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Abstract
Compared to facial expression recognition, expression synthesis requires a very high-dimensional mapping. This problem
exacerbates with increasing image sizes and limits existing expression synthesis approaches to relatively small images. We
observe that facial expressions often constitute sparsely distributed and locally correlated changes from one expression to
another. By exploiting this observation, the number of parameters in an expression synthesis model can be significantly
reduced. Therefore, we propose a constrained version of ridge regression that exploits the local and sparse structure of facial
expressions. We consider this model as masked regression for learning local receptive fields. In contrast to the existing
approaches, our proposed model can be efficiently trained on larger image sizes. Experiments using three publicly available
datasets demonstrate that ourmodel is significantly better than �0, �1 and �2-regression, SVDbased approaches, and kernelized
regression in terms of mean-squared-error, visual quality as well as computational and spatial complexities. The reduction
in the number of parameters allows our method to generalize better even after training on smaller datasets. The proposed
algorithm is also compared with state-of-the-art GANs including Pix2Pix, CycleGAN, StarGAN and GANimation. These
GANs produce photo-realistic results as long as the testing and the training distributions are similar. In contrast, our results
demonstrate significant generalization of the proposed algorithm over out-of-dataset human photographs, pencil sketches and
even animal faces.
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1 Introduction

Affective human computer interaction requires both recog-
nition as well as synthesis of different facial expressions and
emotional states. Facial Expression Synthesis (FES) refers
to the process of automatically changing the expression of
an input face image to another desired expression (Wang
et al. 2003; Susskind et al. 2008). Facial expressions are
non-verbal visual cues which supplement or reinforce the
meaning of spoken words. Therefore, facial expressions are
a central element of visual communication for human and
non-human characters (Bermano et al. 2014). Realistic FES
is important because of its applications in animation of char-
acters in video games and movies (Pighin et al. 2006; Rizzo
et al. 2004) and avatar-based human-computer interaction
(Saragih et al. 2011). It is also important in security and
surveillance applications for the purpose of identifying per-
sons across varying facial expressions (Elaiwat et al. 2016)
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and can be useful in longitudinal face modelling as well
(Nhan Duong et al. 2016).

A simple approach for generating expressions is by lin-
ear combinations of basis shapes each controlled by a scalar
weight (Barsoum et al. 1997; Blanz et al. 1999). These lin-
ear weights may be considered as facial model parameters.
Another face model parameterization is to simply represent
a face by its vertices, splines and polygons (Patel and Zaveri
2010). However, this representation has significantly more
degrees of freedom than an actual facial expression. Some
facial animation systems use the Facial Action Coding Sys-
tem (FACS) (Ekman and Friesen 2013) to estimate facial
models from motion capture data (Havaldar 2006). How-
ever, such methods require motion capture data along with
extensive calibration and data cleansing. This limits their
applicability in most cases where only face images and their
expression labels are available.

Most existing approaches to FES involve separating the
problem into two parts, a geometry adaptation step based
on a 3D mesh or facial landmarks and then an appearance
adaptation step based on texture. In contrast to these tech-
niques, we present a landmark-free FES method which only
requires aligned face images. That is, landmarks are used for
alignment but not for any subsequent expression synthesis,
mapping or warping.

FES has recently experienced a resurgence due to the
introduction of Generative Adversarial Networks (GANs)
(Goodfellow et al. 2014; Mirza 2014). GANs have enabled
a new level of photo-realism by encouraging the generated
images to be close to the manifolds of the real images instead
of being close to the conditional mean, which may not be
photo-realistic. GANs have been shown to be effective in a
wide variety of applications such as image editing (Zhu et al.
2016), deblurring (Kupyn et al. 2018) and super-resolution
(Ledig et al. 2017). They have been used for facial expression
synthesis under the framework of image-to-image transla-
tion (Isola et al. 2016; Zhu et al. 2017; Choi et al. 2018).
While GANs can generate photo-realistic expressions if the
distribution of test images remains similar to the training
images, their performance may degrade if the distribution of
test images varies as can be seen in Fig. 1.

There is an important distinction to be made between
expression recognitionwhich typically maps to O(1) classes
and synthesis which is a very high-dimensional mapping of
O(mn) form×n image size. Therefore, synthesismodels use
lots of parameters (even for small image sizes such as 56×56)
and require much larger facial expression datasets than those
currently used for learning expression recognitionmodels. In
the absence of such large datasets, learning FES models that
generalize well requires architectures with relatively fewer
parameters as we propose in the current manuscript. A key
assumption in ourwork is that facial expressions often consti-
tute sparsely distributed and locally correlated changes from

a neutral expression. This enables us to limit the number of
parameters in the model at appropriate locations and achieve
good generalization.

In our model, every output pixel directly observes only
a localized region in the input image. In other words, each
output pixel has a Local Receptive Field (LRF). This is in
contrast to models such as ridge regression and multilayer
perceptrons in which each output unit observes all input units
and therefore has Global Receptive Fields (GRF). The dif-
ference between LRFs and GRFs is illustrated in Fig. 2. The
simplicity introduced by LRFs is beneficial for FES since
expressions constitute multiple local phenomena–so-called
action units. GRFs force a pixel to observe too much unre-
lated information thereby making the learning task harder
than it really should be. Therefore, for some problems, LRFs
are sufficient and more effective (LeCun et al. 1998; Coates
and Ng 2011) as they lead to less convoluted local minima
by inducing a regularization effect.

We enforce sparsity in the model by making all the non-
local weights zero. This greatly helps the learning task and
improves generalization performance. The concept of local-
ity has helped us to develop a memory-efficient, closed-form
solution that is applicable to larger problem sizes.

The proposed model is equivalent to a masked version of
ridge regression and hence has a global minimum. Due to
LRFs, this minimum can be computed quickly with very low
computational complexity using our proposed non-iterative,
closed-form solution. Also due to LRFs, the number of
parameters in our model becomes extremely small. This is
important because real world applications of any good algo-
rithm may be offset by the large number of parameters to
be learned and stored. This leads to high computational cost
at test time. This is especially true for deep network based
GANs that contain a huge number of parameters. This leads
to higher spatial and computational complexity at test time.
This becomes more challenging if the trained models are to
be deployed in resource-constrained environments such as
mobile devices and embedded systems with limited memory,
computational power, and stored energy. A comparison of
the proposed algorithm with four state-of-the-art GANmod-
els including Pix2Pix (Isola et al. 2016), CycleGAN (Zhu
et al. 2017), StarGAN (Choi et al. 2018) and GANimation
(Pumarola et al. 2019) is shown in Table 1. The proposed
algorithm hasmore than two orders ofmagnitude fewer num-
ber of parameters than each of these GANs. In addition, it is
more than two orders of magnitude faster in synthesizing an
expression.

In contrast with other approaches, the role of weights and
biases in ourmodel can be clearly distinguished. Theweights
are predominantly used to transform the visible parts of the
input expression into the target. The biases are used to insert
hidden information such as teeth for a happy expression. The
model also adjusts weights according to whether a particular
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Fig. 1 Comparison of happy expressions synthesized by the proposed
algorithm and different GANs. Training of the proposed method was
performed on photographs of real human faces only. Columns 1–4:
hand-drawn, gray-scale pencil sketches. Columns 5–9: colored animal
faces. These results demonstrate the strength of the proposed algo-
rithm in learning essential attributes of happy expressions from real

human face photographs and generalizing to images coming from sig-
nificantly different distributions. Four state-of-the-art GANs found it
very challenging to induce expressions in pencil sketches and for the
case of animal faces, no satisfactory expression was induced (Color
figure online)

Fig. 2 Left: global versus local receptive fields. Local connections can
convey only required information and reduce over-fitting. Right: growth
in number of parameters as image size is increased. Local receptive
fields remain practical for larger image sizes while regression with
global receptive fields becomes impractical even for image sizes as
small as 128 × 128 pixels

pixel is relevant for a particular expression. For example,
an output pixel ‘looking at’ the mouth region might have
a greater role in generating happy expressions than a pixel
looking at the top of the forehead. We exploit these locally
adaptive weights for identity preserving FES. Experiments
performed on three publicly available datasets (Lundqvist
et al. 1998; Savran et al. 2008; Lyons et al. 1998) demonstrate
that our algorithm is significantly better than �0, �1 and �2-
regression, SVDbased approaches (TenenbaumandFreeman
2000), and bilinear kernel reduced rank regression (Huang
and De la Torre 2010) in terms of mean-squared-error and
visual quality.

The proposed approach also exhibits an advantage over
GAN models in terms of generalization. Figure 1 shows
a comparison of happy expressions synthesized for pencil
sketches and several animal faces by the proposed algo-
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Table 1 Comparison of
different architectures in terms
of model size (# of parameters)
and average execution time (ms)
for images of size 128 × 128

Proposed Pix2Pix CycleGAN StarGAN GANimation

Size (×104) 1.68 4100 780 850 850

Time (ms) 2.70 320 710 580 507

rithm and by Pix2Pix (Isola et al. 2016), CycleGAN (Zhu
et al. 2017), StarGAN (Choi et al. 2018) and GANimation
(Pumarola et al. 2019). All methods were trained entirely
on real human faces, therefore these test images may be
considered as out-of-dataset. All four GANs found it very
challenging to induce a happy expression in such out-of-
dataset images. For the case of animal faces, none of the
GANs was able to induce a happy expression. The proposed
algorithm generalized well by learning essential attributes of
happy expressions and itwas able to induce the happy expres-
sion in non-human faces as well. Due to the small number
of parameters, the proposed algorithm can be easily trained
on quite small datasets and in very short time compared to
the GANs. Despite using local receptive fields and a masked
version of ridge regression, our objective function is still
convex and we derive a non-iterative, closed-form solution
for the global minimum. This is a fundamental algorithmic
contribution of the current work. To the best of our knowl-
edge, the proposed algorithm is novel and no such algorithm
has been proposed before for the FES problem. In addition
to FES, the proposed formulation can potentially be applied
to the broader problem of image-to-image translation. The
main contributions of the current work can be summarized
as follows:

1. Convex optimization with closed-form solution of global
minimum in a single iteration.

2. Extremely low spatial and computational complexity.
3. Trainable on very small datasets.
4. Intuitive interpretation of learned parameters can be

exploited to improve results.
5. Good generalization over different types of images that

state-of-the-art GANs find very challenging to synthe-
size.

The rest of the paper is organized as follows. Related work
on traditional FES methods and GANs is given in Sect. 2.
The proposed Masked Regression (MR) algorithm is given
in Sect. 3 and its local receptive field learning formulation
is compared with sparse receptive fields in Sect. 4. Exper-
imental details and comparisons with traditional methods
are given in Sect. 5. A blur refinement algorithm called
Refined Masked Regression (RMR) is given in Sect. 6
and comparison with state-of-the-art GANs is given in
Sect. 7. Conclusions and future directions are presented in
Sect. 8.

2 RelatedWork

The Facial Expression Synthesis (FES) research can be
divided into blending based techniques and learning based
techniques. Blending based techniques primarilymergemul-
tiple images to synthesize new expressions (Zhang et al.
2006; Lin and Lin 2011; Pighin et al. 2006). However,
such methods require multiple facial landmarks to be pre-
identified and do not propose a unified framework for dealing
with hidden information, such as teeth, that is usually added
in a separate, post-processing step.

For the case of learning-based techniques, FES has
received relatively less attention compared to expression
recognition or face recognition across varying expressions
(Zeng et al. 2009; Jain and Li 2011; Georgakis et al. 2016).
Cootes et al. (2001) combined shape and texture informa-
tion into an Active Appearance Model (AAM). Given facial
landmarks, theirmodel can be fit to an unseen face and subse-
quently used for synthesis and recognition. Liu et al. (2001)
computed ratio between a neutral face and a face with an
expression at each pixel to obtain an expression ratio image.
A new neutral face can then be mapped to the corresponding
expression via the ratio image. A bilinear model is employed
by Tenenbaum and Freeman (2000) to learn the bases of
person-space and expression-space in a single framework
using SVD.Wang et al. (2003) learned a trilinearmodel using
higher order SVD. Tensor-based AAM models have been
employed for dynamic facial expression synthesis (Lee and
Elgammal 2006) and transfer (Zhang and Wei 2012). Facial
expression transfer differs from FES since it transfers the
expression of a source face onto a different target face (Costi-
gan and Prasad 2014; Zeiler et al. 2011;Wei et al. 2016; Thies
et al. 2016). Expression transfer methods include (De La
Hunty et al. 2010; Zeiler et al. 2011; Liu et al. 2014;Wei et al.
2016). Suwajanakorn et al. (2015) constructed a controllable
3D model of a person from a large number of photos. While
they report impressive results, the large number of per-person
training images required for model learning may not always
be available. A bilinear model is employed by Tenenbaum
and Freeman (2000) to learn the bases of person-space and
expression-space in a single framework using SVD. Wang
et al. (2003) learned a trilinear model for learning bases
of person-space, expression-space and feature-space using
higher order SVD. Lee and Elgammal (2006) incorporated
the expressionmanifold with the Tensor-AAMmodel to syn-
thesize dynamic expressions of the training face. Lee and
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Kim (2009) aligned texture with the normalized shape of
tensor based AAM. The expression coefficients of a test face
were synthesized by linearly combining the expression coef-
ficients of training faces. Zhang and Wei (2012) used Tensor
Face combined with an expression manifold to synthesize
the dynamic expressions of a training face, then extracted
and transferred the dynamic expression details of the training
face to the target face. Suwajanakorn et al. (2015) have made
a system to construct a controllable 3D model of a person
from a large number of photos. While they report impres-
sive results, the large number of training images required for
model learningmay not always be available.More details and
surveys on facial expression synthesis and transfer may be
found in (Pantic and Rothkrantz 2000; Deng and Noh 2008;
Zeng et al. 2009).

The kernelized regression-based FES method of Huang
and De la Torre (2010) learns bases for neutral as well as
expression faces. By using the neutral basis they can retain
identity preserving details such as glasses and facial marks,
using a post processing step. This method also improves
generalizationby limiting the effective number of free param-
eters. These properties are shared by our proposed method as
well. The Bilinear Kernel Reduced Rank Regression method
for static general FESwas proposed byHuang andDe laTorre
(2010). It synthesizes general expressions on the face of a tar-
get subject. A relatively similar approach has been proposed
by Jampour et al. (2015) for face recognition. Their approach
employs local linear regression on localized sparse codes of
non-frontal faces to obtain codes of frontal faces. Those codes
are then used in a frontal-face classifier to indirectly classify
non-frontal faces, though they do not synthesize expressions.
In contrast to their approach for face recognition, we propose
LRFs for facial expression synthesis.

A deep belief network for facial expression generation has
been proposed by Susskind et al. (2008). However, unlike
our approach, they cannot synthesize expressions for unseen
faces. Their output is usually a semi-controllable mixture of
different action units. In our proposed model, we have exact
control over which expression is to be synthesized. Due to
the use of Restricted Boltzmann Machines their expression
generation phase has high computational cost.

The most recent advances in expression synthesis have
been achieved viaGenerativeAdversarialNetworks (GANs).
A typical GAN consists of two competing networks: a gen-
erator that takes a random noise vector (and conditioning
input) and generates a fake image, and a discriminator net-
work that predicts the probability of an input image being
real or fake. These two networks compete against each other
to update their weights via minimax learning. Conditional
GANs (cGANs) condition their generator and discrimina-
tor with additional information such as images or labels.
Recently, GAN based frameworks have shown impressive
results in image-to-image translation tasks. Pix2pix (Isola

et al. 2016) is a paired image-to-image translation framework
based on cGAN and �1 reconstruction loss. Unpaired image-
to-image translation has also been successfully demonstrated
by Zhu et al. (2017), Kim et al. (2017),Liu et al. (2017),Yi
et al. (2017). CycleGAN (Zhu et al. 2017) learns a mapping
between two different domains and incorporates a cycle-
consistency loss with an adversarial loss to preserve key
attributes between the two domains. Liu et al. (2017) have
proposedUNIT framework that combines variational autoen-
coder with Coupled GAN (Liu and Tuzel 2016). UNIT con-
sists of two generators that share the latent space between two
different domains. All of the above-mentioned approaches
are designed for translations between two domains at a
time. More recently, multi-domain image-to-image transla-
tion frameworks have also been proposed. StarGAN (Choi
et al. 2018) learns mappings among multiple domains using
a single generator conditioned on the target domain labels.
TheGANimationmodel of Pumarola et al. (2019) introduced
a framework that takes continuous target domain labels in
the form of action units and can produce varying degrees of
expressions containingmultiple action units. Their method is
more accurately described as an expression transfer method
instead of synthesis. Theirmethod translates a source face via
automatically detected action units from a target face. Reli-
able automatic extraction of action units from face images is
a prerequisite for their method to work properly.

Most of these GAN based frameworks share the same
problem with other generative models, that is, partial con-
trol over the generated images. These methods synthesize
the whole image, and therefore also influence attributes in
addition to those that were targeted. Strict local control over
generated faces is not guaranteed, though some recent GANs
have attempted that as well (Shen and Liu 2017; Zhang et al.
2018). Image to image translation using GANs being a very
recent research direction, has been quickly progressing.

In the current work we compare the performance of
four GANs including Pix2Pix, CycleGAN, StarGAN and
GANimation with the proposed Masked Regression (MR)
algorithm. These GANs produce excellent results if the test
image has similar distribution as the training dataset. As the
distribution of test image diverges from the training dataset
distribution, the performance of these GANs deteriorates. In
contrast to these GANs, the proposed MR algorithm gener-
alises well to very different type of images, can be trained
using very small datasets, have a closed form solution with
very small spatial as well as computational complexity. To
the best of our knowledge, no such technique has been pro-
posed before us for facial expression synthesis.

3 LRF Based Proposed Learning Formulation

We model the FES problem as a linear regression task
whereby the output is compared with target faces. Denot-
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ing every input face as a vector in R
D and target face as a

vector in R
K , we can form the design and response matri-

ces X ∈ R
N×D and T ∈ R

N×K respectively. Here N is the
number of training pairs. The design/response matrices are
formed by placing the input/target vectors in row-wise fash-
ion. Standard linear regression can also be viewed as a single
layer network with global receptive fields (GRF). Our goal is
to learn a transformation matrix W ∈ R

K×D that minimizes
the �2-regularized sum of squared errors

ERR(W ) = 1

2
||WXT − T T ||2F + λ2

2
||W ||2F (1)

where regularization parameter λ2 > 0 controls over-fitting
and || · ||2F is the squared Frobenious norm of a matrix. This
is a quadratic optimization problem with a global minimizer
obtained in closed-form as

WRR = ((XT X + λ2 I )
−1XT T )T (2)

As discussed earlier, we posit that transformations from one
facial expression to another depend more on local informa-
tion and less on global information. Therefore, we prune the
global receptive fields to retain local weights only. This can
be understood by considering faces as 2D images. An output
unit at pixel (i, j) is then forced to ‘look at’ only a local
window around pixel (i, j) in the input matrix. This can be a
3×3window covering region (i−1, j−1) to (i+1, j+1) or
an even larger window. Such localized windows are referred
to as local receptive fields (LRF) and have been used in Con-
volutional Neural Networks (LeCun et al. 1998). In order
to represent presence or absence of weights, we construct a
mask matrix as large as the transformation matrix W where

Mi j =
{
0 to fix Wi j to 0

1 to learn Wi j
(3)

For every pixel in the output, there is a corresponding row
in matrix M indexed according to row-major order. This
row contains one entry for each pixel in the input which
is also indexed according to row-major order. All entries are
0 except for those input pixels that are in the receptive field
of the current output pixel. For example, let input and output
images both be of size 5× 5. Then in vectorized form, input
and output are vectors in R

25. Matrix M will have 25 rows
corresponding to output pixels and 25 columns correspond-
ing to input pixels. Figure 3 shows the mask M constructed
in this manner. Finally, to incorporate bias terms and treat
them as learnable parameters, a column of ones is appended
as the last column of M .

Since the local receptive fields obtained by masking the
weights are subsets of global receptive fields, learning the

Fig. 3 Mask M corresponding to input image of size 5 × 5, output
image of size 5×5 and receptive fields of size 3×3. For clarity, entries
equal to 0 are left blank. If the entry at row i and column j is 1, then
output pixel i has input pixel j in its receptive field

optimal weights still involves a quadratic but masked objec-
tive function

EMR(W ) = 1

2
‖(W ◦ M)XT − T T ‖2F + λM

2
‖W ◦ M‖2F

s.t. Wkd = 0 if Mkd = 0, 1 ≤ k ≤ K , 1 ≤ d ≤ D, (4)

where ◦ denotes the Hadamard product of two equal sized
matrices and λM > 0 is a regularization parameter. This for-
mulation fixes unwanted weights to 0 while encouraging the
sum-squared-error and magnitudes of the wanted weights to
be low.We term this as themasked regression (MR) problem.
In contrast to �1-penalized regression (Tibshirani 1996) that
forces most weights to be zero without determining which
ones exactly, our proposed masked regression makes spe-
cific, pre-determined weights equal to zero. That is, masked
regression leads to localized sparsity. Our formulation (4)
corresponds exactly to a single layer network with local
receptive fields. The reduction in the number of parameters
to be learned due to LRFs allows for very fast training of
such systems.

Due to the presence of the Hadamard product, writing a
closed-form solution for masked regression is not as straight-
forward as that for ridge regression (2). However, we handle
this problem by writing out objective function (4) in terms
of individual weights Wkd as

EMR(W ) = 1

2

N∑
n=1

K∑
k=1

{(
D∑

d=1

WkdMkd Xnd

)
− Tnk

}2

+ λM

2

K∑
k=1

D∑
d=1

W 2
kdMkd (5)
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This allows us to compute entries of the gradient vector
∇EMR(W ) ∈ R

K D×1 as

∂EMR(W )

∂Wi j
=

N∑
n=1

{(
D∑

d=1

WidMid Xnd

)
− Tni

}
Mi j Xnj

+ λMWi j Mi j (6)

where 1 ≤ i ≤ K and 1 ≤ j ≤ D. It must be noted that
for LRFs looking at r × r pixels in the previous layer, the
summation over d in (5) and (6) need not be performed more
than r2 << D times since the corresponding row in mask
matrix M contains not more than r2 ones. Compared to ridge
regression and its corresponding global receptive fields, this
leads to a significant decrease in memory required for storing
the transformation matrix W . We can also compute entries
of the Hessian matrix H ∈ R

K D×K D as

∂2EMR(W )

∂Wi j∂Wlm
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Mi j Mlm

N∑
n=1

Xnj Xnm ifi = l & j �= m

M2
i j

N∑
n=1

X2
nj + λMMi j if i = l & j = m

0 if i �= l

(7)

where 1 ≤ {i, l} ≤ K and 1 ≤ { j,m} ≤ D. This allows us to
compute the optimal solution via a single Newton-Raphson
step as

w = − H−1∇EMR(W ) (8)

wherew ∈ R
K D×1 represents row-wise concatenated entries

of W . That is, w = [
W 1 W 2 . . . WK

]T
where Wk denotes

the 1× D vector containing the values of the k-th row of W .
The initial W0 required for computing ∇E can be set as all
zeros since the initial value does not affect the global solution.
Therefore, we can find the transformation parameters vector
w by solving the linear system

Hw = −∇EMR(W ). (9)

Since H is a block-diagonal matrix with K blocks of size
D×D, we can solve for each row separately instead of solv-
ing the complete linear system in K D variables involving
a K D × K D system matrix. This means decomposing the
larger linear system into K smaller linear systems in D vari-
ables involving a D × D system matrix. These systemscan

also be solved in parallel. The k-th linear system can be writ-
ten as

H�k ,�kw�k = −∇EMR
�k

(10)

where�k is the set of indices corresponding to the placement
of the k-th row ofW in vectorw. Because of the constraints in
M , the solution vector w�k can contain at most r2 non-zero
entries at pre-determined locations corresponding to recep-
tive fields of size r × r . We can solve for these non-zero
entries only by removing those rows of ∇EMR

�k
and those

rows and columns of H�k that correspond to zero elements
of w�k . This makes the linear system significantly smaller
with at most r2 variables. Denoting the indices of non-zero
entries by �̂k , the linear system becomes

H
�̂k ,�̂k

w
�̂k

= −∇EMR
�̂k

(11)

This decomposition into K extremely small linear systems
makes solving the masked regression problem extremely
fast and with very low space complexity compared to
traditional regression solutions. A comparison of model
size of the proposed solution with traditional ridge regres-
sion based solutions for increasing problem sizes is shown
in Fig. 2. It can be observed that memory required for
storing ridge regression parameters quickly exceeds prac-
tical limits even for small images. In contrast, the use of
LRFs in masked regression keeps the number of parameters
and, consequently, memory requirement low even for large
images.

4 Local Versus Sparse Receptive Fields

The local receptive fields that we propose can also be viewed
as extremely sparse receptive fields with manually designed
and fixed localizations. An interesting alternative is to learn
sparse receptive fields. Will a sparsely learned topology also
converge to our local receptivefields?To answer this question
we learn a transformation matrix W that minimizes the �1-
regularized sum of squared errors

1

2
||WXT − T T ||2F + λ1||W ||1 (12)

where λ1 > 0 controls the level of sparsity and therefore
also controls over-fitting. The rows of the optimal transfor-
mation W will correspond to sparse receptive fields. Error
function (12) can be decomposed into a sum of K indepen-
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dent �1-regression problems that can be solved in parallel.
That is

K∑
i=1

1

2
||XWi − Ti ||22 + λ1||Wi ||1 (13)

whereWi is the D×1 vector containing the values in the i-th
row ofW and Ti is the N × 1 vector containing the values in
the i-th column of T . We solve the i-th sub-problem

min
Wi

1

2
||XWi − Ti ||22 + λ1||Wi ||1 (14)

using the LASSO algorithm (Tibshirani 1996).
In order to provide a fair comparison with masked regres-

sion that limits the size of the receptive field, it is better to
minimize the �0-penalized regression error which can also
be decomposed into K separate sub-problems

min
Wi

1

2
||XWi − Ti ||22 s.t. ||Wi ||0 ≤ λ0 (15)

in which hyperparameter λ0 ∈ Z
+ acts as an upper-bound

on the number of non-zero entries in the solution. Therefore,
settingλ0 = r2 makes the sparse receptive fields obtained via
(15) comparable to the local receptive fields of size r × r via
masked regression. We approximated (15) using the Orthog-
onal Matching Pursuit algorithm (Pati et al. 1993; Tropp and
Gilbert 2007). In the next section, we present a compari-
son of both �0 and �1 regression with the proposed masked
regression method.

5 Experiments and Results

In order to provide enough data for learning useful map-
pings while avoiding over-fitting, we combine three datasets
(Lundqvist et al. 1998; Savran et al. 2008; Lyons et al.
1998) containing the neutral and six basic expressions. The
basic expressions include afraid, angry, disgusted, happy,
sad and surprised. The KDEF dataset (Lundqvist et al.
1998) contains face images of 70 subjects (35 males and
35 females). The Bosphorous dataset (Savran et al. 2008)
contains face images of 105 subjects, each subject having up
to 35 expressions. The Japanese Female Facial Expression
(JAFFE) dataset (Lyons et al. 1998) contains face images of
10 Japanese actresses in neutral and the six basic expres-
sions. By combining these three datasets, we obtain a total of
1116 facial expression images. For each experiment we per-
formed an 80%, 10%, 10% split of the image pairs from the
input and target expressions as training, validation and test-
ing sets. We performed alignment of all images with respect
to a reference face image. All images were normalized to
contain pixel values between 0 and 1.

5.1 Experiments on Grayscale Images

To evaluate the proposed masked regression (MR) method
for synthesizing expressions on gray scale images, we com-
pare it with existing regression based techniques including
�0, �1 and �2-regression as well as Kernelized Reduced Rank
Regression (KRRR) and its bilinear extension (BKRRR)
(Huang and De la Torre 2010). In KRRR and BKRRR, a
rank constraint is used to limit the number of free parameters
in a kernel regression model for learning expression bases.

Table 2 Quantitative comparison of output and target images using mean-squared-error (MSE) scaled by 102

In Out PCA SSC �2 KRRR BKRRR �0 �1 MR3 MR5 MR7 MR9

Neutral Afraid 2.366 2.365 2.402 2.37 2.30 2.040 1.970 1.813 1.812 1.870 1.940

Neutral Angry 2.109 2.111 2.111 2.05 2.00 1.810 1.715 1.655 1.598 1.619 1.663

Neutral Disgusted 2.028 2.028 2.152 2.13 2.12 1.862 1.764 1.625 1.588 1.639 1.694

Neutral Happy 1.756 1.755 1.901 1.86 1.84 1.563 1.481 1.410 1.412 1.457 1.487

Neutral Sad 1.623 1.621 1.816 1.77 1.80 1.518 1.429 1.301 1.309 1.350 1.379

Neutral Surprised 2.499 2.500 2.112 2.07 2.04 1.983 1.789 1.820 1.770 1.791 1.838

Afraid Neutral 2.537 2.530 1.994 1.85 1.85 1.733 1.611 1.401 1.411 1.500 1.589

Angry Neutral 2.174 2.175 1.757 1.62 1.62 1.583 1.444 1.429 1.372 1.414 1.465

Disgusted Neutral 2.218 2.216 1.765 1.61 1.61 1.465 1.371 1.395 1.348 1.393 1.433

Happy Neutral 1.954 1.954 1.567 1.50 1.50 1.346 1.245 1.251 1.234 1.274 1.311

Sad Neutral 1.714 1.712 1.505 1.42 1.42 1.375 1.233 1.188 1.171 1.210 1.243

Suprised Neutral 2.682 2.680 1.776 1.66 1.66 1.697 1.522 1.562 1.496 1.492 1.532

Mean MSE 2.138 2.137 1.904 1.83 1.82 1.665 1.548 1.487 1.460 1.501 1.548

The algorithms used are PCA, SSC (Tenenbaum and Freeman 2000), �2-regression, Kernelized Regression (KRRR and BKRRR) (Huang and De
la Torre 2010), �0-regression, �1-regression and the proposed masked regression (MR). MRr refers to MR with receptive fields of size r × r pixels
Bold represents the minimum mean-squared-error among the different methods compared and which method is better
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We also compare with basis learning approaches including
PCA and SVD-based bilinear model for separation of style
and content (SSC) (Tenenbaum and Freeman 2000). In PCA,
a basis is learned for each expression. A test face is mapped
to a target expression by projection onto the target expression
basis and then reconstructed from the projected coefficients.
In SSC, bases are learned for expressions as well as persons.

For �2-regression and masked regression, we cross val-
idated the corresponding regularization parameters, λ2 and
λM respectively, over 10 equally spaced values between 0.1
and 10. For �1-regression, λ1 was cross-validated from 10−3

till 102 using 100 equally spaced values in log space. For
�0-regression, λ0 was cross-validated for all integers from 1
till the number of training examples. For each method, the
best value of the corresponding regularization parameter was
used to finally train on the combined training and validation
set. Weights learned from this final training were then used
to compute mean-squared-errors (MSE) on the test data. We
performed 12 experiments corresponding to the mapping of
neutral to the six other expressions and vice versa. It can be
seen from Table 2 that MR obtains the lowest MSE averaged
over the 12 combinations. Visual comparison of different
algorithms is presented in Fig. 4. It can be observed that only
local receptive fields learned via MR were able to transform
the expression while preserving identity and retaining facial
details. Figure 5 contains visual results of transforming neu-
tral expressions to the six basic expressions using MR. It

demonstrates that MR is a generic algorithm that can effi-
ciently transform any expression into any other expression
while preserving identities and individual facial details.
Role of receptive field sizeThe proposedmethod can be easily
modified to have not-so-local receptive fields. For example,
a 3×3 field that looks at every other pixel in a 5×5 window
or every third pixel in a 7 × 7 window. These modifications
only involve setting the mask M in Fig. 3 appropriately. This
way, an output pixel can ‘observe’ a larger region of the
input while using the same number of weights. For exam-
ple, 9 weights for any r × r receptive field. This helps to
avoid over-fitting by limiting the complexity of the model.
Table 2 compares performance of different receptive field
sizes. For the dataset used, we observed minimum MSE for
5 × 5 receptive fields. Employing too large a receptive field
increased the MSE since long-range receptive fields fail to
capture the local nature of facial expressions.
Role of weights and biases In order to observe the role of
only weights, we set the bias values to zero, and observe the
resulting mappings. Figure 6 demonstrates that a major role
of theweights is towipe out the original expressionwhile also
sometimes inserting subtle intensity changes to affect the new
expression. However, the weights cannot efficiently generate
unseen content such as teeth that are hidden in the neutral
and visible in the happy expressions. This inability to affect
hidden expression units is overcome by the biases which

Fig. 4 Comparison of different techniques with the proposed MR method for the neutral to happy mapping. The proposed method was able to
transform the expression while preserving identity and retaining facial details the most
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Fig. 5 For each neutral input, rows 1, 3 and 5 show expressions generated via proposed MR and rows 2, 4 and 6 show ground-truth. MR effectively
transformed expressions while preserving identities and facial details

adjust so that the major role is to produce the remaining,
hidden expression units.

Once learned appropriately, the bias remains the same for
all input test images. Therefore, it is not surprising to see in
Fig. 7 that the learned model exploits the bias only to affect
target expression units that the weights could not map. The
biases have no role in identity preservation. Figure 8 com-
pares the average absolute intensity of the transformation
Wx produced by the weights only with the additive trans-
formation b produced by the biases only. In this figure, for
12 transformations between expressions, weights learned via
�2-regression have less intensity than learned biases. This is
a major cause of loss of identity in the transformed expres-

sion learned via �2-regression. In contrast, for the proposed
masked regression the transformation via the weights was
roughly 5 times more important than the transformation pro-
ducedby adding the biases only.This iswhy theproposedMR
method has remained the best in preserving identity among
all the considered methods.

5.2 Experiments on RGB Images

Astraight-forward extension of the proposedmethod to color
images is to learn a separate mapping for each channel.
A visual comparison of learning per-channel mappings for
MR and other methods in Fig. 9 for RGB images. It can be
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Fig. 6 Left to right x is the neutral input, Wx is the happy expression
synthesized with bias b = 0 and Wx + b is the complete synthesized
happy expression. Second row shows the mouth regions zoomed in.
The weights and biases learned via masked regression assumed dis-
tinct, complimentary roles. While the weights wiped out the mouth and
surrounding regions, the biases (Fig. 7, column 4) then inserted miss-
ing information such as teeth. Regions not playing a significant role in
the mapping (e.g. hair, forehead) were left unaffected which helps in
preserving the identity of the input face (Color figure online)

Fig. 7 Biases of masked regression corresponding to six basic expres-
sions. Masked regression exploits the bias for learning expression
specific action units such as eyebrow, lip or cheek movements. It is also
exploited for adding content that cannot be captured by the weights. For
example, appearance of teeth in happy expressions is not represented by
any action unit but is still captured by the bias. The biases also represent
some arbitrary face but compared to the weights, its importance is low
(darker intensities). All images have been post-processed to increase
visibility (Color figure online)

observed thatMR is most successful in retaining background
and other non-facial details that have no role in expression
generation. The role of weights and biases for RGB images
can be visualized in Figs. 6, 7. Table 3 shows that MR com-

pares favorably against all competing methods in terms of
MSE on RGB images. The average training time for the clos-
est competitor (�1-regression) was much larger than MR as
shown in Table 4.

A cheaper alternative is to replicate the mapping learned
from gray-scale images for all color channels. Figure 10
demonstrates the effectiveness of this approach in preventing
color leakage. In addition to retaining original color ratios,
this solution causes no increase in the number of learnable
parameters when scaling from gray-scale to color images.
However, this approach can cause the resulting image to lose
some of its colorfulness.

A third option is to learn a single mapping between color
vectors. The error function for masked regression for multi-
channel color images can be written as

ECMR(W ) = 1

2

C∑
c=1

||(W ◦ M)XT
c − T T

c ||2F

+ λM

2
||W ◦ M ||2F (16)

where C is the number of channels and Xc and Tc are design
matrices corresponding to channel c. In this way, the number
of learnable parameters remains the same as for a gray-scale
mapping but these parameters are now learned from color
vectors instead of gray-scale pixels. Results of this approach
can be seen in Figs. 1, 18 and 21.

Experiments are performed on other color spaces as well
including YCbCr, Lab and HSV. However, best results were
observed in the RGB color space. This may be due to the
fact that the sparse, distributed, and local nature of facial
expressions that is exploited by MR is better represented in
the RGB color space.

Fig. 8 Relative importance of weights and biases. Over 12 transforma-
tions, we compare the average absolute intensity of the transformation
produced by the weights with the additive transformation learned as
biases. For the case of �2-regression, the bias often dominated the

weights, leading to loss of identity. For MR, the transformation via
weights was roughly 5 times as important as the transformation pro-
duced by adding the bias only. This leads to better identity preservation
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Fig. 9 Comparison of �2-regression, �0-regression, �1-regression and
Masked Regression (MR) results for the neutral to angry mapping on
RGB images. Only local receptive fields were able to transform the
expression while preserving identity the most and also retaining facial
details the most. Last two rows are zoomed-in views of the bottom-
left corners corresponding to rows 5 and 6 respectively. MR preserves
background most successfully (Color figure online)

Table 4 Comparison of training
times in seconds averaged over
12 different expression
mappings

MR �1 �0 �2

0.010 16.782 0.237 0.115

Fig. 10 Options for performing MR on color imges. Column 2 color
leakage due to learning separate transformations for each color chan-
nel. The eyebrow has developed a greenish tinge. Column 3: this can
be avoided by using weights learned from a gray-scale mapping and
replicating them on each color channel. However, it leads to some loss
of colorfulness. Column 4: Best results are acheived by learning a single
mapping between color vectors (Color figure online)

Sparsity comparison In addition to better performance and
faster training, the ratio of the number of non-zero weights
learned via the closest competitor (�1-regression) to those
learned via MR was 1.94 after averaging over 12 expression
transformations over RGB images. In other words, masked
regression was almost twice as sparse as �1-regression.

5.3 Experiments on Non-Frontal Faces

We learned a neutral to happy mapping for non-frontal faces
via the proposedMR technique. Results on a few test images
are shown in Fig. 11 for 45◦ and 90◦ poses from the KDEF
dataset. Training was performed on 56 image pairs while
validation and test sets contained 7 image pairs each. It can

Table 3 Comparison of MR
with �2, �1 and �0-regression on
RGB images of size 56 × 56 in
terms of mean-squared-error
(×102)

In Out �2 �0 �1 MR3 MR5 MR7 MR9

Neu Afr 1.183 1.209 1.081 1.027 1.026 1.046 1.073

Neu Ang 1.088 1.114 0.954 0.909 0.887 0.898 0.919

Neu Dis 1.067 1.136 0.996 0.914 0.898 0.916 0.939

Neu Hap 0.962 0.940 0.836 0.792 0.789 0.803 0.818

Neu Sad 0.977 0.985 0.835 0.760 0.768 0.783 0.794

Neu Sur 1.069 1.124 0.997 1.034 1.007 1.007 1.025

Afr Neu 1.108 1.114 1.002 0.875 0.886 0.933 0.974

Ang Neu 0.964 1.013 0.864 0.852 0.835 0.858 0.882

Dis Neu 1.010 0.970 0.882 0.862 0.843 0.864 0.884

Hap Neu 0.868 0.833 0.748 0.748 0.738 0.759 0.782

Sad Neu 0.913 0.921 0.784 0.760 0.754 0.772 0.790

Sur Neu 1.039 1.048 0.911 0.949 0.917 0.911 0.928

Mean MSE 1.021 1.034 0.907 0.874 0.862 0.879 0.901

MRr refers to masked regression with receptive fields of size r × r pixels
Bold represents the minimum mean-squared-error among the different methods compared and which method
is better
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Fig. 11 Synthesis of neutral to happy expressions on non-frontal faces learned via MR. Top: 45◦ and Bottom: 90◦ rotation

Fig. 12 Comparison of different regression methods on out-of-dataset
face images downloaded from the Internet. The proposed masked
regression (MR) generalized better than the comparedmethods. Despite

being trained on frontal faces only, MR did not enforce a frontal bias
over inputs that were not entirely frontal faces, while competing meth-
ods introduced a frontal bias
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Fig. 13 MR successfully generalized over pencil sketches. Left: a pen-
cil sketch containing occlusion of the face, Right: an atypical sketch
drawn by appropriate placements of English words. Compared meth-

ods demonstrated significant bias towards the training data by changing
the pose, identity or facial details of the input faces. In contrast, MRwas
able to handle occlusionbecause it learns localized expressionmappings

be seen that MR learns to change only the relevant portions
of the input. Very small details (such as long hair visible near
the mouth profile in 45◦ poses) are left unaffected as long as
they have no role to play in the expression mapping.

5.4 Generalization Over Out-of-Dataset Images

Since masked regression uses so few parameters, it should
be expected to generalize better than competing approaches.
To check this, some specific and some arbitrary images were
downloaded from the Internet. The intensity distributions of
these images were significantly different from the datasets
used for training, validation and testing.

5.4.1 Photographs

Figure 12 demonstrates that masked regression generalizes
well over photographs taken in unconstrained settings of
persons not belonging to any of the training datasets. The
closest competing technique in this instance was once again
�1-regression which was sometimes able to produce identity
preserving expression mappings but generally produced hal-
lucination artifacts. It can also be noted for test faces that are
not entirely frontal,MRdoes not enforce a strong frontal prior
on the generated expression. The same cannot be said about
competingmethods that introduce a frontal bias learned from
training data consisting of only frontal faces.
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Fig. 14 Synthesized expressions for animal faces using the proposed algorithm. Since training was performed entirely on real human faces, these
results demonstrate the strength of masked regression in learning essential attributes of expressions and generalizing them to non-human faces as
well

5.4.2 Pencil Sketches and Animal Faces

Figure 13 shows the results of different regression methods
on pencil sketches. Masked regression sucessfully general-
ized over pencil sketches containing occlusion of the face
and an atypical sketch drawn by appropriate placements of
Englishwords. Competingmethods demonstrated significant
bias towards the training data by changing the pose, identity
or facial details of the input face. In contrast, MR was able
to handle occlusion since it focuses on learning localized
expression mappings instead of global mappings.

Figure 14 shows the results of generating expressions for
animal faces using the proposed algorithm. Since training
was performed entirely on real human faces, these results

Fig. 15 Visualization of the α maps showing importance of different
facial regions in generating 6 different expressions. The α maps are
derived automatically as explained in Sect. 6

demonstrate the strength of masked regression in learning
essential attributes of happy expressions and generalizing
them to non-human faces as well.
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Fig. 16 Visualization of the blur refinement algorithm as explained
in Sect. 6. Image details from input x and expression details from MR
output y are used to yield a refined expression image. The refined results
show better recovery of facial hair, illumination effects and subtle facial
features. An overall improvement in identity preservation can also be
observed. The input image in the last row ismade by combining different
letter strokes. In the refined result, many of the letter strokes are also
recovered (zoom in for better view) (Color figure online)

6 Blur Refinement Algorithm

In Fig. 4, a comparison of different regression techniques
reveals blurinness in the synthesized expression images. In
case of MR, this is due to the fact that for weights learned
by minimizing sum-squared-error, predictions at test time
are conditional means of the target variable (Bishop 2006, p.
46). Blurring can be reduced by determining the role αi j of
each output pixel in generating an expression. If a pixel has
no role in expression generation, then its output value can be
replaced by the corresponding value in the input image. This
refinement of results can be written as a linear combination
of input and output images. That is,

y′ = (1 − α) ◦ x + α ◦ y (17)

Fig. 17 Neutral to happy mappings synthesized by the proposed MR
andRMR,Pix2Pix,CycleGAN,StarGANandGANimation.Results are
shown for unseen test images belonging to the same datasets that were
used for training. Results produced by GANs were sharp but occasion-
ally contained some artifacts. MR results were a bit smooth while RMR
was able to produce convincing expressions with more facial details

where x, y and y′ are the the input, output and refined images
respectively and the α map contains per-pixel importances
used for blending the input and output.We refer to refinement
of MR results via Eq. (17) as Refined Masked Regression
(RMR). We compute the importance image α as follows.
First, we compute the �1-norm of the receptive field (includ-
ing bias) of each output pixel to obtain an image s of absolute
receptive field sums. Let μ and σ denote the mean and stan-
dard deviation of image s. We standardize the sums in s and
compute their absolute values as z = | s−μ

σ
|. These z values

indicate how different a receptive field is from the average
receptive field in terms of standard deviation. Then we per-
form morphological dilation with a disk shaped structuring
element and rescale the result between 0 and 1. The dilation
expands the influence of atypical receptive fields to surround-
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Fig. 18 Results of neutral to happy mappings on out-of-dataset human
face photographs downloaded from the Internet. GANs fail to general-
ize well when test and training distributions are significantly different.
In contrast, expressions synthesized by MR and RMR were satisfac-
tory. Among the compared GANs, GANimation produced better results
(Color figure online)

ing pixels. Then we pass the result through a smoothed-out
step-function so that pixels with values greater than a thresh-
old are moved towards 1 and the rest are moved towards 0.
The smooth step-function that we use in our experiments
is the logistic sigmoid function (1 + exp(−k(z − τ)))−1

with k = 10 and threshold τ = 0.2. After scaling the result
between 0 and 1 again, we convolve with a Gaussian filter
to obtain a smooth α map. All parameters related to dilation
and smoothing are set adaptively with respect to image size.

This procedure of computing the α-map will make the
synthesized output more important for pixels with receptive
fields that are different from the average receptive field in
terms of �1-norm. Figure 15 shows the α maps correspond-
ing to 6 expressions. It can be seen that eyes have a dominant
role in all expressions. The mouth and cheeks have an impor-
tant role in generating happy expressions. The forehead is
important for afraid, angry and surprised expressions.

In the refined image, the input image contributes more in
regions that do not play a major role in expression genera-

Fig. 19 Results of neutral to happy mappings. In most cases, GANs
trained on real human photographs failed to generalize well. In contrast,
MR and RMR also trained on real human photographs generated quite
satisfactory happy expressions. First three columns are pencil sketches,
last column is an animal face. CycleGAN was able to produce good
results in some sketches while Pix2Pix and StarGAN showed more
degraded performance. GANimation results depend heavily on reliable
extraction of action units from a target face. The fourth column shows
a 2D projection of a computer generated 3D model for which only MR
and RMR were able to induce a convincing and artefact-free happy
expression. The GANs were not able to induce expression in the animal
face shown in the last column

tion. In contrast, in regions with a stronger role in expression
generation the output of MR contributes more. This best-
of-both-worlds solution adaptively copies sharp face details
from the input and expression details from the output as
shown in Fig. 16. In the rest of the paper, we refer to blur
refined MR results as RMR.

7 Comparison with Generative Adversarial
Networks

Recently, Generative Adversarial Networks (GANs) have
induced tremendous interest in image-to-image translation
tasks. We compare our results with four state-of-the-art
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Fig. 20 Using three different target faces (left), GANimation failed to
synthesize a happy expression over the two pencil sketches and the two
animal faces. The eyes of the cat were transformed into human-like eyes
(compare with sixth column of Fig. 1)

GANs, includingPix2Pix (Isola et al. 2016),CycleGAN(Zhu
et al. 2017), StarGAN (Choi et al. 2018) and GANimation
(Pumarola et al. 2019). We trained each of the first three
GANs on the same dataset as used by MR and other algo-
rithms as discussed in Sect. 5. We trained Pix2Pix for 100
epochs (in 5h) on the same machine as used for other exper-
iments. The CycleGAN was trained for 100 epochs in 48h
and the StarGAN was trained for 1000 epochs in 120h. As
reported in Table 4, training times for MR were less than a
second. We used a pre-trained GANimation model that was
trained for 30 epochs on the EmotionNet dataset (Benitez-
Quiroz et al. 2016) which is much larger than our training
set. Figure 17 demonstrates that GANs may generate quite
good results as long as the testing images come from a dis-
tribution similar to the training images. However, for input
images with features uncommon in the training set, such as
facial hair in row number 4, the proposed MR and RMR
methods were successful in inserting a reasonable looking
smile. In addition, MR and RMR seem to better preserve the
outer profile of faces.

In contrast, GANs produce sharper images, though some-
times, the outer profile is not well preserved (last row). For
MR hidden details such as teeth are learned as the bias while
GANs generate teeth as part of the samples from the learned
distribution. In some cases, the generated teeth are quite
good, while in other cases the teeth may degenerate and get
mixed up with lips and other facial features. RMR retains
expressiondetails ofMRwhile presentingbetter facial details
similar to GANs.
Performance on out-of-dataset images

The performance of GANs and MRs is compared on out-
of-dataset images downloaded from the Internet as discussed
in Sect. 5.4.

We observe that in some cases, for testing images coming
from different distributions, GANs were not able to gen-
erate convincing results as shown in Fig. 18. In contrast,

generalization of MR and RMR on out-of-dataset human
photographs is better.

We further compare the generalization of GANs and MR
algorithms on pencil-sketches of human faces in Fig. 19.
Both GANs and MR algorithms were trained on the same
real human face photographs as described in Sect. 5. Once
again we observe that MR algorithms were able to produce
better smiles. The gray color distribution of input sketches
is also better preserved by the MR algorithms compared to
GANs. Among the four compared GANs, CycleGAN pro-
duced better smiles on sketch images.

The performance of GANs and MR algorithms is also
compared by generating happy expressions in animal faces.
While GANs and MR algorithms were trained on the same
real human face photographs, GANs were not able to syn-
thesize a happy expression on any animal as demonstrated in
Figs. 1 and 19. In contrast, MR and RMR were able to syn-
thesize quite convincing happy expressions in animal faces.
These experiments reveal the generalization strength of MR
algorithms on images coming from distributions that are sig-
nificantly different from the distribution of training datasets.
Since GANimation results depend heavily on reliable extrac-
tion of action units from target faces, we used three different
target faces in order to perform a fair comparison. Figure 20
shows that even using multiple targets, GANimation could
not generalize well for pencil sketches and animal faces.
It also produced human-like artefacts in animal faces. For
example, the eyes of the cat were transformed into human-
like eyes. In contrast, our proposed method preserved the
cat’s original features (see third row of Fig. 1).

Figure 21 compares the proposed method with the expres-
sion transfer results of GANimation (Pumarola et al. 2019).
Input images were taken from their paper. The proposed
method compared favorably against GANimation in terms
of expression synthesis but GANimation results are sharper,
irrespective of whether the expression was adequately trans-
ferred or not.

To quantitatively validate the out-of-dataset generaliza-
tion of the proposedmethod, we used the EmoPy1 expression
recognition classifier pre-trained on the CK+ (Lucey et al.
2010) and FER+ (Barsoum et al. 2016) datasets to find the
expression recognition accuracy for images synthesized by
different methods. Table 5 shows the drop in expression
recognition accuracy when test set images are replaced by
out-of-dataset images. GAN based approaches suffered a
larger drop in performance when tested on out-of-dataset
images.

1 https://github.com/thoughtworksarts/EmoPy.
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Fig. 21 Direct comparison with expression transfer work in GANima-
tion (Pumarola et al. 2019). Input images were taken from their paper.
Theproposedmethodcompared favorably againstGANimation in terms

of expression synthesis butGANimation results are sharper, irrespective
of whether the expression was transferred or not (Color figure online)

Table 5 Drop in expression recognition accuracy (in percentage points)
when changing from test set images to out-of-dataset images

Pix2Pix CycleGAN StarGAN GANimation MR

35.72 16.39 21.43 20.74 12.39

8 Conclusion

In this workmasked regression has been introduced for facial
expression synthesis using local receptive fields. Masked
regression corresponds to a constrained version of ridge

regression. An efficient closed form solution for obtaining
the global minimum for this problem is proposed. Despite
being simple, the proposed algorithm has shown excellent
learning ability on very small datasets. Compared to the exist-
ing learning based solutions, the proposed method is easier
to implement and faster to train and has better generaliza-
tion despite using small training datasets. The number of
parameters in the learned model is also significantly smaller
than competing methods. These properties are quite useful
for learning high-dimensional to high-dimensionalmappings
as required for facial expression synthesis. Experiments per-
formed on three publicly available datasets have shown the
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superiority of the proposed method over approaches based
on regression, sparse regression, kernelized regression and
basis learning for both grayscale as well as color images.

Receptive fields learned viamasked regression have a very
intuitive interpretationwhich is further exploited to refine the
output images.

Beyond the basic Masked Regression (MR) algorithm, an
advanced Refined MR (RMR) algorithm is also proposed to
reduce the blurring effects. Evaluations are also performed
on out-of-dataset human photographs, pencil sketches, and
animal faces. Results demonstrate thatMR andRMR succes-
fully synthesize the required expressions despite significant
variations in the distribution of the test images compared to
the training datasets. Comparisons are also performedon four
state-of-the-art GANs including Pix2Pix, CycleGAN, Star-
GAN and GANimation. These GANs are able to generate
photo-realistic expressions as long as testing and training dis-
tributions are similar. For the cases of out-of-dataset human
photographs, pencil sketches and animal faces, these GANs
exhibited degraded performance. In contrast, the proposed
algorithm was able to generate quite satisfactory expressions
in these cases as well. Therefore, the proposed algorithms
generalizewell compared to the current state-of-the-art facial
expression synthesis methods.

As a future research direction, we suggest integration of
the proposed MR and RMR algorithms within current-state-
of-the-art GANs such as CycleGAN and StarGAN so that
the resulting algorithm generalizes well on the out-of-dataset
images and at the same time should be able to synthesize
photo-realistic images. In addition, redundancy among dif-
ferent facial expressions can be exploited by learning a single
weight matrix for all expressions. This is exploited by both
StarGAN andGANimation to increase their training set from
just source and target expressions to all available expres-
sions. The proposedMRmethod can be extended in a similar
fashion.Another future research direction is to explore gener-
ation of expressionswith varying intensity levels. Expression
intensity may be handled by learning discrete expression
mappings corresponding to targets with different intensities.
A continuous expression intensity map may be obtained by
interpolating between discrete intensity levels.
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