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Abstract
Many aspects of deep neural networks, such as depth, width, or cardinality, have been studied to strengthen the representational
power. In this work, we study the effect of attention in convolutional neural networks and present our idea in a simple self-
contained module, called Bottleneck Attention Module (BAM). Given an intermediate feature map, BAM efficiently produces
the attention map along two factorized axes, channel and spatial, with negligible overheads. BAM is placed at bottlenecks
of various models where the downsampling of feature maps occurs, and is jointly trained in an end-to-end manner. Ablation
studies and extensive experiments are conducted in CIFAR-100/ImageNet classification, VOC2007/MS-COCO detection,
super resolution and scene parsing with various architectures including mobile-oriented networks. BAM shows consistent
improvements over all experiments, demonstrating the wide applicability of BAM. The code and models are available at
https://github.com/Jongchan/attentionmodule.

Keywords Attention mechanism · Deep learning · Convolutional Neural Networks · Image Recognition · Self-attention

1 Introduction

Deep learning has been a powerful tool for a series of pattern
recognition applications including classification, detection,
segmentation and control problems. Due to its data-driven
nature and availability of large scale parallel computing, deep
neural networks achieve state-of-the-art results inmost areas.
Researchers have done many efforts to boost the perfor-
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mance in various ways such as designing optimizers (Zeiler
2012; Kingma and Ba 2014), proposing adversarial train-
ing scheme (Goodfellow et al. 2014), or task-specific meta
architecture such as 2-stage architectures (Ren et al. 2015)
for object detection.

However, fundamental approach to boost performance
is to design a good backbone architecture. Since the very
first large-scale deep neural network AlexNet (Krizhevsky
et al. 2012), various backbone architectures such as
VGGNet (Simonyan and Zisserman 2015), GoogLeNet
(Szegedy et al. 2015), ResNet (He et al. 2016b), DenseNet
(Huang et al. 2017), have been proposed. All those have
their own design choices, and shown significant performance
boosts over the precedent architectures.

The most intuitive way to boost the network performance
is to stack more layers. Deep neural networks then are able
to approximate high-dimensional function using their deep
layers. The philosophy of VGGNet (Simonyan and Zisser-
man 2015) and ResNet (He et al. 2016a) precisely follows
this. Compared to AlexNet, VGGNet has twice more lay-
ers. Furthermore, ResNet has 22x more layers than VGGNet
with improved gradient flow by adopting residual connec-
tions. GoogLeNet (Szegedy et al. 2015), which is also very
deep, uses concatenation of features with various filter sizes
at each convolutional block. The use of diverse features at
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Fig. 1 BAM integrated with a general CNN architecture. As illustrated,
BAM is placed at every bottleneck of the network. Interestingly, we
observe sequential BAMs construct hierarchical attention maps which
is similar to the human perception procedure. BAM denoises low-level

features such as background texture features at the early stage. BAM
then gradually focuses on the exact targetwhich is a high-level semantic.
More visualizations and analysis are included in Figs. 5 and 6

the same layer shows increased performance, resulting in
powerful representation. DenseNet (Huang et al. 2017) also
uses the concatenation of diverse feature maps, but the fea-
tures are from different layers. In other words, outputs of
convolutional layers are iteratively concatenated upon the
input featuremaps.WideResNet (Zagoruyko andKomodakis
2016) shows that using more channels, wider convolutions,
can achieve higher performance than naively deepening the
networks. Similarly, PyramidNet (Han et al. 2017) shows that
increasing channels in deeper layers can effectively boost
the performance. Recent approaches with grouped convolu-
tions, such as ResNeXt (Xie et al. 2017) or Xception (Chollet
2017), showstate-of-the-art performances as backbone archi-
tectures. The success of ResNeXt and Xception comes from
the convolutions with higher cardinality which can achieve
high performance effectively. Besides, a practical line of
research is to find mobile-oriented, computationally effec-
tive architectures. MobileNet (Howard et al. 2017), sharing a
similar philosophy with ResNeXt and Xception, use depth-
wise convolutions with high cardinalities.

Apart from the previous approaches, we investigate the
effect of attention in DNNs, and propose a simple, light-
weight module for general DNNs. That is, the proposed
module is designed for easy integration with existing CNN
architectures. Attention mechanism in deep neural networks
has been investigated in many previous works (Mnih et al.
2014; Ba et al. 2015; Bahdanau et al. 2014; Xu et al. 2015;
Gregor et al. 2015; Jaderberg et al. 2015a). While most of the
previous works use attention with task-specific purposes, we
explicitly investigate the use of attention as a way to improve
network’s representational power in an extremely efficient
way. As a result, we propose “Bottleneck AttentionModule”

(BAM), a simple and efficient attention module that can be
used in any CNNs. Given a 3D feature map, BAMproduces a
3D attentionmap to emphasize important elements. In BAM,
we decompose the process of inferring a 3D attention map
in two streams (Fig. 2), so that the computational and para-
metric overhead are significantly reduced. As the channels
of feature maps can be regarded as feature detectors, the two
branches (spatial and channel) explicitly learn ‘what’ and
‘where’ to focus on.

We test the efficacy of BAM with various baseline archi-
tectures on various tasks. On the CIFAR-100 and ImageNet
classification tasks, we observe performance improvements
over baseline networks by placing BAM. Interestingly, we
have observed that multiple BAMs located at different bot-
tlenecks build a hierarchical attention as shown in Fig. 1.
We validate the performance improvement of object detec-
tion on the VOC 2007 and MS COCO datasets. We further
apply bam to the pixel-level prediction tasks; super resolution
and scene parsing and showconsistent performance improve-
ment over the baselines, demonstrating a wide applicability
of BAM. Since we have carefully designed our module to
be light-weight, parameter and computational overheads are
negligible.

In short, we investigate the effect of attention with the pro-
posedmodule BAM.BAM is a simple self-containedmodule
to be inserted at any feed-forward convolutional neural net-
works without bells and whistles. We extensively validate
several design choices via ablation studies, and demonstrate
the effectiveness of BAM in various vision tasks including
classification, detection, segmentation, and super resolution.
Moreover, we analyze and explain the difference between the
baseline and the BAM-integrated network in terms of class-
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selectivity index (Morcos et al. 2018). Finally, we analyze
the effect of attention with visualizations.

2 RelatedWorks

A number of studies (Itti et al. 1998; Rensink 2000; Corbetta
andShulman2002) have shown thatattention plays an impor-
tant role in human perception. For example, the resolution at
the foveal center of human eyes is higher than surround-
ing areas (Hirsch and Curcio 1989). In order to efficiently
and adaptively process visual information, human visual sys-
tems iteratively process spatial glimpses and focus on salient
areas (Larochelle and Hinton 2010).

2.1 Cross-modal attention Attention mechanism is a
widely-used technique in multi-modal settings, especially
when certain modalities should be conditioned on the other
modalities. Visual question answering (VQA) task is a well-
known example for such tasks. Given an image and natural
language question, the task is to predict an answer such as
counting the number, inferring the position or the attributes
of the targets. VQA task can be seen as a set of dynami-
cally changing tasks where the provided image should be
processed according to the given question. Attention mech-
anism softly chooses the task(question)-relevant aspects in
the image features. As suggested in Yang et al. (2016), atten-
tion maps for the image features are produced from the
given question, and it act as queries to retrieve question-
relevant features. The final answer is classified with the
stacked images features. Another way of doing this is to use
bi-directional inferring, producing attention maps for both
text and images, as suggested in Nam et al. (2017). In such
literatures, attention maps are used as an effective way to
solve tasks in a conditional fashion, but they are trained in
separate stages for task-specific purposes.

2.2 Self-attention There have been various approaches to
integrate attention in DNNs, jointly training the feature
extraction and attention generation in an end-to-end man-
ner. A few attempts (Wang et al. 2017; Hu et al. 2018a, b)
have been made to consider attention as an effective solution
for general classification task. Wang et al. have proposed
Residual Attention Networks which use a hour-glass mod-
ule to generate 3D attention maps for intermediate features.
Even the architecture is resistant to noisy labels due to gener-
ated attention maps, the computational/parameter overhead
is large because of the heavy 3D map generation process.
Hu et al. have proposed a compact ‘Squeeze-and-Excitation’
module to exploit the inter-channel relationships. Although
it is not explicitly stated in the paper, it can be regarded as an
attention mechanism applied upon channel axis. Recently,
the Gather-Excite framework by Hu et al. (2018a) further
improved this approach by replacing the global average

pooling with depth-wise convolution, enhancing a gather-
ing operation in the attention module. However, the method
still misses the spatial axis, which is also an important factor
in inferring accurate attention map.

SCA-CNN (Chen et al. 2017b) and HANet (Li et al.
2018) have shown that using both the spatial and the channel
attention is effective for image captioning and person re-
identification tasks respectively. Here, we carefully design
a module that outputs both the spatial and the channel
attention maps for image classification tasks. Our method
greatly reduces the heavy computation of 3D attention map
inference (Wang et al. 2017) and improves the baseline sig-
nificantly. We also investigate the effective point to place
the module that is before the pooling occurs (see Fig. 1).
Recently proposed CBAM method (Woo et al. 2018b) is an
extended version of BAM. It improves on BAM with their
module design and placement (i.e., the modules are placed at
every convolution block). However, it introduces much more
parameter overhead than BAM.

2.3 Adaptive modules Several previous works use adaptive
modules that dynamically changes their output according to
their inputs. Dynamic Filter Network (Jia et al. 2016) pro-
poses to generate convolutional features based on the input
features for flexibility. Spatial Transformer Network (Jader-
berg et al. 2015b) adaptively generates hyper-parameters of
affine transformations using input feature so that target area
feature maps are well aligned finally. This can be seen as a
hard attention upon the feature maps. Deformable Convolu-
tional Network (Dai et al. 2017) uses deformable convolution
where pooling offsets are dynamically generated from input
features, so that only the relevant features are pooled for con-
volutions. Similar to the above approaches, BAM is also a
self-contained adaptive module that dynamically suppress or
emphasize feature maps through attention mechanism.

In this work, we exploit both channel and spatial axes of
attentionwith a simple and light-weight design. Furthermore,
we find an efficient location to put our module—bottleneck
of the network.

3 Bottleneck AttentionModule

We design a module that learns spatial (where) and channel-
wise (what) attention separately. The intuition behind the
factorization is that those two attentions have different prop-
erties. Thus, separation can make them focus on their own
objectives more clearly.

It is well known that each channel of the feature maps
corresponds to a certain visual pattern (Simon and Rodner
2015; Zhang et al. 2016). Therefore, estimating and applying
the channel-wise attention can be viewed as a process of
picking up the necessary semantic attributes for the target
task. The spatial attention, on the other hand, attempts to
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select the important spatial locations rather than considering
each image region equally. Thus, it can be seen as a clutter
removal that is quite different from the channel-attention.
Therefore, it is obvious that using these two complementary
attentions in combination is crucial for many classification
tasks, and we empirically confirm that it provides the best
result in Table 1b.

We implement the attentionmapgenerationof eachbranch
to be highly efficient. For the channel attention, we squeeze
the spatial axis using global average pooling.We then regress
the channel attention using two fully connected layers. For
the spatial attention, we gradually reduce the channel dimen-
sion to be 1 at the final. Here, we adopt the atrous convolution
to enlarge the receptive field and effectively decide spatially
important part.

The overall structure of BAM is illustrated in Fig. 2. For
the given input feature map F ∈ R

C×H×W , BAM infers a 3D
attention map M(F) ∈ R

C×H×W . The refined feature map
F′ is computed as:

F′ = F + F ⊗ M(F), (1)

where ⊗ denotes element-wise multiplication. We adopt a
residual learning scheme along with the attention mecha-
nism to facilitate the gradient flow. To design an efficient
yet powerful module, we first compute the channel attention
Mc(F) ∈ R

C and the spatial attentionMs(F) ∈ R
H×W at two

separate branches, then compute the attention mapM(F) as:

M(F) = σ(Mc(F) + Ms(F)), (2)

where σ is a sigmoid function. Both branch outputs are
resized to RC×H×W before addition.

Channel attention branch As each channel contains a
specific feature response, we exploit the inter-channel rela-
tionship in the channel branch. To aggregate the feature map
in each channel, we take global average pooling on the fea-
ture map F and produce a channel vector Fc ∈ R

C . This
vector softly encodes global information in each channel. To
estimate attention across channels from the channel vector
Fc, we use a multi-layer perceptron (MLP) with one hidden
layer. To save a parameter overhead, the hidden activation
size is set to R

C/r , where r is the reduction ratio. After the
MLP, we add a batch normalization (BN) layer (Ioffe and
Szegedy 2015) to adjust the scale with the spatial branch
output. In short, the channel attention is computed as:

Mc(F) = BN (MLP(AvgPool(F)))

= BN (W1(W0AvgPool(F) + b0) + b1), (3)

where W0 ∈ R
C/r×C , b0 ∈ R

C/r ,W1 ∈ R
C×C/r , b1 ∈ R

C .

Spatial attention branchThe spatial branchproduces a spatial
attentionmapMs(F) ∈ RH×W to emphasize or suppress fea-

tures in different spatial locations. It is widely known that (Yu
andKoltun 2016; Long et al. 2015;Bell et al. 2016;Hariharan
et al. 2015) utilizing contextual information is crucial to know
which spatial locations should be focused on. It is important
to have a large receptive field to effectively leverage con-
textual information. We employ the dilated convolution (Yu
and Koltun 2016) to enlarge the receptive fields with high
efficiency. We observe that the dilated convolution facilitates
constructing a more effective spatial map than the standard
convolution (see Sect. 5.1). The “bottleneck structure” sug-
gested by ResNet (He et al. 2016a) is adopted in our spatial
branch, which saves both the number of parameters and com-
putational overhead. Specifically, the feature F ∈ R

C×H×W

is projected into a reduced dimensionRC/r×H×W using 1× 1
convolution to integrate and compress the feature map across
the channel dimension. We use the same reduction ratio r
with the channel branch for simplicity. After the reduction,
two 3 × 3 dilated convolutions are applied to utilize contex-
tual information effectively. Finally, the features are again
reduced to R

1×H×W spatial attention map using 1 × 1 con-
volution. For a scale adjustment, a batch normalization layer
is applied at the end of the spatial branch. In short, the spatial
attention is computed as:

Ms(F) = BN ( f 1×1
3 ( f 3×3

2 ( f 3×3
1 ( f 1×1

0 (F))))), (4)

where f denotes a convolution operation, BN denotes a
batch normalization operation, and the superscripts denote
the convolutional filter sizes. There are two 1 × 1 convolu-
tions for channel reduction The intermediate 3 × 3 dilated
convolutions are applied to aggregate contextual information
with a larger receptive field.

Combine two attention branchesAfter acquiring the chan-
nel attentionMc(F) and the spatial attentionMs(F) from two
attention branches, we combine them to produce our final 3D
attention map M(F). Since the two attention maps have dif-
ferent shapes, we expand the attention maps to R

C×H×W

before combining them. Among various combining meth-
ods, such as element-wise summation, multiplication, or
max operation, we choose element-wise summation for effi-
cient gradient flow (He et al. 2016a). We empirically verify
that element-wise summation results in the best performance
among three options (see Sect. 5). After the summation, we
take a sigmoid function to obtain the final 3D attention map
M(F) in the range from 0 to 1. This 3D attention map is
element-wisely multiplied with the input feature map F then
is added upon the original input feature map to acquire the
refined feature map F′ as Eq. 1.

Module placement As BAM is a self-contained module, it
can be placed at any point of the network. Through ablation
experiments in Table 2, we empirically found that the best
location for BAM is the bottlenecks (i.e. right before spatial
pooling).
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Fig. 2 Detailed module architecture. Given the intermediate feature
map F, the module computes corresponding attention map M(F)
through the two separate attention branches—channel Mc and spa-
tial Ms. Two intermediate tensors from channel and spatial branches
are properly broadcasted to match the final tensor shape. We have two
hyper-parameters for the module: dilation value (d) and reduction ratio

(r). The dilation value determines the size of receptive fields which is
helpful for the contextual information aggregation at the spatial branch.
The reduction ratio controls the capacity and overhead in both attention
branches. Through the experimental validation (see Sect. 5.1), we set
{d = 4, r = 16}

4 Benefits of Using Self-attention

The two main advantages of using self-attention mechanism
in the CNN are: (1) efficient global context modeling, and
(2) effective back-propagation (i.e., model training).

The global context allows the model to better recognize
patterns that would be locally ambiguous and to attend on
important parts. Therefore, capturing and utilizing the global
context is crucial for various vision tasks. In this respect,
CNN models typically stack many convolution layers or use
pooling operations to ensure the features to have a large
receptive field. Although doing so provides the model to
equip with the global view at the end, there are several
drawbacks. First, naively stacking the convolution layers sig-
nificantly increases the space (i.e., parameters) and time (i.e.,
computational overheads) complexities. Second, the features
at lower layers still have limited receptive fields. On the
other hand, our proposed method BAM alleviates the above
issues nicely. Specifically, a small meta-network (or module)
is designed to refine the input feature map based on its global
feature statistics. The module is placed at the bottlenecks of
the model, making lower layer features to benefit from the
contextual information. The overall procedure operates in
a highly efficient manner thanks to the light-weight mod-
ule design. We empirically verify that using BAM is more
effective than simply deepening the models (i.e., using more
convolutions) as shown in Table 1c.

Moreover, our method eases model optimization. In par-
ticular, the predicted attention map modulates the training
signal (i.e., gradients) to focus on more important regions
(Wang et al. 2017). We formulate the attentioning process as
follows:

F′ = (1 + M(F))F(x, φ), (5)

where φ is the parameters of the feature extractor. Then, the
gradient can be computed as:

∂M(F)F(x, φ)))

∂φ
= M(F)

∂F(x,φ))
∂φ

(6)

The equation indicates that the higher the attention value
(important regions), the greater the gradient value flows in
there.

5 Experiments

In this section, we empirically verify the design choices
of BAM, and show the efficacy of BAM across archi-
tectures and tasks. We conduct extensive experiments on
the standard benchmarks: CIFAR-100 (Sects. 5.1, 5.2),
ImageNet-1K (Sects. 5.3, 5.4) for image classification; VOC
2007 (Sect. 5.6), MS COCO (Sect. 5.5) for object detection;
Set5 and Set14 (Sect. 5.7) for super resolution; ADE20K
(Sect. 5.8) for scene parsing.

In order to perform better apple-to-apple comparisons,
we first reproduce all the reported performance of networks
in the PyTorch framework1 and set as our baselines (He
et al. 2016a; Zagoruyko and Komodakis 2016; Xie et al.
2017; Huang et al. 2017). When training the baseline mod-
els (or BAM-integrated models), we follow their training
schemes (i.e., hyper-parameter settings), if not otherwise
specified. Throughout all experiments, we verify that BAM

1 https://pytorch.org/.
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outperforms all the baselines without bells and whistles,
demonstrating the general applicability of BAM across dif-
ferent architectures as well as different tasks.

5.1 Ablation Studies on CIFAR-100

The CIFAR-100 dataset (Krizhevsky and Hinton 2009) con-
sists of 60,000 32× 32 color images drawn from 100 classes.
The training and test sets contain 50,000 and 10,000 images
respectively. We adopt a standard data augmentation method
of random cropping with 4-pixel padding and horizontal flip-
ping for this dataset. For pre-processing, we normalize the
data using RGB mean values and standard deviations.

Dilation value and Reduction ratio In Table 1a, we perform
an experiment to determine two major hyper-parameters in
our module, which are dilation value and reduction ratio,
based on the ResNet50 architecture. The dilation value deter-
mines the sizes of receptive fields in the spatial attention
branch. Table 1a shows the comparison result of four dif-
ferent dilation values. We can clearly see the performance
improvement with larger dilation values, though it is satu-
rated at the dilation value of 4. This phenomenon can be
interpreted in terms of contextual reasoning, which is widely
exploited in dense prediction tasks (Yu and Koltun 2016;
Long et al. 2015; Bell et al. 2016; Chen et al. 2016; Zhu et al.
2017). Since the sequence of dilated convolutions allows
an exponential expansion of the receptive field, it enables
our module to seamlessly aggregate contextual information.
Note that the standard convolution (i.e. dilation value of 1)
produces the lowest accuracy, demonstrating the efficacy of
a context-prior for inferring the spatial attention map. The
reduction ratio is directly related to the number of chan-
nels in both attention branches, which enable us to control
the capacity and overhead of our module. In Table 1a, we
compare performance with four different reduction ratios.
Interestingly, the reduction ratio of 16 achieves the best accu-
racy, even though the reduction ratios of 4 and 8 have higher
capacity. We conjecture this result as over-fitting since the
training losses converged in both cases. Based on the result
in Table 1a, we set the dilation value as 4 and the reduction
ratio as 16 in the following experiments.
Separate or Combined branches In Table 1b, we conduct
an ablation study to validate our design choice in the mod-
ule. We first remove each branch to verify the effectiveness
of utilizing both channel and spatial attention branches. As
shown inTable 1b, although each attention branch is effective
to improve performance over the baseline, we observe sig-
nificant performance boosting when we use both branches
jointly. This shows that combining the channel and spatial
branches together play a critical role in inferring the final
attention map. In fact, this design follows the similar aspect
of a human visual system, which has ‘what’ (channel) and

Table 1 Ablation studies on the structure and hyper parameters ofBAM
inCIFAR100benchmark. (a) Includes experiments for the optimal value
for the two hyper parameters; (b) includes experiments to verify the
effective of the spatial and channel branches; (c) includes experiments
to compare the effectiveness of BAM over the original conv blocks

Independent variables Value Params Error

a. Experiments on hyper-params

Dilation value (d) 1 34.61 17.24

2 34.61 16.92

4 34.61 16.71

6 34.61 16.97

Reduction ratio (r) 4 35.14 16.88

8 34.74 17.14

16 34.61 16.71

32 34.56 16.92

Base (ResNeXt29 8 × 64d) – 34.52 18.18

Base BAM

b. Experiments on each branch

Channel � � � � � �
Spatial � � � � � �
σ(max(C, S)) �
σ(C ∗ S) �
σ(C) + σ(S) �
σ(C + S) � �
No identity �
Error 18.18 16.82 17.00 17.44 17.55 17.02 16.89 16.71

ConvBlock versus BAM Params Error

c. Experiments comparing conv blocks and BAM

ResNet50 23.68M 21.49

+ ResBlock 25.14M 21.02

+ BAM 24.07M 20

WideResNet28 (w=8) 23.4M 20.4

+ WideResBlock 24.88M 19.51

+ BAM 23.56M 19.06

ResNeXt 8x64d 34.4M 18.18

+ ResNeXtBlock 37.3M 17.69

+ BAM 34.61M 16.71

All the experiments are reproduced in PyTorch
Bold values indicate the positive effect of the proposed module

‘where’ (spatial) pathways and both pathways contribute to
process visual information (Larochelle and Hinton 2010;
Chen et al. 2017a).

Combining methods We also explore four different combin-
ing strategies:maximum-and-sigmoid, product-and-sigmoid,
sum-and-sigmoid, and sigmoid-and-sum. Table 1b sum-
marizes the result of them. We empirically confirm that
sum-and-sigmoid achieves the best performance. In terms
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of the information flow, the sum-and-sigmoid is an effective
way to integrate and secure the information from the pre-
vious layers. In the forward phase, it enables the network
to use the information from two complementary branches,
channel and spatial, without losing any of information. In
the backward phase, the gradient is distributed equally to
all of the inputs, leading to efficient training. Product-and-
sigmoid, which can assign a large gradient to the small input,
makes the network hard to converge, yielding the inferior
performance. Maximum-and-sigmoid, which routes the gra-
dient only to the higher input, provides a regularization effect
to some extent, leading to unstable training since our mod-
ule has few parameters. Sigmoid-and-sum still improves over
the baseline, but is worse than other combining options. The
main difference with the sum-and-sigmoid lies on where we
place the sigmoid operation. Applying the sigmoid to each
branch before element-wise summation may affect the orig-
inal feature representation (i.e., restricting the feature value
range between 0 and 1) and may affect the gradient updates.
Though, note that all of four different implementations out-
perform the baselines. This implies that utilizing both stream
is important while the best-combining strategy further boosts
the final performance.

Identity connection In the early stage of the training, the
BAM might produce inaccurate attention map which may
negatively affect both the forward and backward (i.e., back
propagation) information flow. Therefore, by introducing the
residual connection, we are able to alleviate the possibly
detrimental initial behavior of the model, easing the over-
all model training. Note that the attention value now ranges
from 1 to 2 instead of 0 to 1. However, the relative impor-
tance is still maintained. We empirically verify that residual
connection indeed is effective in Table 1b.

Comparison with placing original convblocks It is widely
know that larger networks with more parameters have better
performances. Although BAM introduces negligible over-
heads, it does bring some extra layers to the networks. In
this experiment, we empirically verify that the significant
improvement does not come from the increased depth by
naively adding the extra layers to the bottlenecks. We add
auxiliary convolution blocks which have the same topol-
ogy with their baseline convolution blocks, then compare
it with BAM in Table 1c. we can obviously notice that plug-
ging BAM not only produces superior performance but also
puts less overhead than naively placing the extra layers. It
implies that the improvement of BAM is not merely due
to the increased depth but because of the effective feature
refinement.

Bottleneck: The efficient point to place BAM We empiri-
cally verify that the bottlenecks of networks are the effective

points to place our module BAM. Bottleneck is where the
feature downsampling occurs. For example, pooling opera-
tions or convolutions with stride larger than 1. Specifically,
we place BAM right before the downsampling. Recent stud-
ies on attention mechanisms (Hu et al. 2018b; Wang et al.
2017) mainly focus on modifications within the ‘convolu-
tion blocks’ rather than the ‘bottlenecks’. We compare those
two different locations by using various models on CIFAR-
100. In the BAM-C (‘convolution blocks’) case, we place
BAM in every convolutional block, so there is much more
overhead. In Table 2, we can clearly observe that placing
the module at the bottleneck is effective in terms of over-
head/accuracy trade-offs. It puts much less overheads with
better accuracy inmost cases except PreResNet 110 (He et al.
2016b).

5.2 Classification Results on CIFAR-100

In Table 3, we compare the performance on CIFAR-100 after
placing BAM at the bottlenecks of state-of-the-art models
including (He et al. 2016a; He et al. 2016b; Zagoruyko and
Komodakis 2016; Xie et al. 2017; Huang et al. 2017). Note
that, while ResNet101 and ResNeXt29 16 × 64d networks
achieve 20.00% and 17.25% error respectively, ResNet50
with BAM and ResNeXt29 8 × 64d with BAM achieve
20.00% and 16.71% error respectively using only half of
the parameters. It suggests that our module BAM can effi-
ciently raise the capacity of networks with a fewer number
of network parameters. Thanks to our light-weight design,
the overall parameter and computational overheads are triv-
ial.

Table 2 Bottleneck versus inside each convolution block

Architecture Params GFLOPs Error

ResNet50 23.71M 1.22 21.49

ResNet50 + BAM-C 28.98M 1.37 20.88

ResNet50 + BAM 24.07M 1.25 20.00

PreResNet110 1.73M 0.245 22.22

PreResNet110 + BAM-C 2.17M 0.275 21.29

PreResNet110 + BAM 1.73M 0.246 21.96

WideResNet28 (w = 8) 23.40M 3.36 20.40

WideResNet28 (w = 8) + BAM-C 23.78M 3.39 20.06

WideResNet28 (w = 8) + BAM 23.42M 3.37 19.06

ResNext29 8 × 64d 34.52M 4.99 18.18

ResNext29 8 × 64d + BAM-C 35.60M 5.07 18.15

ResNext29 8 × 64d + BAM 34.61M 5.00 16.71

BAM-C denotes where themodule is inserted to each convolution block
Bold values indicate the positive effect of the proposed module
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Table 3 Experiments on image classification tasks: CIFAR-100 classification

Architecture Original Re-implement With BAM

Error Error Params GFLOPs Error Params GFLOPS

ResNet 50 – 21.49 23.71M 1.22 20.00 24.07M(+ 0.36) 1.25(+ 0.03)

ResNet 101 – 20.00 42.70M 2.44 19.61 43.06M(+ 0.36) 2.46(+ 0.02)

PreResNet 110 – 22.22 1.726M 0.245 21.96 1.733M(+ 0.007) 0.246(+ 0.01)

WideResNet 28 (w = 8) – 20.40 23.40M 3.36 19.06 23.42M(+ 0.02) 3.37(+ 0.01)

WideResNet 28 (w = 10) 18.85 18.89 36.54M 5.24 18.56 36.57M(+ 0.03) 5.25(+ 0.01)

WideResNet 40 (w = 10) 18.30 18.29 55.90M 8.07 18.17 55.94M(+ 0.04) 8.08(+ 0.01)

ResNeXt 29 8 × 64d 17.77 18.18 34.52M 4.99 16.71 34.61M(+ 0.09) 5.00(+ 0.01)

ResNeXt 29 16 × 64d 17.31 17.25 68.25M 9.88 16.39 68.34M(+ 0.09) 9.90(+ 0.02)

DenseNet 100-BC (k = 12) 22.27 21.95 0.8M 0.29 20.65 0.84M(+ 0.04) 0.30(+ 0.01)

The numbers inside the parentheses indicate the parameter/computational overhead. w denotes the widening factor in WideResNet (Zagoruyko and
Komodakis 2016) and k denotes the growth rate in DenseNet (Huang et al. 2017). For the DenseNet (Huang et al. 2017), we put our module back
and forth of the transition block
Bold values indicate the positive effect of the proposed module

Table 4 Experiments on image classification tasks: ImageNet 1K classification

Architecture Original Re-implement With BAM

Top-1 err. Top-5 err. Top-1 Top-5 Params GFLOPs Top-1 Top-5 Params GFLOPS

ResNet18 – – 29.60 10.55 11.69M 1.81 28.88 10.01 11.71M(+ 0.02) 1.82(+ 0.01)

ResNet50 24.7 7.8 24.56 7.50 25.56M 3.86 24.02 7.18 25.92M(+ 0.36) 3.94(+ 0.08)

ResNet101 23.6 7.1 23.38 6.88 44.55M 7.57 22.44 6.29 44.91M(+ 0.36) 7.65(+ 0.08)

WideResNet18 (widen = 1.5) 27.06 9.0 26.85 8.88 25.88M 3.87 26.67 8.69 25.93M(+ 0.05) 3.88(+ 0.01)

WideResNet18 (widen = 2.0) 25.58 8.06 25.63 8.20 45.62M 6.70 25.00 7.81 45.71M(+ 0.09) 6.72(+ 0.02)

ResNeXt50 (32 × 4d) 22.2 – 22.35 6.01 25.03M 3.77 21.92 5.89 25.39M(+ 0.36) 3.85(+ 0.08)

MobileNetV2 (Sandler et al. 2018) 28.0 – 28.27 9.63 3.505M 0.300 27.50 9.35 3.516M(+ 0.011) 0.307(+ 0.007)

SqueezeNet v1.1 (Iandola et al. 2016). The numbers inside the parentheses indicate the parameter/computational overhead. w denotes the widening
factor in WideResNet (Zagoruyko and Komodakis 2016). ResNet (He et al. 2016a) results are obtained from the Github page https://github.com/
Kaiminghe/deep-residual-networks. SqueezeNet v1.1 (Iandola et al. 2016) result is obtained from the Github page https://github.com/DeepScale/
SqueezeNet/tree/master/SqueezeNet_v1.1
Bold values indicate the positive effect of the proposed module

5.3 Classification Results on ImageNet-1K

The ILSVRC 2012 classification dataset (Deng et al. 2009)
consists of 1.2 million images for training and 50,000 for
validation with 1000 object classes. We adopt the same data
augmentation scheme with (He et al. 2016a, b) for training
and apply a single-crop evaluation with the size of 224 ×
224 at test time. Following (He et al. 2016a, b; Huang et al.
2016), we report classification errors on the validation set.
ImageNet classification benchmark is one of the largest and
most complex image classification benchmark, and we show
the effectiveness of BAM in such a general and complex
task. We use the baseline networks of ResNet (He et al.
2016a),WideResNet (Zagoruyko andKomodakis 2016), and
ResNeXt (Xie et al. 2017) which are used for ImageNet
classification task. More details are included in the supple-
mentary material.

As shown in Table 4, the networks with BAM outperform
all the baselines once again, demonstrating that BAM can
generalize well on various models in the large-scale dataset.
Note that the overhead of parameters and computation is
negligible, which suggests that the proposed module BAM
can significantly enhance the network capacity efficiently.
Another notable thing is that the improved performance
comes from placing only three modules overall the network.

5.4 Effectiveness of BAMwith Compact Networks

The main advantage of our module is that it significantly
improves performance while putting trivial overheads on
the model/computational complexities. To demonstrate the
advantage inmorepractical settings,we incorporate ourmod-
ulewith compact networks (Howard et al. 2017; Iandola et al.
2016), which have tight resource constraints. Compact net-
works are designed for mobile and embedded systems, so
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Table 5 MS COCO detection results

Architecture mAP@.5 mAP@.75 mAP@[.5,.95]

ResNet101 48.4 30.7 29.1

ResNet101 + BAM 50.2 32.5 30.4

Object detection mAP(%) is reported. We adopt Faster-RCNN (Ren
et al. 2015) as our detection method and ImageNet pre-trained
ResNet101 (He et al. 2016a) as baseline network
All results are reproduced in the PyTorch framework
Bold values indicate the positive effect of the proposed module

the design options have computational and parametric limi-
tations.

As shown in Table 4, BAM boosts the accuracy of all
the models with little overheads. Since we do not adopt any
squeezing operation (Howard et al. 2017; Iandola et al. 2016)
on ourmodule, we believe there is more room to be improved
in terms of efficiency.

5.5 MS COCO Object Detection

We conduct object detection on the Microsoft COCO
dataset (Lin et al. 2014). According to Bell et al. (2016) and
Liu et al. (2016), we trained our model using all the training
images as well as a subset of validation images, holding out
5000 examples for validation. We adopt Faster-RCNN (Ren
et al. 2015) as our detectionmethod and ImageNet pre-trained
ResNet101 (He et al. 2016a) as a baseline network. Here we
are interested in improving performance by plugging BAM
to the baseline. Because we use the same detection method
of both models, the gains can only be attributed to our mod-
ule BAM. As shown in the Table 5, we observe significant
improvements from the baseline, demonstrating generaliza-
tion performance of BAM on other recognition tasks.

In Table 6, we compute mAP over different IoU thresh-
olds and coco object size criteria (Lin et al. 2014).We confirm
that the performance enhancement is not at a certain thresh-
old but in overall. Note that the relative improvement, which
we define as accuracy improvement over the baseline perfor-
mance, are amplified at higher IoU thresholds, demonstrating
that attention module is effective for accurate bounding box
prediction. The BAM also improves the baseline model over

Table 7 VOC2007 detection test set results

BackBone Detector mAP@.5 Params (M)

VGG16 SSD 77.8 26.5

VGG16 StairNet* 78.8 32.0

VGG16 StairNet 78.9 32.0

VGG16 StairNet + BAM 79.3 32.1

MobileNet SSD 68.1 5.81

MobileNet StairNet 70.1 5.98

MobileNet StairNet + BAM 70.6 6.00

Object detection mAP(%) is reported. We adopt StairNet (Woo et al.
2018a) as our baseline
Bold values indicate the positive effect of the proposed module
*Indicates the original paper performance

all the different object sizes rather than improving it at a
specific object size.

5.6 VOC 2007 Object Detection

We further experiment BAM on the PASCAL VOC 2007
detection task. In this experiment, we apply BAM to the
detectors. We adopt the StairNet (Woo et al. 2018a) frame-
work, which is one of the strongest multi-scale method
based on the SSD (Liu et al. 2016). We place BAM right
before every classifier, refining the final features before the
prediction, enforcing model to adaptively select only the
meaningful features. The experimental results are summa-
rized in Table 7. We can clearly see that BAM improves the
accuracy of all strong baselines with two backbone networks.
Note that accuracy improvement of BAMcomeswith a negli-
gible parameter overhead, indicating that enhancement is not
due to a naive capacity-increment but because of our effective
feature refinement. In addition, the result using the light-
weight backbone network (Howard et al. 2017) again shows
that BAM can be an interesting method to low-end devices.

5.7 Super Resolution

For the classification and detection tasks, CNNs are used to
recognize single or multiple target in the given image respec-
tively. We further explore the applicability of BAM in more

Table 6 Detailed MS COCO detection results

Architecture mAP@0.5 @0.55 @0.60 @0.65 @0.70 @0.75 @0.80 @0.85 @0.90 @0.95 Small Medium Large

ResNet101 48.4 45.9 43.4 40 35.7 30.7 24.1 15.6 6.5 0.59 11.5 33.2 44.3

ResNet101 + BAM 50.2 47.5 44.7 41.7 37.4 32.5 25.5 17.0 7.3 0.76 12.6 34.6 46.4

Relative improvement + 3.7% + 3.5% + 3.0% + 4.3% + 4.8% + 5.7% + 5.8% + 9.0% + 12.3% + 28.8% 9.6% 4.2% + 4.7%

The small, medium, and large indicates mAP over different IoU thresholds from 0.5 to 0.95 which are computed based on a coco object size
criteria (Lin et al. 2014)
Bold values indicate the positive effect of the proposed module
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Table 8 Super Resolution experiments

Architecture SET5 SET14

SRResNet 31.5548/0.8901 28.2529/0.7807

SRResNet + BAM 31.6688/0.8915 28.2827/0.7814

We compare the effect of BAM integrated ResNet with baseline SRRes-
Net model
Bold values indicate the positive effect of the proposed module

Table 9 ADE20K scene parsing experiments

Encoder Decoder mIoU Pixel accuracy

ResNet50 UperNet 0.3157 75.33%

ResNet50+BAM UperNet 0.3497 76.60%

We compare the effect of BAM integrated ResNet (He et al. 2016b)
encoder with UperNet (Xiao et al. 2018) decoder. Single scale evalua-
tion results are reported
Bold values indicate the positive effect of the proposed module

challenging pixel-level prediction tasks. We first apply BAM
in super resolution task.We set SRResNet (Ledig et al. 2017)
as our baseline model and place one BAM module at every
4th ResBlock to construct SRResNet + BAMmodel.We per-
form experiments on two widely used benchmark datasets:
Set5 and Set14. All experiments are performed with a scale
factor of 4× between low- and high-resolution images. This
corresponds to a total 16× reduction in image pixels. For
fair comparison, all reported PSNR [dB] and SSIM scores
were calculated on the y-channel of center-cropped images,
removing a 4-pixel wide strip from each border.We use 2017
COCO train dataset (118k images) for training both baseline
and BAM-integrated model. We follow the training details
as given in the original paper (Ledig et al. 2017). We confirm
that PSNR and SSIM scores of reproduced baseline match
closely to the reported values.

As we can see in Table 8, BAM improves over the base-
line performance in the super resolution task. Please note
that BAM is proposed and ablated on semantic tasks, and is
not optimized for pixel-level prediction task, but it still shows
improvement over the baseline.Webelievemoderate changes
to the design of attentionmodule can further improve the per-
formance. Here, we focus on showing the attention process
can be an effective solution for the pixel-level inference task.

5.8 ADE20K Scene Parsing

We now investigate the effectiveness of BAM in ADE20K
scene parsing task (Zhou et al. 2019). We adopt a recent
state-of-the-art architecture UperNet (Xiao et al. 2018) and
place BAM to the encoder part. We use the official PyTorch
code provided by the authors (Zhou et al. 2018). We use
the encoder architecture of ResNet50, and the decoder archi-
tecture of UperNet. Following the default hyper-parameters
(segmentation downsampling 4, padding 32).

Fig. 3 Qualitative evaluation on ADE20K validation set. Several val-
idation examples are shown above. Baseline is ResNet50(encoder) +
UperNet, and ours is ResNet50 & BAM + UperNet. We can see that
BAM induces the network to capture a finer object extent

The experiment results are summarized in Table 9. The
results again shows that attention process is effective for
pixel-level inference task.We also provide qualitative results
in Fig. 3. We can see that BAM helps the model to cap-
ture a finer object extent such as boundary shape, edges, and
small targets. We see that attention process enables contex-
tual reasoning and provides strong global cue to resolve local
ambiguities.

5.9 Comparison with Squeeze-and-Excitation

We conduct additional experiments to compare our method
with SE in CIFAR-100 classification task. Table 10 sum-
marizes all the results showing that BAM outperforms SE
in most cases with fewer parameters. Our module requires
slightly more GFLOPS but has much less parameters than
SE, as we place our module only at the bottlenecks not every
conv blocks.

6 Analysis on the Effect of BAM

We have shown that BAM can improve the performance
of a deep network for various vision tasks. Now, we pro-
vide in-depth analysis of how a BAM-integrated model (i.e.,
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Table 10 BAM versus SE (Hu et al. 2018b)

Architecture Params GFLOPs Error

ResNet50 23.71M 1.22 21.49

ResNet50 + SE 26.24M 1.23 20.72

ResNet50 + BAM 24.07M 1.25 20.00

PreResNet110 1.73M 0.245 22.22

PreResNet110 + SE 1.93M 0.245 21.85

PreResNet110 + BAM 1.73M 0.246 21.96

WideResNet28 (w = 8) 23.40M 3.36 20.40

WideResNet28 (w = 8) + SE 23.58M 3.36 19.85

WideResNet28 (w = 8) + BAM 23.42M 3.37 19.06

ResNext29 16 × 64d 68.25M 9.88 17.25

ResNext29 16 × 64d + SE 68.81M 9.88 16.52

ResNext29 16 × 64d + BAM 68.34M 9.9 16.39

CIFAR-100 experiment results. Top-1 errors are reported
All results are reproduced in the PyTorch framework.Bold values indi-
cate the positive effect of the proposed module

ResNet50 + BAM) may differ from a vanilla baseline model
(i.e., ResNet50) in several aspects. We first explore the fea-
tures of these models using a class selectivity index proposed
by Morcos et al. (2018). Next, we provide visualization
results of the attention processwith regard to the case ofwhen
the BAM-integrated model succeeds in classification but the
baseline fails. Finally, we investigate the channel attentions
and the spatial attentions of the BAM-integrated model.

6.1 Class-Selectivity Index

Class-selectivity is a neuro-science inspired metric proposed
by Morcos et al. (2018). For each feature map, the met-
ric computes the normalized difference between the highest
class-conditional mean activity and the mean of all other
classes over a given data distribution. The resulting value
varies between zero and one, where zero indicates that the
filter produced same value for every class (i.e., feature re-
use) and one indicates that a filter only activates for a single
class. We compute the class-selectivity index for the features
generated from two models (i.e., ResNet50 with and without
BAM). The distribution of class-selectivity is illustrated in
Fig. 4.

We observe a common underlying trend in both mod-
els: the class-selectivity increases gradually as the stages
progress. It is well known that the filters of deep networks
tend to extract class-agnostic features at the early stage (i.e.,
low-level features) while class-specific features are extracted
at the last stage. In contrast to the baseline model, at the
stage 2 and 3, the distributions of class-selectivity for the
BAM-integrated model appears to be separated. We conjec-
ture that the attention module helps feature re-use within
the network and prevents allocating highly specialized units.

Fig. 4 Class-selectivity index plot of ResNet50 and ResNet50+BAM
in ImageNet

As a result, the sub-features of intermediate stages from the
BAM-integrated model shows less class selectivity than the
ResNet50 baseline (see Fig. 4).
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Fig. 5 Visualizing the attention process of BAM. In order to provide an
intuitive understanding ofBAM’s role,we visualize image classification
process using the images that baseline (ResNet50) fails to classify cor-
rectly while the model with BAM succeeds. Using the models trained

on ImageNet-1K, we gather all the 3D attention maps from each bottle-
neck and examine their distribution spatially and channel-wise. We can
clearly observe that the module BAM successfully drives the network
to focus on the target while the baseline model fails

6.2 Qualitative Results

In Fig. 5, we visualize our attention maps and compare
with the baseline feature maps for thorough analysis of
accuracy improvement. We compare two models trained on
ImageNet-1K: ResNet50 and ResNet50 + BAM. We select
three examples that the baseline model fails to correctly
classify while the model with BAM succeeds. We gather
all the 3D attention maps at the bottlenecks and examine
their distributions with respect to the channel and spatial
axes respectively. For visualizing the 2D spatial attention
maps, we averaged attention maps over the channel axis and

resized them. All the 2D maps are normalized according to
the global statistics at each stage computed from the whole
ImageNet-1K training set. For visualizing the channel atten-
tion profiles, we averaged our attention map over the spatial
axis and uniformly sampled 200 channels similar to Hu et al.
(2018b).

As shown in Fig. 5, we can observe that the module BAM
drives the network to focus on the target gradually while
the baseline model shows more scattered feature activations.
Note that accurate targeting is important for the fine-grained
classification, as the incorrect answers of the baseline are
reasonable errors. At the first stage, we observe high vari-
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Fig. 6 Successful cases with BAM. The shown examples are the intermediate activations and BAM attention maps when the baseline + BAM
succeeds and the baseline fails. Figure best viewed in color (Color figure online)
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ance along the channel axis and enhanced 2D feature maps
after BAM. Since the theoretical receptive field size at the
first bottleneck is 35, compared to the input image size of
224, the features contain only local information of the input.
Therefore, the filters of attention map at this stage act as a
local feature denoiser.We can infer that both channel and spa-
tial attention contributes together to selectively refine local
features, learning what (‘channel’) and where (‘spatial’) to
focus or suppress. The second stage shows an intermediate
characteristic of the first and final stages. At the final stage,
the module generates binary-like 2D attention maps focus-
ing on the target object. In terms of channel, the attention
profile shows few spikes with low variance. We conjecture
that this is because there is enough information about ‘what’
to focus at this stage. Even it is noisy, note that the features
before applying the module show high activations around
the target, indicating that the network already has a strong
clue in what to focus on. By comparing the features of the
baseline and before/after BAM, we verify that BAM accu-
rately focuses on the target object while the baseline features
are still scattered. The visualization of the overall attention
process demonstrates the efficacy of BAM, which refines
the features using two complementary attentions jointly to
focus on more meaningful information. Moreover, the stage-
by-stage gradual focusing resembles a hierarchical human
perception process (Hubel and Wiesel 1959; Riesenhuber
and Poggio 1999; Marr and Vision 1982), suggesting that
BAM drives the network to mimic the human visual system
effectively.

6.3 Visualization Results

We show more visualization results of the attention process
in Fig. 6 from ImageNet validation set. The listed samples are
correctly classified by the BAM-integrated model ResNet50
+ BAM, but incorrectly classified by the baseline model of
ResNet50. The examples are listed with intermediate fea-
tures and attention maps (averaged over channel axis for
visualization). Starting from the early stage 1, we can clearly
observe that the attention module acts as a feature denoiser,
successfully suppressing much of the noise and highlighting
on visually meaningful contents. Figures are best viewed in
color.

7 Conclusion

In this work, we propose a simple and light-weight atten-
tionmodule, namedBottleneck AttentionModule, to improve
the performance of CNNs. BAM is a self-contained module
composed of off-the-shelf CNN layers, so it can be easily
implemented and added upon any CNN architectures. Our
module learnswhat andwhere to focus or suppress efficiently

through two separate pathways and refines intermediate fea-
tures effectively. Inspired by a human visual system, we
suggest placing an attention module at the bottleneck of a
network which is the most critical points of information flow,
and empirically verified it. To show its efficacy,we conducted
extensive experiments with various state-of-the-art models
and confirmed that BAM outperforms all the baselines on
four different types of vision tasks: classification, detection,
super-resolution, and scene parsing. Moreover, we analyze
and visualize how themodule acts on the intermediate feature
maps to get a clearer understanding. We believe our findings
of adaptive feature refinement at the bottleneck is helpful to
the other vision tasks as well.
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