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Abstract
Corners are important features for image analysis and computer vision tasks. Local structure tensors with multiple scales
are widely used in intensity-based corner detectors. In this paper, the properties of intensity variations of a step edge, L-type
corner, Y- or T-type corner, X-type corner, and star-type corner are investigated. The properties that we obtained indicate
that the image intensity variations of a corner are not always large in all directions. The properties also demonstrate that
existing structure tensor-based corner detection methods cannot depict the differences of intensity variations well between
edges and corners which result in wrong corner detections. We present a new technique to extract the intensity variations from
input images using anisotropic Gaussian directional derivative filters with multiple scales. We prove that the new extraction
technique on image intensity variation has the ability to accurately depict the characteristics of edges and corners in the
continuous domain. Furthermore, the properties of the intensity variations of step edges and corners enable us to derive a new
multi-directional structure tensor with multiple scales, which has the ability to depict the intensity variation differences well
between edges and corners in the discrete domain. The eigenvalues of the multi-directional structure tensor with multiple
scales are used to develop a new corner detection method. Finally, the criteria on average repeatability (under affine image
transformation, JPEG compression, and noise degradation), region repeatability based on the Oxford dataset, repeatability
metric based on the DTU dataset, detection accuracy, and localization accuracy are used to evaluate the proposed detector
against ten state-of-the-art methods. The experimental results show that our proposed detector outperforms all the other tested
detectors.

Keywords Corner detection · Image intensity variation extraction · Anisotropic Gaussian directional derivative filters ·
Multi-directional structure tensor with multiple scales

1 Introduction

Corners have been shown to be well suited for a variety of
image processing and computer vision tasks such as object
tracking, stereo matching, and 3D reconstruction. Various
corner detection methods have been reported in the litera-
ture. The existing corner detection methods can be broadly
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classified into three categories: contour-based methods (Rat-
tarangsi and Chin 1990; Teh and Chin 1989; Mokhtarian
and Suomela 1998; Zhong and Liao 2007; Zhang et al. 2014;
Zhang and Shui 2015; Olson 2000; Zhang et al. 2015, 2019),
template-basedmethods (Deriche andGiraudon 1993; Smith
and Brady 1997; Rosten et al. 2010; Shui and Zhang 2013;
Xia et al. 2014), and intensity basedmethods (Moravec 1979;
Harris and Stephens 1988; Noble 1988; Gårding and Linde-
berg 1996; Lindeberg 1998; Schmid et al. 2000; Kenney et al.
2003; Mikolajczyk and Schmid 2004; Laptev 2005; Lowe
2004; Bay et al. 2006; Marimon et al. 2010; Maver 2010;
Su et al. 2012; Verdie et al. 2015; Yi et al. 2016; Lenc and
Vedaldi 2016; Zhang et al. 2017). Contour-based methods
detect corners by analyzing the shape changes on the edge
contours which are extracted from an input image by an edge
detector. The contour-based methods rely on the results of a
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preceding step on image edge detection which affects their
applications.

Template-based methods find corners by fitting a small
patch of an image with predefined corner templates. Deriche
and Giraudon (1993) analyzed the behaviors of wedge and
Y-type corners by using the Gaussian filter. In Smith and
Brady (1997), every pixel inside a circular mask is compared
with a center pixel and the intensity difference is recorded.
Corners are defined as the smallest univalue segment assimi-
lating nucleus (SUSAN)points. InRuzon andTomasi (2001),
junctions are defined as points in an imagewhere two ormore
piecewise constantwedgesmeet at the central point. Shui and
Zhang (2013) applied the anisotropic Gaussian directional
derivative filters (Shui and Zhang 2012) to derive the repre-
sentations of L-type, Y-type, X-type, and star-type corners
and detect corners from edge pixels. Xia et al. (2014) pre-
sented a junction detector based on the intensity variations of
edge pixels. Pham et al. (2014) presented a junction detec-
tion method in which junctions are obtained by searching
for optimal meeting points of median lines in line-drawing
images. In recent years, machine learning algorithms are
used in template-based corner detection methods. Trujillo
and Olague (2006) used a genetic programming based learn-
ing approach to extract corners from input images. Rosten
et al. (2010) extended the SUSAN detector (Smith and Brady
1997) and presented the features from accelerated segment
test (FAST) detector.

Intensity-based methods detect corners directly from an
input image by analyzing the information on local inten-
sity variations. Following Moravec’s observation (Moravec
1979) that the intensity variations of corners are large in all
directions, Harris and Stephens (1988) developed the famous
Harris detector. The isotropic Gaussian filter was used to
smooth the input image and the first-order image derivatives
along the horizontal and vertical directions were obtained to
construct a 2×2 structure tensor and detect corners. The aim
of theHarris detector is to find corners which have significant
changes of image intensities in both directions. The Harris
detector is one of the most successful detectors and has been
widely used. However, the Harris detector is a single scale
detector which may miss significant corners or detect false
corners (Lee et al. 1995). The reason is that most objects
consist of a wide range of scale features. Meanwhile, it is
indicated in Bay et al. (2006) that the most valuable prop-
erty of a corner detector is its repeatability in affine image
transformations. A large number of detectors (Gårding and
Lindeberg 1996; Lindeberg 1998; Schmid et al. 2000; Miko-
lajczyk and Schmid 2004; Laptev 2005; Lowe 2004; Bay
et al. 2006; Marimon et al. 2010) have been presented to
enhance the repeatability performance of corner detectors
in a scale-space representation (Witkin 1984; Koenderink
1984).

Lindeberg (1998) presented a corner detection method
with automatic scale selection. Mikolajczyk and Schmid
(2004) presented a scale invariant Harris–Laplace detector
where corners were detected by the Harris detector in multi-
scales, and Laplace operator was used to depict corners’
characteristic scales. Lowe (2004) approximated the normal-
ized Laplacian of Gaussian filter by a difference of Gaussian
(DoG) filter and presented the scale-invariant feature trans-
form (SIFT) detector. Bay et al. (2006) proposed the speeded
up robust features (SURF) detector which uses box filters to
approximate the determinant of aHessianmatrix and extracts
feature points. Brox et al. (2006) applied anisotropic nonlin-
ear diffusions to construct a nonlinear structure tensor for
detecting corners. Lepetit and Fua (2006) used Laplace of
Gaussian filterwithmultiple scales to smooth the input image
and decision trees technique (Quinlan 1986) was used to
extract corners.Alcantarilla et al. (2012) presented theKAZE
operator which detects interest points in a nonlinear scale
space by using additive operator splitting techniques (Weick-
ert et al. 1998) to approximate the Perona andMalik diffusion
equation (Perona and Malik 1990). Miao and Jiang (2013)
employed the rank order Laplacian ofGaussian to smooth the
input image and construct 2 × 2 Hessian matrix for detect-
ing corners. Duval-Poo et al. (2015) replaced the Log-Gabor
wavelet smoothing (Gao et al. 2007) by multi-scale shear-
let filters and constructed a nonlinear 2 × 2 structure tensor
for detecting corners. Verdie et al. (2015) presented a tem-
porally invariant learned detector (TILDE) which learned
from images with the same scene under drastic illumination
changes. In Yi et al. (2016), SIFT method (Lowe 2004) was
used to extract interest points from the input images and train
an interest point detector. In Lenc and Vedaldi (2016), the
local covariant constraint was used to train a feature detector.
The approach of Lenc and Vedaldi (2016) was also extended
by using TILDE (Verdie et al. 2015) as guidance (Zhang
et al. 2017). DeTone et al. (2018) presented a self-supervised
framework for training an interest point detector.

Our research indicates that the intensity variations of a
corner are not significant in all directions. Our research also
shows that no one has explained why the intensity variation
based methods (Harris and Stephens 1988; Gårding and Lin-
deberg 1996; Kenney et al. 2003; Mikolajczyk and Schmid
2004; Gao et al. 2007; Duval-Poo et al. 2015) which used
the first-order derivatives along the horizontal and vertical
directions to construct the 2×2 structure tensor cannot detect
corners well. Up to now, a large number of filters [e.g., Zhang
et al. (2014), log-Gabor filters (Field 1987), shearlet filters
(Duval-Poo et al. 2015), anisotropic nonlinear diffusion fil-
ters (Brox et al. 2006), and anisotropic Gaussian filters (Shui
and Zhang 2012)] have been used to smooth the input image
and extract intensity variations. However, within the scope
of our investigations, no one has presented methods on how
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to accurately extract the local intensity variations to depict
the differences between edges and corners.

In this paper, the properties of the isotropic and anisotropic
Gaussian directional derivative representations (Shui and
Zhang 2013) of a step edge and several general corners (such
as L-type, Y- or T-type, X-type, and star-type corners) are
investigated to explain why the existing 2×2 structure tensor
based algorithms (Noble 1988; Gårding and Lindeberg 1996;
Kenney et al. 2003;Mikolajczyk and Schmid 2004; Gao et al.
2007; Duval-Poo et al. 2015) cannot detect corners well. The
properties indicate that the first-order derivatives along the
horizontal and vertical directions cannot depict the differ-
ences between edges and corners well. In fact, the intensity
variation around a corner is not large in all directions. All the
existing 2×2 structure tensor based algorithms (Noble 1988;
Gårding and Lindeberg 1996; Kenney et al. 2003; Mikola-
jczyk and Schmid 2004; Gao et al. 2007; Duval-Poo et al.
2015) are based onMoravec’s theory (Moravec 1979) that the
intensity variation around corners are large in all directions,
which result in false corner detections. Some corners may be
detected as edges, while some edge pixels may be judged
as corners. Furthermore, for a corner, it may be detected
by using the two orthogonal directional derivatives. How-
ever, if the image is rotated by a certain angle, the horizontal
and vertical directional derivatives of the corner may become
smaller. Then the corner may not be detected.

We present a new technique to obtain the local inten-
sity variations from the input image. We proved that the
new intensity variation extraction technique has the abil-
ity to accurately depict the intensity variation differences
between edges and corners in the continuous domain. The
properties of the intensity variations of step edges and cor-
ners and the new intensity variation extraction technique
enable us to derive a new multi-directional structure ten-
sor with multiple scales, which has the ability to depict
the differences between edges and corners well in the
discrete domain. The eigenvalues of the multi-directional
structure tensor with multiple scales are used in our new
corner detection method. The proposed corner detector is
compared with ten state-of-the-art feature detectors (Har-
ris (Harris andStephens 1988),Harris–Laplace (Mikolajczyk
and Schmid 2004), FAST (Rosten et al. 2010), DoG (Lowe
2004), SURF (Bay et al. 2006), KAZE (Alcantarilla et al.
2012), ANDD (Shui and Zhang 2013), ACJ (Xia et al. 2014),
LIFT (Yi et al. 2016), and Superpoint (DeTone et al. 2018)).
Thirty images with various scenes without ground truth are
used to evaluate the detectors’ average repeatabilities under
affine transformation, JPEG compression, and noise degra-
dation. The Oxford dataset is used to assess the performance
of the detectors on region repeatability (Mikolajczyk et al.
2005). The DTU-Robots dataset (Aanæs et al. 2012) is used
to assess the performance of the detectors on repeatabil-
ity metric. Two test images with ground truths are used to

assess the detection accuracy and localization accuracy of
these methods. The experimental results show that the pro-
posed method is of very high quality. This is impossible
for the other tested detectors (Harris and Stephens 1988;
Mikolajczyk and Schmid 2004; Rosten et al. 2010; Lowe
2004; Bay et al. 2006; Alcantarilla et al. 2012; Shui and
Zhang 2013; Xia et al. 2014; Yi et al. 2016; DeTone et al.
2018).

The rest of the paper is presented as follows. In Sect. 2,
the Harris detector and the representations of a step edge,
L-type corner, Y- or T-type corner, X-type corner, and star-
type corner are introduced. In Sect. 3, the weakness of the
existing structure tensor based corner detection techniques
is identified. Several edges and corner properties are sum-
marized. Then, a new corner detection algorithm based on a
multi-directional structure tensor with multiple scales is pre-
sented and a new intensity variation extraction technique is
introduced. Extensive experimental results are presented in
Sect. 4, and conclusions are given in Sect. 5.

2 RelatedWork

In this section, the standard Harris detection algorithm is
introduced first. Then, the isotropic and anisotropic Gaus-
sian directional derivative representations of a step edge and
several general corner models are presented.

2.1 Harris Corner Detector

The Harris corner detector employs a 2 × 2 structure tensor
to measure the local intensity variations of the input image
along the horizontal and vertical directions. For a given 2D
input image I (x, y), the weighted sum of squared difference
�(mx ,my) is defined as

�(mx ,my) =
∫ ∞

−∞

∫ ∞

−∞
hσ (x, y)

(
I (x + mx , y + my) − I (x, y)

)2
dxdy,

(1)

where hσ (x, y) is an isotropic Gaussian filter, σ is the scale
factor (σ > 0), (x, y) is a point location in the image, and
(mx ,my) is a local shift. The shifted image patch I (x +
mx , y+my) is approximated by aTaylor expansion truncated
to the first order terms

I (x+mx , y + my) ≈ I (x, y)+mx Ix (x, y)+my Iy(x, y),

(2)

where Ix (x, y) and Iy(x, y) denote the partial derivatives of
the input image I with respect to the horizontal and vertical

123



International Journal of Computer Vision (2020) 128:438–459 441

directions. Substituting approximation Eq. (2) into Equation
(1) yields

�(mx ,my) ≈
∫ ∞

−∞

∫ ∞

−∞
hσ (x, y)

(
mx Ix (x, y) + my Iy(x, y)

)2
dxdy

= (mx my)A

(
mx

my

)
,

(3)

where A is the structure tensor

A =
∫ ∞

−∞

∫ ∞

−∞
hσ (x, y)

[
I 2x (x, y) Ix (x, y)Iy(x, y)

Ix (x, y)Iy(x, y) I 2y (x, y)

]
dxdy.

(4)

Typically, a corner is characterized by a large variation of �
in all directions at (x, y). Let λ1 and λ2 (λ1 < λ2) be the
eigenvalues of structure tensor A. There are three cases to be
considered. (1) If both λ1 and λ2 are small, then there is no
feature at pixel (x, y). (2) If λ1 ≈ 0 and λ2 is a large positive
value, then an edge is found. (3) If both λ1 and λ2 are large
positive values, then a corner is found.

2.2 Isotropic and Anisotropic Gaussian Directional
Derivative Representations

In the spatial domain, the anisotropic Gaussian kernel (AGK)
gσ,ρ,θ (x, y) can be represented as (Zhang and Shui 2015;
Shui and Zhang 2013, 2012; Zhang et al. 2017)

gσ,ρ,θ (x, y) =
1

2πσ 2 exp

(
− 1

2σ 2 [x, y]R−θ

[
ρ−2 0
0 ρ2

]
Rθ [x, y]�

)
,

(5)

with

Rθ =
[

cos θ sin θ

− sin θ cos θ

]
,

where � represents matrix transpose, ρ is the anisotropic
factor (ρ > 1), and Rθ is the rotation matrix with angle θ .
From Eq. (5), the anisotropic Gaussian directional derivative
(AGDD) filter ψσ,ρ,θ (x, y) at orientation θ + π/2 is derived
as

φσ,ρ,θ (x, y) = ∂gσ,ρ

∂ y
(Rθ [x, y]�). (6)

It is worth noting that the directional derivative obtained
by Eq. (6) has a π/2 shift with the directional derivative
obtained by deriving the partial derivative of orientation θ . If

the anisotropic factor ρ is 1, gσ,ρ,θ (x, y) and φσ,ρ,θ (x, y)
in Eqs. (5) and (6) represent isotropic Gaussian kernel
and isotropic Gaussian directional derivative (IGDD) filter
respectively.

The anisotropic Gaussian directional derivative of the
input image I (x, y) along direction θ + π/2 is computed
by the convolution operator

∇σ,ρ,θ I (x, y) = ∂

∂(θ + π/2)
(I (x, y) ⊗ gσ,ρ,θ (x, y))

= I (x, y) ⊗ φσ,ρ,θ (x, y),
(7)

where ⊗ represents a convolution operation. The AGDD
reflects the gray-scale intensity variation of the input image
along direction θ + π/2. It is easy to verify that

∇σ,ρ,θ I (x, y) = −∇σ,ρ,θ+π I (x, y). (8)

It means that the interval [0, π) for AGDDs is enough to
describe the intensity variation of the input image.

In the polar coordinate system, a point function in awedge-
shaped region can be defined as (Shui and Zhang 2013)

ζβ1,β2(r , β)

=
{
T , if 0 ≤ r < +∞, β1 ≤ β ≤ β2, β2 − β1 	= π

0, otherwise

(9)

where r is the radius, β is the polar angle, T is the gray value,
and β1 and β2 are the lower and upper bounds of angle β as
shown in Fig. 1. It can be easily found that a corner point is
located at the tip o of the wedge-shaped region. In this paper,
the point function in a wedge-shaped region is named as a
basic corner model. A similar corner model is also presented
in Deriche and Giraudon (1993).

Fig. 1 Examples of a basic corner model in the polar coordinate system
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The general cornermodel (e.g., L-type corner,Y- or T-type
corner, X-type corner, and star-type corner) can be derived
by the several basic corner models as follows

h̄(Ti ,βi )(r , β) =
s∑

i=1

Tiζβi ,βi+1(r , β), (10)

where Ti represents the gray value of the i-th wedge-shaped
region. s is the number of wedge-shaped regions. It is noted
that βs+1 = β1. If s = 2 and β2−β1 = π , Eq. (10) represents
a step edge. If s = 2 and β2 − β1 	= π , Eq. (10) corresponds
to an L-type corner. If s = 3, Eq. (10) represents a Y- or
T-type corner. If s = 4, Eq. (10) represents an X-type corner.
If s = 5, Eq. (10) corresponds to a star-type corner.

The AGDD representation of the basic corner model
is (Shui and Zhang 2013)

ξσ,ρ(θ) =
∫∫

R2
ζβ1,β2(r , β)φσ,ρ,θ (−r ,−β)rdrdβ

= Tρ

2
√
2πσ

(
cos(β1 − θ)

(ρ4sin2(β1 − θ) + cos2(β1 − θ))
1
2

− cos(β2 − θ)

(ρ4sin2(β2 − θ) + cos2(β2 − θ))
1
2

)
, (11)

where R2 represents the 2D real space and ψσ,ρ,θ (r , β) rep-
resents the AGDDfilter in the polar coordinate system. Then,
the AGDD representation of the general corner model is

σ,ρ(θ)

= ρ

2
√
2πσ

s∑
i=1

Ti

(
cos(βi − θ)

(ρ4sin2(βi − θ) + cos2(βi − θ))
1
2

− cos(βi+1−θ)

(ρ4sin2(βi+1−θ)+cos2(βi+1−θ))
1
2

)
. (12)

With ρ = 1, Eq. (12) is the IGDD representation of the
general corner model

κσ,ρ(θ) = 1

2
√
2πσ

s∑
i=1

Ti

(
cos(βi+1 − θ) − cos(βi − θ)

)

= 1√
2πσ

s∑
i=1

Ti sin

(
θ − βi + βi+1

2

)
sin

(
βi+1 − βi

2

)
,

(13)

which means that all the IGDD representations of a step edge
and general corners are sine functions.

Examples of the AGDD and IGDD representations of
the step edge and general corners are shown in Fig. 2. The
step edge, L-type, Y- or T-type, X-type, and star-type corner

models are illustrated in Fig. 2a–e respectively. Their corre-
sponding intensity variations of the AGDD representations
are shown in the second column. Their corresponding inten-
sity variations of the IGDD representations are shown in the
third column.

3 ProposedMethod

In this section, the problems of the existing 2 × 2 structure
tensor based corner detection methods are demonstrated and
several corner intensity variation properties are summarized.
Then, a new multi-directional structure tensor with multiple
scales is derived for corner detection. Finally, a new image
intensity variation extraction technique is presented.

3.1 Corner Properties

As shown in Fig. 2b-e, for the L-type, the Y- or T-type, the
X-type, and the star-type corner models, it is obvious from
the second and third columns of Fig. 2 that the directional
derivatives are large in most directions at a corner while their
directional derivatives of the AGDDor the IGDD representa-
tions are very small or even near zero along the horizontal (0)
or vertical (π/2) directions. Then, these corners may not be
correctly detected by the Harris detector. This phenomenon
does not satisfy the definition for a corner (Moravec 1979)
that the directional derivatives are large in all directions. Fur-
thermore, along the horizontal and vertical directions, the
directional derivatives of the input image cannot accurately
depict the intensity variation differences between edges and
corners. Take a step edge, an L-type corner, and an X-type
corner as examples as shown in the first column of Fig. 2,
their corresponding directional derivatives are zero in the
horizontal direction. However, in the vertical direction, the
absolute magnitude of the directional derivative on the edge
is larger than that of the L-type and X-type corners. Then,
edges may be detected as corners by Eq. (4), while the real
corners may be marked as edges. The reason is that the exist-
ing intensity variation based methods (Harris and Stephens
1988; Noble 1988; Gårding and Lindeberg 1996; Kenney
et al. 2003; Mikolajczyk and Schmid 2004; Gao et al. 2007;
Duval-Poo et al. 2015) do not take the directional derivative
differences in different filtering orientations between edges
and corners fully into account.

We found from Eq. (13) that the isotropic Gaussian rep-
resentations cannot depict the intensity variation differences
between a step edge and general corners as shown in the
third column of Fig. 2. However, we found from Eq. (12) that
the anisotropic Gaussian representations have the ability to
accurately depict the intensity variation differences between
a step edge and general corners. As shown in the second
column of Fig. 2, a step edge with β1 = π/2, β2 = 3π/2,
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Fig. 2 A step edge, L-type, Y-type, X-type, and star-type cornermodels
are shown in a–e in the first column (gray values T1 = 50, T2 = 100,
T3 = 150, T4 = 200, and T5 = 120). Their corresponding directional

derivatives of the AGDD representations (ρ2 = 8, σ 2 = 8) and IGDD
representations (ρ2 = 1, σ 2 = 8) are shown in the second and third
columns respectively

T1 = 50, and T2 = 100 has only one local maximum for a
directional derivative at θ = 3π/2 and one local minimum
for a directional derivative at θ = π/2. For an L-type corner
with β1 = 11π/6, β2 = π/6, T1 = 50, and T2 = 100, it has
two local maxima for directional derivatives at θ = π/6 and
θ = 5π/6 and two local minima for directional derivatives

at θ = 7π/6 and θ = 11π/6. For a Y- or T-type corner with
β1 = 0, β2 = 2π/3, β3 = 4π/3, T1 = 50, T2 = 100, and
T3 = 150, it has three local maxima for directional deriva-
tives at θ = 2π/3, θ = π , and θ = 4π/3 and three local
minima for directional derivatives at θ = 0, θ = π/3, and
θ = 5π/3. For an X-type corner, it has four local maxima
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Fig. 3 Examples of directional derivative changes by image rotation or
affine image transformation with ρ2 = 16 and σ 2 = 4. a An L-type
corner with gray values T1 = 50 and T2 = 100, b The L-type corner
is rotated by π/4 clockwise, c the L-type corner undergoes an affine
image transformation

and four local minima for directional derivatives. For a star-
type corner, it has five local maxima and five local minima
for directional derivatives.

Furthermore, our researches indicate that two orthogo-
nal directional derivatives along the horizontal and vertical
directions cannot accurately detect corners on an affine trans-
formed image. Take an L-type corner as an example as
shown in Fig. 3a, its corresponding two orthogonal direc-
tional derivatives are large from Eq. (12) as shown in the
second column of Fig. 3. According to the criteria of Har-
ris corner detection, it can be detected as a corner. After
the L-type corner is rotated by π/4 clockwise as shown in
Fig. 3b, its corresponding two orthogonal directional deriva-
tives are small from Eq. (12) as shown in the second column
of Fig. 3. Then the corner may not be detected with such or
similar image rotation transformations. The reason is that the
two orthogonal directional derivatives do not contain enough
local structure information. The existing multi-scale filtering
techniques (Gårding and Lindeberg 1996; Lindeberg 1998;
Schmid et al. 2000; Mikolajczyk and Schmid 2004; Laptev
2005; Lowe 2004; Bay et al. 2006; Brox et al. 2006; Gao et al.
2007;Marimon et al. 2010; Alcantarilla et al. 2012;Miao and
Jiang 2013; Duval-Poo et al. 2015; Perona and Malik 1990;
Wang 1999; Widynski and Mignotte 2014) cannot solve the
aforementioned problem because the multi-scale filtering

technique only efficiently enhance the local intensity vari-
ation extraction along the horizontal and vertical directions.
Another example is when the image is rotated and squeezed,
which means that the shape of the corner is changed. If the
L-type corner undergoes an affine image transformation as
shown in Fig. 3c, its corresponding two orthogonal direc-
tional derivatives are also small from Eq. (12) as shown in
the second column of Fig. 3. Then the corner may not be
detected with such or similar affine image transformations.
The existing multi-scale filtering techniques cannot solve the
aforementioned problem either.

Based on the above analysis, several properties of corners
are summarized as follows:

Property 1 The intensity variation of a corner is large inmost
directions, not necessarily in all directions.

Property 2 The first-order derivatives along the horizontal
and vertical directions cannot depict the intensity variations
of step edges and corners well.

Property 3 The isotropic Gaussian filter cannot depict the
intensity variation differences between step edges and cor-
ners accurately.

Property 4 The anisotropic Gaussian filters have the abil-
ity to depict the intensity variation differences between step
edges and corners.

Property 5 The existing 2 × 2 structure tensor based tech-
niquesmay not depict the differences between step edges and
corners accurately.

The above properties will help us propose a new corner
measure, a new corner detection algorithm, and a new image
intensity variation extraction technique which will be pre-
sented in the following section.

3.2 Multi-directional Structure Tensor with Multiple
Scales

Based on the aforementioned analysis, it can be con-
cluded that the intensity variation based methods (Harris and
Stephens 1988; Gårding and Lindeberg 1996; Kenney et al.
2003; Mikolajczyk and Schmid 2004; Miao and Jiang 2013;
Gao et al. 2007) which used the first-order derivatives along
the horizontal and vertical directions to construct the 2 × 2
structure tensor cannot detect cornerswell. In this section, the
multi-scale andmulti-directional anisotropic Gaussian filters
are used as an example to explain how to detect corners using
multi-scale andmulti-directional intensity variation informa-
tion.

Images are 2Ddiscrete signals in the integer latticeZ2, and
the continuous AGKs and AGDD filters in Eqs. (5) and (6)
need to be discretized in Z

2. Given multi-scales σs (e.g.,
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s = 1, 2, 3), an anisotropic factor ρ, and K oriented angles
θk = (k − 1)π/K (k = 1, 2, . . . , K ), the discrete version of
the functions for multi-directional AGKs gσs ,ρ,k(x, y) and
AGDD φσs ,ρ,k(x, y) with multiple scales are below

gσs ,ρ,k(n) = 1

2πσ 2
s
exp

(
− 1

2σ 2
s

n�R−k

[
ρ−2 0
0 ρ2

]
Rkn
)

,

φσs ,ρ,k(n) = −ρ2[−sinθk cosθk]n
σ 2
s

gσs ,ρ,k(n), (14)

with

Rk =
[
cos θk sin θk
− sin θk cos θk

]
, n =

[
nx
ny

]
∈ Z

2,

where (nx , ny) represents the pixel coordinate in the integer
lattice Z2.

Given the multi-directional anisotropic Gaussian filters
gσs ,ρ,k(nx , ny) with multi-scales σs , the discrete weighted
sum of square differences �s(nx , ny) of point (nx , ny) is
redefined as Eq. (15), where (nx + i, ny + j) is a point in an
image patch over an area with width u + 1 and height v + 1
centered on (nx , ny),�t is a shift at point I (nx+i, ny+ j), θk
is the angle between the horizontal axis and the k-th oriented
vector. In this paper, the size of (u + 1) × (v + 1) is set to
7 × 7.

�s(nx , ny) = π

K (u + 1)(v + 1)

u
2∑

i=− u
2

v
2∑

j=− v
2

K∑
k=1

gσs ,ρ,k(nx + i, ny + j)⊗(
I (nx + i + �tcosθk, ny + j + �tsinθk)

− I (nx + i, ny + j)
)2

, (15)

I (nx + i +�tcosθk, ny + j +�tsinθk) can be approximated
by a Taylor expansion as

I (nx + i + �tcosθk, ny + j + �tsinθk)

≈ I (nx + i, ny + j) + �t Ik(nx + i, ny + j),
(16)

where Ik(nx+i, ny+ j) is the directional derivative of I (nx+
i, ny + j) in the direction of θk . Substituting approximation
Eq. (16) into Eq. (15) yields Eq. (17).

�s(nx , ny) ≈ π

K (u + 1)(v + 1)

u
2∑

i=− u
2

v
2∑

j=− v
2

K∑
k=1

gσs ,ρ,k(nx + i, ny + j)

⊗ (�t Ik(nx + i, ny + j))2.

(17)

It is worth to note that

∇σs ,ρ,k I (nx + i, ny + j)

= gσs ,ρ,k(nx + i, ny + j) ⊗ Ik(nx + i, ny + j).
(18)

As a result, Eq. (17) can be rewritten as Eq. (19), where M is
a multi-directional structure tensor at multiple scales which
is a symmetric K × K matrix as given in Eq. (20). From
Eq. (20), it can be easily concluded that the eigenvalues of
matrixM are determined by scaleσs , the anisotropic factorρ,
and the number of orientations K of the anisotropic Gaussian
filters.

�s(nx , ny) ≈ π

K (u + 1)(v + 1)

u
2∑

i=− u
2

v
2∑

j=− v
2(

[∇σs ,ρ,1 I (nx+i, ny+ j),∇σs ,ρ,2 I (nx+i, ny+ j), . . . ,

∇σs ,ρ,K I (nx + i, ny + j)][�t,�t, . . . ,�t]�
)2

= π

K (u + 1)(v + 1)
(�t �t . . . �t)M

⎛
⎜⎜⎜⎝

�t
�t
...

�t

⎞
⎟⎟⎟⎠ , (19)

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u
2∑

i=− u
2

v
2∑

j=− v
2

∇2
σs ,ρ,1 I (nx + i, ny + j) · · ·

u
2∑

i=− u
2

v
2∑

j=− v
2

∇σs ,ρ,1 I (nx + i, ny + j)∇σs ,ρ,K I (nx + i, ny + j)

.

.

.
. . .

.

.

.
u
2∑

i=− u
2

v
2∑

j=− v
2

∇σs ,ρ,K I (nx + i, ny + j)∇σs ,ρ,1 I (nx + i, ny + j) · · ·
u
2∑

i=− u
2

v
2∑

j=− v
2

∇2
σs ,ρ,K I (nx + i, ny + j)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)
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3.3 Corner Measure and Corner Detection Algorithm

In this section, a new corner measure and a new corner detec-
tion algorithm are presented as follows.

In this paper, K eigenvalues {λ1, λ2, . . . , λK }of the K×K
multi-directional structure tensor at each scale are used to
form a new corner measure to distinguish corners from other
points in the input image. The new corner measure is defined
as

℘s(nx , ny) =

K∏
k=1

λk

K∑
k=1

λk + τ

, (21)

where τ is a small constant (τ = 2.22 × 10−16) which is
used to avoid a singular denominator in the case of a rank
zero structure tensor. For each image pixel (nx , ny), it is
marked as a corner if its corresponding ℘s(nx , ny) is a local
maximumwithin a 7×7windowand is larger than a threshold
Th at each scale σs (s = 1, 2, 3).

In general, the new corner measure has the following
advantages over the existing 2 × 2 structure tensor based
methods (Noble 1988; Gårding and Lindeberg 1996; Kenney
et al. 2003; Mikolajczyk and Schmid 2004; Gao et al. 2007;
Duval-Poo et al. 2015). The proposed corner measure has
the ability to accurately detect corners, and it is also robust
for corner detection with image affine transformations. This
is impossible for the existing corner detectors (Deriche and
Giraudon 1993; Smith and Brady 1997; Rosten et al. 2010;
Shui and Zhang 2013; Xia et al. 2014; Moravec 1979; Har-
ris and Stephens 1988; Noble 1988; Gårding and Lindeberg
1996; Lindeberg 1998; Schmid et al. 2000; Kenney et al.
2003; Mikolajczyk and Schmid 2004; Laptev 2005; Lowe
2004; Bay et al. 2006; Marimon et al. 2010; Maver 2010; Su
et al. 2012).

The proposed corner detection method is described as fol-
lows:

1. Use the multi-directional anisotropic Gaussian filters at
multi-scales to smooth the input image, and derive the
multi-direction directional derivatives at multi-scales as
in Eq. (7).

2. For each image pixel, construct the multi-directional
structure tensor at multi-scales as in Eq. (20).

3. Obtain the eigenvalues at each scale based on Eq. (21).
4. Mark the pixel as a candidate corner if its corresponding

corner measure is the local maximum within a window
(7×7) and is larger than the threshold Th at the lowest
scale.

5. Mark the candidate corner as a corner if its corresponding
corner measure is larger than the threshold Th at all the
scales.

3.4 A New Image Intensity Variation Extraction
Technique

In this subsection, our aim is to present a new image inten-
sity variation extraction technique to accurately depict the
intensity variation differences between edges and corners.

From Eq. (10), the step edge, the L-type, the Y- or T-
type, the X-type, and the star-type corners can be represented
by the sum of several basic corner models as described by
Eq. (9). From Eq. (12), we derived that step edge, L-type,
Y- or T-type, X-type, and star-type corners have only one,
two, three, four, and five local maxima for the first-order
anisotropicGaussian directional derivative respectively. Not-
ing that each local maximum of the first-order derivatives
corresponds to a local minimum of the first-order derivatives.
It means that if the extracted image intensity variations have
the ability to describe the number of the maximum points of
the first-order anisotropic Gaussian directional derivatives,
the extracted image intensity variations have the ability to
depict the characteristics of edges and corners. Then for each
AGDD representation of the basic corner model as given
in Eq. (11), if its corresponding two local maxima on the
directional derivatives can be identified, the extracted local
intensity variation information has the ability to depict the
intensity variation differences between edges and corners.
In what follows, we discuss how to design the anisotropic
Gaussian filters to exactly identify the two local maxima on
the directional derivatives of the AGDD representation of the
basic corner model.

The AGDD representation of the basic corner model is
shown in Eq. (11). Without loss of generality, let β2 − β1 ∈
(0, π). A basic corner with β1 = −π/6, β2 = π/3, and T =
50 is selected as an example, and the directional derivatives
of the basic corner model is shown in Fig. 4. For the basic
corner model, it is easy to verify that the two local maxima
on the directional derivative curve are at β2 +π and β1 +2π
as shown in Fig. 4. The angle difference between the two
local maxima is π − (β2 − β1). Then, only if θ equals (β1 +
β2 + 3π)/2, there exists a local minimum on the directional
derivatives when the two local maxima can be distinguished.

The first-order AGDD representation of the basic corner
model is

ξ ′
σ,ρ(θ) = T

2
√
2πσ

(
ρ2sin(β1 − θ)

(ρ2sin2(β1−θ)+ρ−2cos2(β1−θ))
3
2

− ρ2sin(β2 − θ)

(ρ2sin2(β2 − θ) + ρ−2cos2(β2 − θ))
3
2

)
.

(22)
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Fig. 4 Examples of directional derivatives of the basic corner model
with β1 = −π/6, β2 = π/3, T = 50, ρ2 = 4, and σ 2 = 4

The second-order AGDD representation of the basic cor-
ner model is

ξ ′′
σ,ρ(θ) = T

2
√
2πσ

((
2(ρ4 − 1)sin2(β1 − θ) − 1

)
cos(β1 − θ)

(ρ2sin2(β1 − θ) + ρ−2cos2(β1 − θ))
5
2

− (2(ρ4 − 1)sin2(β2 − θ) − 1)cos(β2 − θ)

(ρ2sin2(β2 − θ) + ρ−2cos2(β2 − θ))
5
2

)
. (23)

If ξσ,ρ(
β1+β2+3π

2 ) is a local minimum on the directional
derivatives, its corresponding first-order and second-order
derivatives should satisfy

ξ ′
σ,ρ

(
β1 + β2 + 3π

2

)
= 0,

ξ ′′
σ,ρ

(
β1 + β2 + 3π

2

)
> 0.

(24)

When θ equals β1+β2+3π
2 , we can conclude from Eq. (22)

that ξ ′
σ,ρ(θ) is 0, and its corresponding second-order deriva-

tive ξ ′′
σ,ρ(θ) is

ξ ′′
σ,ρ

(
β1 + β2 + 3π

2

)

= T√
2πσ

(
2(ρ4 − 1)cos2(β2−β1

2 ) − 1
)
sin(β2−β1

2 )

(
ρ2cos2(β2−β1

2 ) + ρ−2sin2(β2−β1
2 )
) 5

2

.

(25)

From Eq. (25), it can be derived that ξσ,ρ(
β1+β2+3π

2 ) is
the local minimum on the gradient magnitude responses if it
satisfies

2(ρ4 − 1)cos2
(

β2 − β1

2

)
− 1 > 0. (26)

Inequality (26) holds if the following is satisfied

ρ4 > 1 + 1

2cos2
(

β2−β1
2

) . (27)

When β2 − β1 = 0, the right-hand side of inequality (27)
gives the minimum 3

2 . For a given anisotropic factor ρ2 >√
6
2 , the two local maxima on the directional derivatives can
be resolved only when the angle β2 − β1 satisfies

0 < β2 − β1 < 2arccos

(
1√

2(ρ4 − 1)

)
. (28)

Inequality (28) can be further written as inequality (29)

π − 2arccos

(
1√

2(ρ4 − 1)

)
< π − (β2 − β1) < π. (29)

It is worth to note thatβ2−β1 is the range ofβ for the basic
corner model (9) and π − (β2 − β1) is the angle difference
between the two local maxima on the directional derivative
of the basic corner. From inequality (28) and inequality (29),
it can be concluded that the larger the anisotropic factor,
the more the local intensity variation information that can
be extracted by the anisotropic Gaussian filters which have
a stronger ability to distinguish adjacent local maxima on
the directional derivatives. We note that the L-type, Y- or T-
type, X-type, and star-type corners can be represented by the
sum of several basic corner models. Then, if all the angles
of the basic corner models satisfy with inequality (28), it
means that the obtained intensity variation information has
the ability to describe the number of the maximum points of
the first-order anisotropic Gaussian directional derivatives,
and it also means that the extracted local intensity variation
information can accurately depict the intensity variation dif-
ferences between edges and corners.

4 Experimental Results and Performance
Evaluation

The proposed corner detector is compared with ten state-of-
the-art detectors [Harris (Harris and Stephens 1988), Harris–
Laplace (Mikolajczyk and Schmid 2004), FAST (Rosten
et al. 2010), DoG (Lowe 2004), SURF (Bay et al. 2006),
KAZE (Alcantarilla et al. 2012), ANDD (Shui and Zhang
2013), ACJ (Xia et al. 2014), LIFT (Yi et al. 2016), and
Superpoint (DeTone et al. 2018)]. Thirty images (Bowyer
et al. 1999) are used to evaluate the average repeatabili-
ties (Awrangjeb and Lu 2008) of these detectors. The Oxford
dataset is used to assess the region repeatability (Miko-
lajczyk et al. 2005) of these detectors. The DTU-Robots
dataset (Aanæs et al. 2012) that contains 3D objects under
changing viewpoints is used to evaluate the repeatabilitymet-
ric of these detectors. Furthermore, two test images with
ground truths are used to assess the detection capability
and localization accuracy of these methods. Execution time,
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Fig. 5 Test images

memory usage, and 3D reconstruction from large scale struc-
ture from motion dataset are also investigated.

The original codes for seven of these detectors in Rosten
et al. (2010), Bay et al. (2006), Alcantarilla et al. (2012), Shui
and Zhang (2013), Xia et al. (2014), Yi et al. (2016), DeTone
et al. (2018) are from the authors. The codes for the Harris–
Laplace (Mikolajczyk and Schmid 2004) and DoG (Lowe
2004) detectors are from http://www.robots.ox.ac.uk/vgg/
affine/. The code for the Harris detector (Harris and Stephens
1988) is fromhttp://peterkovesi.com/matlabfns/. The param-
eter settings for the proposed detector are: ρ2 = 1.5, σ 2

1 =
1.5, σ 2

2 = 3, σ 2
3 = 4.5, K = 8, (u + 1) × (v + 1) = 7 × 7,

and Th = 1.0 × 107. The program or web demos of the pro-
posed method can be accessed at http://vision-cdc.csiro.au/
corner1st/. The selection of the parameters for the proposed
method will be discussed in Sect. 4.1.

4.1 Repeatability Under Affine Transformation

In Awrangjeb and Lu (2008), the average repeatability
Ravg measures the average number of the repeated corners
between the original and affine transformed images. It is
defined as

Ravg = Nr

2

(
1

No
+ 1

Nt

)
, (30)

where No and Nt are the numbers of detected corners from
the original and transformed images by a detector, and Nr

is the number of repeated corners between them. If a cor-
ner is detected in a geometrically transformed image, and
it is in the neighbourhood of the ground truth location (say
within 4 pixels), then a repeated corner is detected. A higher

average repeatability means a better performance. Thirty
images (Bowyer et al. 1999) with different scenes as shown
in Fig. 5 are used for measuring the average repeatability for
the detectors.

We followed the criteria standard (Awrangjeb and Lu
2008) that a total of 6,510 transformed test images were
obtained by applying the following six different types of
transformations on each original image:

• Rotation: The original image was rotated at 10◦ apart
within [−π/2, π/2], excluding 0◦.

• Uniform scaling: The scale factors sx = sy are in [0.5, 2]
with 0.1 apart, excluding 1.

• Non-uniform scaling: The scale sx is in [0.7, 1.5] and sy
is in [0.5, 1.8] with 0.1 apart, excluding the case when
sx = sy .

• Shear transformations: The shear factor c was chosen by
sampling the range [−1, 1] with a 0.1 interval, excluding
0, with the following formula

[
x ′
y′
]

=
[
1 c
0 1

] [
x
y

]
.

• Lossy JPEG compression: A compression factor is in
[5, 100] at 5 apart.

• Gaussian noise: Zero mean white Gaussian noise was
added to the original image at 15 standard deviations in
[1, 15] with an interval 1.

From inequality (28) and inequality (29), it is concluded
that the larger the anisotropic factor, the higher the poten-
tial to extract the intensity variation information to depict the
intensity variation differences between step edges and cor-
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Table 1 Average repeatability of the proposed method

Proposed method with different
parameter settings

Repeatability
(percentage)

K = 2, ρ2 = 1.5 0.771

K = 4, ρ2 = 1.5 0.807

K = 8, ρ2 = 1.5 0.827

K = 16, ρ2 = 1.5 0.821

K = 8, ρ2 = 1.2 0.813

K = 8, ρ2 = 2 0.802

K = 8, ρ2 = 2.5 0.781

ners. Meanwhile, it is proved in Shui and Zhang (2012) that
the variance ε2w of the image Gaussian noise smoothed by the

AGDD filters is ε2w = ρ2ε2

8πσ 4 . It means that the noise response
of an AGDD filter is proportional to the noise variance and
to the square of the anisotropic factor and inversely propor-
tional to the power of four of the scale factor. Considering the
use of the extracted intensity variation information to depict
the intensity variation differences between step edges and
corners and the capability on noise suppression, the scale
factors with σ 2

1 = 1.5, σ 2
2 = 3, and σ 2

3 = 4.5 are used in the
proposed detector. The next step is to discuss the selection
of the number of directions and the anisotropic factor.

In this evaluation criteria, we firstly fix the anisotropic fac-
tor with ρ2 = 1.5 to check the average repeatability of the
proposed methods with different number of directions. It can
be observed from Table 1 that the proposed method achieves
the best performancewhen K is 8. Secondly, we fix the direc-
tion number K = 8 to check the average repeatability of the
proposed method with different anisotropic factors. It can be
observed fromTable 1 that with K = 8, the proposedmethod
achieves the best performance when ρ2 is 1.5. From this
experiment, we found that the different numbers of directions
have a great influence on the performance under image rota-

tion transformations, as shown in Fig. 6a. With K = 2, the
performance of the proposed method drops dramatically in
the case of image rotation transformation. The reason is that
the AGDD filters with two directions cannot extract enough
intensity variation information and cannot accurately detect
corners with image rotation transformations. Meanwhile, we
can also found that the anisotropic factor has a great influ-
ence on the performance of the proposedmethod under image
lossy JPEG compression and additive white Gaussian noises
as shown in Fig. 6b, c. With anisotropic factor ρ2 = 2.5,
the performances of the proposed method drop dramatically
in the cases of image lossy JPEG compression and additive
whiteGaussian noises. The reason is that the large anisotropic
factor will reduce the ability of AGDD filters to suppress the
Gaussian noise. Based on the aforementioned analysis, the
direction number with K = 8 and the anisotropic factor with
ρ2 = 1.5 are used in the proposed detector.

Then, the proposed approach with the fixed parameter set-
ting has been compared with the ten other detectors (Harris
and Stephens 1988; Mikolajczyk and Schmid 2004; Rosten
et al. 2010; Lowe 2004; Bay et al. 2006; Alcantarilla et al.
2012; Shui and Zhang 2013; Xia et al. 2014; Yi et al. 2016;
DeTone et al. 2018. The results with different rotations, uni-
form scalings, non-uniform scalings, shear transformation,
lossy JPEG compression, and Gaussian noises are shown in
Fig. 7. It can be observed that the proposed detector achieves
the best performance under this evaluation criteria.

4.2 Repeatability Score Under Region Repeatability
Evaluation

In http://www.robots.ox.ac.uk/vgg/affine/, each of the image
sequences used in the evaluation contains six images of
naturally textured scenes with increasingly geometric and
photometric transformations. The images in a sequence are
related by a homography which is provided with the image
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Fig. 6 Average repeatability of the proposed method under rotation, lossy JPEG compression, and additive white Gaussian noises
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Fig. 7 Average repeatability of the eleven detectors under rotation, uniform scaling, non-uniform scaling, shear transforms, lossy JPEGcompression,
and additive white Gaussian noises

data (http://www.robots.ox.ac.uk/vgg/affine/). The repeata-
bility score for a given pair of images is computed as the ratio
between the number of region-to-region correspondences
and the minimum number of regions in one of the images.
Two regions are deemed to correspond if the overlap error ε is
sufficiently small. For region repeatability evaluation (Miko-
lajczyk et al. 2005), the overlap error is defined as one minus
the ratio between the intersection of regions, A ∩ H�BH ,
and the union of the regions, A ∪ H�BH ,

ε = 1 − A ∩ H�BH

A ∪ H�BH
, (31)

where A represents a region in the original image, B repre-
sents the corresponding region in the transformed image, and
H is the corresponding homography between the original and
the transformed image. When the overlap error between two
regions is less than 40%, a correspondence is detected. The
repeatability score is defined as

RSi = CR1i

min(C1,Ci )
, (32)

where CR1i is the number of correspondences between the
original image and the i-th transformed image (i = 1, . . . , 6),
C1 is the number of the detected corners from the original
image, and Ci is the number of the detected corners from the
i-th transformed image.

In this experiment, six image sequences from http://
www.robots.ox.ac.uk/vgg/affine/ are selected for perfor-
mance evaluation and two image sequences (large zooming
and rotations) are discarded. The reason is that it usually
needs an appropriate descriptor to handle large image zoom-
ing and rotations (Duval-Poo et al. 2015). The threshold for
each method is tuned to extracts about 1,000 corners from
each input image. The repeatability scores for the six image
sequences are illustrated in Fig. 8. Compared with the other
ten methods, the proposed method achieves the best perfor-
mance for the ‘Trees’, ‘Bikes’, ‘Ubc’, and ‘Leuven’ images.
For the ‘Wall’ and ‘Graffiti’ images, the proposed method
obtains a moderate performance. It is worth to note that the
performance of the other methods vary greatly for different
image sequences. The main reason is that the issue on how to
effectively obtain the intensity variation information from the
input images has not been considered in other ten methods.
In conclusion, the proposed method achieves the best overall
detection performance on region repeatability evaluation.

4.3 Repeatability Metric Under the DTU-Robots
Dataset

In the DTU-Robots dataset (Aanæs et al. 2012), the per-
formances of the detectors are evaluated under viewpoint,
scale, and light changes using a large database of imageswith
repeatabilitymetric as a performancemeasure. The camera is
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Fig. 8 Comparison of different
corner detectors on six image
sequences, a Trees (image blur),
b Bikes (image blur), c Ubc
(image compression), d Leuven
(light change), e Wall
(viewpoint change), and f
Graffiti (viewpoint change)
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placed at 119 positions in three horizontal paths (Arc 1,Arc 2,
and Arc 3) and along a linear path (Linear path) in front of
60 scenes. For each scene, 119 images of 1,200×1,600 pix-
els are acquired from the 119 camera positions. The center
image which is the closest to the scene is chosen as the refer-
ence image. In the first evaluation setting, all feature points
found in each image are compared with the points extracted
from the reference image. Meanwhile, to simulate natural
scenes, light varies from being diffuse on an overcast day to
highly directional in sunshine and the scene is illuminated by
18 individually controlled light emitting diodes, which can
be combined to provide a highly controlled and flexible light
setting. In the second evaluation setting, the scene relighting
has been carried out both from right to left and from back
to front to investigate the sensitivity of the feature detectors
to changes of lightings. At a camera position, ten different
illumination settings are configured by changing the light-
ing directions. Then, ten different images are obtained from
ten different illumination settings. All feature points found in
each image are compared with the points extracted from the
reference image (the tenth image is chosen as the reference
image in this evaluation setting).

In this experiment, the repeatability metric for one pair of
images is used as a performance measure which is defined as

Rmetric = Mcorresp

Mtotal
, (33)

whereMcorresp is the number of correspondences between the
reference image and each image, and Mtotal is the number of
the detected corners from the reference image. A point in
the reference image is marked as a correspondence point if
it meets the following three criteria.

• Epipolar Geometry: Consistency with epipolar geometry
is used as the first evaluation criterion. The camera posi-
tions provide the basis for the relationship between points
in one image and associated epipolar lines in another.
Points are eliminated if they are more than 2.5 pixels
away from the epipolar line.

• Surface Geometry: 3D reconstruction is used as the sec-
ond evaluation criterion. Two points are considered as a
positive match if their 3D positions are within a window
with a radius of 10 pixels to the scene surface obtained
from the structured light reconstruction. On the contrary,
points within a windowwith a radius of 10 pixels without
reconstruction are removed.

• Absolute Scale: Scale consistency is used as the third
evaluation criterion. The output scale of the point and the
output scale of the corresponding point in another test
image should be within a scale range of 2.

Fifty-four sets of images (a total of 122,094 test images)
from the original sixty sets of images (Aanæs et al. 2012)
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Fig. 9 Average repeatability
metric for different scene
settings, a Arc 1, b Arc 2, c Arc
3, and d Linear path
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are obtained for our evaluation (the 31th–36th sets cannot
be downloaded from Aanæs et al. (2012)). In this experi-
ment, the threshold for each detector is adjusted so that each
detector extracts about 2,000 corners from each input image.
Figure 9 shows the average match percentage for 119 posi-
tions. The average repeatability metrics for the changes in
light directions from right to left for four camera positions
(1, 20, 64, and 65) are shown in the first row of Fig. 10.
The average repeatability metrics for the changes in light
direction from back to front for four camera positions (1, 20,
64, and 65) are shown in the second row of Fig. 10. It is
worth to note that we follow the statement in Aanæs et al.
(2012) and left out the FAST corner detector (Rosten et al.
2010) in the light change experiments because of the missing
scale information and its, in general, unreliable performance.
The average repeatability metric for each detector is summa-
rized in Table 2. It can be observed that the proposed method
outperforms all other methods by a large margin. The rea-
son is that the proposed method has the ability to accurately
extract image local intensity variation information to depict
the differences between step edges and corners and accu-
rately extract corners from the input images.

Table 2 Average match percentage

Detector 119 positions Light change
from right to
left

Light change
from back to
front

Harris 0.715 0.644 0.549

Harris–Laplace 0.784 0.654 0.587

FAST 0.769 – –

DoG 0.762 0.634 0.563

SURF 0.712 0.443 0.603

KAZE 0.715 0.438 0.561

ANDD 0.581 0.507 0.498

ACJ 0.684 0.559 0.540

LIFT 0.759 0.578 0.528

Superpoint 0.617 0.536 0.535

Proposed 0.907 0.788 0.705

4.4 Evaluation of Detection Performance Based on
Ground Truth Images

Let DC = {(x̂i , ŷi ), i = 1, 2, . . . , M1} and GT =
{(x j , y j ), j = 1, 2, . . . , M2} be the sets for detected cor-
ners by a corner detector and the true corners in the ground
truth images respectively. For a corner (x j , y j ) in set GT , a
corner is found from set DC with the minimal distance. If
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Fig. 10 Average repeatability metric for the change in light direction
for four camera positions (1, 20, 64, and 65). The first row is the average
repeatability metric for the change in light direction from right to left

(R/L). The second row is the average repeatability metric for the change
in light direction from back to front (B/F)

the minimal distance is not more than a predefined threshold
δ (here δ = 4), corner (x̂i , ŷi ) is treated as correctly detected,
and corner (x j , y j ) in set GT and the detected corner in set
DC form a matched pair. Otherwise, the corner (x j , y j ) is
counted as a missed corner. Similarly, for a corner (x̂i , ŷi ) in
set DC , a corner is found from set GT with the minimal dis-
tance. If the minimal distance is larger than threshold δ, then
corner (x̂i , ŷi ) is labelled as a false corner. The localization
error is defined as the average distance for all the matched
corner pairs. Let {(x̂l , ŷl), (xl , yl) : l = 1, 2, . . . , Nm} be the
matched pairs in sets GT and DC . The average localization
error is calculated by

Le =
√√√√ 1

Nm

Nm∑
l=1

((x̂l − xl)2 + (ŷl − yl)2). (34)

The two commonly used images ‘Geometric’ and ‘Lab’
(Shui and Zhang 2013; Xia et al. 2014) are used for accuracy
evaluations (Shui and Zhang 2013). The ground truths for the
two test images are shown in Fig. 11. The image ‘Geometric’
contains 84 corners and the image ‘Lab’ contains 249 corners.

Fig. 11 Test images a ‘Geometric’ and b ‘Lab’ and their ground truth
corner positions

In this experiment, the proposedmethod is compared with
five detectors (Harris (Harris and Stephens 1988), Harris–
Laplace (Mikolajczyk and Schmid 2004), FAST (Rosten
et al. 2010), ANDD (Shui and Zhang 2013), and ACJ (Xia
et al. 2014)). The detection results of the six detectors are
shown in Figs. 12 and 13. The number of missed corners,
the number of false corners, and the localization error for
each detector are listed in Table 3. For the two test images,
different detectors show different detection characteristics.
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Fig. 12 Detection results on the test image ‘Geometric’, a Harris (Harris and Stephens 1988), b Harris–Laplace (Mikolajczyk and Schmid 2004),
c FAST (Rosten et al. 2010), d ANDD (Shui and Zhang 2013), e ACJ (Xia et al. 2014), and f Proposed detectors

Assume that missing a corner point and marking a false cor-
ner point incur the same loss in detection performance, the
total number is used to assess the detection performance for
a corner detector. The fewer the number of missed and false
corner points, the better the detection performance. For the
‘Geometric’ image, the total number of missed and false cor-
ner points for the Harris, the Harris–Laplace, the FAST, the
ANDD, the ACJ, and the proposed detectors are 144, 132,
112, 29, 28, and 28, respectively. For the ‘Lab’ image, the
total number of missed and false corner points for the Har-
ris, the Harris–Laplace, the FAST, the ANDD, the ACJ, and
the proposed detectors are 215, 361, 255, 144, 225, and 169,
respectively. It can be observed that the proposed detector
and the ANDD detector attain the best corner detection.

Besides, the corner localization accuracy is another impor-
tant measure to evaluate corner detectors. For the ‘Geo-
metric’ image, the proposed method attains the smallest
localization error, and the ANDD detector attains the second
smallest localization error. For the ‘Lab’ image, the ANDD
detector attains the smallest localization error, and the pro-
posed detector attains the second smallest localization error.
In conclusion, the proposed detector and the ANDD detector
attains the best detection performance.

It is worth to note that our research also indicates
that the performance of the proposed method can be
affected by threshold selection and the change of illumi-
nation. Take a house image as an example, the corner
detection results of the proposed method under different
illuminations are shown in Fig. 14. It can be seen that

some obvious corner points in the window area (marked
by ‘ o’) cannot be detected under different illuminations
as shown in Fig. 14c, d. The reason is that the direc-
tional derivatives ξσ,ρ(θ) in the window area are very
small.

4.5 Execution Time andMemory Usage

The proposed corner detector has been implemented inMAT-
LAB (R2017b) using a 2.81 GHz CPU with 16 GB of
memory. For different images (http://www.robots.ox.ac.uk/
vgg/affine/), the thresholds for the Harris, DoG, KAZE,
ANDD, ACJ, and the proposed methods are tuned for detect-
ing around 2000 features and each detector was executed 100
times. The corresponding execution time and memory usage
are shown in Table 4. The codes for the Harris, DoG, KAZE,
ANDD, and ACJ methods are written in MATLAB. It can be
found that thememory usage of the proposedmethod is in the
middle range among all the compared methods. Meanwhile,
it can be observed that the proposed method cannot meet the
needs of real-time applications. The proposed method can
be implemented using GPU (Cornelis and Van Gool 2008)
or FPGA (Huang et al. 2012) to improve the speed perfor-
mance.

4.6 Application for 3D Reconstruction

In order to verify the performance of the proposed cor-
ner detector in real tasks, 3D reconstruction based on the
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Fig. 13 Detection results on the test image ‘Lab’, a Harris (Harris and Stephens 1988), b Harris–Laplace (Mikolajczyk and Schmid 2004),
c FAST (Rosten et al. 2010), d ANDD (Shui and Zhang 2013), e ACJ (Xia et al. 2014), and f Proposed detectors

proposed corner detection method is carried out. Our 3D
reconstruction process is based on the structure from motion
technique in Hartley and Zisserman (2004) and Snavely et al.
(2006) which aims to recover camera parameters, pose esti-
mates, and sparse 3D reconstruction from image sequences.
In this experiment, two datasets (Aanæs et al. 2012; Wilson
and Snavely 2014) are used to perform 3D reconstruction.
The first dataset (Aanæs et al. 2012) contains high resolu-
tion images which are captured from 49 fixed viewpoints.
The second dataset (Wilson and Snavely 2014) contains
unordered images and many are distorted images. These two
datasets represent two typical image collection situations for
3D reconstruction applications. The first dataset (Aanæs et al.
2012) is widely used for applications about reconstructing
a very specific scene or object. The second dataset (Wil-
son and Snavely 2014) is widely used for applications about
reconstructing a very large scale place such as landmarks or
cities.

We combined the proposed corner detector with the SURF
descriptor (Bay et al. 2006) for sparse 3D reconstruction. The

proposed method is compared with the SURF method (Bay
et al. 2006). The threshold for each detector is adjusted
so that each detector extracts about 1,500 corners from
each input image. The SURF descriptor (Bay et al. 2006)
is with default scales. For each scene, forty images are
selected for 3D reconstruction. The results of sparse 3D
reconstruction are shown in Fig. 15. In this experiment,
we use the number of reconstructed 3D points as the per-
formance indicator for the two methods. For the ‘Rabit’
images, the SURF method and the proposed method used
7426 and 8562 points for 3D reconstruction respectively.
For the ‘Alamo’ images, the SURF method and the proposed
method used 21,322 and 25,680 points for 3D reconstruction
respectively. It can be observed that the sparse 3D recon-
struction from the proposed method contains more scene
structure information. The reason is that the proposedmethod
has the ability to accurately extract corners from the input
images.
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Fig. 14 Examples of the corner
detection results of the proposed
method under different
illuminations

(a) (b)

(c) (d)

Table 3 Performance comparison for the six detectors on two ground
truth test images

Detectors Missed corners False corners Localization
error (in
pixels)

‘Geometric’ image

Harris 15 129 1.279

Harris–Laplace 33 99 2.331

FAST 16 96 1.200

ANDD 28 1 1.264

ACJ 24 4 2.217

Proposed 27 1 0.889

‘Lab’ image

Harris 57 158 1.526

Harris–Laplace 155 206 3.032

FAST 75 180 1.572

ANDD 94 50 1.455

ACJ 45 180 2.273

Proposed 66 103 1.496

5 Conclusion

The contributions of the paper include six aspects. First, we
proved for the first time that the existing intensity varia-
tion based corner detectors using the first-order derivatives
along the horizontal and vertical directions cannot effectively

detect corners. It is necessary to extract image local inten-
sity variation information using the AGDD filters along
multi-directions. Second, the properties of the anisotropic
and isotropic Gaussian directional derivative representations
of step edge, L-type corner, and other types of corners
are investigated and discovered. Third, a new intensity
variation extraction technique is presented which has the
ability to accurately depict the intensity variation differ-
ences between step edges and corners. Fourth, a multi-
directional structure tensor with multiple scales is derived
for corner detection. Fifth, a new corner measure and a
new corner detection algorithm are presented. Sixth, the
proposed detector outperforms ten state-of-the-art corner
detectors in terms of average repeatability (under affine
image transformation, JPEG compression, and noise degra-
dation), region repeatability, repeatability metric, detec-
tion accuracy, and localisation error. In our approach,
the AGDD filters can also be replaced by other filters,
such as shearlet, Gabor, or anisotropic diffusion filters
for corner detection. The proposed corner detector also
has a great potential to be applied in object tracking and
many other fields. The program and demo on our cor-
ner detection can be accessed at http://vision-cdc.csiro.au/
corner1st/.

123

http://vision-cdc.csiro.au/corner1st/
http://vision-cdc.csiro.au/corner1st/


International Journal of Computer Vision (2020) 128:438–459 457

Table 4 Execution time and
memory usage comparisons
(image size is in pixels, the units
of execution time and memory
usage are in second and MB
respectively)

Detector Bark Bikes Boat Graffiti Leuven
(512 × 765) (700 × 1000) (680 × 850) (640 × 800) (600 × 900)

Execution time (s)

Harris 0.473 0.717 0.681 0.542 0.551

DoG 0.242 0.334 0.261 0.145 0.214

KAZE 0.515 0.993 0.778 0.657 0.709

ANDD 15.601 31.642 33.572 35.234 31.632

ACJ 5.215 9.452 7.245 6.436 6.421

Proposed 4.815 8.982 6.682 5.372 5.892

Memory usage (MB)

Harris 25.7 45.9 38.7 28.3 35.4

DoG 155.6 205.1 188.1 160.2 171.3

KAZE 140.1 298.5 222.6 217.2 203.6

ANDD 155.6 219.6 201.5 181.2 192.3

ACJ 51.2 78.5 66.8 68.7 76.9

Proposed 71.9 168.6 153.8 140.7 143.6

(d) (e) (f)

(a) (b) (c)

Fig. 15 Test image ‘Rabit’ (Aanæs et al. 2012) and test image
‘Alamo’ (Wilson and Snavely 2014) are shown in (a) and (d) in the
first column. Their corresponding sparse 3D reconstruction results of

the SURFmethod (Bay et al. 2006) and the proposed method are shown
in the second and the third columns respectively
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