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Abstract
The optical flow of humans is well known to be useful for the analysis of human action. Recent optical flow methods focus on
training deep networks to approach the problem. However, the training data used by them does not cover the domain of human
motion. Therefore, we develop a dataset of multi-human optical flow and train optical flow networks on this dataset. We use
a 3D model of the human body and motion capture data to synthesize realistic flow fields in both single- and multi-person
images. We then train optical flow networks to estimate human flow fields from pairs of images. We demonstrate that our
trained networks are more accurate than a wide range of top methods on held-out test data and that they can generalize well
to real image sequences. The code, trained models and the dataset are available for research.

Keywords Optical · Flow · Deep · Learning · Human · Bodies · Synthetic · Dataset · Humanflow

1 Introduction

A significant fraction of videos on the Internet contain people
moving (Geman andGeman 2016) and the literature suggests
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that optical flow plays an important role in understanding
human action (Jhuang et al. 2013; Soomro et al. 2012). Sev-
eral action recognition datasets (Soomro et al. 2012; Kuehne
et al. 2011) contain humanmotion as amajor component. The
2D motion of humans in video, or human optical flow, is an
important feature that provides a building block for systems
that can understand and interact with humans. Human optical
flow is useful for various applications including analyzing
pedestrians in road sequences, motion-controlled gaming,
activity recognition, human pose estimation, etc.

Despite this, optical flow has previously been treated as a
generic, low-level, vision problem. Given the importance of
people, and the value of optical flow in understanding them,
we develop a dataset and trained models that are specifically
tailored to humans and their motion. Such motions are non-
trivial since humans are complex, articulated objects that vary
in shape, size and appearance. They move quickly, adopt a
wide range of poses, and self-occlude or occlude in multi-
person scenarios.

Our goal is to obtain more accurate 2D motion estimates
for human bodies by training a flow algorithm specifically for
human movement. To do so, we create a large and realistic
dataset of humansmoving in virtual worlds with ground truth
optical flow (Fig. 1a), called theHumanOptical Flow dataset.
This is comprised of two parts; the Single-Human Optical
Flow dataset (SHOF), where the image sequences contain
only one person in motion and the Multi-Human Optical
Flow dataset (MHOF) where images contain multiple peo-
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ple involving significant occlusion between them.Weanalyse
the performance of SPyNet (Ranjan and Black 2017) and
PWC-Net (Sun et al. 2018) by training (fine-tuning) them
on both the SHOF and MHOF dataset. We observe that
the optical flow performance of the networks improves on
sequences containing human scenes, both qualitatively and
quantitatively. Furthermore we show that the trained net-
works generalize to real video sequences (Fig. 1c). Several
datasets and benchmarks (Baker et al. 2011; Geiger et al.
2012; Butler et al. 2012) have been established to drive the
progress in optical flow. We argue that these datasets are
insufficient for the task of human motion estimation and,
despite its importance, no attention has been paid to datasets
and models for human optical flow. One of the main reasons
is that dense human motion is extremely difficult to capture
accurately in real scenes. Without ground truth, there has
been little work focused specifically on estimating human
optical flow. To advance research on this problem, the com-
munity needs a dataset tailored to human optical flow.

A key observation is that recent work has shown that opti-
cal flowmethods trained on synthetic data (Ranjan and Black
2017; Dosovitskiy et al. 2015; Ilg et al. 2016) generalize rel-
atively well to real data. Additionally, these methods obtain
state-of-the-art results with increased realism of the training
data (Mayer et al. 2016; Gaidon et al. 2016). This motivates
our effort to create a dataset designed for human motion.

To that end, we use the SMPL (Bogo et al. 2016)
and SMPL+H (Romero et al. 2017) models, that capture
the human body alone and the body together with articu-
lated hands respectively, to generate different human shapes
including hand and finger motion. We then place humans
on random indoor backgrounds and simulate human activi-
ties like running, walking, dancing etc. using motion capture
data (Loper et al. 2014; Mahmood et al. 2019). Thus, we
create a large virtual dataset that captures the statistics of
natural human motion in multi-person scenarios. We then
train optical flow networks on this dataset and evaluate their
performance for estimating humanmotion.While the dataset
can be used to train any flowmethod, we focus specifically on
networks based on spatial pyramids, namely SpyNet (Ran-
jan and Black 2017) and PWC-Net (Sun et al. 2018), because
they are compact and computationally efficient.

A preliminary version of this work appeared in Ranjan
et al. (2018) that presented a dataset and model for human
optical flow for the single-person case with a body-only
model. The present work extends (Ranjan et al. 2018) for the
multi-person case, as images with multiple occluding people
have different statistics. It further employs a holistic model
of the body together with hands for more realistic motion
variation. This work also extends training SPyNet (Ranjan
and Black 2017) and PWC-Net (Sun et al. 2018) using the
new dataset in contrast to training only SPyNet in the ear-

lier work Ranjan et al. (2018). Our experiments show both
qualitative and quantitative improvements.

In summary, ourmajor contributions in this extendedwork
are: (1) We provide the Single-Human Optical Flow dataset
(SHOF) of human bodies in motion with realistic textures
and backgrounds, having 146, 020 frame pairs for single-
person scenarios. (2) We provide the Multi-Human Optical
Flow dataset (MHOF), with 111, 312 frame pairs of multiple
human bodies inmotion, with improved textures and realistic
visual occlusions, but without (self-)collisions or intersec-
tions of body meshes. These two datasets together comprise
the Human Optical Flow dataset. (3) We fine-tune SPyNet
(Ranjan et al. 2018) on SHOF and show that its performance
improves by about 43% (over the initial SPyNet), while it
also outperforms existing state of the art by about 30%. Fur-
thermore, we fine-tune SPyNet and PWC-Net on MHOF
and observe improvements of 10 − 20% (over the initial
SPyNet and PWC-Net). Compared to existing state of the art,
improvements are particularly high for human regions. After
masking out the background, we observe improvements of
up to 13% for human pixels. (4) We provide the dataset files,
dataset rendering code, training code and trainedmodels1 for
research purposes.

2 RelatedWork

2.1 HumanMotion

Human motion can be understood from 2D motion. Early
work focused on themovement of 2D joint locations (Johans-
son 1973) or simple motion history images (Davis 2001).
Optical flow is also a useful cue. Black et al. (1997) use
principal component analysis (PCA) to parametrize human
motion but use noisy flow computed from image sequences
for training data. More similar to us, Fablet and Black (2002)
use a 3D articulated body model and motion capture data to
project 3D bodymotion into 2D optical flow. They then learn
a view-based PCA model of the flow fields. We use a more
realistic body model to generate a large dataset and use this
to train a CNN to directly estimate dense human flow from
images.

Only a few works in pose estimation have exploited
human motion and, in particular, several methods (Fragki-
adaki et al. 2013;Zuffi et al. 2013) use optical flowconstraints
to improve 2D human pose estimation in videos. Similar
work (Pfister et al. 2015; Charles et al. 2016) propagates
pose results temporally using optical flow to encourage time
consistency of the estimated bodies. Apart from its applica-
tion in warping between frames, the structural information
existing in optical flow alone has been used for pose estima-

1 https://humanflow.is.tue.mpg.de.
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Fig. 1 aWe simulate humanmotion in virtual worlds creating an exten-
sive dataset with images (top row) and flow fields (bottom row); color
coding from Baker et al. (2011). bWe train SPyNet (Ranjan and Black
2017) and PWC-Net (Sun et al. 2018) for human motion estimation

and show that they perform better when trained on our dataset and c
can generalize to human motions in real world scenes. Columns show
single-person and multi-person cases alternately.

tion (Romero et al. 2015) or in conjunction with an image
stream (Feichtenhofer et al. 2016; Dong et al. 2018).

2.2 Learning Optical Flow

There is a long history of optical flow estimation, which we
do not review here. Instead, we focus on the relatively recent
literature on learning flow. Early work looked at learning
flow using Markov Random Fields (Freeman et al. 2000),
PCA (Wulff and Black 2015), or shallow convolutional mod-
els (Sun et al. 2008). Other methods also combine learning
with traditional approaches, formulating flow as a discrete
(Güney and Geiger 2016) or continuous (Revaud et al. 2015)
optimization problem.

The most recent methods employ large datasets to esti-
mate optical flow using deep neural networks. Voxel2Voxel
(Tran et al. 2016) is based on volumetric convolutions to
predict optical flow using 16 frames simultaneously but does
not performwell on benchmarks. Othermethods (Ranjan and
Black 2017; Dosovitskiy et al. 2015; Ilg et al. 2016) compute
two frame optical flow using an end-to-end deep learning
approach. FlowNet (Dosovitskiy et al. 2015) uses the Flying
Chairs dataset (Dosovitskiy et al. 2015) to compute optical
flow in an end-to-end deep network. FlowNet 2.0 (Ilg et al.
2016) uses stacks of networks from FlowNet and performs
significantly better, particularly for small motions. Ranjan
and Black (2017) propose a Spatial Pyramid Network that
employs a small neural network on each level of an image
pyramid to compute optical flow. Their method uses a much
smaller number of parameters and achieves similar perfor-
mance as FlowNet (Dosovitskiy et al. 2015) using the same
training data. Sun et al. (2018) use image features in a similar
spatial pyramid network achieving state-of-the-art results on
optical flow benchmarks. Since the above methods are not

trained with human motions, they do not perform well on
our Human Optical Flow dataset.

2.3 Optical Flow Datasets

Several datasets have been developed to facilitate training
and benchmarking of optical flow methods. Middlebury is
limited to smallmotions (Baker et al. 2011),KITTI is focused
on rigid scenes and automotive motions (Geiger et al. 2012),
while Sintel has a limited number of synthetic scenes (Butler
et al. 2012). These datasets are mainly used for evaluation of
optical flow methods and are generally too small to support
training neural networks.

To learn optical flow using neural networks, more datasets
have emerged that contain examples on the order of tens of
thousands of frames. The Flying Chairs (Dosovitskiy et al.
2015) dataset contains about 22,000 samples of chairs mov-
ing against random backgrounds. Although it is not very
realistic or diverse, it provides training data for neural net-
works (Ranjan and Black 2017; Dosovitskiy et al. 2015) that
achieve reasonable results on optical flow benchmarks. Even
more recent datasets (Mayer et al. 2016; Gaidon et al. 2016)
for optical flow are especially designed for training deep neu-
ral networks. Flying Things (Mayer et al. 2016) contains tens
of thousands of samples of random 3D objects in motion.
The Creative Flow+ Dataset (Shugrina et al. 2019) contains
diverse artistic videos in multiple styles. The Monkaa and
Driving scene datasets (Mayer et al. 2016) contain frames
from animated scenes and virtual driving respectively. Vir-
tual KITTI (Gaidon et al. 2016) uses graphics to generate
scenes like those in KITTI and is two orders of magnitude
larger. Recent synthetic datasets (Gaidon et al. 2016) show
that synthetic data can train networks that generalize to real
scenes.
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For human bodies, some works (Barbosa et al. 2018;
Ghezelghieh et al. 2016) render images with the non-learned
artist-defined MakeHuman model (Bastioni et al. 2007) for
3D pose estimation or person re-identification, correspond-
ingly. However, statistical parametric models learned from
3D scans of a big human population, like SMPL (Loper et al.
2015), capture the real distribution of human body shape. The
SURREAL dataset (Varol et al. 2017) uses 3D SMPL human
meshes rendered on top of color images to train networks
for depth estimation, and body part segmentation. While not
fully realistic, they show that this data is sufficient to train
methods that generalize to real data. We go beyond these
works to address the problem of optical flow.

3 The Human Optical Flow Dataset

Our approach generates a realistic dataset of synthetic human
motions by simulating them against different realistic back-
grounds. We use parametric models (Romero et al. 2017;
Loper et al. 2015) to generate synthetic humans with a wide
variety of different human shapes. We employ Blender2 and
its Cycles rendering engine to generate realistic synthetic
image frames and optical flow. In this way we create the
Human Optical Flow dataset, that is comprised of two
parts.Wefirst create theSingle-HumanOptical Flow (SHOF)
dataset (Ranjan et al. 2018) using the body-onlySMPLmodel
(Loper et al. 2015) in images containing a single synthetic
human. However, image statistics are different for the single-
and multi-person case, as multiple people tend to occlude
each other in complicated ways. For this reason we then cre-
ate theMulti-Human Optical Flow (MHOF) dataset to better
capture this realistic interaction. To make images even more
realistic for MHOF, we replace SMPL (Loper et al. 2015)
with the SMPL+H (Romero et al. 2017) model that mod-
els the body together with articulated fingers, to have richer
motion variation. In the rest of this section, we describe the
components of our rendering pipeline, shown in Fig. 2. For
easy reference, in Table 1we summarize the data used to gen-
erate the SHOF and MHOF datasets, while in Table 2 we
summarize the various tools, Blender passes and parameters
used for rendering. In the rest of the section, we describe the
modules used for generating the data.

3.1 Human Body Generation

3.1.1 Body Model

A parametrized body model is necessary to generate human
bodies in a scene. In the SHOF dataset, we use SMPL (Loper
et al. 2015) for generating human body shapes. For the

2 https://www.blender.org.

MHOF dataset, we use SMPL+H (Romero et al. 2017) that
parametrizes the human body together with articulated fin-
gers for increased realism. The models are parameterized by
pose and shape parameters to change the body posture and
identity, as shown in Fig. 2. They also contain a UV appear-
ance map that allows us to change the skin tone, face features
and clothing texture of the resulting virtual humans.

3.1.2 Body Poses

The next step is articulating the human body with different
poses, to create moving sequences. To find such poses, we
use 3D MoCap datasets (Ionescu et al. 2014; Sigal et al.
2010) (Carnegie-mellon mocap database) that capture 3D
MoCap marker positions, glued onto the skin surface of real
human subjects. We then employ MoSh (Loper et al. 2014;
Mahmood et al. 2019) that fits our body model to these 3D
markers by optimizing over parameters of the bodymodel for
articulated pose, translation and shape. The pose specifically
is a vector of axis-angle parameters, that describes how to
rotate each body part around its corresponding skeleton joint.

For the SHOF dataset, we use the Human3.6M dataset
(Ionescu et al. 2014), that contains five subjects for training
(S1, S5, S6, S7, S8) and two for testing (S9, S11). Each sub-
ject performs 15 actions twice, resulting in 1,559,985 frames
for training and 550,727 for testing. These sequences are
subsampled at a rate of 16×, resulting in 97,499 training and
34,420 testing poses from Human3.6M.

For theMHOFdataset,we use theCMU(Carnegie-mellon
mocap database) and HumanEva (Sigal et al. 2010) MoCap
datasets to increase motion variation. From CMU MoCap
dataset, we use 2605 sequences of 23 high-level action cat-
egories. From the HumanEva dataset, we use more than 10
sequences performing actions from 6 different action cat-
egories. To reduce redundant poses and allow for larger
motions between frames, sequences are subsampled to 12
fps resulting in 321,873 poses. As a result the final MHOF
dataset has 254, 211 poses for training, 32,670 for validation
and 34,992 for testing.

3.1.3 Hand Poses

Traditionally MoCap systems and datasets (Ionescu et al.
2014; Sigal et al. 2010) (Carnegie-mellon mocap database)
record the motion of body joints, and avoid the tedious
capture of detailed hand and finger motion. However, in nat-
ural settings, people use their body, hands and fingers to
communicate social cues and to interact with the physical
world. To enable our methods to learn such subtle motions,
it should be represented in our training data. Therefore, we
use the SMPL+H model (Romero et al. 2017) and augment
the body-only MoCap datasets, described above, with fin-
ger motion. Instead of using random finger poses that would
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Fig. 2 Pipeline for generating
the RGB frames and ground
truth optical flow for the
Multi-Human Optical Flow
dataset. The datasets used in
this pipeline are listed in
Table 1, while the various
rendering component are
summarized in Table 2

Table 1 Comparison of datasets and most important data preprocessing steps used to generate the SHOF and MHOF datasets

SHOF MHOF Purpose

MoCap data Human3.6M (Ionescu et al. 2014) CMU (Gross and Shi 2001),
HumanEva (Sigal et al. 2010)

Natural body poses

MoCap → SMPL MoSh (Loper et al. 2014;
Mahmood et al. 2019)

MoSh (Loper et al. 2014;
Mahmood et al. 2019)

SMPL parameters from MoCap

Training poses 97,499 254,211 Articulate virtual humans

Validation poses – 32,670 Articulate virtual humans

Test poses 34,420 34,992 Articulate virtual humans

Hand pose dataset – Embodied Hands (Romero et al.
2017)

Natural finger poses

Body shapes Sample Gaussian distr. (CAESAR)
bounded within [− 3, 3] st.dev.

Sample Gaussian distr. (CAESAR)
bounded within [− 2.7, 2.7]
st.dev.

Body proportions of virtual
humans

Textures CAESAR, CAESAR (hands improved), Appearance of virtual humans

non-CAESAR non-CAESAR (hands improved)

Background LSUN (Yu et al. 2015) (indoor)
417,597 images

SUN397 (Xiao et al. 2010) (indoor
and outdoor) 30,022 images

Scene background

A short description of the respective part is provided in the last column

generate unrealistic optical flow, we employ the Embodied
Hands dataset (Romero et al. 2017) and sample continuous
finger motion to generate realistic optical flow. We use 43
sequences of hand motion with 37,232 frames recorded at
60 Hz by Romero et al. (2017). Similarly to body MoCap,
we subsample hand MoCap to 12 fps to reduce overlapping
poses without sacrificing variability.

3.1.4 Body Shapes

Human bodies vary a lot in their proportions, since each per-
son has a unique body shape. To represent this in our dataset,
we first learn a gender specific Gaussian distribution of shape
parameters, by fitting SMPL to 3D CAESAR scans (Robi-
nette et al. 2002) of both genders. We then sample random
body shapes from this distribution to generate a large number

of realistic body shapes for rendering. However, naive sam-
pling can result in extreme and unrealistic shape parameters,
therefore we bound the shape distribution to avoid unlikely
shapes.

For the SHOF dataset, we bound the shape parameters
to the range of [− 3, 3] standard deviations for each shape
coefficient and draw a new shape for every subsequence of
20 frames to increase variance.

For the MHOF dataset, we account explicitly for colli-
sions and intersections, since intersecting virtual humans
would result in generation of inaccurate optical flow. Tomin-
imize such cases, we use similar sampling as above with
only small differences. We first use shorter subsequences of
10 frames for less frequent inter-human intersections. Fur-
thermore, we bound the shape distribution to the narrower
range of [− 2.7, 2.7] standard deviations, since re-targeting
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Table 2 Comparison of tools, Blender passes and parameters used to generate the SHOF and MHOF datasets

SHOF MHOF Purpose

Rendering Cycles Cycles Synthetic RGB image rendering

Optical flow Vector pass (Blender) Vector pass (Blender) Optical flow ground truth

Segmentation masks Material pass (Blender) Material pass (Blender) Body part segment. masks (Fig. 3)

Motion blur Vector pass (Blender) Vector pass (Blender) Realistic motion blur artifacts

Imaging noise Gaussian blur (pixel space) Gaussian blur (pixel space) Realistic image imperfections

1px std.dev. for 30% of images 1px std.dev. for 30% of images

Camera translation Sampled for 30% of frames from
Gaussian with 1 cm std.dev.

Sampled for 30% of subsequences
from Gaussian with 1 cm std.dev.

Realistic perturbations of the
camera (and resulting optical
flow)

Camera rotation Sampled per frame from Gaussian
with 0.2◦ std.dev.

– Realistic perturbations of the
camera (and resulting optical
flow)

Illumination Spherical harmonics (Green 2003) Spherical harmonics (Green 2003) Realistic lighting model

Subsequence length 20 frames 10 frames Number of successive frames with
consistent rendering parameters

Mesh collision – BVH (Teschner et al. 2004) Detect (self-)collisions on the
triangle level to avoid defect
optical flow

The last column provides a short description of the respective method

motion to unlikely body shapes is more prone to mesh self-
intersections.

3.1.5 Body Texture

We use the CAESAR dataset (Robinette et al. 2002) to
generate a variety of human skin textures. Given SMPL regis-
trations toCAESARscans, the original per-vertex color in the
CAESAR dataset is transferred into the SMPL texture map.
Since fiducial markers were placed on the bodies of CAE-
SAR subjects, we remove them from the textures and inpaint
them to produce a natural texture. In total, we use 166 CAE-
SAR textures that are of good quality. The main drawback of
CAESAR scans is their homogeneity in terms of outfit, since
all of the subjects wore grey shorts and the women wore
sports bras. In order to increase the clothing variety, we also
use textures extracted from our 3D scans (referred as non-
CAESAR in the following), to which we register SMPLwith
4Cap (Pons-Moll et al. 2015). A total of 772 textures from
7 different subjects with different clothes were captured. We
anonymized the textures by replacing the face by the average
face in CAESAR, after correcting it to match the skin tone
of the texture. Textures are grouped according to the gender,
which is randomly selected for each virtual human.

For theSHOFdataset the textureswere split in training and
testing sets with a 70/30 ratio, while each texture dataset is
sampledwith a 50%chance. For theMHOFdataset, we intro-
ducemore refined splittingwith a 80/10/10 ratio for the train,
validation and test sets. Moreover, since we introduce also
finger motion, we want to favour sampling non-CAESAR

textures, due to the bad quality of CAESAR texture maps for
the finger region. Thus each texture is sampled with equal
probability.

3.1.6 Hand Texture

Hands and fingers are hard to be scanned due to occlusions
and measurement limitations. As a result, texture maps are
particularly noisy or might even have holes. Since texture
is important for optical flow, we augment the body texture
maps to improve hand regions. For thiswe followadivide and
conquer approach. First, we capture hand-only scans with a
3dMD scanner (Romero et al. 2017). Then, we create hand-
only textures using the MANO model (Romero et al. 2017),
getting 176 high resolution textures from20 subjects. Finally,
we use the hand-only textures to replace the problematic hand
regions in the full-body texture maps.

We also need to find the best matching hand-only texture
for every body texture. Therefore,we convert all texturemaps
in HSV space, and compute the mean HSV value for each
texture map from standard sampling regions. For full body
textures, we sample face regions without facial hair; while
for hand-only textures, we sample the center of the outer
palm. Then, for each body texture map we find the closest
hand-only texture map in HSV space, and shift the values of
the latter by the HSV difference, so that the hand skin tone
becomes more similar to the facial skin tone. Finally, this
improved hand-only texture map is used to replace the pixels
in the hand-region of the full body texture map.
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3.1.7 (Self-) Collision

The MHOF dataset contains multiple virtual humans mov-
ing differently, so there are high chances of collisions and
penetrations. This is undesirable because penetrations are
physically implausible and unrealistic. Moreover, the gener-
ated ground truth optical flowmight have artifacts. Therefore,
we employ a collision detectionmethod to avoid intersections
and penetrations.

Instead of using simple bounding boxes for rough col-
lision detection, we draw inspiration from Tzionas et al.
(2016) and perform accurate and efficient collision detec-
tion on the triangle level using bounding volume hierarchies
(BVH) (Teschner et al. 2004). This level of detailed detec-
tion allows for challenging occlusions with small distances
between virtual humans, that can commonly be observed for
realistic interactions between real humans. This method is
useful not only for inter-person collision detection, but also
for self-intersections. This is especially useful for our sce-
narios, as re-targeting body and hand motion to people of
different shapes might result in unrealistic self-penetrations.
The method is applicable out of the box, with the only excep-
tion that we exclude checks of neighboring body parts that
are always or frequently in contact, e.g. upper and lower arm,
or the two thighs.

3.2 Scene Generation

3.2.1 Background Texture

For the scene background in the SHOF dataset, we use ran-
dom indoor images from the LSUN dataset (Yu et al. 2015).
This provides a good compromise between simplicity and
the complex task of generating varied full 3D environments.
We use 417, 597 images from the LSUN categories kitchen,
living room, bedroom and dining room. These images are
placed as billboards, 9 meters from the camera, and are not
affected by the spherical harmonics lighting.

In the MHOF dataset, we increase the variability in back-
ground appearance, We employ the Sun397 dataset (Xiao
et al. 2010) that contains images for 397 highly variable
scenes that are both indoor and outdoor, in contrast to LSUN.
For quality reasons, we reject all images with resolution
smaller than 512×512 px, and also reject images that contain
humans using Mask-RCNN (He et al. 2017; Abdulla 2017).
As a result, we use 30, 222 images, split in 24, 178 for the
training set and 3, 022 for each of the validation and test
sets. Further, we increase the distance between the camera
and background to 12 meters, to increase the space in which
the multiple virtual humans can move without colliding fre-
quently with each other, while still being close enough for
visual occlusions.

3.2.2 Scene Illumination

We illuminate the bodies with Spherical Harmonics light-
ing (Green 2003) that defines basis vectors for light direc-
tions. This parameterization is useful for randomizing the
scene light by randomly sampling the coefficients with a bias
towards natural illumination. The coefficients are uniformly
sampled between − 0.7 and 0.7, apart from the ambient
illumination, which has a minimum value of 0.3 to avoid
extremely dark images, and illumination direction, which is
strictly negative to favour illumination coming from above.

3.2.3 Increasing Image Realism

In order to increase realism, we introduced three types of
image imperfections. First, for 30% of the generated images
we introduced camera motion between frames. This motion
perturbs the location of the camera with Gaussian noise of
1 cm standard deviation between frames and rotation noise
of 0.2 degrees standard deviation per dimension in an Euler
angle representation. Second, we added motion blur to the
scene using the Vector Blur Node in Blender, and integrated
over 2 frames sampled with 64 steps between the beginning
and end point of the motion. Finally, we added a Gaussian
blur to 30%of the imageswith a standard deviation of 1 pixel.

3.2.4 Scene Compositing

For animating virtual humans, each MoCap sequence is
selected at least once. To increase variability, each sequence
is split into subsequences. For the first frame of each sub-
sequence, we sample a body and background texture, lights,
blurring and camera motion parameters, and re-position vir-
tual humans on the horizontal plane. We then introduce
a random rotation around the z-axis for variability in the
motion direction.

For the SHOF dataset, we use subsequences of 20 frames,
and at the beginning of each one the single virtual human is
re-positioned in the scene such that the pelvis is projected
onto the image center.

For the MHOF dataset, we increase the variability with
smaller subsequences of 10 frames and introduce more chal-
lenging visual occlusions by uniformly sampling the number
of virtual humans in the range [4, 8]. We sample MoCap
sequences S j with a probability of p j = |S j |

∑|S|
i=1 |Si |

, where

|S j | denotes the number of frames of sequence S j and |S| the
number of sequences. In contrast to the SHOF dataset, for the
MHOF dataset the virtual humans are not re-positioned at the
center, as they would all collide. Instead, they are placed at
random locations on the horizontal plane within camera vis-
ibility, making sure there are no collisions with other virtual
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humans or the background plane during the whole subse-
quence.

3.3 Ground Truth Generation

3.3.1 Segmentation Masks

Using the material pass of Blender, we store for each frame
the ground truth body part segmentation for our models.
Although the body part segmentation for both models is
similar, SMPL models the palm and fingers as one part,
while SMPL+H has a different part segment for each finger
bone. Figure 3 shows an example body part segmentation for
SMPL+H. These segmentation masks allow us to perform a
per body-part evaluation of our optical flow estimation.

3.3.2 Rendering and Ground Truth Optical Flow

For generating images, we use the open source suite Blender
and its vector pass. The render pass is typically used for
producing motion blur, and it produces the motion in image
space of every pixel; i.e. the ground truth optical flow. We
are mainly interested in the result of this pass, together with
the color rendering of the textured bodies.

Fig. 3 Body part segmentation for the SMPL+H model. Symmetrical
body parts are labeled only once. Finger joints follow the same naming
convention as shown for the thumb (best viewed in color)

4 Learning

We train two different network architectures to estimate opti-
cal flow on both the SHOF and MHOF dataset. We choose
compact models that are based on spatial pyramids, namely
SPyNet (Ranjan and Black 2017) and PWC-Net (Sun et al.
2018), shown in Fig. 4. We denote the models trained on
the SHOF dataset by SPyNet + SHOF and PWC + SHOF.
Similarly, we denote models trained on the MHOF dataset
by SPyNet + MHOF and PWC + MHOF.

The spatial pyramid structure employs a convnet at each
level of an image pyramid. A pyramid level works on a par-
ticular resolution of the image. The top level works on the
full resolution and the image features are downsampled aswe
move to the bottomof the pyramid. Each level learns a convo-
lutional layer d, to perform downsampling of image features.
Similarly, a convolution layer u, is learned for decoding opti-
cal flow. At each level, the convnet Gk predicts optical flow
residuals vk at that level. These flow residuals get added at
each level to produce the full flow, VK at the finest level of
the pyramid.

In SPyNet, each convnet Gk takes a pair of images as
inputs along with flow Vk−1 obtained by resizing the output
of the previous level with interpolation. The second frame is
however warped using Vk−1 and the triplet {I 1k , w(I 2k , Vk−1),

Vk−1} is fed as input to the convnet Gk .
In PWC-Net, a pair of image features, {I 1k , I 2k } is input at

a pyramid level, and the second feature map is warped using
using the flow Vk−1 from the previous level of the pyramid.
We then compute the cost-volume c(I 1k , w(I 2k , Vk−1)) over
feature maps and pass it to network Gk to compute optical
flow Vk at that pyramid level.

Weuse the pretrainedweights as initializations for training
both SPyNet and PWC-Net.We train bothmodels end-to-end
to minimize the average End Point Error (EPE).

4.1 Hyperparameters

We follow the same training procedure for SPyNet and PWC-
Net. The only exception to this is the learning rate, which is
determined empirically for each dataset and network from
{10−6, 10−5, 10−4}. For the SHOF we found 10−6 to yield
best results for SpyNet. Predictions of PWC on the SHOF
dataset do not improve for any of these learning rates. For
training on MHOF a learning rate of 10−6 and 10−4 yield
best results for SpyNet and PWC-Net, respectively. We use
Adam (Kingma and Ba 2014) to optimize our loss with
β1 = 0.9 and β2 = 0.999. We use a batch size of 8 and run
400, 000 training iterations. All networks are implemented
in the Pytorch framework. Fine-tuning the networks from
pretrained weights takes approximately 1day on SHOF and
2days on MHOF.
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Fig. 4 Spatial Pyramid Network (Ranjan and Black 2017) (left) and PWC-Net (Sun et al. 2018) (right) for optical flow estimation. At each pyramid
level, network Gk predicts flow at that level which is used to condition the optical flow at the higher resolution level in the pyramid. Adapted from
Sun et al. (2018)

4.2 Data Augmentations

We also augment our data by applying several transforma-
tions and adding noise. Although our dataset is quite large,
augmentation improves the quality of results on real scenes.
In particular, we apply scaling in the range of [0.3, 3], and
rotations in [− 17◦, 17◦]. The dataset is normalized to have
zero mean and unit standard deviation using He et al. (2015).

5 Experiments

In this section, we first compare the SHOF ,MHOF and other
commonoptical flowdatasets.Next,we show that fine-tuning
SPyNet on SHOF improves the model, while we observe that
fine-tuning PWC-Net on SHOF does not improve the model
further. We then fine-tune the same methods on MHOF and
evaluate them. We show that both, SPyNet and PWC-Net
improve when fine-tuned on MHOF. We show that the meth-
ods trained on the MHOF dataset outperform generic flow
estimation methods for the pixels corresponding to humans.
We show on qualitative results that both, the models trained
on SHOF andmodels trained onMHOF seem to generalize to
real word scenes. Finally, we quantitatively evaluate optical
flow methods on the MHOF dataset and on a real sequence
using motion compensated intensity metric.

5.1 Dataset Details

In comparison with other optical flow datasets, our dataset is
larger by an order of magnitude (see Table 3); the SHOF
dataset contains 135,153 training frames and 10,867 test
frames with optical flow ground truth, while the MHOF
dataset has 86,259 training, 13,236 test and 11,817 validation
frames. For the single-person dataset we keep the resolu-

tion small at 256 × 256 px to facilitate easy deployment for
training neural networks. This also speeds up the rendering
process in Blender for generating large amounts of data. We
show the comparisons of processing time of different models
on the SHOF dataset in Table 4. For the MHOF dataset we
increase the resolution to 640 × 640 px to be able to reason
about optical flow even in small body parts like fingers, using
SMPL+H. Our data is extensive, containing a wide variety
of human shapes, poses, actions and virtual backgrounds to
support deep learning systems.

5.2 Comparison on SHOF

We compare the average End Point Errors (EPEs) of opti-
cal flow methods on the SHOF dataset in Table 4, along
with the time for evaluation. We show visual comparisons in
Fig. 5. Human motion is complex and general optical flow
methods fail to capture it. We observe that SPyNet + SHOF
outperforms methods that are not trained on SHOF , and
SPyNet (Ranjan and Black 2017) in particular. We expect
more involved methods like FlowNet2 (Ilg et al. 2016) to
have bigger performance gain than SPyNet when trained on
SHOF .

We observe that FlowNet (Dosovitskiy et al. 2015) shows
poor generalization on our dataset. Since the results of
FlowNet (Dosovitskiy et al. 2015) in Table 4 are very close to
the zero flow (no motion) baseline, we cross-verify by eval-
uating FlowNet on a mixture of Flying Chairs (Dosovitskiy
et al. 2015) and Human Optical Flow and observe that the
flow outputs on SHOF is quite random (see Fig. 5). The main
reason is that SHOF contains a significant amount of small
motions and it is known that FlowNet does not perform very
well on small motions. SPyNet + SHOF (Ranjan and Black
2017) however performs quite well and is able to generalize
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Table 3 Comparison of the Human Optical Flow datasets, namely the Single-Human Optical Flow (SHOF) and the Multi-Human Optical Flow
(MHOF) dataset, with previous optical flow datasets

Dataset # Train frames # Test frames Resolution

MPI Sintel (Butler et al. 2012) 1064 564 1024 × 436

KITTI 2012 (Geiger et al. 2012) 194 195 1226 × 370

KITTI 2015 (Menze and Geiger 2015) 200 200 1242 × 375

Virtual Kitti (Gaidon et al. 2016) 21,260 − 1242 × 375

Flying Chairs (Dosovitskiy et al. 2015) 22,232 640 512 × 384

Flying Things (Mayer et al. 2016) 21,818 4248 960 × 540

Monkaa (Mayer et al. 2016) 8591 − 960 × 540

Driving (Mayer et al. 2016) 4392 − 960 × 540

SHOF (ours) 135,153 10,867 256 × 256

MHOF (ours) 86,259 13,236 640 × 640

Table 4 EPE comparisons and evaluation times of different optical flow methods on the SHOF dataset

Method AEPE Time (s) Learned Fine-tuned on SHOF

Zero 0.6611 − −
FlowNet (Dosovitskiy et al. 2015) 0.5846 0.080 � ×
PCA Layers (Wulff and Black 2015) 0.3652 10.357 × ×
PWC-Net (Sun et al. 2018) 0.2158 0.024 � ×
PWC + SHOF 0.2158 0.024 � �
SPyNet (Ranjan and Black 2017) 0.2066 0.022 � ×
Epic Flow (Revaud et al. 2015) 0.1940 1.863 × ×
LDOF (Brox et al. 2009) 0.1881 8.620 × ×
FlowNet2 (Ilg et al. 2016) 0.1895 0.127 � ×
Flow Fields (Bailer et al. 2015) 0.1709 4.204 × ×
SPyNet + SHOF 0.1164 0.022 � �

Zero refers to the EPE when zero flow (no motion) is always used for evaluation. Evaluation times are based on the SHOF dataset with 256 × 256
image resolution. We time all GPU based methods using a Tesla V100-16GB GPU
Bold values refers to best performance within the class

to body motions. The results however look noisy in many
cases.

Our dataset employs a layered structure where a human is
placed against a background. As such layered methods like
PCA-layers (Wulff and Black 2015) perform very well on a
few images (row 8 in Fig. 5) where they are able to segment
a person from the background. However, in most cases, they
do not obtain good segmentation into layers.

Previous state-of-the-art methods like LDOF (Brox et al.
2009) and Epic-Flow (Revaud et al. 2015) performmuch bet-
ter than others. They get a good overall shape, and smooth
backgrounds. However, their estimation is quite blurred.
They tend to miss the sharp edges that are typical of human
hands and legs. They are also significantly slower.

In contrast, by fine-tuning on our dataset, the performance
of SPyNet + SHOF improves by 40% over SPyNet on the
SHOF dataset. We also find that fine-tuning PWC-Net on the
SHOF does not improve the model. This could be because
SHOF dataset has predominantly small motion which is han-

dled better by SPyNet (Ranjan and Black 2017) architecture.
Empirically, we have seen that PWC-Net has state-of-the-
art performance on standard benchmarks. This motivates
the generation of the MHOF dataset, which includes larger
motions and more complex scenes with occlusions.

A qualitative comparison to popular optical flow methods
can be seen in Fig. 5. Flow estimations of SPyNet + SHOF
can be observed to be sharper than those of methods that are
not trained on human motion. This can especially be seen for
edges.

5.3 Comparison onMHOF

Training (fine-tuning) on theMHOFdataset improvesSPyNet
and PWC-Net on average, as can be seen in Table 5. In partic-
ular PWC + MHOF outperforms SPyNet+MHOF and also
improves over generic state-of-the-art optical flow methods.
Large parts of the image are background, whose movements
are relatively easy to estimate. However, we are particularly
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Fig. 5 Visual comparison of optical flow estimates using different
methods on the Single-Human Optical Flow (SHOF) test set. From
left to right, we show Frame 1, Ground Truth flow, results of FlowNet
(Dosovitskiy et al. 2015), FlowNet2 (Ilg et al. 2016), LDOF (Brox et al.

2009), PCA-Layers (Wulff and Black 2015), EpicFlow (Revaud et al.
2015), SPyNet (Ranjan and Black 2017), SPyNet + SHOF (ours) and
PWC-Net (Sun et al. 2018)

interested in human motions. Therefore, we mask out all
errors of background pixels and compute the average EPE
only on body pixels (see Table 5). For these pixels, light-
weight networks like SpyNet and PWC-Net improve over
almost all generic optical flow estimation methods using our
dataset (SpyNet + MHOF and PWC + MHOF), including
the much larger network FlowNet2. PWC + MHOF is the
best performing method (Table 6).

A more fine grained analysis of EPE across body parts is
shown in Table 7. We obtain EPE of these body parts using
the segmentation shown in Fig. 3. It can be seen that improve-
ments of PWC + MHOF over FlowNet2 are larger for body
parts that are at the end of the kinematic tree (i.e. feet, calves,

arms and in particular fingers). Differences are less strong for
body parts close to the torso. One interpretation of these find-
ings is thatmovements of the torso are easier to predict, while
movements of body parts at the end of the kinematic tree
are more complex and thus harder to estimate. In contrast,
SPyNet+MHOFoutperforms FlowNet2 on body parts close
to the torso and does not learn to capture the more complex
motions of limbs better than FlowNet2.We expect FlowNet2
+ MHOF to perform even better, but we do not include this
here due to its long and tedious training process.

Visual comparisons are shown in Fig. 6. In particular,
PWC + MHOF predicts flow fields with sharper edges than
generic methods or SPyNet + MHOF. Furthermore, the
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Fig. 6 Visual comparison of optical flow estimates using different
methods on the Multi-Human Optical Flow (MHOF) test set. From
left to right, we show Frame 1, Ground Truth flow, results of FlowNet2
(Ilg et al. 2016), LDOF (Brox et al. 2009), PCA-Layers (Wulff and

Black 2015), EpicFlow (Revaud et al. 2015), SPyNet (Ranjan andBlack
2017), SPyNet + MHOF (ours), PWC-Net (Sun et al. 2018) and PWC
+ MHOF (ours)

Table 5 Comparison using End
Point Error (EPE) on the
Multi-Human Optical Flow
(MHOF) dataset

Method Average EPE Average EPE on body pixels Fine-tuned on MHOF

FlowNet 0.808 2.574 ×
PCA Layers 0.556 2.691 ×
Epic Flow 0.488 1.982 ×
SPyNet 0.429 1.977 ×
SPyNet + MHOF 0.391 1.803 �
PWC-Net 0.369 2.056 ×
LDOF 0.360 1.719 ×
FlowNet2 0.310 1.863 ×
PWC + MHOF 0.301 1.621 �

We show the average EPE and body-only EPE. For the latter, the EPE is computed only over segments of the
image depicting a human body. Best results are shown in boldface. A comparison of body-part specific EPE
can be found in Table 7
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Table 6 Comparison using
Motion Compensated Intensity
(MCI) on the Multi-Human
Optical Flow (MHOF) dataset
and a real video sequence

Method Average MCI MHOF Average MCI real

FlowNet 287.328 401.779

PCA layers 201.594 423.332

Epic flow 129.252 234.037

SPyNet 142.108 302.753

SPyNet + MHOF 143.029 297.142

PWC-Net 157.088 344.202

LDOF 71.449 158.281

FlowNet2 145.732 303.799

PWC + MHOF 152.314 351.567

Example images for the real video sequence can be seen in Fig. 9
Bold values refers to best performance within the class

Table 7 Comparison using End Point Error (EPE) on the Multi-Human Optical Flow (MHOF) dataset

Parts Epic flow LDOF FlowNet2 FlowNet PCA layers PWC-Net PWC + MHOF SPyNet SPyNet + MHOF

Average (whole image) 0.488 0.360 0.310 0.808 0.556 0.369 0.301 0.429 0.391

Average (body pixels) 1.982 1.719 1.863 2.574 2.691 2.056 1.621 1.977 1.803

global 1.269 1.257 1.337 2.005 1.920 1.389 1.163 1.356 1.236

head 1.806 1.328 1.626 2.681 2.808 1.881 1.445 1.708 1.519

leftCalf 2.116 1.802 1.787 2.420 2.711 2.109 1.476 1.991 1.796

leftFoot 3.089 2.346 2.476 2.987 3.393 3.002 2.142 2.701 2.566

leftForeArm 3.972 3.231 3.536 4.380 4.778 3.926 3.136 3.945 3.605

leftHand 5.777 4.422 4.823 5.928 6.531 5.634 4.385 5.547 5.040

leftShoulder 1.513 1.429 1.646 2.331 2.336 1.732 1.471 1.560 1.462

leftThigh 1.424 1.338 1.466 2.102 2.150 1.565 1.230 1.517 1.362

leftToes 3.147 2.573 2.755 3.065 3.307 3.100 2.524 2.830 2.784

leftUpperArm 2.215 1.947 2.288 3.005 3.139 2.376 1.955 2.307 2.076

lIndex0 6.199 4.900 5.334 6.254 6.785 6.124 4.861 5.925 5.472

lIndex1 6.367 5.159 5.672 6.340 6.829 6.303 5.212 6.087 5.727

lIndex2 6.315 5.253 5.878 6.203 6.670 6.270 5.433 6.028 5.784

lMiddle0 6.338 4.983 5.331 6.364 6.910 6.211 4.837 6.012 5.544

lMiddle1 6.498 5.239 5.632 6.435 6.927 6.383 5.176 6.143 5.767

lMiddle2 6.266 5.212 5.756 6.130 6.592 6.182 5.303 5.934 5.679

lPinky0 6.048 4.792 5.302 6.035 6.603 5.940 4.873 5.738 5.307

lPinky1 6.106 4.922 5.489 6.038 6.574 6.014 5.064 5.765 5.418

lPinky2 5.780 4.856 5.419 5.655 6.170 5.702 4.956 5.474 5.231

lRing0 6.388 4.973 5.281 6.413 7.010 6.218 4.834 6.064 5.552

lRing1 6.313 5.083 5.391 6.256 6.801 6.168 4.949 5.966 5.558

lRing2 6.047 5.035 5.515 5.924 6.409 5.942 5.067 5.710 5.441

lThumb0 5.415 4.318 4.673 5.473 6.072 5.316 4.329 5.212 4.809

lThumb1 5.636 4.527 5.065 5.698 6.232 5.612 4.685 5.449 5.065

lThumb2 5.825 4.749 5.388 5.820 6.323 5.802 5.005 5.629 5.314

neck 1.336 1.195 1.371 2.151 2.245 1.440 1.227 1.399 1.250

rightCalf 2.243 1.892 1.864 2.530 2.851 2.223 1.548 2.081 1.907

rightFoot 3.270 2.454 2.610 3.149 3.599 3.171 2.276 2.894 2.732

rightForeArm 3.990 3.242 3.554 4.381 4.759 3.928 3.190 4.029 3.641

rightHand 5.735 4.348 4.787 5.837 6.447 5.550 4.339 5.582 4.978

rightShoulder 1.547 1.431 1.670 2.390 2.340 1.735 1.477 1.573 1.462

rightThigh 1.477 1.374 1.512 2.158 2.226 1.624 1.263 1.556 1.407
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Table 7 continued

Parts Epic flow LDOF FlowNet2 FlowNet PCA layers PWC-Net PWC + MHOF SPyNet SPyNet + MHOF

rightToes 3.395 2.707 2.918 3.293 3.566 3.346 2.699 3.064 2.999

rightUpperArm 2.267 1.974 2.294 3.033 3.148 2.400 2.007 2.002 2.113

rIndex0 6.264 4.875 5.324 6.255 6.800 6.150 4.886 6.003 5.486

rIndex1 6.541 5.210 5.755 6.449 6.951 6.457 5.329 6.237 5.835

rIndex2 6.465 5.320 5.968 6.294 6.776 6.404 5.533 6.149 5.879

rMiddle0 6.509 5.056 5.454 6.470 7.014 6.354 4.967 6.211 5.662

rMiddle1 6.680 5.341 5.777 6.562 7.058 6.537 5.325 6.325 5.895

rMiddle2 6.394 5.261 5.838 6.209 6.713 6.274 5.366 6.038 5.739

rPinky0 5.983 4.750 5.372 5.952 6.504 5.855 4.845 5.741 5.262

rPinky1 6.076 4.905 5.566 5.979 6.533 5.943 5.025 5.809 5.402

rPinky2 5.789 4.813 5.403 5.645 6.220 5.662 4.903 5.532 5.232

rRing0 6.397 4.948 5.350 6.383 6.938 6.215 4.856 6.126 5.565

rRing1 6.395 5.108 5.465 6.290 6.841 6.212 5.019 6.066 5.615

rRing2 6.222 5.129 5.644 6.052 6.610 6.063 5.160 5.889 5.571

rThumb0 5.417 4.304 4.748 5.470 6.057 5.301 4.360 5.247 4.819

rThumb1 5.605 4.465 4.945 5.643 6.210 5.514 4.607 5.434 5.032

rThumb2 5.835 4.748 5.262 5.789 6.328 5.749 4.938 5.639 5.306

spine 1.233 1.271 1.325 1.941 1.856 1.360 1.168 1.322 1.221

spine1 1.330 1.369 1.421 2.028 1.957 1.460 1.268 1.417 1.322

spine2 1.329 1.308 1.439 2.089 2.049 1.480 1.276 1.387 1.309

We show the average EPE and body part specific EPE, where part labels follow Fig. 3. The first two rows are repeated from Table 5
Bold values refers to best performance within the class

Fig. 7 We use the DPM (Felzenszwalb et al. 2010) person detector to
crop out people from real-world scenes (left) and use SPyNet + SHOF
to compute optical flow on the cropped section (right)

qualitative results suggest that PWC + MHOF is better at
distinguishing the motion of people, as people can be bet-
ter separated on the flow visualizations of PWC + MHOF
(Fig. 6, row 3). Last, it can be seen that fine details, like
the motion of distant humans or small body parts, are better
estimated by PWC + MHOF.

The above observations are strong indications that our
Human Optical Flow datasets (SHOF and MHOF) can be
beneficial for the performance on human motion for other
optical flow networks as well.

5.4 Real Scenes

We show a visual comparison of results on real-world scenes
of people in motion. For visual comparisons of models

trained on the SHOF dataset we collect these scenes by crop-
ping people from real world videos as shown in Fig. 7. We
use DPM (Felzenszwalb et al. 2010) for detecting people
and compute bounding box regions in two frames using the
ground truth of the MOT16 dataset (Milan et al. 2016). The
results for the SHOF dataset are shown in Fig. 8. A compar-
ison of methods on real images with multiple people can be
seen in Fig. 9.

The performance of PCA-Layers (Wulff and Black 2015)
is highly dependent on its ability to segment. Hence, we see
only a fewcaseswhere it looks visually correct. SPyNet (Ran-
jan andBlack 2017) gets the overall shape but the results look
noisy in certain image parts. While LDOF (Brox et al. 2009),
EpicFlow (Revaud et al. 2015) and FlowFields (Bailer et al.
2015) generally perform well, they often find it difficult to
resolve the legs, hands and head of the person. The results
from models trained on our Human Optical Flow dataset
look appealing especially while resolving the overall human
shape, and various parts like legs, hands and the human head.
Models trained on the Human Optical Flow dataset perform
well under occlusion (Figs. 8, 9). Many examples including
severe occlusion can be seen in Fig. 9. Besides that, Fig. 9
shows that the models trained on MHOF are able to distin-
guish motions of multiple people and predict sharp edges of
humans.
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Fig. 8 Single-Human Optical Flowvisuals on real images using differ-
ent methods. From left to right, we show Frame 1, Frame 2, results of
PCA-Layers (Wulff and Black 2015), and SPyNet (Ranjan and Black

2017), EpicFlow (Revaud et al. 2015), LDOF (Brox et al. 2009), Flow-
Fields (Bailer et al. 2015) and SPyNet + SHOF (ours)

A quantitative evaluation on real data with humans is not
possible, as no such dataset with ground truth optical flow
annotation exists. To determine generalization of the models
to real data, despite the lack of ground truth annotation, we
can use the Motion Compensated Intensity (MCI) as an error
metric. Given the image sequence I 1, I 2 and predicted flow
V , the MCI error is given by

MCI(I 1, I 2, V ) = ||I 1 − w(I 2, V )||2, (1)

wherewwarps the image I 2 according to flow V . Thismetric
certainly has limitations. The motion compensated inten-
sity assumes Lambertian conditions i.e. intensity of a point

remains constant over time. MCI error does not account for
occlusions. Furthermore, MCI does not account for smooth
flow fields over texture-less surfaces. Despite these short-
coming of MCI, we report these numbers to show that our
models generalize to real data. However, it should be noted
that EPE is a more precise metric to evaluate optical flow
estimation.

To test whether MCI correlates with EPEs in Table 5, we
compute MCI on the MHOF dataset. The results can be seen
in Table 6. We observe that, methods like FlowNet and PCA-
Layers which have poor performance on the EPEmetric have
higher MCI error. For methods with lower EPE, the MCI
errors do not exactly correspond to the respective EPEs. This
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Fig. 9 Multi-Human Optical Flow visuals on real images. From left to
right, we show Frame 1, results of FlowNet2 (Ilg et al. 2016), FlowNet
(Dosovitskiy et al. 2015), LDOF (Brox et al. 2009), PCA-Layers (Wulff

and Black 2015), EpicFlow (Revaud et al. 2015), SPyNet (Ranjan and
Black 2017), SPyNet + MHOF(ours), PWC-Net (Sun et al. 2018) and
PWC + MHOF (ours)

is due to the limitations of the MCI metric, as described
above. Finally, we compute MCI on a real video sequence
from Youtube.3 The MCI errors are shown in Table 6.

6 Conclusion and FutureWork

In summary, we created an extensive Human Optical Flow
dataset containing images of realistic human shapes in
motion together with ground truth optical flow. The dataset
is comprised of two parts, the Single-Human Optical
Flow (SHOF) and the Multi-Human Optical Flow (MHOF)
dataset. We then train two compact network architectures
based on spatial pyramids, namely SpyNet and PWC-Net.
The realism and extent of our dataset, together with an end-
to-end training scheme, allows these networks to outperform
previous state-of-the-art optical flow methods on our new
human-specific dataset. This indicates that our dataset can
be beneficial for other optical flow network architectures as
well. Furthermore, our qualitative results suggest that the net-
works trained on theHuman Optical Flow generalize well to
real world scenes with humans. This is evidenced by results
on a real sequence using theMCI metric. The trained models
are compact and run in real timemaking them highly suitable
for phones and embedded devices.

3 https://www.youtube.com/watch?v=2DiQUX11YaY.

The dataset and our focus on human optical flow opens
up a number of research directions in human motion under-
standing and optical flow computation. We would like to
extend our dataset by modeling more diverse clothing and
outdoor scenarios. A direction of potentially high impact for
this work is to integrate it in end-to-end systems for action
recognition, which typically take precomputed optical flow
as input. The real-time nature of the method could support
motion-based interfaces, potentially even on devices like cell
phones with limited computing power. The dataset, dataset
generation code, pretrained models, and training code are
available, enabling researchers to use them for problems
involving human motion.

Acknowledgements Open access funding provided by Projekt DEAL.
We thank Yiyi Liao for helping us with optical flow evaluation. We
thank Sergi Pujades for helping us with collision detection of meshes.
We thank Cristian Sminchisescu for the Human3.6M MoCap marker
data.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-

123

https://www.youtube.com/watch?v=2DiQUX11YaY


International Journal of Computer Vision (2020) 128:873–890 889

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Abdulla, W. (2017). Mask r-cnn for object detection and instance seg-
mentation on keras and tensorflow. https://github.com/matterport/
Mask_RCNN.

Bailer, C., Taetz, B., & Stricker, D. (2015). Flow fields: Dense cor-
respondence fields for highly accurate large displacement optical
flow estimation. In Proceedings of the IEEE international confer-
ence on computer vision (pp. 4015–4023).

Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., & Szeliski,
R. (2011). A database and evaluationmethodology for optical flow.
International Journal of Computer Vision, 92(1), 1–31.

Barbosa, I. B., Cristani, M., Caputo, B., Rognhaugen, A., & Theo-
haris, T. (2018). Looking beyond appearances: Synthetic training
data for deep cnns in re-identification.Computer Vision and Image
Understanding, 167, 50–62.

Bastioni, M., Flerackers, M., & Capco J. (2007). Makehuman: Open
source tool for making 3d characters.

Black, M. J., Yacoob, Y., Jepson, A. D., & Fleet, D. J. (1997). Learning
parameterized models of image motion. In IEEE conference on
computer vision and pattern recognition, CVPR-97, Puerto Rico
(pp. 561–567).

Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., & Black,
M. J. (2016). Keep it SMPL: Automatic estimation of 3D human
pose and shape from a single image. In Computer vision—ECCV
2016, Lecture Notes in Computer Science. Springer.

Brox, T., Bregler, C., & Malik, J. (2009). Large displacement optical
flow. In IEEE conference on computer vision and pattern recog-
nition, 2009. CVPR 2009 (pp. 41–48). IEEE.

Butler, D. J.,Wulff, J., Stanley,G. B.,&Black,M. J. (2012). A naturalis-
tic open source movie for optical flow evaluation. In A. Fitzgibbon
et al. (Eds.), European conference on computer vision (ECCV),
Part IV, LNCS 7577 (pp. 611–625). Springer.

Charles, J., Pfister, T., Magee, D. R., Hogg, D. C., & Zisserman, A.
(2016). Personalizing human video pose estimation. In CVPR (pp.
3063–3072). IEEE Computer Society.

Davis, J.W. (2001). Hierarchical motion history images for recognizing
humanmotion. InDetection and recognition of events in video (pp.
39–46).

Dong, X., Yu, S.-I., Weng, X., Wei, S.-E., Yang, Y., & Sheikh, Y.
(2018). Supervision-by-registration: An unsupervised approach to
improve the precision of facial landmark detectors. In The IEEE
conference on computer vision and pattern recognition (CVPR).

Dosovitskiy, A., Fischery, P., Ilg, E., Hazirbas, C., Golkov, V., van der
Smagt, P., Cremers,D.,&Brox, T., et al. (2015). Flownet: Learning
optical flow with convolutional networks. In 2015 IEEE interna-
tional conference on computer vision (ICCV) (pp. 2758–2766).
IEEE.

Fablet, R., & Black, M. J. (2002). Automatic detection and tracking
of human motion with a view-based representation. In European
conference on computer vision, ECCV 2002, volume 1 of LNCS
2353 (pp. 476–491). Springer.

Feichtenhofer, C., Pinz, A., & Zisserman, A. (2016). Convolutional
two-stream network fusion for video action recognition. In CVPR
(pp. 1933–1941). IEEE Computer Society.

Felzenszwalb, P. F., Girshick, R. B., McAllester, D., & Ramanan, D.
(2010). Object detection with discriminatively trained part-based
models. TPAMI, 32(9), 1627–1645.

Fragkiadaki, K., Hu, H., & Shi, J. (2013). Pose from flow and flow from
pose. In 2013 IEEE conference on computer vision and pattern
recognition (pp. 2059–2066).

Freeman, W. T., Pasztor, E. C., & Carmichael, O. T. (2000). Learning
low-level vision. International Journal of Computer Vision, 40(1),
25–47.

Gaidon,A.,Harchaoui, Z.,&Schmid,C. (2014).Activity representation
withmotionhierarchies. International Journal ofComputerVision,
107(3), 219–238.

Gaidon, A., Wang, Q., Cabon, Y., & Vig, E. (2016). Virtual worlds as
proxy for multi-object tracking analysis. In CVPR.

Geiger,A., Lenz, P.,&Urtasun,R. (2012).Arewe ready for autonomous
driving? The KITTI vision benchmark suite. In Conference on
computer vision and pattern recognition (CVPR).

Geman, D., & Geman, S. (2016). Opinion: Science in the age of selfies.
Proceedings of the National Academy of Sciences, 113(34), 9384–
9387.

Ghezelghieh, M. F., Kasturi, R., & Sarkar, S. (2016). Learning camera
viewpoint usingCNN to improve 3Dbodypose estimation. In2016
fourth international conference on 3D vision (3DV) (pp. 685–693).
IEEE.

Green, R. (2003). Spherical harmonic lighting: The gritty details. In
Archives of the game developers conference.

Gross, R., & Shi, J. (2001). The cmu motion of body (mobo) database.
Güney, F., &Geiger, A. (2016). Deep discrete flow. In Asian conference

on computer vision (ACCV).
He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In

2017 IEEE international conference on computer vision (ICCV)
(pp. 2980–2988). IEEE.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for
image recognition. arXiv:1512.03385.

Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., & Brox,
T. (2016). Flownet 2.0: Evolution of optical flow estimation with
deep networks. arXiv:1612.01925.

Ionescu, C., Papava, D., Olaru, V., & Sminchisescu, C. (2014).
Human3.6m: Large scale datasets and predictive methods for 3d
human sensing in natural environments. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 36(7), 1325–1339.

Jhuang, H., Gall, J., Zuffi, S., Schmid, C., & Black, M. J. (2013).
Towards understanding action recognition. In IEEE international
conference on computer vision (ICCV), Sydney, Australia, Decem-
ber 2013 (pp. 3192–3199). IEEE.

Johansson, G. (1973). Visual perception of biological motion and a
model for its analysis. Perception & Psychophysics, 14(2), 201–
211.

Kingma, D., & Ba, J. (2014). Adam: A method for stochastic optimiza-
tion. arXiv:1412.6980.

Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., & Serre, T. (2011).
Hmdb: A large video database for human motion recognition. In
2011 IEEE international conference on computer vision (ICCV)
(pp. 2556–2563). IEEE.

Loper, M., Mahmood, N., & Black, M. J. (2014). Mosh: Motion and
shape capture from sparse markers. ACM Transactions on Graph-
ics (TOG), 33(6), 220.

Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., & Black, M. J.
(2015). SMPL: A skinned multi-person linear model. ACM Trans-
actions on Graphics (Proceedings of SIGGRAPH Asia), 34(6),
248:1–248:16.

Mahmood, N., Ghorbani, N., Troje, N. F., Pons-Moll, G., Black, M. J.
(2019). AMASS: Archive of motion capture as surface shapes.
arXiv:1904.03278.

Mayer, N., Ilg, E., Häusser, P., Fischer, P., Cremers, D., Dosovitskiy, A.,
& Brox, T. (2016). A large dataset to train convolutional networks
for disparity, optical flow, and scene flowestimation. In IEEE inter-
national conference on computer vision and pattern recognition
(CVPR). arXiv:1512.02134.

Menze, M., & Geiger, A. (2015). Object scene flow for autonomous
vehicles. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 3061–3070).

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/matterport/Mask_RCNN
https://github.com/matterport/Mask_RCNN
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1612.01925
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1904.03278
http://arxiv.org/abs/1512.02134


890 International Journal of Computer Vision (2020) 128:873–890

Milan, A., Leal-Taixé, L., Reid, I. D., Roth, S., & Schindler,
K. (2016). MOT16: A benchmark for multi-object tracking.
arXiv:1603.00831.

Pfister, T., Charles, J., & Zisserman, A. (2015). Flowing convnets for
human pose estimation in videos. In ICCV (pp. 1913–1921). IEEE
Computer Society.

Pons-Moll, G., Romero, J., Mahmood, N., &Black,M. J. (2015). Dyna:
A model of dynamic human shape in motion. ACM Transactions
on Graphics (Proceedings of SIGGRAPH), 34(4), 120:1–120:14.

Ranjan, A., & Black, M. J. (2017). Optical flow estimation using a
spatial pyramid network. In Proceedings of the IEEE conference
on computer vision and pattern recognition (CVPR).

Ranjan, A., Romero, J., & Black, M. J. (2018). Learning human optical
flow. In 29th British machine vision conference.

Revaud, J., Weinzaepfel, P., Harchaoui, Z., & Schmid, C. (2015).
EpicFlow: Edge-preserving interpolation of correspondences for
optical flow. In Computer vision and pattern recognition.

Robinette, K. M., Blackwell, S., Daanen, H., Boehmer, M., & Fleming,
S. (2002). Civilian American and European surface anthropome-
try resource (caesar), final report, volume 1. summary. Technical
report, DTIC Document.

Romero, J., Loper,M., &Black,M. J. (2015). FlowCap: 2D human pose
from optical flow. In Proceedings of 37th German conference on
pattern recognition (GCPR) pattern recognition, volume LNCS
9358 (pp. 412–423). Springer.

Romero, J., Tzionas, D., & Black, M. J. (2017). Embodied hands: Mod-
eling and capturing hands and bodies together. ACM Transactions
on Graphics (Proceedings of SIGGRAPH Asia), 36(6), 245.

Shugrina, M., Liang, Z., Kar, A., Li, J., Singh, A., Singh, K., & Fidler,
S. (2019). Creative flow+ dataset. In The IEEE conference on com-
puter vision and pattern recognition (CVPR).

Sigal, L., Balan, A., & Black, M. J. (2010). HumanEva: Synchro-
nized video and motion capture dataset and baseline algorithm
for evaluation of articulated human motion. International Journal
of Computer Vision, 87(1), 4–27.

Soomro, K., Zamir, A. R., & Shah, M. (2012). Ucf101: A dataset of 101
human actions classes from videos in the wild. arXiv:1212.0402.

Sun, D., Roth, S., Lewis, J. P., & Black, M. J. (2008). Learning optical
flow. In ECCV (pp. 83–97).

Sun, D., Yang, X., Liu, M. Y., & Kautz, J. (2018). PWC-Net: CNNs for
optical flow using pyramid, warping, and cost volume. In CVPR.

Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann, G., Raghu-
pathi, L., Fuhrmann, A., Cani, M.-P., Faure, F., Magnenat-
Thalmann, N., Strasser, W., & Volino, P. (2004). Collision detec-
tion for deformable objects. In Eurographics (pp. 119–139).

Tran, D., Bourdev, L., Fergus, R., Torresani, L., & Paluri, M. (2016).
Deep end2end voxel2voxel prediction. In The 3rd workshop on
deep learning in computer vision.

Tzionas, D., Ballan, L., Srikantha, A., Aponte, P., Pollefeys,M., &Gall,
J. (2016). Capturing hands in action using discriminative salient
points and physics simulation. International Journal of Computer
Vision (IJCV), 118(2), 172–193.

Varol, G., Romero, J., &Martin, X.,Mahmood, N., Black,M. J., Laptev,
I., & Schmid, C. (2017). Learning from synthetic humans. In
CVPR.

Wulff, J., & Black, M. J. (2015). Efficient sparse-to-dense optical flow
estimation using a learned basis and layers. In 2015 IEEE con-
ference on computer vision and pattern recognition (CVPR) (pp.
120–130). IEEE.

Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., & Torralba, A. (2010).
Sun database: Large-scale scene recognition from abbey to zoo. In
2010 IEEE conference on computer vision and pattern recognition
(CVPR) (pp. 3485–3492). IEEE.

Yu, F., Zhang, Y., Song, S., Seff, A., & Xiao, J. (2015). Lsun: Con-
struction of a large-scale image dataset using deep learning with
humans in the loop. arXiv:1506.03365.

Zuffi, S., Romero, J., Schmid, C., & Black, M. J. (2013). Estimating
human pose with flowing puppets. In IEEE international confer-
ence on computer vision (ICCV) (pp. 3312–3319).

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1603.00831
http://arxiv.org/abs/1212.0402
http://arxiv.org/abs/1506.03365

	Learning Multi-human Optical Flow
	Abstract
	1 Introduction
	2 Related Work
	2.1 Human Motion
	2.2 Learning Optical Flow
	2.3 Optical Flow Datasets

	3 The Human Optical Flow Dataset
	3.1 Human Body Generation
	3.1.1 Body Model
	3.1.2 Body Poses
	3.1.3 Hand Poses
	3.1.4 Body Shapes
	3.1.5 Body Texture
	3.1.6 Hand Texture
	3.1.7 (Self-) Collision

	3.2 Scene Generation
	3.2.1 Background Texture
	3.2.2 Scene Illumination
	3.2.3 Increasing Image Realism
	3.2.4 Scene Compositing

	3.3 Ground Truth Generation
	3.3.1 Segmentation Masks
	3.3.2 Rendering and Ground Truth Optical Flow


	4 Learning
	4.1 Hyperparameters
	4.2 Data Augmentations

	5 Experiments
	5.1 Dataset Details
	5.2 Comparison on SHOF 
	5.3 Comparison on MHOF
	5.4 Real Scenes

	6 Conclusion and Future Work
	Acknowledgements
	References




