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Abstract
Deep convolutional networks have become a popular tool for image generation and restoration. Generally, their excellent
performance is imputed to their ability to learn realistic image priors from a large number of example images. In this paper, we
show that, on the contrary, the structure of a generator network is sufficient to capture a great deal of low-level image statistics
prior to any learning. In order to do so, we show that a randomly-initialized neural network can be used as a handcrafted prior
with excellent results in standard inverse problems such as denoising, super-resolution, and inpainting. Furthermore, the same
prior can be used to invert deep neural representations to diagnose them, and to restore images based on flash-no flash input
pairs. Apart from its diverse applications, our approach highlights the inductive bias captured by standard generator network
architectures. It also bridges the gap between two very popular families of image restoration methods: learning-based methods
using deep convolutional networks and learning-free methods based on handcrafted image priors such as self-similarity (Code
and supplementary material are available at https://dmitryulyanov.github.io/deep_image_prior).

Keywords Convolutional networks ·Generative deep networks · Inverse problems · Image restoration · Image superresolution ·
Image denoising · Natural image prior

1 Introduction

State-of-the-art approaches to image reconstruction prob-
lems such as denoising (Burger et al. 2012; Lefkimmiatis
2016) and single-image super-resolution (Ledig et al. 2017;
Tai et al. 2017; Lai et al. 2017) are currently based on
deep convolutional neural networks (ConvNets). ConvNets
also work well in “exotic” inverse problems such as recon-
structing an image from its activations within a deep net-
work or from its HOG descriptor (Dosovitskiy and Brox
2016b). Popular approaches for image generation such as
generative adversarial networks (Goodfellow et al. 2014),
variational autoencoders (Kingma and Welling 2014) and
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direct pixel-wise errorminimization (Dosovitskiy et al. 2015;
Bojanowski et al. 2017) also use ConvNets.

ConvNets are generally trained on large datasets of
images, so onemight assume that their excellent performance
is due to the fact that they learn realistic data priors from
examples, but this explanation is insufficient. For instance,
the authors of Zhang et al. (2017) recently showed that the
same image classification network that generalizeswellwhen
trained on a large image dataset can also overfit the same
images when labels are randomized. Hence, it seems that
obtaining a good performance also requires the structure
of the network to “resonate” with the structure of the data.
However, the nature of this interaction remains unclear, par-
ticularly in the context of image generation.

In this work, we show that, in fact, not all image priors
must be learned from data; instead, a great deal of image
statistics are captured by the structure of generator Con-
vNets, independent of learning. This is especially true for
the statistics required to solve certain image restoration prob-
lems,where the image priormust supplement the information
lost in the degradation processes.

To show this, we apply untrained ConvNets to the solu-
tion of such problems (Fig. 1). Instead of following the
standard paradigm of training a ConvNet on a large dataset
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36], Trained
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(a) Ground truth (b) SRResNet [

(c) Bicubic, (d) Deep prior, Not trained

Fig. 1 Super-resolution using the deep image prior. Our method uses a
randomly-initialized ConvNet to upsample an image, using its structure
as an image prior; similar to bicubic upsampling, this method does not
require learning, but produces much cleaner results with sharper edges.
In fact, our results are quite close to state-of-the-art super-resolution
methods that use ConvNets learned from large datasets. The deep image
prior works well for all inverse problems we could test

of example images, we fit a generator network to a single
degraded image. In this scheme, the network weights serve
as a parametrization of the restored image. The weights are
randomly initialized and fitted to a specific degraded image
under a task-dependent observation model. In this manner,
the only information used to perform reconstruction is con-
tained in the single degraded input image and the handcrafted
structure of the network used for reconstruction.

We show that this very simple formulation is very com-
petitive for standard image processing problems such as
denoising, inpainting, super-resolution, and detail enhance-
ment. This is particularly remarkable because no aspect of
the network is learned from data and illustrates the power
of the image prior implicitly captured by the network struc-
ture. To the best of our knowledge, this is the first study that
directly investigates the prior captured by deep convolutional
generative networks independently of learning the network
parameters from images.

In addition to standard image restoration tasks, we show
an application of our technique to understanding the informa-
tion contained within the activations of deep neural networks
trained for classification. For this, we consider the “natu-
ral pre-image” technique of Mahendran and Vedaldi (2015),
whose goal is to characterize the invariants learned by a deep
network by inverting it on the set of natural images. We show

that an untrained deep convolutional generator can be used
to replace the surrogate natural prior used in Mahendran and
Vedaldi (2015) (the TV norm) with dramatically improved
results. Since the new regularizer, like the TV norm, is not
learned from data but is entirely handcrafted, the resulting
visualizations avoid potential biases arising form the use of
learned regularizers (Dosovitskiy and Brox 2016b). Like-
wise, we show that the same regularizer works well for
“activation maximization”, namely the problem of synthe-
sizing images that highly activate a certain neuron (Erhan
et al. 2009).

2 Method

Adeep generator network is a parametric function x = fθ (z)
that maps a code vector z to an image x . Generators are often
used to model a complex distribution p(x) over images as
the transformation of simple distribution p(z) over the codes,
such as a Gaussian distribution (Goodfellow et al. 2014).

One might think that knowledge about the distribution
p(x) is encoded in the parameters θ of the network, and is
therefore learned from data by training the model. Instead,
we show here that a significant amount of information about
the image distribution is contained in the structure of the
network even without performing any training of the model
parameters.

We do so by interpreting the neural network as a
parametrization x = fθ (z) of the image x ∈ R

3×H×W . In
this view, the code is a fixed random tensor z ∈ R

C ′×H ′×W ′

and the network maps the parameters θ , comprising the
weights and bias of the filters in the network, to the image
x . The network itself has a standard structure and alternates
filtering operations such as linear convolution, upsampling
and non-linear activation functions.

Without training on a dataset, we cannot expect the a
network fθ to know about specific concepts such as the
appearance of certain objects classes. However, we demon-
strate that the untrained network does capture some of the
low-level statistics of natural images—in particular, the local
and translation invariant nature of convolutions and the usage
of a sequence of such operators captures the relationship of
pixel neighborhood at multiple scales. This is sufficient for
it to model conditional image distributions p(x |x0) of the
type that arise in image restoration problems, where x has
to be determined given a corrupted version x0 of itself. The
latter can be used to solve inverse problems such as denois-
ing (Burger et al. 2012), super-resolution (Dong et al. 2014)
and inpainting.

Rather than working with distributions explicitly, we for-
mulate such tasks as energy minimization problems of the
type
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x∗ = argmin
x

E(x; x0) + R(x), (1)

where E(x; x0) is a task-dependent data term, x0 is the
noisy/low-resolution/occluded image, and R(x) is a regu-
larizer.

The choice of data term E(x; x0) is often directly dictated
by the application and is thus not difficult. The regularizer
R(x), on the other hand, is often not tied to a specific appli-
cation because it captures the generic regularity of natural
images. A simple example is Total Variation (TV), which
encourages images to contain uniform regions, but much
research has gone into designing and learning good regu-
larizers.

In this work, we drop the explicit regularizer R(x) and
use instead the implicit prior captured by the neural network
parametrization, as follows:

θ∗ = argmin
θ

E( fθ (z); x0), x∗ = fθ∗(z) . (2)

The (local) minimizer θ∗ is obtained using an optimizer such
as gradient descent, starting from a random initialization of
the parameters θ (see Fig. 2). Hence, the only empirical infor-
mation available to the restoration process is the noisy image
x0. Given the resulting (local) minimizer θ∗, the result of
the restoration process is obtained as x∗ = fθ∗(z).1 This
approach is schematically depicted in Fig. 3 (left).

Since no aspect of the network fθ is learned from data
beforehand, such deep image prior is effectively handcrafted,
just like the TV norm. The contribution of the paper is to
show that this hand-crafted prior works very well for various
image restoration tasks, well beyond standard handcrafted
priors, and approaching learning-based approaches in many
cases.

As we show in the experiments, the choice of architecture
does have an impact on the results. In particular, most of our
experiments are performed using a U-Net-like “hourglass”
architecture with skip connections, where z and x have the
same spatial dimensions and the network has several mil-
lions of parameters. Furthermore, while it is also possible
to optimize over the code z, in our experiments we do not
do so. Thus, unless noted otherwise, z is a fixed randomly-
initialized 3D tensor.

2.1 A Parametrization with High Noise Impedance

One may wonder why a high-capacity network fθ can be
used as a prior at all. In fact, one may expect to be able to

1 Equation (2) can also be thought of as a regularizer R(x) in the style
of (1), where R(x) = 0 for all images that can be generated by a deep
ConvNet of a certain architecture with the weights being not too far
from random initialization, and R(x) = +∞ for all other signals.

find parameters θ recovering any possible image x , includ-
ing random noise, so that the network should not impose
any restriction on the generated image. We now show that,
while indeed almost any image can be fitted by the model,
the choice of network architecture has a major effect on how
the solution space is searched by methods such as gradi-
ent descent. In particular, we show that the network resists
“bad” solutions and descends much more quickly towards
naturally-looking images. The result is that minimizing (2)
either results in a good-looking local optimum (Fig. 3—left),
or, at least, that the optimization trajectory passes near one
(Fig. 3—right).

In order to study this effect quantitatively, we consider the
most basic reconstruction problem: given a target image x0,
we want to find the value of the parameters θ∗ that reproduce
that image.This canbe setup as theoptimizationof (2) using a
data term such as the L2 distance that compares the generated
image to x0:

E(x; x0) = ‖x − x0‖2 . (3)

Plugging Eq. (3) in Eq. (2) leads us to the optimization
problem

min
θ

‖ fθ (z) − x0‖2 . (4)

Figure 4 shows the value of the energy E(x; x0) as a
function of the gradient descent iterations for four differ-
ent choices for the image x0: (1) a natural image, (2) the
same image plus additive noise, (3) the same image after
randomly permuting the pixels, and (4) white noise. It is
apparent from the figure that the optimization is much faster
for cases (1) and (2), whereas the parametrization presents
significant “inertia” for cases (3) and (4). Thus, although in
the limit the parametrization can fit noise as well, it does so
very reluctantly. In other words, the parametrization offers
high impedance to noise and low impedance to signal.

To use this fact in some of our applications, we restrict
the number of iterations in the optimization process (2). The
resulting prior then corresponds to projection onto a reduced
set of images that can be produced from z by ConvNets with
parameters θ that are not too far from the random initial-
ization θ0. The use of deep image prior with the restriction
on the number of iterations in the optimization process is
schematically depicted in Fig. 3 (right).

2.2 “Sampling” from the Deep Image Prior

The prior defined by Eq. (2) is implicit and does not define
a proper probability distribution in the image space. Never-
theless, it is possible to draw “samples” (in the loose sense)
from this prior by taking random values of the parameters θ

and looking at the generated image fθ (z). In other words, we
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Fig. 2 Image restoration using the deep image prior. Starting from a
random weights θ0, we iteratively update them in order to minimize
the data term Eq. (2). At every iteration t the weights θ are mapped to
an image x = fθ (z), where z is a fixed tensor and the mapping f is a

neural network with parameters θ . The image x is used to compute the
task-dependent loss E(x, x0). The gradient of the loss w.r.t. the weights
θ is then computed and used to update the parameters

Fig. 3 Restoration with priors—image space visualization. We con-
sider the problem of reconstructing an image xgt from a degraded
measurement x0. We distinguish two cases. Left—in the first case,
exemplified by super-resolution, the ground-truth solution xgt belongs
to a manifold of points x that have null energy x : E(x, x0) = 0 (shown
in gray) and optimization can land on a point x∗ still quite far from
xgt (purple curve). Adding a conventional prior R(x) tweaks the energy
so that the optimizer x∗ is closer to the ground truth (green curve).
The deep image prior has a similar effect, but achieves it by tweak-

ing the optimization trajectory via re-parametrization, often with better
results than conventional priors. Right—in the second case, exemplified
by denoising, the ground truth xgt has non-zero cost E(xgt, x0) > 0.
Here, if run for long enough, fitting with deep image prior will obtain
a solution with near zero cost quite far from xgt. However, often the
optimization path will pass close to xgt, and an early stopping (here at
time t3) will recover good solution. Below, we show that deep image
prior often helps for problems of both types (Color figure online)

can visualize the starting points of the optimization process
Eq. (2) before fitting the parameters to the noisy image. Fig-
ure 5 shows such “samples” from the deep priors captured by
different hourglass-type architectures. The samples exhibit
spatial structures and self-similarities, whereas the scale of
these structures depends on the depth of the network. Adding
skip connections results in images that contain structures of
different characteristic scales, as is desirable for modeling
natural images. It is therefore natural that such architectures

are the most popular choice for generative ConvNets. They
have also performed best in our image restoration experi-
ments described next.

3 Applications

We now show experimentally how the proposed prior works
for diverse image reconstruction problems. More examples
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Fig. 4 Learning curves for the reconstruction task using: a natural image, the same plus i.i.d. noise, the same randomly scrambled, and white noise.
Naturally-looking images result in much faster convergence, whereas noise is rejected

(a) (b) (c) (d) (e)Hourglass-1 Hourglass-3 Hourglass-5 Skip-5 Skip-5-nearest

Fig. 5 “Samples” from the deep image prior. We show images that
are produced by ConvNets with random weights from independent ran-
dom uniform noise. Each column shows two images fθ (z) for the same
architecture, same input noise z, and two different random θ . The fol-
lowing architectures are visualized: a an hourglass architecturewith one
downsampling and one bilinear upsampling, b a deeper hourglass archi-
tecture with three downsampling and three bilinear upsampling layers,
c an even deeper hourglass architecture with five downsampling and
five bilinear upsampling layers, d same as c, but with skip connections

(each skip connection has a convolution layer), e same as d, but with
nearest upsampling. Note how the resulting images are far from inde-
pendent noise and correspond to stochastic processes producing spatial
structures with clear self-similarity (e.g. each image has a distinctive
palette). The scale of structures naturally changes with the depth of the
network. “Samples” for hourglass networks with skip connections (U-
Net type) combine structures of different scales, as is typical for natural
images

and interactive viewer can be found on the project web-
page https://dmitryulyanov.github.io/deep_image_prior.

3.1 Denoising and Generic Reconstruction

As our parametrization presents high impedance to image
noise, it can be naturally used to filter out noise from an

image. The aim of denoising is to recover a clean image
x from a noisy observation x0. Sometimes the degradation
model is known: x0 = x+ε where ε follows a particular dis-
tribution. However, more often in blind denoising the noise
model is unknown (Fig. 6).

Here we work under the blindness assumption, but the
method can be easily modified to incorporate information
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Corrupted 100 iterations 600 iterations 2400 iterations 50K iterations

Fig. 6 Blind restoration of a JPEG-compressed image. (electronic
zoom-in recommended) Our approach can restore an image with a com-
plex degradation (JPEG compression in this case). As the optimization

process progresses, the deep image prior allows to recover most of the
signal while getting rid of halos and blockiness (after 2400 iterations)
before eventually overfitting to the input (at 50K iterations)

about noise model. We use the same exact formulation as
Eqs. (3) and 4 given a noisy image x0, recover a clean image
x∗ = fθ∗(z) after substituting the minimizer θ∗ of Eq. (4).

Our approach does not require a model for the image
degradation process that it needs to revert. This allows it
to be applied in a “plug-and-play” fashion to image restora-
tion tasks, where the degradation process is complex and/or
unknown and where obtaining realistic data for supervised
training is difficult. We demonstrate this capability by sev-
eral qualitative examples in Fig. 7, where our approach uses
the quadratic energy (3) leading to formulation (4) to restore
images degraded by complex and unknown compression arti-
facts. Figure 6 (top row) also demonstrates the applicability
of the method beyond natural images (a cartoon in this case).

We evaluate our denoising approach on the standard
dataset,2 consisting of 9 colored images with noise strength
of σ = 25. We achieve a PSNR of 29.22 after 1800 opti-
mization steps. The score is improved up to 30.43 if we
additionally average the restored images obtained in the last
iterations (using exponential sliding window). If averaged
over two optimization runs our method further improves up
to 31.00 PSNR. For reference, the scores for the two popu-
lar approaches CMB3D Dabov et al. (2007) and Non-local
means (Buades et al. 2005), that do not require pretraining,
are 31.42 and 30.26 respectively.

To validate if the deep image prior is suitable for denois-
ing images corrupted with real-world non-Gaussian noise
we use the benchmark of Plotz and Roth (2017). Using the
same architecture and hyper-parameters as for Fig. 6 we get
41.95 PSNR, while CBM3D’s score is only 30.13. We also
use the deep image prior with different network architec-
tures and get 35.05 PSNR for UNet and 31.95 for ResNet.
The details of each architecture are described in Sect. 4. Our
hour-glass architecture resembles UNet, yet has less num-
ber of skip connections and additional BatchNorms before
concatenation operators. We speculate that the overly wide
skip-connections within UNet lead to a prior that are some-

2 http://www.cs.tut.fi/~foi/GCF-BM3D/index.html#ref_results.

what too weak and the fitting happens too fast; while the
lack of skip-connections in ResNet leads to slow fitting and
a prior that is too strong. Overall, this stark difference in the
performance of different architectures emphasizes that dif-
ferent architectures impose rather different priors leading to
very different results.

3.2 Super-resolution

The goal of super-resolution is to take a low resolution (LR)
image x0 ∈ R

3×H×W and upsampling factor t , and generate a
corresponding high resolution (HR) version x ∈ R

3×t H×tW .
To solve this inverse problem, the data term in (2) is set to:

E(x; x0) = ‖d(x) − x0‖2 , (5)

where d(·) : R
3×t H×tW → R

3×H×W is a downsampling
operator that resizes an image by a factor t . Hence, the prob-
lem is to find the HR image x that, when downsampled, is
the same as the LR image x0. Super-resolution is an ill-posed
problem because there are infinitely many HR images x that
reduce to the same LR image x0 (i.e. the operator d is far
from injective). Regularization is required in order to select,
among the infiniteminimizers of (5), themost plausible ones.

Following Eq. (2), we regularize the problem by con-
sidering the re-parametrization x = fθ (z) and optimizing
the resulting energy w.r.t. θ . Optimization still uses gradient
descent, exploiting the fact that both the neural network and
themost common downsampling operators, such as Lanczos,
are differentiable.

We evaluate super-resolution ability of our approach using
Set5 (Bevilacqua et al. 2012) and Set14 (Zeyde et al. 2010)
datasets. We use a scaling factor of 4 and 8 to compare to
other works in Fig. 8.

Qualitative comparison with bicubic upsampling and
state-of-the art learning-based methods SRResNet (Ledig
et al. 2017), LapSRN (Tai et al. 2017) is presented in Fig. 8.
Our method can be fairly compared to bicubic, as both meth-
ods never use other data than a given low-resolution image.
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(a) GT (b) Input (c) Ours (d) CBM3D (e) NLM

Fig. 7 Blind image denoising. The deep image prior is successful at recovering both man-made and natural patterns. For reference, the result of a
state-of-the-art non-learned denoising approach (Dabov et al. 2007; Buades et al. 2005) is shown

Visually, we approach the quality of learning-based methods
that use the MSE loss. GAN-based (Goodfellow et al. 2014)
methods SRGAN (Ledig et al. 2017) and EnhanceNet (Saj-
jadi et al. 2017) (not shown in the comparison) intelligently
hallucinate fine details of the image, which is impossible
with our method that uses absolutely no information about
the world of HR images.

We compute PSNRs using center crops of the generated
images (Tables 1 and 2). While our method is still outper-
formed by learning-based approaches, it does considerably

better than the non-trained ones (bicubic, Glasner et al.
2009, Huang et al. 2015). Visually, it seems to close most
of the gap between non-trained methods and state-of-the-art
trained ConvNets (c.f. Figs. 1, 8).

In Fig. 9 we compare our deep prior to non-regularized
solution and a vanilla TV prior. Our result do not have both
ringing artifacts and cartoonish effect.
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4× super-resolution

Not trained Not trained Trained Trained

8× super-resolution

Not trained Not trained Trained

(a) Original image (b) Bicubic, (c) Ours, (d) LapSRN, (e) SRResNet,

(f) Original image (g) Bicubic, (h) Ours, (i) LapSRN, (j) VDSR,
Trained

Fig. 8 4× and 8× Image super-resolution. Similarly to e.g. bicubic
upsampling, our method never has access to any data other than a sin-
gle low-resolution image, and yet it produces much cleaner results with

sharp edges close to state-of-the-art super-resolution methods (Lap-
SRN (Lai et al. 2017), SRResNet (Ledig et al. 2017), VDSR Kim et al.
(2016)) which utilize networks trained from large datasets
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Table 1 Detailed super-resolution PSNR comparison on the Set14 dataset with different scaling factors

Baboon Barbara Bridge Coastguard Comic Face Flowers Foreman Lenna Man Monarch Pepper Ppt3 Zebra Avg.

4× super-resolution
No prior 22.24 24.89 23.94 24.62 21.06 29.99 23.75 29.01 28.23 24.84 25.76 28.74 20.26 21.69 24.93
Bicubic 22.44 25.15 24.47 25.53 21.59 31.34 25.33 29.45 29.84 25.7 27.45 30.63 21.78 24.01 26.05
TV prior 22.34 24.78 24.46 25.78 21.95 31.34 25.91 30.63 29.76 25.94 28.46 31.32 22.75 24.52 26.42
Glasner et al. 22.44 25.38 24.73 25.38 21.98 31.09 25.54 30.40 30.48 26.33 28.22 32.02 22.16 24.34 26.46
Ours 22.29 25.53 24.38 25.81 22.18 31.02 26.14 31.66 30.83 26.09 29.98 32.08 24.38 25.71 27.00
SRResNet-MSE 23.0 26.08 25.52 26.31 23.44 32.71 28.13 33.8 32.42 27.43 32.85 34.28 26.56 26.95 28.53
LapSRN 22.83 25.69 25.36 26.21 22.9 32.62 27.54 33.59 31.98 27.27 31.62 33.88 25.36 26.98 28.13
8× super-resolution
No prior 21.09 23.04 21.78 23.63 18.65 27.84 21.05 25.62 25.42 22.54 22.91 25.34 18.15 18.85 22.56
Bicubic 21.28 23.44 22.24 23.65 19.25 28.79 22.06 25.37 26.27 23.06 23.18 26.55 18.62 19.59 23.09
TV prior 21.30 23.72 22.30 23.82 19.50 28.84 22.50 26.07 26.74 23.53 23.71 27.56 19.34 19.89 23.48
SelfExSR 21.37 23.90 22.28 24.17 19.79 29.48 22.93 27.01 27.72 23.83 24.02 28.63 20.09 20.25 23.96
Ours 21.38 23.94 22.20 24.21 19.86 29.52 22.86 27.87 27.93 23.57 24.86 29.18 20.12 20.62 24.15
LapSRN 21.51 24.21 22.77 24.10 20.06 29.85 23.31 28.13 28.22 24.20 24.97 29.22 20.13 20.28 24.35

Bold values indicate the best method for each image

Table 2 Detailed super-resolution PSNR comparison on the Set5 dataset with different scaling factors

Baby Bird Butterfly Head Woman Avg.

4× super-resolution
No prior 30.16 27.67 19.82 29.98 25.18 26.56
Bicubic 31.78 30.2 22.13 31.34 26.75 28.44
TV prior 31.21 30.43 24.38 31.34 26.93 28.85
Glasner et al. 32.24 31.10 22.36 31.69 26.85 28.84
Ours 31.49 31.80 26.23 31.04 28.93 29.89
LapSRN 33.55 33.76 27.28 32.62 30.72 31.58
SRResNet-MSE 33.66 35.10 28.41 32.73 30.6 32.10
8× super-resolution
No prior 26.28 24.03 17.64 27.94 21.37 23.45
Bicubic 27.28 25.28 17.74 28.82 22.74 24.37
TV prior 27.93 25.82 18.40 28.87 23.36 24.87
SelfExSR 28.45 26.48 18.80 29.36 24.05 25.42
Ours 28.28 27.09 20.02 29.55 24.50 25.88
LapSRN 28.88 27.10 19.97 29.76 24.79 26.10

Bold values indicate the best method for each image

(a) HR image (b) Bicubic upsampling (c) No prior (d) TV prior (e) Deep image prior

Fig. 9 Prior effect in super-resolution. Direct optimization of data term E(x; x0) with respect to the pixels (c) leads to ringing artifacts. TV prior
removes ringing artifacts (d) but introduces cartoon effect. Deep prior (e) leads to the result that is both clean and sharp

3.3 Inpainting

In image inpainting, one is given an image x0 with missing
pixels in correspondence of a binary mask m ∈ {0, 1}H×W ;
the goal is to reconstruct themissing data. The corresponding
data term is given by

E(x; x0) = ‖(x − x0) � m‖2 , (6)

where� is Hadamard’s product. The necessity of a data prior
is obvious as this energy is independent of the values of the
missing pixels, whichwould therefore never change after ini-
tialization if the objective was optimized directly over pixel
values x . As before, the prior is introduced by optimizing the
data term w.r.t. the re-parametrization (2) (Fig. 10).

In the first example (Fig. 11) inpainting is used to remove
text overlaid on an image. Our approach is compared to
the method of Ren et al. (2015) specifically designed for
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28] .01(a) Corrupted image (b) Global-Local GAN [ (c) Ours, LR = 0 (d) Ours, LR = 10−4

Fig. 10 Region inpainting.In many cases, deep image prior is suffi-
cient to successfully inpaint large regions. Despite using no learning,
the results may be comparable to Iizuka et al. (2017) which does. The

choice of hyper-parameters is important (for example d demonstrates
sensitivity to the learning rate), but a good setting works well for most
images we tried

(a) Original image (b) Corrupted image (c) Shepard networks [47] (d) Deep Image Prior

Fig. 11 Comparison with Shepard networks Ren et al. (2015) on text the inpainting task. Even though Ren et al. (2015) utilizes learning, the images
recovered using our approach look more natural and do not have halo artifacts

inpainting. Our approach leads to almost perfect results with
virtually no artifacts, while for Ren et al. (2015) the textmask
remains visible in some regions.

Next, Fig. 12 considers inpainting with masks randomly
sampled according to a binary Bernoulli distribution. First, a
mask is sampled to drop 50% of pixels at random. We com-
pare our approach to a method of Papyan et al. (2017) based
on convolutional sparse coding. To obtain results for Papyan
et al. (2017) we first decompose the corrupted image x0 into
low and high frequency components similarly to Gu et al.

(2015) and run their method on the high frequency part. For
a fair comparison we use the version of their method, where
a dictionary is built using the input image (shown to perform
better in Papyan et al. (2017)). The quantitative comparison
on the standard data set Heide et al. (2015) for our method
is given in Table 3, showing a strong quantitative advantage
of the proposed approach compared to convolutional sparse
coding. In Fig. 12 we present a representative qualitative
visual comparison with Papyan et al. (2017).
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(a) Original image (b) Corrupted image (c) CSC [44] (d) Deep image prior

Fig. 12 Comparison with convolutional sparse coding (CSC) (Papyan et al. 2017) on inpainting 50% of missing pixels. Our approach recovers a
natural image with more accurate fine details than convolutional sparse coding

Table 3 Comparison between our method and the algorithm in Papyan et al. (2017). See Fig. 12 for visual comparison

Barbara Boat House Lena Peppers C.man Couple Finger Hill Man Montage

Papyan et al. 28.14 31.44 34.58 35.04 31.11 27.90 31.18 31.34 32.35 31.92 28.05
Ours 32.22 33.06 39.16 36.16 33.05 29.8 32.52 32.84 32.77 32.20 34.54

We also apply our method to inpainting of large holes.
Being non-trainable, our method is not expected to work
correctly for “highly-semantical” large-hole inpainting (e.g.
face inpainting). Yet, it works surprisingly well for other sit-
uations. We compare to a learning-based method of Iizuka
et al. (2017) in Fig. 10. The deep image prior utilizes con-
text of the image and interpolates the unknown region with
textures from the known part. Such behavior highlights the
relation between the deep image prior and traditional self-
similarity priors.

In Fig. 13, we compare deep priors corresponding to sev-
eral architectures. Our findings here (and in other similar
comparisons) seem to suggest that having deeper architec-
ture is beneficial, and that having skip-connections that work
sowell for recognition tasks (such as semantic segmentation)
is highly detrimental for the deep image prior.

3.4 Natural Pre-image

The natural pre-image method of Mahendran and Vedaldi
(2015) is a diagnostic tool to study the invariances of a lossy
function, such as a deep network, that operates on natural
images. Let � be the first several layers of a neural network
trained to perform, say, image classification. The pre-image
is the set

�−1(�(x0)) = {x ∈ X : �(x) = �(x0)} (7)

of images that result in the same representation �(x0).
Looking at this set reveals which information is lost by the
network, and which invariances are gained.

Findingpre-imagepoints canbe formulated asminimizing
the data term

E(x; x0) = ‖�(x) − �(x0)‖2 . (8)

However, optimizing this function directly may find “arti-
facts”, i.e. non-natural images for which the behavior of the
network� is in principle unspecified and that can thus drive it
arbitrarily.Moremeaningful visualization can be obtained by
restricting the pre-image to a set X of natural images, called
a natural pre-image in Mahendran and Vedaldi (2015).

In practice, finding points in the natural pre-image can
be done by regularizing the data term similarly to the other
inverse problems seen above. The authors of Mahendran and
Vedaldi (2015) prefer to use the TV norm, which is a weak
natural image prior, but is relatively unbiased. On the con-
trary, papers such as Dosovitskiy and Brox (2016b) learn
to invert a neural network from examples, resulting in bet-
ter looking reconstructions, which however may be biased
towards the learned data-driven inversion prior. Here, we
propose to use the deep image prior (2) instead. As this is
handcrafted like the TV-norm, it is not biased towards a par-
ticular training set. On the other hand, it results in inversions
at least as interpretable as the ones of Dosovitskiy and Brox
(2016b).

For evaluation, our method is compared to the ones
of Mahendran and Vedaldi (2016) and Dosovitskiy and Brox
(2016b). Figure 14 shows the results of inverting representa-
tions� obtained by considering progressively deeper subsets
of AlexNet (Krizhevsky et al. 2012): conv1, conv2, …,
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(a) Input (white=masked) (b) Encoder-decoder, depth=6

(c) Encoder-decoder, depth=4 (d) Encoder-decoder, depth=2

(e) ResNet, depth=8 (f) U-net, depth=5

Fig. 13 Inpainting using different depths and architectures. The figure shows that much better inpainting results can be obtained by using deeper
random networks. However, adding skip connections to ResNet in U-Net is highly detrimental for the deep image prior

conv5, fc6, fc7, and fc8. Pre-images are found either
by optimizing (2) using a structured prior.

As seen in Fig. 14, our method results in dramatically
improved image clarity compared to the simple TV-norm.
The difference is particularly remarkable for deeper layers
such as fc6 and fc7, where the TV norm still produces
noisy images, whereas the structured regularizer produces
images that are often still interpretable. Our approach also

produces more informative inversions than a learned prior
of Dosovitskiy and Brox (2016b), which have a clear ten-
dency to regress to the mean. Note that Dosovitskiy and
Brox (2016b) has been followed-up byDosovitskiy and Brox
(2016a) where they used a learnable discriminator and a per-
ceptual loss to train the model. While the usage of a more
complex loss clearly improved their results, we do not com-
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Image conv1 conv2 conv3 conv4 conv5 fc6 fc7 fc8

Inversion with deep image prior

Inversion with TV prior [38]

Pre-trained deep inverting network [15]

Fig. 14 AlexNet inversion. Given the image on the left, we show the
natural pre-image obtained by inverting different layers of AlexNet
(trained for classification on ImageNet ILSVRC) using three different
regularizers: the deep image prior, the TV norm prior of Mahendran
and Vedaldi (2015), and the network trained to invert representations

on a hold-out set Dosovitskiy and Brox (2016b). The reconstructions
obtained with the deep image prior are in many ways at least as natural
as Dosovitskiy and Brox (2016b), yet they are not biased by the learning
process

pare to their method here as our goal is to demonstrated what
can be achieved with a prior not obtained from a training set.

We perform similar experiment and invert layers of VGG-
19 (Simonyan and Zisserman 2014) in Fig. 15 and also
observe an improvement.

3.5 ActivationMaximization

Along with the pre-image method, the activation maximiza-
tion method is used to visualize internals of a deep neural
network. It aims to synthesize an image that highly activates
a certain neuron by solving the following optimization prob-
lem:

x∗ = argmax
x

�(x)m , (9)

where m is an index of a chosen neuron. �(x)m corresponds
to mth output if � ends with fully-connected layer and cen-
tral pixel of the m-th feature map if the �(x) has spatial
dimensions.

We compare the proposed deep prior to TV prior from
Mahendran and Vedaldi (2015) in Fig. 16, where we aim to
maximize activations of the last fc8 layer of AlexNet and
VGG-16. ForAlexNet deep image prior leads tomore natural
and interpretable images, while the effect is not as clear in the
case of VGG-16. In Fig. 17 we show more examples, where
we maximize the activation for a certain class.

3.6 Image Enhancement

We also use the proposed deep image regularization to per-
form high frequency enhancement in an image. As demon-
strated in Sect. 2.1, the noisy image is reconstructed starting
from coarse low-frequency details and finishing with fine
high frequency details and noise. To perform enhancement
we use the objective (4) setting the target image to be x0. We
stop the optimization process at a certain point, obtaining a
coarse approximation xc of the image x0. The fine details are
then computed as

x f = x0 − xc . (10)

We then construct an enhanced image by boosting the
extracted fine details x f :

xe = x0 + x f . (11)

In Fig. 18 we present coarse and enhanced versions of the
same image, running the optimization process for different
number of iterations. At the start of the optimization pro-
cess (corresponds to low number of iteration) the resulted
approximation does not precisely recreates the shape of the
objects (c.f. blue halo in the bottom row of Fig. 18). While
the shapes become well-matched with the time, unwanted
high frequency details also start to appear. Thus we need to
stop the optimization process in time.
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Image conv1 1 conv1 2 conv2 1 conv2 2 conv3 1 conv3 2 conv3 3 conv3 4 conv4 1

Inversion with deep image prior

Inversion with TV prior [38]

conv4 2 conv4 3 conv4 4 conv5 1 conv5 2 conv5 3 conv5 4 fc6 fc7 fc8

Inversion with deep image prior

Inversion with TV prior [38]

Fig. 15 Inversion of VGG-19 (Simonyan and Zisserman 2014) network activations at different layers with different priors

3.7 Flash-no Flash Reconstruction

While in this work we focus on single image restoration, the
proposed approach can be extended to the tasks of the restora-
tion of multiple images, e.g. for the task of video restoration.
We therefore conclude the set of application examples with
a qualitative example demonstrating how the method can
be applied to perform restoration based on pairs of images.
In particular, we consider flash-no flash image pair-based
restoration (Petschnigg et al. 2004), where the goal is to
obtain an image of a scene with the lighting similar to a
no-flash image, while using the flash image as a guide to
reduce the noise level.

In general, extending the method to more than one image
is likely to involve some coordinated optimization over the
input codes z that for single-image tasks in our approach
was most often kept fixed and random. In the case of flash-
no-flash restoration, we found that good restorations were
obtained by using the denoising formulation (4), while using
flash image as an input (in place of the random vector z). The
resulting approach can be seen as a non-linear generalization
of guided image filtering (He et al. 2013). The results of the
restoration are given in the Fig. 19.

4 Technical Details

While other options are possible, we mainly experimented
with fully-convolutional architectures, where the input z ∈

R
C ′×W×H has the same spatial resolution as the the output

of the network fθ (z) ∈ R
3×W×H .

We use encoder-decoder (“hourglass”) architecture (pos-
sibly with skip-connections) for fθ in all our experiments
except noted otherwise Fig. 21, varying a small number of
hyper-parameters. Although the best results can be achieved
by carefully tuning an architecture for a particular task
(and potentially for a particular image), we found that wide
range of hyper-parameters and architectures give acceptable
results.

We use LeakyReLU (He et al. 2015) as a non-linearity.
As a downsampling technique we simply use strides imple-
mented within convolution modules. We also tried aver-
age/max pooling and downsampling with Lanczos kernel,
but did not find a consistent difference between any of them.
As an upsampling operation we choose between bilinear
upsampling and nearest neighbor upsampling. An alternative
upsampling method could be to use transposed convolutions,
but the results we obtained using them were worse. We use
reflection padding instead of zero padding in convolution lay-
ers everywhere except for the feature inversion and activation
maximization experiments (Fig. 20).

We considered two ways to create the input z: 1. random,
where the z is filled with uniform noise between zero and
0.1, 2. meshgrid, where we initialize z ∈ R

2×W×H using
np.meshgrid (see Fig. 21). Such initialization serves as
an additional smoothness prior to the one imposed by the
structure of fθ itself. We found such input to be beneficial
for large-hole inpainting, but not for other tasks.
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regrubeseehCgorFesooGnawSkcalB

dcba
AlexNet activation maximization with Deep Image Prior

AlexNet activation maximization with Total Variation prior [38]

VGG-16 activation maximization with Deep Image Prior

VGG-16 activation maximization with Total Variation prior [38]

Fig. 16 Class activation maximization. For a given class label shown at
the very top, we show images obtained by maximizing the correspond-
ing class activation (before soft-max) of AlexNet (top) and VGG-16
(bottom) architectures using different regularizers: the deep image prior

proposed here (rows 1 and 3), and the total variation prior of Rudin et al.
(1992). For both architectures (AlexNet) in particular, inversion with
deep image prior leads to more interpretable results
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missile dingo wild boar cannon French bulldog green snake

gas pump mask maillot pretzel running shoe bassinet

mortar handkerchief dam lumbermill hoopskirt vacuum

plastic bag flatworm tripod spider monkey hyena cinema

dowitcher coffee mug Crock Pot abacus Norwich terrier face powder

sewing machine centipede bonnet warthog scabbard reflex camera

carton hen English foxhound golden retriever oscilloscope keeshond

Fig. 17 AlexNet activation maximization regularized with deep image prior for different randomly-selected ILSVRC class labels
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(a) Iteration 250 (b) Iteration 500 (c) Iteration 2500 (d) Iteration 7000

Fig. 18 Coarse and boosted images for different stopping points. We
obtain the coarse images (second row) running the optimization for
reconstruction objective 4 for a certain number of iterations. We then
subtract coarse version from the original image to get fine details and

boost them (first row). Even for low iteration number the coarse approx-
imation preserves edges for the large objects. The original image in
shown the first column

45](a) Flash (b) No flash (c) Joint bilateral [ (d) Deep image prior

Fig. 19 Reconstruction based on flash and no-flash image pair. The
deep image prior allows to obtain low-noise reconstruction with the
lighting very close to the no-flash image. It is more successful at avoid-

ing “leaks” of the lighting patterns from the flash pair than joint bilateral
filtering (Petschnigg et al. 2004) (c.f. blue inset) (Color figure online)

During fitting of the networks we often use a noise-based
regularization. I.e. at each iteration we perturb the input z
with an additive normal noise with zero mean and standard
deviation σp. While we have found such regularization to
impede optimization process, we also observed that the net-
work was able to eventually optimize its objective to zero

no matter the variance of the additive noise (i.e. the network
was always able to adapt to any reasonable variance for suf-
ficiently large number of optimization steps).

We found the optimization process tends to destabi-
lize as the loss goes down and approaches a certain
value. Destabilization is observed as a significant loss
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Fig. 20 The architecture used in the experiments. We use “hourglass”
(also known as “decoder-encoder”) architecture. We sometimes add
skip connections (yellow arrows). nu[i], nd [i], ns [i] correspond to the

number of filters at depth i for the upsampling, downsampling and skip-
connections respectively. The values ku [i], kd [i], ks [i] correspond to the
respective kernel sizes (Color figure online)

Fig. 21 “Meshgrid” input z used in some inpainting experiments.
These are two channels of the input tensor; in BCHW layout:z[0, 0,
:, :], z[0, 1, :, :] The intensity encodes the value: from
zero (black) to one (white). Such type of input can be regarded as a part
of the prior which enforces smoothness

increase and blur in generated image fθ (z). From such
destabilization point the loss goes down again till desta-
bilized one more time. To remedy this issue we sim-
ply track the optimization loss and return to parameters
from the previous iteration if the loss difference between
two consecutive iterations is higher than a certain thresh-
old.

Finally, we use ADAM optimizer (Kingma and Ba 2014)
in all our experiments and PyTorch as a framework. The pro-
posed iterative optimization requires repeated forward and
backward evaluation of a deep ConvNet and thus takes sev-
eral minutes per image.

Below, we provide the remaining details of the network
architectures. We use the notation introduced in Fig. 20.

Super-resolution (default architecture).

z ∈ R
32×W×H ∼ U (0, 1

10 )

nu = nd = [128, 128, 128, 128, 128]
ku = kd = [3, 3, 3, 3, 3]
ns = [4, 4, 4, 4, 4]
ks = [1, 1, 1, 1, 1]
σp = 1

30
num_iter = 2000
LR = 0.01
upsampling = bilinear

The decimation operator d is composed of low pass filter-
ing operation using Lanczos2 kernel (see Turkowski (1990))
and resampling, all implemented as a single (fixed) convolu-
tional layer.

For 8× super-resolution (Fig. 8) we have changed the
standard deviation of the input noise to σp = 1

20 and the
number of iterations to 4000.

Text inpainting (Fig. 11)We used the same hyper-parameters
as for super-resolution but optimized the objective for 6000
iterations.

Large hole inpainting (Fig. 10) We used the same hyper-
parameters as for super-resolution, but used meshgrid as
an input, removed skip connections and optimized for 5000
iterations.

Large hole inpainting (Fig. 13)We used the following hyper-
parameters:
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z ∈ R
32×W×H ∼ U (0, 1

10 )

nu = nd = [16, 32, 64, 128, 128, 128]
kd = [3, 3, 3, 3, 3, 3]
ku = [5, 5, 5, 5, 5, 5]
ns = [0, 0, 0, 0, 0, 0]
ks = [NA, NA, NA, NA, NA, NA]
σp = 0
num_iter = 5000
LR = 0.1
upsampling = nearest

In Fig. 13c, dwe simply sliced off last layers to get smaller
depth.

Denoising (Fig. 7) Hyper-parameters were set to be the same
as in the case of super-resolution with only difference in iter-
ation number, which was set to 1800. We used the following
implementations of referenced denoising methods: Lebrun
(2011) for CBM3D and Buades (2005) for NLM. We used
exponential sliding window with weight γ = 0.99.

JPEG artifacts removal (Fig. 6) Although we could use the
same setup as in other denoising experiments, the hyper-
parameters we used to generate the image in Fig. 6 were the
following:

z ∈ R
3×W×H ∼ U (0, 1

10 )

nu = nd = [8, 16, 32, 64, 128]
ku = kd = [3, 3, 3, 3, 3]
ns = [0, 0, 0, 4, 4]
ks = [NA, NA, NA, 1, 1]
σp = 1

30
num_iter = 2400
LR = 0.01
upsampling = bilinear

Image reconstruction (Fig. 12) We used the same setup
as in the case of super-resolution and denoising, but set
num_iter = 11000, LR = 0.001.

Natural pre-image (Figs. 14, 15)

z ∈ R
32×W×H ∼ U (0, 1

10 )

nu = nd = [16, 32, 64, 128, 128, 128]
ku = kd = [7, 7, 5, 5, 3, 3]
ns = [4, 4, 4, 4, 4]
ks = [1, 1, 1, 1, 1]
num_iter = 3100
LR = 0.001
upsampling = nearest

We used num_iter = 10000 for the VGG inversion
experiment (Fig. 15)

Activation maximization (Figs. 16, 17) In this experiment we
used a very similar set of hyper-parameters to the ones in
pre-image experiment.

z ∈ R
32×W×H ∼ U (0, 1

10 )

nu = nd = [16, 32, 64, 128, 128, 128]
ku = kd = [5, 3, 5, 5, 3, 5]
ns = [0, 4, 4, 4, 4]
ks = [1, 1, 1, 1, 1]
num_iter = 3100
LR = 0.001
upsampling = bilinear
σp = 0.03

Image enhancement (Fig. 18) We used the same setup as in
the case of super-resolution and denoising, but set σp = 0.

5 RelatedWork

Our approach is related to image restoration and synthesis
methods based on learnable ConvNets and referenced above.
Here, we review other lines of work related to our approach.

Modelling “translation-invariant” statistics of natural
images using filter responses has a very long history of
research. The statistics of responses to various non-random
filters (such as simple operators and higher-order wavelets)
have been studied in seminalworks (Field 1987;Mallat 1989;
Simoncelli and Adelson 1996; Zhu and Mumford 1997).
Later, (Huang andMumford 1999) noted that image response
distribution w.r.t. random unlearned filters have very similar
properties to the distributions of wavelet filter responses.

Our approach is closely related to a group of restora-
tion methods that avoid training on the hold-out set and
exploit the well-studied self-similarity properties of natural
images (Ruderman and Bialek 1993; Turiel et al. 1997). This
group includesmethods based on joint modeling of groups of
similar patches inside corrupted image (Buades et al. 2005;
Dabov et al. 2007;Glasner et al. 2009), which are particularly
useful when the corruption process is complex and highly
variable (e.g. spatially-varying blur Bahat et al. (2017)).

In this group, an interesting parallel work with clear
links to our approach is the zero-shot super-resolution
approach (Shocher et al. 2018), which trains a feed-forward
super-resolution ConvNet based on synthetic dataset gener-
ated from the patches of a single image.While clearly related,
the approach (Shocher et al. 2018) is somewhat complemen-
tary as it exploit self-similarities across multiple scales of
the same image, while our approach exploits self-similarities
within the same scale (at multiple scales).

Several lines of work use dataset-based learning andmod-
eling images using convolutional operations. Learning priors
for natural images that facilitate restorationby enforcingfilter
responses for certain (learned) filters is behind an influen-
tial field-of-experts model (Roth and Black 2009). Also in
this group are methods based on fitting dictionaries to the
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patches of the corrupted image (Mairal et al. 2010; Zeyde
et al. 2010) as well as methods based on convolutional sparse
coding (Grosse et al. 2007; Bristow et al. 2013). The con-
nections between convolutional sparse coding and ConvNets
are investigated in Papyan et al. (2017) in the context of
recognition tasks. More recently in Papyan et al. (2017),
a fast single-layer convolutional sparse coding is proposed
for reconstruction tasks. The comparison of our approach
with Papyan et al. (2017) (Fig. 11 and Table 3) however
suggests that using deep ConvNet architectures popular in
modern deep learning-based approaches may lead to more
accurate restoration results.

Deeper convolutional models of natural images trained on
large datasets have also been studied extensively. E.g. decon-
volutional networks (Zeiler et al. 2010) are trained by fitting
hierarchies of representations linked by convolutional opera-
tors to datasets of natural images. The recent work (Lefkim-
miatis 2016) investigates the model that combines ConvNet
with a self-similarity based denoising and thus bridges
learning on image datasets and exploiting within-image self-
similarities.

Our approach is also related to inverse scale space
denoising (Scherzer and Groetsch 2001; Burger et al. 2005;
Marquina 2009). In this group of “non-deep” image process-
ing methods, a sequence of solutions (a flow) that gradually
progresses from a uniform image to the noisy image, while
progressively finer scale details are recovered so that early
stopping yields a denoised image. The inverse scale space
approaches are however still driven by a simple total vari-
ation (TV) prior, which does not model self-similarity of
images, and limits the ability to denoise parts of images with
textures and gradual transitions. Note that our approach can
also use the simple stopping criterion proposed in Burger
et al. (2005), when the level of noise is known.

Finally, we note that this manuscript expands the confer-
ence version (Ulyanov et al. 2018) in multiple ways: (1) It
givesmore intuition, providesmore visualizations and expla-
nation for the presented method altogether with extensive
technical details. (2) It contains a more thorough experi-
mental evaluation and shows an application to activation
maximization and high frequency enhancement. Since the
publication of the preliminary version of our approach, it has
also been used by other groups in different ways. Thus, Veen
et al. (2018) proposes a novel method for compressed sens-
ing recovery using deep image prior. The work (Athar
et al. 2018) learns a latent variable model, where the latent
space is parametrized by a convolutional neural network.
The approach (Shedligeri et al. 2018) aims to reconstruct
an image from an event-based camera and utilizes deep
image prior framework to estimate sensor’s ego-motion. The
method (Ilyas et al. 2017) successively applies deep image
prior to defend against adversarial attacks. Deep image prior

is also used in Boominathan et al. (2018) to perform phase
retrieval for Fourier ptychography.

6 Discussion

We have investigated the success of recent image generator
neural networks, teasing apart the contribution of the prior
imposed by the choice of architecture from the contribution
of the information transferred from external images through
learning. In particular, we have shown that fitting a randomly-
initialized ConvNet to corrupted images works as a “Swiss
knife” for restoration problems. This approach is probably
too slow to be useful for most practical applications, and for
each particular application, a feed-forward network trained
for that particular application would do a better job and do so
much faster. Thus, the slowness and the inability to match or
exceed the results of problem specific methods are the two
main limitations of our approach, when practical applica-
tions are considered. While of limited practicality, the good
results of our approach across a wide variety of tasks demon-
strate that an implicit prior inside deep convolutional network
architectures is an important part of the success of such archi-
tectures for image restoration tasks.

Why does this prior emerge, and, more importantly, why
does it fit the structure of natural images so well? We spec-
ulate that generation by convolutional operations naturally
tends impose self-similarity of the generated images (c.f.
Fig. 5), as convolutional filters are applied across the entire
visual field thus imposing certain stationarity on the output of
convolutional layers. Hourglass architectures with skip con-
nections naturally impose self-similarity at multiple scales,
making the corresponding priors suitable for the restoration
of natural images.

We note that our results go partially against the com-
mon narrative that explain the success of deep learning
in image restoration (and beyond) by the ability to learn
rather than by hand-craft priors; instead, we show that prop-
erly hand-crafted network architectures correspond to better
hand-crafted priors, and it seems that learning ConvNets
builds on this basis. This observation also validates the impor-
tance of developing new deep learning architectures.
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