalanced
data, respectively.

First, from theperspective of data sources,CelebAcollects
face data and attribute labels from the celebrities, and the
samples of LFWA come from online news. There is no doubt
that these databases are inherently biased and do not match
the general data distributions in the real world. For example,
the bald attribute corresponds to a small number of samples
in CelebA, but in the real world, it is a common attribute
among ordinary people. Hence, more complementary facial
attribute datasets that cover more real-world scenarios and
a wider range of facial attributes need to be constructed in
the future. An earlier work (Wang et al. 2016) has made
an attempt to extract images from the real-world outdoor
videos, i.e., Ego-Humans dataset. However, it contains more
pedestrian attributes, and only several facial attributes are

predicted. Nevertheless, we believe that this dataset provides
an inspired idea for collecting more facial attribute-relevant
images from videos in real-world scenes (Wiles et al. 2018).

Furthermore, Hand et al. (2018b) have made the first
attempt to estimate facial attributes in videos. They use
weakly labeled data inYouTube Faces Dataset (with attribute
labels) to keep attribute prediction consistent and accurate
in videos, by imposing a temporal coherence constraint
and a motion-attention mechanism. The temporal coher-
ence constraint ensures the response invariability between
video frames by transferring responses from labeled frames
to unlabeled ones. Meanwhile, the motion-attention mech-
anism enforces their model to focus on face parts through
exploring the motion relationship between labeled and unla-
beled frames. On the one hand, this research significantly
highlights the importance of temporal and motion factors
when designing video-based deep FAE models. On the other
hand, it also expresses the expectation for labeling new video
datasets with facial attributes in future study.

Second, from the perspective of data quality, most faces in
CelebA and LFWA are frontal and aligned images with high
quality (Hand et al. 2018a). However, real-world data always
have low-quality, partially visible imageswith various illumi-
nation and poses. Thus, attribute prediction models trained
on these images could hardly learn representative features
of real-world data. Therefore, we expect that more adequate
real-world training data would come out to strengthen the
estimation abilities of future attribute classifiers.

Finally, for CelebA, LFWA, or real-world face images,
imbalanced data would induce attribute estimation models to
pay more attention to learning the features of majority sam-
ples. Consequently, learned biased attribute classifiers could
not identify the minorities in some extreme cases. Although
many efforts have been made to solve this class-imbalance
learning issue from the perspective of algorithms, as men-
tioned in Sect. 6.1, data support is still an urgent need.

Besides, the test datasets (i.e., target domains), may have
different distributions from the training datasets (i.e., source
domains). It is generally called domain adaption issue, which
can be taken as a distribution imbalance. That means once
the source data have a particular property, the given target
domain would not always follow the same pattern. There-
fore, such a discrepancy between data distributions would
negatively impact the generalization ability over unseen test
data and lead to significant performance deterioration.

Therefore, on the one hand, we anticipate that more
available facial attribute images can be released to capture
discriminative features of majority and minority samples
equally well in terms of class-imbalance data. On the other
hand, more algorithms are expected to be developed to solve
the domain adaption issue in attribute estimation.
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7.1.2 Algorithms

As mentioned before, part-based deep FAE methods and
holistic deep FAE methods develop in parallel. The former
pays more attention to locating attributes, and the latter con-
centrates more on modeling attribute relationships. Below,
we provide the main challenges from the perspective of
algorithms and analyze the future trends for both types of
methods.

For the part-based methods, earlier methods draw support
from existing part detectors to discover facial components.
However, these detected parts of faces are coarse and
attribute-independent. They only distinguish the whole face
from the other face-irrelevant parts, such as the background
in an image. Considering that existing detectors are not cus-
tomized for deep FAE, some researchers begin to seek help
from other face-related auxiliary tasks, which focus more
on facial details rather than the whole face. There are also
some studies that utilize labeled key points to partition facial
regions. However, well-labeled facial images are not always
available in real-world applications, and the performance of
auxiliary tasks would limit the accuracy of the downstream
classification task.

We believe that an end-to-end strategy would dominate
future part-based deep FAE algorithms, where the attribute-
relevant regions and the corresponding prediction can be
yielded in a unified framework (Fukui et al. 2019). Ding
et al. (2018) have attempted to tackle this issue, but learning
a region for each attribute is cumbrous and computationally
expensive. This is because several attributes might appear in
the same region of a face.

In addition, part-based methods show great superiority
when dealing with data under in-the-wild environmental
conditions, such as illumination variations, occlusions, and
non-frontal faces. Through learning the locations of different
attributes, part-basedmethods integrate the information from
non-occluded areas to predict attributes in occluded areas.
Mahbub et al. (2018) address this issue by partitioning facial
parts manually according to key points. However, such anno-
tations are not always available. Attempting to integrate these
non-occluded areas adaptively is becoming a future trend.
Besides, Mahbub et al. (2018) test their model’s attribute
estimation performance on partial faces by adding occlu-
sions artificially over original databases, but this operation
is not normative for the test protocol. Therefore, the lack of
data under the in-the-wild conditions is still a challenge for
training deep FAE networks in the wild environment.

For holistic methods, state-of-the-art approaches design
networks with different architectures for sharing common
features and learning attribute-specific features at different
layers. However, these methods define attribute relationships
to design networks by grouping attributes manually, which
can be taken as extra prior information. Since different indi-

viduals might give different attribute partitions according
to locations or semantics, it is difficult to determine that
which facial attribute groups are suitable and optimal. There-
fore, how to discover attribute relationships adaptively in the
training process, without given prior information artificially,
should be the focus of future works.

In addition, facial attributes have been taken as auxiliary
and complementary information for many face-related tasks,
such as face recognition (Kumar et al. 2009; Rudd et al.
2016; Taherkhani et al. 2018), face detection (Ranjan et al.
2017), and facial landmark localization (Zhuang et al. 2018).
Kumar et al. (2009) first introduce the concept of ‘attribute’ to
facilitate face verification by compact visual descriptions and
low-level attribute features. In contrast, Rudd et al. (2016)
utilize the mixed objective optimization network with the
Euclidean loss to learn deep attribute features for promoting
facial verification. Experiments illustrate that despite only 40
attributes being used, the work of Rudd et al. (2016) still per-
forms better than that of Kumar et al. (2009), which extracts
features of 73 facial attributes.

Apart from employing features learned by attribute pre-
diction to assist face recognition, joint and incorporative
learning of facial attribute relevant tasks can further enhance
their respective robustness and performance by discovering
complementary information. For example, considering the
inherent dependencies of face-related tasks, Zhuang et al.
(2018) design a cascaded CNN for simultaneously learn-
ing face detection, facial landmark localization, and facial
attribute estimation under amulti-task framework to improve
the performance of each task. They further attempt to perform
joint face recognition and facial attribute estimation when
taking the relationship between identities and attributes into
account. Therefore, it is reasonable to believe that the combi-
nation of different face-related tasks is becoming a promising
research direction due to the complementary relationships
among them.

7.1.3 Applications

Various viewpoints of the same person are difficult chal-
lenges for maintaining the identity-attribute consistency in
deep FAE methods. On the one hand, such viewpoint diver-
sification helps to learn richer features from the same person.
On the other hand, images of different viewpoints might dif-
fer in attributes even from the same identity. For example,
the side face images might yield different prediction results
with the front face images for the high cheekbones, as the
side face images do not emphasize this attribute.

Therefore, attribute inconsistency becomes a severe prob-
lem in various viewpoints for the same identity. Lu et al.
(2018a) propose a probabilistic confidence criterion to
address this inconsistency issue. Specifically, this criterion
first extracts the most confident face image for each subject,
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and then it chooses the result corresponding to the highest
confidence as the final prediction of each attribute concern-
ing each subject. However, filtering themost confident image
via relevant criteria might not be the most optimal strategy,
because the features from all images with different views are
not taken full advantage of in making the favorable estima-
tion.

Nowadays, digital mobile devices contain considerable
amounts of valuable personal information, such as bank
accounts and private emails (Samangouei et al. 2017). These
personal details make these devices the targets of various
attacks. Hence, biological characteristics, such as finger-
prints and irises (Trokielewicz et al. 2019), have been widely
used as device passwords for further protecting the pri-
vacy information of users. This technique is called biometric
verification. Recently, an increasing number of biometric
verification based algorithms have emerged as a solution
for continuous authentication on mobile devices. Many
researchers have committed to designing active authenti-
cation algorithms based on face biometrics. For example,
studies in Fathy et al. (2015), Günther et al. (2013), Hadid
et al. (2007) detect faces through camera sensor images and
further extract low-level features for the authentication of
smartphone users.

Considering that facial attributes contain more detailed
characteristics than the full face, we believe that facial
attributeswould bring newopportunities for biometric identi-
fication in real-world applications. Samangouei et al. (2017)
have attempted the active authentication of mobile devices
by facial attributes. A set of binary attribute classifiers are
trained to estimate whether attributes are present in images
of the current user in a mobile device. Consequently, the
authentication can be implemented by comparing the recog-
nized attributes with the originally enrolled attributes.

However, Samangouei et al. (2017) extract traditional fea-
tures, such as the LBP feature, which are not task-specific for
attribute estimation and less discriminative than deep fea-
tures. To some extent, these traditional features and SVM
classifiers balances the verification accuracy and mobile
performance, whereas other methods with satisfactory per-
formance might have tremendous computation or memory
costs.

Therefore, future challenges mainly lie in two aspects.
The first is to better apply facial attributes for mobile device
authentication. The second is exploring more discrimina-
tive deep features and classifiers under the constraints of the
trade-off between verification accuracy and mobile perfor-
mance. Nevertheless, we expect that facial attributes would
contribute to further advance the progress of biometric veri-
fication on digital mobile devices.

7.2 Discussion of Facial Attribute Manipulation

7.2.1 Data

In this section, we start with the problems of current FAM
databases and analyze the challenges and the opportunities
related to data sources. Then, we express an expectation for
the video data type, aswe have done in the discussion of facial
attribute prediction. Finally, taking the performance metrics
into account, we believe that future deep FAMmethods need
to establish a unified standard for evaluating their experiment
results.

First, in terms of data sources, note that almost all deep
FAM algorithms are trained over CelebA database, while
very few of them also use LFW dataset. The data sources are
extremely inadequate, and facial attributes that can bemanip-
ulated are considerably limited. For 40 annotated attributes,
only several notable attributes [e.g., hair colors (Li et al.
2018a), glasses (Chen et al. 2016), and smiling (Xiao et al.
2018)] can achieve satisfactory performance. Such limitation
could cause a degradation in performance when manipulat-
ing various attribute types. Therefore, we expect that more
high-quality facial attribute databases could be released and
that more kinds of facial attributes could be manipulated in
the future.

Second, from the perspective of the data type, FAM on
the video data still has not been studied. Manipulating video
facial attributes requires models to yield lifelike details.

When faces change with the frames of videos, models can
still locate the to-be-manipulated areas precisely and keep the
consistency of attribute manipulation for the same identity.
Nevertheless, this task is valuable in many entertainment sit-
uations in the real world, such as beauty makeup videos. The
hair colors in the videos might be varied according to users’
preference. However, to date, there is no available large-scale
video data for training video-based attribute manipulation
models. The possible reasons might be that it is difficult to
track and annotate facial attributes in large-scale videos due
to spatial and temporal dynamics (Saito et al. 2017), and the
quality of video data could have significant effects on such
a synthesis task. We expect that the focus will be shifted
to collect and annotate video data with facial attributes for
promoting the video-based deep FAM task further.

Finally, from the perspective of performance metrics, as
mentioned in Sect. 3, contemporary research either evalu-
ates generated images by statistical surveys or seeks help
from other face-related tasks, such as attribute estimation
and landmark detection. Unified and standardmetric systems
have not yet formed in terms of qualitative and quantitative
analyses. We expect that the metrics of deep FAM methods
could bewell developed and establish a relatively unified rule
in the future.
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7.2.2 Algorithms

State-of-the-art deep FAMmethods can be grouped into two
categories: model-based methods and extra condition-based
methods. Model-based methods tackle an attribute domain
transfer issue and use the adversarial loss to supervise the
process of image generation. Extra condition-based methods
alter desired attributes with given conditional attributes con-
catenatedwith to-be-manipulated images in encoding spaces.
The main difference between the two types of methods is
whether extra conditions are required.

Model-based methods take no extra conditions as inputs,
and one trained model only changes one corresponding
attribute. This strategy is task-specific and helps to gener-
ate more photorealistic images, but it is difficult to guarantee
attribute-irrelevant details are unchanged due to its opera-
tion based on the whole image directly. Few methods focus
on this issue, except for ResGAN proposed by Shen and
Liu (2017). However, ResGAN generates residual images
for locating attribute-relevant regions under the sparsity con-
straint. Such a constraint relies heavily on control parameters
but not attributes themselves. Hence, how to design networks
to synthesize desired photorealistic attributes, as well as keep
other attribute-irrelevant details unchanged, is a significant
challenge in the future. In addition, as multi-domain trans-
fer has become a hot research topic (Liu et al. 2018; Zhang
2018), we expect that these novel domain transfer algo-
rithms would migrate to deep FAM methods for yielding
more appealing performance.

Extra condition-based methods take attribute vectors or
reference exemplars as conditions. These algorithms edit
facial attributes by changing values of attribute vectors
or latent codes of reference exemplars. One advantage
of this strategy is multiple attributes can be manipulated
simultaneously by altering multiple corresponding values of
conditions. However, the concomitant disadvantage is also
inevitable. That is, these methods cannot change attributes
continuously since the values of attribute vectors are edited
discretely. We believe that this shortcoming can be solved
by interpolation schemes (Berthelot et al. 2019) or semantic
component decomposition (Chen et al. 2019) in the future.
In addition, as mentioned before, reference exemplar based
algorithms are becoming a promising research direction.
More specific details that appear in reference images can be
explored to generate more photorealistic images compared
with merely altering attribute vectors manually.

7.2.3 Applications

Face makeup (Li et al. 2018c; Chang et al. 2018; Cao et al.
2019a) and face aging (Suo et al. 2010; Nhan Duong et al.
2019; Liu et al. 2019) are two hot topics in deep FAM related
applications. They have played important roles in mobile

device entertainment (e.g., beauty cameras) and identity-
relevant face verification. Compared with general FAM, they
focus more on more subtle face attribute details. For face
makeup, it concentrates more on makeup related attributes,
such as the types of eyeshadows and the colors of lipsticks.
The focus of studies lies on facial makeup transfer and
removal (Chang et al. 2018; Cao et al. 2019a), where makeup
transfer aims to map one makeup style to another for gener-
ating different makeup styles (Li et al. 2018c), and makeup
removal performs an opposite process which cleans off the
existing makeup and provides support to makeup-invariant
face verification (Cao et al. 2019a). In terms of face aging,
it renders face images with a wide range of ages and keeps
identity information insusceptible. Hence, this task can not
only be applied to digital entertainment but also provide sup-
port to social safety, such as fugitive researches and cross-age
identity verification. The most crucial issue in face aging is
that there are no sufficient paired images for the same person
at different ages (Liu et al. 2019). Recently, the development
of deep learning has lead face makeup and face aging to
promising results, and they have become important research
branches independent of general deep FAM methods. We
expect the development of these two branches would bring
out a hopeful prospect of future real-world applications.

Besides, resolution limitation is another tough challenge
in real-world facial manipulation. Existing methods only
work well with a limited range of resolutions and under
lab conditions. This limitation encourages combining face
super-resolution with deep FAM algorithms. For example,
Lu et al. (2018a) propose a conditional version of CycleGAN
(Zhu et al. 2017) to generate face images under the guidance
of attributes for face super-resolution. Specifically, condi-
tional CycleGAN takes a pair of low/high-resolution faces
and an attribute vector extracted from the high-resolution
one as inputs. Conditioned on attributes of the original
high-resolution image, this model learns to generate a high-
resolution version of the original low-resolution image.
Moreover, Dorta et al. (2018) apply smooth warp fields to
GANs for manipulating face images with very high reso-
lutions through a deep network at a lower resolution. All
these schemes inspire researchers to integrate state-of-the-
art face super-resolution methods into attribute manipulation
for achieving a win-win situation.

7.3 Relationships Between FAE and FAM

In this section, we introduce the relationships between deep
FAE and FAM.We believe the discussion about how the two
tasks assist each otherwould guide future research to improve
both algorithms.

For deep FAE, deep FAMcan be taken as a vital scheme of
data augmentation, where generated facial attribute images
can significantly increase the amount of data used for training
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deep neural networks. Sufficient training data can reduce the
risk of overfitting and further improve the prediction accu-
racy. Future works should work harder on improving the
quality of generated images and synthesizing as many facial
attribute details as possible. In this way, generated images
would better support the training of deep FAE models.

For deep FAM, the result of attribute estimation can be
a significant quantitative performance evaluation criterion.
The deep FAE network used for evaluation has to be well
trained on real images in advance and has to provide an accu-
racy baseline for all real facial attributes. Then, it works on
the generated facial attribute images and yields another pre-
diction accuracy over manipulated attributes. As a result, the
accuracy gap between real images and generated images can
reflect the performance of deep FAM algorithms.

Despite the mutual assistance builds a bridge between
deep FAE and deep FAMmethods, there are still some issues
that need to be addressed for the two tasks. First, generated
facial attribute images may not contain too much delicate
facial information. In other words, there is still a gap between
real and augmented generated images, which might dam-
age the performance of attribute estimation. Hence, how to
close this gap can be an essential future research direction for
data augmentation in deep facial attribute analysis. Second,
the performance of attribute estimation directly affects the
evaluation results of facial attribute manipulation. Therefore,
how to balance the metric with the prediction performance
is another challenge. We expect that deep FAE methods and
deep FAM methods can strengthen their cooperation to sig-
nificantly improve each others’ performance in the future.

8 Conclusion

As one type of important semantic features describing
the visual properties of face images, facial attributes have
received considerable attention in the field of computer
vision. The analyses targeting facial attributes, including
facial attribute estimation (FAE) and facial attribute manip-
ulation (FAM), have improved the performance of many
real-world applications. This paper provides a comprehen-
sive review of recent advances in both deep learning based
FAE and FAM. The commonly used databases and metrics
are summarized, and the taxonomies of state-of-the-art meth-
ods over both two issues have been created, together with
their advantages and disadvantages. In addition, future chal-
lenges and opportunities are highlighted in terms of data,
algorithms, and applications, respectively. We are looking
forward to further studies that address these challenges and
take these opportunities to promote the development of deep
face attribute analysis.
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