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Abstract
In this paper, we propose the use of a semantic image, an improved representation for video analysis, principally in com-
bination with Inception networks. The semantic image is obtained by applying localized sparse segmentation using global 
clustering prior to the approximate rank pooling, which summarizes the motion characteristics in single or multiple images. 
It incorporates the background information by overlaying a static background from the window onto the subsequent seg-
mented frames. The idea is to improve the action–motion dynamics by focusing on the region, which is important for action 
recognition and encoding the temporal variances using the frame ranking method. We also propose the sequential combina-
tion of Inception-ResNetv2 and long–short-term memory network (LSTM) to leverage the temporal variances for improved 
recognition performance. Extensive analysis has been carried out on UCF101 and HMDB51 datasets, which are widely 
used in action recognition studies. We show that (1) the semantic image generates better activations and converges faster 
than its original variant, (2) using segmentation prior to approximate rank pooling yields better recognition performance, (3) 
the use of LSTM leverages the temporal variance information from approximate rank pooling to model the action behavior 
better than the base network, (4) the proposed representations are adaptive as they can be used with existing methods such 
as temporal segment and I3D ImageNet + Kinetics network to improve the recognition performance, and (5) the four-stream 
network architecture pre-trained on ImageNet + Kinetics and fine-tuned using the proposed representation achieves the state-
of-the-art performance, 99.1% and 83.7% recognition accuracy on UCF101 and HMDB51, respectively.

Keywords  Motion representation · Semantic information · Convolutional neural networks · Human action recognition · 
Long–short-term memory networks · Frame ranking

1  Introduction

Human action recognition from videos has been an active 
research area due to its variety of applications such as sur-
veillance, healthcare, robotics, and so forth. The perfor-
mance of action recognition has drastically been improved in 
recent years, mainly due to the deep network architectures. 
However, the optimal representation of the videos is still 
an ongoing research issue. In the last decade, researchers 
have proposed local spatiotemporal descriptors based on 

motion, gradient, dense trajectories, dense sampling, and 
spatiotemporal interest points (Jain et al. 2013; Laptev 2005; 
Wang et al. 2013) for action recognition. Furthermore, the 
advancement in object recognition techniques motivated the 
research community to combine these descriptors with well-
developed encoding schemes like fisher vectors (Wang and 
Schmid 2013).

Many recent works rely on the contents in image 
sequences rather than modeling their dynamics. These con-
tents are understood from the images which are then fed to 
the discriminative learning methods as their input. Thanks to 
the convolutional and recurrent neural networks (RNNs), the 
features are learned in an end to end manner to solve specific 
problems such as action recognition. However, using these 
discriminative learning methods does not solve the prob-
lem of better representations as they are largely based on 
spatiotemporal filters for classifying actions. Earlier works 
focused on the representation such as dynamic textures intro-
duced by Doretto et al. (2003) and flow-based appearance 
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proposed by Wang and Schmid (2013). Fernando et  al. 
(2015) proposed a way to represent the motion dynamics of 
image sequences by their temporal order. These representa-
tions were successful in improving the performance of an 
action recognition system. Bilen et al. (2016, 2018) extended 
the idea to construct a dynamic image using the temporal 
order of image sequences. The idea was to incorporate the 
motion dynamics into a single image. The image can be fed 
to any standard convolutional neural network (CNN) for an 
end to end learning. All the existing representations have 
a common goal: modeling the action–motion dynamics to 
improve the performance. The CNNs extract features such as 
spatiotemporal, edge, and gradient features based on the pro-
gression of convolutional layers. In this work, we extend the 
notion of Bilen et al. by using the temporal order of image 
sequences after performing the segmentation and incorpo-
rating semantics, i.e., background information; we refer to 
this representation as a semantic image (SemI). The idea is 
to improve the action–motion dynamics by providing frames 
with sparse characteristics such that the region of interest 
should be focused more rather than the whole image. It is 
proved that incorporating background information can have 
a positive influence on recognition performance (Yue-Hei 
Ng et al. 2015). In this regard, we overlay a static back-
ground on all the subsequent segmented frames to impose 
the semantic information in a single SemI. It is apparent that 
in video analysis, the background changes frequently. In this 
regard, we divide the whole video into windows of overlap-
ping frames, and a static background from each subset of 
frames is overlaid to the subsequent segmented frames in 
that window. In this way, we incorporate the changing back-
ground information in multiple SemI. The SemI improves 
video representation in terms of compactness, flexibility, 
effectiveness, and adaptability. The compactness refers to the 
summarization of motion from all video frames on to a sin-
gle image along with semantic information. The flexibility 
refers to the use of the representation throughout the network 
architecture. The effectiveness is the ability to handle back-
propagation for end-to-end learning. The SemI can also be 
used with existing network architectures, which shows the 
adaptability trait.

It is apparent that the representations play an impor-
tant part in the recognition pipeline, but without a good 
learning method, the representations cannot achieve their 
true potential. Existing works mainly use CNN, RNN, or 
LSTM, which is a variant of RNN. Both of the networks, 
CNN and RNN, have their advantages and disadvantages. 
For instance, RNNs are good at temporal modeling, but 
they cannot extract high-level features, while CNNs are 
good at extracting high-level features but do not perform 
well when dealing with sequential modeling. Additionally, 
existing works employ mostly the pre-trained networks 
such as CaffeNet (Jia et al. 2014), AlexNet (Krizhevsky 

et al. 2012), ResNet (He et al. 2016) and the similar ones, 
which increase the depth of the network but not the width. 
These pre-trained models have specific filter sizes defined 
in each convolutional layer. The provision of liberty to the 
network for selecting the filter size has a profound effect 
on the object recognition studies, i.e., Inception networks. 
However, such networks have not been extensively studied 
for action recognition studies so far.

In this work, we propose semantic image networks 
which use SemI to train the sequential residual LSTM (SR-
LSTM). We construct semantic images by performing seg-
mentation with localized sparse segmentation using global 
clustering (LSSGC) and overlaying the background infor-
mation on to the subsequent segmented frames followed 
by the approximate rank pooling (Bilen et al. 2016). The 
term sparse segmentation refers to the segmentation of 
regions which are of interest concerning the field-of-view. 
We apply the approximate rank pooling on the semantic 
images to summarize motion with respect to the tempo-
ral order of frames. Some examples of semantic images 
are shown in Fig. 1. It can be visualized that the seman-
tic images not only summarize the repeated motions as 
shown for ‘Apply Eye Makeup’ but also the direction of 
the motion. For instance, the horizontal motion is indi-
cated in ‘Archery’ and ‘Boxing Punching Bag’ whereas 
the vertical motion is indicated in ‘Handstand Walking’ 
Action.

The SR-LSTM uses the pre-trained Inception-ResNetv2 
(Szegedy et al. 2017) network sequenced with LSTM to 
perform an end-to-end learning. The reason for using such 
architecture and configuration is three-fold. The first is to 
give liberty to the network for choosing the filter size by 
using inception modules in the pre-trained architecture. The 
second is to get improved performance for action recogni-
tion, and the third is to model temporal variances better for 
temporally ordered frames. Previous studies have tried to 
combine the characteristics of both CNN and LSTM which 
have been proved to be beneficial (Donahue et al. 2017), 
nevertheless modeling the temporal information from plain 
RGB sequences have limited benefits. In this study, we lever-
age the temporal variances incorporated in SemI with LSTM 
to handle the sequential modeling of data in a better way. 
The approximate rank pooling is applied to the windows of 
partially overlapped frames; therefore, a frame can have a 
high rank in the first window but may achieve a lower rank 
in the next one in case if it occurs in an overlap. This kind of 
phenomena is referred to as temporal variance in our study. 
The contributions of this study are summarized as follows:

•	 We propose a method (LSSGC) for dynamically seg-
menting the image.

•	 We introduce a semantic image to represent motion 
dynamics over a sequence of frames.
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•	 We propose an SR-LSTM based semantic image net-
work to leverage temporal information and variance.

•	 We report the comparative analysis with deep learn-
ing-based segmentation method for construction of the 
semantic image.

•	 We use the semantic images with four-streams, tem-
poral segment networks, and I3D network pre-trained 
on ImageNet + kinetics to show that the proposed rep-
resentation is adaptable.

•	 We report state-of-the-art results on both UCF101 and 
HMDB51 datasets.

The rest of the paper is structured as follows: Sect. 2 
consolidates the existing works carried out for action rec-
ognition. Section 3 defines the methodology for LSSGC, 
adding semantics to the segmentation, and approximate 
rank pooling for constructing semantic images. Section 4 
provides details regarding SR-LSTM. The experimental 
results and discussion are presented in Sect. 5, followed 
by the conclusion and future work in Sect. 6.

2 � Related Works

In this section, we provide a comprehensive review for 
state-of-the-art methods on action recognition using vid-
eos along with some distinction with respect to the image 
modalities, network characteristics, multiple streams, and 
long–short term dynamics.

2.1 � RGB Images

The majority of the existing works for action recognition 
is based on the stack of still images. Researchers have used 
both deep learning and shallow learning methods for recog-
nition of action using RGB images. Fernando et al. (2015) 
proposed rank pooling on RGB images to explore the tem-
poral changes in videos. The study combines the temporally 
aligned videos with different parametric models such as rank 
support vector machines (Rank SVM) and support vector 
regression (SVR) (Smola and Schölkopf 2004) to measure 
the performance of action recognition. They suggested that 
the effect of rank pooling can improve the performance up 
to 7–10% in comparison to the average pooling layers. Wang 
and Schmid (2013) proposed improved dense trajectories 
(IDT) from a series of still images. These trajectories are 
computed using speed up robust features (SURF) (Willems 
et al. 2008) and dense optical flows combined with random 
sample consensus (RANSAC) (Fischler and Bolles 1981). 
They claimed that IDTs could help to improve many motion-
based detectors. The stack of RGB images has also been 
used with deep learning architectures for action recogni-
tion. Yue-Hei Ng et al. (2015) used the sequence of RGB 
images along with the background information, suggesting 
that some activities are only performed at a specific place 
such as “hockey penalty” and “basketball” will always be 
played in ground and basketball court, respectively. They 
used convolutional neural networks (CNNs) along with the 
long–short-term memory networks (LSTM) to classify the 
action. The study achieved 88.6% accuracy on UCF101 

Fig. 1   Semantic images derived from RGB video frames. From left to right (i) Apply Eye Makeup, (ii) Archery, (iii) Handstand Pushups, and 
(iv) boxing punching bag. The top row shows RGB images whereas the bottom one shows semantic images
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dataset. Simonyan and Zisserman (2014) used the combina-
tion of stacked RGB images and optical flows with CNNs to 
improve the action recognition performance. They reported 
the mean class accuracy on UCF101 and HMDB51 to be 
86.9% and 58.0%, respectively. In our study, we also use 
RGB images but to transform them into semantic images. 
We also use the network based on RGB images for our two- 
and four-stream networks.

2.2 � Motion Information

Motion information is considered to be of vital importance 
when classifying human actions. Methods capturing motion 
information from a sequence of images have been exten-
sively used in existing studies. The techniques for summa-
rizing motions include motion history images (MHI) and 
motion energy images (MEI) (Bobick and Davis 2001), 
dynamic textures (Kellokumpu et al. 2008), and optical 
flows (Ali and Shah 2010). Bobick and Davis (2001) intro-
duced the concept of MHI for action and motion recognition 
from videos. The MEIs find the regions where motion is 
present and highlight those image regions to show differ-
ent motion patterns. MEI uses spatial motion-distribution 
pattern by computing the image differences and summing 
their squares. The MHI is the encoded version of MEI which 
computes the motion of each pixel at a given location. Opti-
cal flow based methods use principle components for sum-
marizing the motion between successive frames. Ali and 
Shah (2010) proposed the use of optical flows for generat-
ing kinematic features. These features are then trained using 
multiple instances learning for performing action recogni-
tion. Ke et al. (2005) performed action detection and rec-
ognition by computing optical flows from sub-spaces vol-
umes of the image sequences. As discussed in the previous 
subsection, many two-stream networks use the optical flow 
images as one of the modality to train it with the combina-
tion of RGB images or other representations (Feichtenhofer 
et al. 2016b; Simonyan and Zisserman 2014). Another form 
of image representation is the dynamic image which was 
introduced by Bilen et al. (2016). The dynamic image sum-
marizes the motion dynamics of a video in a single image. 
Unlike the MEI and MHI, the summarization in dynamic 
images is based on the ranking order of the frames proposed 
in Fernando et al. (2015). The concept of ranking frames 
can also be applied to optical flows for generating dynamic 
optical flows. In our work, we also apply the approximate 
rank pooling for ordering the frames. However, we apply the 
approximate rank pooling on the segmented images, which 
are then fused with a static background. We show that such 
kind of pre-processing improves the action–motion dynam-
ics as well as the performance in terms of action recognition 
accuracy.

2.3 � Spatio‑temporal Dynamics

The techniques using spatiotemporal dynamics are evolved 
from patterns extracted using sequence data, which were 
initially used for texture recognition (Doretto et al. 2003). 
These techniques take into account the sequential data and 
estimate the parameters of the model using an autoregressive 
moving average for constructing dynamic textures. Kello-
kumpu et al. (2008) applied the dynamic textures for time-
varying sequences to recognize human actions. The crea-
tion of dynamic textures was based on local binary patterns 
(LBP) (Ojala et al. 2002) descriptors which help to encode 
the micro-texture for the 2D neighborhood of the pixels; they 
referred to it as binary strings. Le et al. (2011) extended the 
idea to use independent subspace analysis (ISA) with the 
dynamic textures to recognize human actions. The repre-
sentations using ISA were extracted hierarchically to handle 
invariant representations, which improved the accuracy of 
the recognition task. Nonetheless, these techniques capture 
the motion dynamics from an action video, but they do 
not consider the video sequence for modeling the motion 
characteristics.

2.4 � Spatio‑temporal Volumes

In recent years, the researchers have considered the use of 
3D volumes, which adds a third dimension to the 2D images, 
i.e., time. These 3D volumes are derived from spatiotempo-
ral templates (Pirsiavash et al. 2009; Rodriguez et al. 2008; 
Shechtman and Irani 2005). Ji et al. (2013) proposed the 3D 
CNNs which capture the spatial as well as temporal infor-
mation from the videos. The spatial information is captured 
using 2D, and the motion information from multiple frames 
is accounted for the third dimension to learn the features. 
Tran et al. (2015) proposed the use of convolutional 3D fea-
tures (C3D) which were learned using 3D CNNs on large-
scale datasets. Their study showed that using many feature 
representations such as IDTs, optical flows, and so forth, 3D 
CNNs can boost performance. Hara et al. (2018) recently 
proposed the use of 3D kernels with very deep CNNs to 
boost the performance of different recognition tasks. They 
employed ResNeXt101 using 3D kernels while experiment-
ing with a larger number of filters, i.e., 64 and achieved 
better results for UCF101 and HMDB51 as compared to the 
filter size of 32. Tran et al. (2018) evaluated several forms 
of spatiotemporal convolutional networks and proposed 
separate 3D convolutional blocks for spatial and temporal 
streams. Xie et al. (2018) pointed out that the 3D CNNs are 
computationally complex models. Therefore, they tried to 
seek a balance between speed and accuracy by replacing 
3D convolutional blocks with 2D convolutions towards the 
bottom of their architecture. Diba et al. (2018) proposed the 
addition of spatio-temporal channel correlations (STC) as 
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residual units in the 3D CNN architecture. The idea was to 
model the correlations between the channels of 3D CNN for 
extracting temporal and spatial features. Chen et al. (2018b) 
also tried to reduce the computational complexity of 3D 
CNNs by slicing the original network into fibers, i.e., ensem-
ble of lightweight networks. The multiplexer modules were 
introduced to improve the information flow between fiber 
units. The problem with 3D CNNs is that they require a large 
number of annotations to bring the natural representation of 
frame sequences. Moreover, the use of 3D filters increases 
the number of parameters for the employed network archi-
tecture, which increases the computational complexity. An 
alternative way of using spatiotemporal information is to 
employ multi-stream networks with different modalities 
as performed in Simonyan and Zisserman (2014). In this 
work, we too exploit the use of multiple modalities such 
as semantic images and semantic optical flows to extract 
spatiotemporal information.

2.5 � Multi‑stream Networks

Multi-stream networks refer to the combination of single 
stream networks trained on a specific modality such as RGB, 
optical flow, and so forth while using their late fusion for 
drawing final classification label. The multi-stream networks 
have been used in a variety of domains. Earlier examples 
of multi-stream networks include Siamese architecture, 
which learns to classify the input and measure the similarity 
between the output of the classification (Chopra et al. 2005). 
Simonyan and Zisserman (2014) used the pre-computed 
optical flows along with the RGB images to train the two-
stream CNNs to boost the recognition result. Feichtenhofer 
et al. (2016b) extended the idea by fusing the architectures at 
various levels of CNN architecture. The fusion was based on 
3D CNNs to combine different modalities for an end to end 
training. Bilen et al. (2016) presented the idea of using two-
stream networks on different combinations such as RGB, 
optical flows, dynamic images, and dynamic optical flows. 
In Bilen et al. (2018) the authors extended their work by 
employing four-stream networks using multiple dynamic 
and RGB images, optical flows and dynamic optical flows 
with very deep network architecture, i.e., ResNeXt50 and 
ResNeXt101. They reported the state-of-the-art results on 
UCF101 and HMDB51 datasets with 95.5% and 72.5%, 
respectively. Similar to the existing studies, we also explore 
the use of two- and four-stream networks to boost our rec-
ognition performance.

2.6 � Long‑ and Short‑Term Dynamics

In the previous subsections, we mostly mentioned the studies 
which capture short-term dynamics, i.e., from smaller win-
dows. Another category of deep architectures uses recurrent 

neural networks (RNN), which are capable of capturing 
long-term motion dynamics. Donahue et al. (2017) pro-
posed the use of sequential networks comprising of CNN 
for feature extraction and LSTM for modeling the temporal 
dependencies. Srivastava et al. (2015) proposed an LSTM 
based autoencoder which reconstructs the next frame by 
taking into account the current one. Their study used the 
representations from the LSTM autoencoder for further clas-
sification of actions. Ma et al. (2018) extended the work 
of Simonyan and Zisserman (2014) by combining the two 
stream, i.e., RGB and stacked optical flows with the LSTMs 
to model the temporal dependencies. In our work, we also 
use approximate rank pooling for long-term dynamics of 
the video sequences and sequence LSTMs with Inception-
ResNetv2 to model the temporal variance.

2.7 � Other Works

There are other works on action recognition which do not 
solely focus on the video representations or network archi-
tectures. However, they do focus on contextual information, 
which can help to improve the action recognition task. Jain 
et al. (2015) proposed the method to model human–object 
interaction by considering the object detection used for a 
particular action. They used motion characteristics alongside 
the objects to recognize actions. Wang et al. (2015) com-
bined the characteristics of handcrafted features and deep 
learning network features to train in an end to end manner. 
They referred to the method as trajectory-pooled deep con-
volutional descriptors (TDD). Cheron et al. (2015) proposed 
pose-based CNN by extracting the poses from the actors 
and then extracting appearance and optical flow-based fea-
tures from each of the body parts. The resultant normalized 
feature vector was then trained using SVM to predict the 
action label. Wang et al. (2016b) presented the good prac-
tices for training deep learning architectures on such video 
representations using sample-based approaches. They show 
that such learning strategy can boost the action recognition 
results. Wang et al. (2018a) proposed appearance and rela-
tion networks (ARTNet) which use SMART blocks to model 
the appearance and relation using multiplicative interactions. 
Chen et al. (2018c) proposed the two-step attention networks 
(A2 double attention networks) which transform the 2D fea-
tures from entire space into a compact set in order to distrib-
ute it to the respective locations through attention pooling. In 
our work, we use the semantic images and semantic optical 
flows using temporal segment networks (Wang et al. 2016b) 
to prove the adaptability of the proposed representations. 
Most of the recent works use knowledge transfer approaches 
such as existing networks pre-trained on Sports 1 M or kinet-
ics dataset. In this work, we use the I3D network pre-trained 
on ImageNet + kinetics as the knowledge transfer mechanism 
to boost the recognition accuracy.
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3 � Semantic Images

In this section, we present our methodology to construct 
semantic images. The proposed method heavily relies on the 
segmentation process. Therefore, we first explain the segmen-
tation method followed by the process of overlaying the static 
background on the subsequent segmented frames. We also 
explain the method of approximate rank pooling for construc-
tion of SemI, and SemM, accordingly. When approximate rank 
pooling is applied to the segmented images overlaid by the 
static background, we refer to this process as SemI. Semantic 
maps (SemM) are generated when approximate rank pooling is 
applied to the intermediate layers of our network architecture, 
which is to show the flexibility of the proposed representation.

3.1 � Image Segmentation using LSSGC

The proposed LSSGC algorithm is obtained by slightly 
modifying piecewise-constant active contour model (Vese 
and Chan 2002) such that the constant vectors are replaced 
by the centroid values acquired using global k-means algo-
rithm (Likas et al. 2003) and its direct multiplication with 
Heaviside function vectors to obtain the segmented image 
with sparse characteristics. The resultant segmented image is 
then fused with a color map from the Potts model proposed in 
Storath and Weinmann (2014) to minimize the loss of region. 
The modification allows important regions to be segmented 
for adding semantics and summarizing motion dynamics. The 
global k-means algorithm starts by placing the cluster centers 
at arbitrary positions and move them to minimize the cluster-
ing error. The vector of quantized colors in global k-means 
clustering is determined using General Lloyd Algorithm 
(Allen and Gray 2012), which computes the distortion for 
centroid values of each cluster, as shown in Eq. (1).

where � refers to the distortion value computed for each 
pixel i in the nth cluster C =

(
c1,… , cN

)
 having a specific 

centroid value cn , where n = 1,… ,N . The value of centroid 
will be updated based on the weight � of the color pixel as 
shown in, Eq. (2).

Once we obtain the centroid for each cluster, we can use 
the cluster values for segmentation method using Mum-
ford–Shah energy function for the piecewise-constant case 
(Vese and Chan 2002) as defined in Eq. (3). We forward 
the computed centroid values to the equation such that the 
centroid values will replace the constant vector of aver-
ages, and the class will replace the cluster label.
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The variable � is the vector of level set functions, I is the 
image function with pixel values at the location (x, y) , and �n 
is the characteristic function for cluster n . The variable v is a 
fixed parameter weight for controlling the associated energy. 
The second term in Eq. (3) refers to the Heaviside function 
vector i.e. H(�) =

(
H
(
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(
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or 1 s with respect to the level set functions, where m is the 
number of level set functions. In Vese and Chan (2002), the 
clusters were referred to the average constant values and 
can be considered as initial contour values. We know for n 
clusters there are 2m level set functions which will perform 
the level set evolution for the given contour. In the proposed 
method, we want to make the contour points adaptive and 
make the region larger as the epochs continue. In simple 
words, we will determine the initial contour points by using 
global k-means clustering through which the evolution of 
the piecewise constant model will be performed for j itera-
tions. The global k-means clustering method will repeat for z 
epochs by decreasing the clusters and the level set functions 
along with the increase of region size. The output of seg-
mentation will then be added to the Potts Model label map 
for obtaining the final segmented image. The modified piece-
wise constant model for one channel is shown in Eq. (4)

where c =
(
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)
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global k-means clustering and � =
(
ϕ1,… ,�m

)
 such that 
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nate combinations of Heaviside function vectors are multi-
plied with the area of cluster centers, we directly multiply 
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modification also makes the process faster as we get a single 
label for each pixel with respect to the cluster mean. We 
eliminated the addition of the function vectors as we obtain 
the final label map using the Potts model.

An example of global k-means clustering for an image with 
8 clusters is shown in Fig. 2. Considering the clusters, the 
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equation will minimize the image with respect to the 8 cluster 
centers using 3 level set functions. The value in Eq. (4) will be 
minimized using Euler–Lagrange with respect to c and � by 
dynamic programming scheme. Equation (4) will be applied 
to each of the channel, separately. The segmented images 
generated from each of the channel will then be combined in 
order to obtain the color image. The pseudo code for segment-
ing the image is presented in algorithm 1. We initially select 
the value of n to be 16 which will set the number of level sets 
m = 4. The values z and a are set to be 4 and 5, respectively. 
The algorithm will reduce the number of clusters by the factor 
of 2, which reduces the number of level sets and increase the 
size of the region with the progression of each epoch. As the 
size of the region increases, we increase the circular window 
size accordingly, which is denoted by p, which was initially 
set to be 9 × 9. We refer to this technique as LSSGC.

Fig. 2   Example of image clusters using global k-means clustering
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The advantages of performing segmentation before 
approximate rank pooling are twofold. The first is that the 
focus of the CNNs would be on the action–motion dynam-
ics due to the sparse characteristics of the image, unlike 
the existing ones which focus on all the pixels to represent 
motion (see Fig. 1). Since the segmented images do not 
exhibit different characteristics for gender and skin color, 
it avoids visual bias, which is the second advantage of prior 
segmentation, as shown in Fig. 3. For instance, in “Apply 
Eye Makeup,” all the participants except one is black colored 
female, but the segmented image removes the skin color to 
avoid the visual bias.

3.2 � Adding Semantics to the Segmented Image

In the related works, we referred to the study describing the 
importance of the background information which can help in 
improving the recognition results (Yue-Hei Ng et al. 2015). 
We overlay a static background to all the subsequent frames 
to provide the semantic information. The process flow for 
overlaying background on to the segmented images is shown 
in Fig. 4, accordingly. First, the background image is esti-
mated using the median filter method. Once the background 
image is computed, we generate a silhouette image by con-
verting the logical image to black and white with an image 
opening operation. In parallel, the frames are segmented 
using algorithm 1 presented in the previous sub-section. All 

Fig. 3   Example of segmented 
images from action ‘Apply Eye 
Makeup’ of UCF101 dataset. 
First row images are from sub-
ject 04, whereas the second-row 
images are from subject 25. It 
can be noticed that segmenta-
tion removes the visual bias of 
skin color from both subjects

Fig. 4   Process flow for adding 
semantic information to the 
segmented frames
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the subsequent frames except frame 1 are then fused with the 
silhouette image. The fusion of images is just the overlaying 
of the silhouette image to all the subsequent frames based 
on alpha blending (Yatziv and Sapiro 2006). The fused seg-
mented images are then fed to the approximate rank pooling 
for constructing SemI.

3.3 � Approximate Rank Pooling for Semantic Images

The computation of SemI is based on the approximate rank 
pooling (ARP) (Bilen et al. 2016). The ARP is basically an 
optimization problem which is solved by the Eq. (5). To 
make our description more comprehensive, we describe the 
pooling mechanism briefly.

where

The parameter vector is denoted by � which defines the 
scores for the frames in a video. The mapping function �(⋅) 
maps the sequences of segmented T  segmented frames I′ to 
the vector � . The feature vector from the segmented frames is 
denoted by � , and Z(�|�) is the inner product of the param-
eter vector with the time average of the feature vector A� , 
i.e., Z(���) = ⟨�,A�⟩ . The average feature vector is defined 
as A� =

1

�

∑
�(I�

�
) . The constraint with respect to the vari-

able � is defined as � < q ⇒ Z(�|�) < Z(q|s) suggesting 
that the larger scores are associated with the later times. The 
first term of the function E(�) is the hinge-loss considering 
the incorrectly ranked pair � < q based on the scores. The 
condition for correctly ranked pairs is Z(�|�) + 1 < Z(�|�) . 
The second term of the function E(�) is the standard quad-
ratic regularization term. For further details and examples 
refer to (Bilen et al. 2018).

3.4 � Approximate Rank Pooling for Semantic Maps

The SemIs are constructed from the segmented frames at the 
input level whereas for the SemMs the segmented images are 
fed to CNNs as input and the ARP is applied at intermediate 
layers of the same architecture. Applying the rank pooling at 
an intermediate level does not result in straightforward back 
propagation due to the dependency on the features and their 
intermediate averages. For intermediate layers, the formula-
tion is shown in Eq. (6).

where �(�) represent the feature maps on the layer � . We 
dropped the term � from Eq. (5) as the architecture will 
extract the feature maps on its own. The feature maps 
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 for T  image sequences. If we rewrite 

Eq. (6) with respect to the temporal average of the input 
patterns A� it can be represented as Eq. (7)

where �� is the co-efficient vector and is given as 2 − (1 + T) 
(Bilen et al. 2016). Since �(�) is a linear function of the 
previous layer feature maps A� , thus, it can alternatively be 
written as 
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 , substituting the val-

ues of A ’s with �’s, we can rewrite Eq. (7) as shown below

As suggested in Bilen et al. (2016) due to the gradient 
computation of �(�) with respect to the data points �(�−1) 
is a challenging derivation. However, if the coefficients are 
independent of the features �

(
I′
�

)
 and their intermediate 

averages A� , the derivative of the ARP can be computed 
with the vectorized coefficients as �vec𝓂(𝓁)

�(vec𝓂(𝓁−1))
⊺ = �𝓉� , where 

� refers to the identity matrix. This expression can be 
obtained by taking the derivative of Eq. (7) while keeping 
�� constant and removing its dependency on the video 
frames i.e. �(�−1)

�
 term.

4 � Proposed Network Architecture

We used the Inception-ResNetv2 pre-trained network (Sze-
gedy et al. 2017) for single SemI and single SemM, and 
the SR-LSTM for multiple SemI, respectively, as shown 
in Fig. 5. Inception network architecture (Szegedy et al. 
2016) has become very popular due to its improvement in 
the object recognition task. However, the problem with very 
deep Inception networks is the degradation phenomenon 
and vanishing gradients (He and Sun 2015). The Inception-
ResNetv2 network was designed to overcome this problem, 
resulting in being more accurate and faster than existing 
approaches. The stem of the Inception-ResNetv2 is the same 
as that of the inceptionv4 network. The detailed composition 
of stems and inception cells can be found in Szegedy et al. 
(2017). For the single SemI, the ARP is applied at the input 
level and a single motion summarization image was gener-
ated from the whole video. The temporal pooling layer was 
employed for the input to the fully connected layer. For con-
structing single SemM, we consider three intermediate lev-
els. The ResNet Inception Branching number (RIPB) is the 
branching scenario for different intermediate levels. We do 
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not construct the SemMs on each branching factor at once. 
Rather we repeat the experiments for one of the branching 
factors at a time to evaluate the performance. For multiple 
SemI, we break the video into segments for duration τ and 
stride � , respectively. The extracted frames from the current 
segment partially overlap with the previous one. We stack 
the LSTM layers in sequence with Inception-ResNetv2 to 
capture the temporal dependencies and variances which is 
referred to as SR-LSTM.

The idea for using LSTMs in sequence with CNN archi-
tecture was motivated from Donahue et al. (2017) where 
they used CNNs for extracting visual features and LSTMs 
for sequence learning to recognize actions or predict the 
descriptions for images and videos, accordingly. Similarly, 
the SR-LSTM can also be used for visual description appli-
cations, but in this work, we only focus on action recogni-
tion problem. For each segment of duration τ from which 
the SemIs are constructed, we apply the temporal i.e., max 

pooling on the feature’s maps. The features pooled using 
temporal layer are then fed to the LSTMs which learn the 
temporally pooled features embedded with ranking scores 
in a sequential manner. As the frames are scored based on 
their ranks the temporal variance increases between each 
frame separated by τ . For instance, the video is divided 
into multiple clips with certain overlapping for creating 
multiple SemI, the ranking of a particular frame in one 
clip may not be the same in the other. This creates temporal 
variances between the clips which can be efficiently mod-
eled using LSTM layers. The temporal variance concept is 
one of the keystones for stacking LSTM with Inception-
ResNetv2 in a sequential manner. The reason for not using 
LSTM for single SemI and single SemM is that it cannot 
leverage the temporal information effectively with them. 
The SR-LSTM network with multiple SemI proves to be 
quite effective in terms of modeling the temporal informa-
tion and variances.

Fig. 5   Proposed network architecture for (i) single SemI with Inception-ResNetv2, (ii) single SemM with Inception-ResNetv2, and c multiple 
SemI with SR-LSTM
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The SR-LSTM performs the scaling of residual fil-
ters before its input to the subsequent connection. The 
residuals are scaled to stabilize the training process. We 
observed that as the number of filters increases the resid-
ual connections get unstable. The observation is compli-
ant with the studies in Szegedy et al. (2017) and He et al. 
(2016). As the study (He et al. 2016) suggested there are 
two ways to stabilize the training process for inception-
resnets. The first is to use the two-phase training mech-
anism which trains the network with very low learning 
rate in its first phase, followed by the training with a high 
learning rate in the latter phase. The second way is to scale 
down the residuals before adding the activations from pre-
vious layer. We tried the two-phase learning mechanism 
with SR-LSTM but found that the training process was still 
unstable. Therefore, we scaled down the residuals before 
its addition with the activations of a previous layer. The 
implementation details for SR-LSTM are provided in the 
experimental and results section.

5 � Experiments and Results

This section first reveals the implementation details for 
all the networks used such as ResNeXt50, ResNeXt101, 
DeepLabv3+ (Chen et al. 2018a), Inception-ResNetv2, 
and SR-LSTM. The proposed representation SemI uses 
a super pixel segmentation method before adding seman-
tics, i.e., background information. In this regard, we first 
compare the performance of LSSGC with the deep learn-
ing-based segmentation method proposed in Chen et al. 
(2018a). It is well stated that our work is an extension 
of the representation technique, i.e., dynamic images. 
Thus, we first compare the performance of semantic and 
dynamic images with respect to the activations generated 
from ResNeXt101’s convolutional layers along with the 
training and validation loss graphs obtained from ResNeXt 
variants. It will provide an insight as to why the SemI 
performs better than the dynamic ones. Next, we will pro-
vide quantitative analysis on SemI with another competi-
tor in terms of representation, i.e., motion history images. 
We show that that the SemI performs very well than the 
motion history images. We then analyze the performance 
of single SemM by employing approximate rank pooling at 
different layers and also compare with the performance of 
single dynamic maps to prove its efficacy. We explain the 
process of generating multiple SemI to escalate the recep-
tive size of the network by increasing the data magnitude. 
Next, we compare the performance of multiple SemI with 
that of the multiple dynamic images to show the recogni-
tion performance. Optical flows have also been used to 
represent motion dynamics and have achieved remarkable 
results as reported in the existing studies. We also generate 

semantic optical flows (SemOF) and report the classifica-
tion results on UCF101 and HMDB51 datasets, accord-
ingly. We compare the performance of SR-LSTM with 
Inception-ResNetv2 to show that the proposed architecture 
can perform well on both the datasets. We present some 
applications with respect to the proposed representation, 
such as its usage in two-stream, four-stream, and temporal 
segment networks. Currently, there is a trend to use the 
transfer learning approach, i.e., using Kinetics pre-trained 
network, to boost the recognition accuracy even further. In 
this regard, we fine-tune the I3D network pre-trained on 
ImageNet + Kinetics (Carreira and Zisserman 2017) using 
SemI and SemOF to report the state-of-the-art results.

5.1 � Implementation Details

Since we are using various networks for comparison and 
evaluation; we describe the implementation details of each 
network one by one followed by the details for RGB and 
optical flows. All the networks in this study are trained 
using MATLAB R2018. The training was performed on 
GPU using Intel Core i7 clocked at 3.4 GHz with 64 GB 
RAM and NVIDIA GeForce GTX 1070.

5.1.1 � ResNeXts

To perform a fair comparison, we use two networks, i.e., 
ResNeXt50 and ResNeXt101 (Xie et  al. 2017) using 
(32 × 4d) variant as they have been used for earlier study 
employing dynamic images. We use the same network set-
tings and protocol for both dynamic and semantic images to 
perform the comparisons with respect to activations, training 
loss, and average accuracy.

5.1.2 � DeepLabv3+

The model DeepLabv3+ is trained on the popular PASCAL 
VOC 2012 dataset (Everingham et al. 2010) comprising of 
20 foreground object classes including categories of person, 
animals, vehicles, indoor objects, and one background class. 
We adopt the implementation of semantic image segmenta-
tion with the same network settings and parameters reported 
in Chen et al. (2018a). The reason for choosing DeepLabv3+ 
model is two-fold: the first is the availability of the pre-
trained network for re-use and the second is that the network 
is proposed recently with notable results.

5.1.3 � Inception‑ResNetv2 and SR‑LSTM

To train Inception-ResNetv2, we first resize our input frames 
to 299 × 299, which is the input required by the original net-
work. We fine-tuned the network using RMSProp with a 
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decay rate of 0.8 and an epsilon value of 0.9. The learn-
ing rate was set to 0.04, decayed after every epoch using 
an exponential rate of 0.85, and the drop out ratio was set 
to 0.5. We also used the gradient clipping (Pascanu et al. 
2013) to stabilize the training. Since the scaling of residu-
als is required to overcome the training instability, in this 
regard, we scale down the residuals with a factor of 0.25 
before they are added with the activations of the next layer. 
We break the Inception-ResNetv2 at 540th layer named as 
‘block17_15’ and add a temporal pooling layer to sequen-
tially connect with LSTM as shown in Fig. 5. We used 2 
layers of LSTM with 100 hidden units. We used the ADAM 
optimizer (Kingma and Ba 2014) with default parameters, 
i.e., 0.9 and 0.999. The initial learning rate was set to 0.0009 
and was decreased by the factor of 0.04 after every epoch. To 
fine-tune the network on RGB and multiple SemI, the train-
ing takes approximately 8.5–11 h, whereas on warped opti-
cal flows and SemOF the training time increases to approxi-
mately 48–55 h. At the testing phase, frames from a single 
video on average takes around 3.48 s for the segmentation 
and addition of background, and less than 1 s for approxi-
mate rank pooling. The test time using multiple SemI is 5 
times more than that of the single SemI.

5.1.4 � RGB and Optical Flow

The RGB frames are obtained by converting each video to 
the frame sequences. The warped optical flows were pre-
computed using the method proposed in Wang and Schmid 
(2013), and the flow fields were stored as JPEG images. We 
rescaled the range of flow values within [0, 255] after clip-
ping with 20 pixels of displacement.

5.2 � LSSGC Versus Other Segmentations

In this subsection, we compare the performance of LSSGC 
with supervised as well as unsupervised segmentation meth-
ods for action recognition. As we modify the super pixel 
segmentation method proposed by Vese and Chan (2002), it 

Fig. 6   An example of a seg-
mented image using LSSGC 
and DeepLabv3+ along with 
their respective motion-summa-
rized images

Table 1   Comparison of MHI, mean pooled image, max pooled 
image, single dynamic image, and single SemI with respect to the 
mean class accuracy on UCF101 split 1

Bold indicates the highest achieved accuracy

Image representation Architecture Accuracy (%)

Single MHI ResNeXt50 58.8
Single MHI ResNeXt101 60.1
Mean image ResNeXt50 64.8
Mean image ResNeXt101 65.6
Max image ResNeXt50 59.9
Max image ResNeXt101 61.3
Single dynamic image ResNeXt50 70.9
Single dynamic image ResNeXt101 71.6
Single SemI (LSSGC) ResNeXt50 72.2
Single SemI (LSSGC) ResNeXt101 73.1
Single SemI (LSSGC) Inception-ResNetv2 74.7
Single SemI (DeepLabv3+) ResNeXt50 63.8
Single SemI (DeepLabv3+) ResNeXt101 63.9
Single SemI (DeepLabv3+) Inception-ResNetv2 64.2
Single SemI (Vese and Chan) ResNeXt50 67.6
Single SemI (Vese and Chan) ResNeXt101 68.1
Single SemI (Vese and Chan) Inception-ResNetv2 69.7
Single SemI (SLIC) ResNeXt50 64.0
Single SemI (SLIC) ResNeXt101 64.2
Single SemI (SLIC) Inception-ResNetv2 64.6
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is therefore necessary to compare our results with the base 
segmentation method. Furthermore, we also compare the 
LSSGC results with simple linear iterative clustering (SLIC) 
method (Achanta et al. 2012) to show the effectiveness of the 
proposed segmentation method. For the supervised segmen-
tation, we used the pre-trained model DeepLabv3+, which 
uses dilated convolutions (Atrous) for segmenting the image 
based on the object classes. We follow the same protocol, 
i.e., performing the segmentation and then applying the 
approximate rank pooling to generate the motion summa-
rized image. Figure 6 shows examples of segmented images 
using LSSGC and DeepLabv3+, along with their respec-
tive motion-summarized images. We also report the perfor-
mance comparison for the methods in Table 1. The results 
show that the SemI using LSSGC achieves 10.5%, 5.0%, 
and 10.1% better accuracy on UCF101 than the one using 
DeepLabv3+, super pixel segmentation, and SLIC method, 
respectively. The major reason for such difference in accu-
racy is that the supervised segmentation, similar to the 3D 
CNNs, needs a large number of annotations for each object 
and background in the action videos which is time consum-
ing and costly. Failing to categorize each object accurately in 
the videos leads to low action recognition rates. The superior 
performance in comparison to the unsupervised segmenta-
tion methods is due to the fact that those segmentations try 
to assign all the pixels to a particular region which results 
in non-sparse representation. The semantic information 
when added does not contribute much due to the non-sparse 
characteristics. It is similar to the dynamic images except 
that the pixels are grouped in different regions representing 

different colors. As the RGB information from the original 
representation is partially lost and there is less room for the 
semantics, the performance degrades in comparison to the 
SemI and the dynamic image. Considering the quantitative 
results, we will use the SemI based on LSSGC for further 
experiments and analysis.

5.3 � Single SemI Versus Single Dynamic Image

Our proposed work is an extension to dynamic image con-
struction, so naturally, the question arises why there is a need 
for SemI? To address this question, we first compare the 
performance of a single dynamic image with that of a single 
SemI using the activations generated from ResNeXt101’s 
first and third convolutional layer. The activations for the 
action ‘Apply Eye Makeup’ are computed from the first con-
volutional layer and are shown in Fig. 7. The activations are 
a good way to qualitatively measure the representations as 
they exhibit more smooth and less noisy patterns (Fei-Fei 
et al. 2017; Olah et al. 2017). By visualizing the activations, 
it is apparent that a single SemI generates better activations 
as compared to a single dynamic image. The same pattern 
can also be noticed for the action ‘Archery’ whose activa-
tions are computed from the third convolutional layer, as 
shown in Fig. 8. After visualizing the difference, we can say 
that a single SemI generates smoother and less noisy pat-
terns suggesting that the prior segmentation does improve 
the action–motion dynamics, qualitatively.

Next, we compare the single dynamic image and sin-
gle SemI with the training and validation loss using 

Fig. 7   Activations generated 
for action ‘Apply Eye Makeup’ 
from the first convolutional 
layer of ResNeXt101. The top 
image represents the RGB 
frame. The left image below 
is generated using a single 
dynamic image, whereas the 
right one is generated using 
single SemI



406	 International Journal of Computer Vision (2020) 128:393–419

1 3

ResNeXt101, as shown in Fig. 9. The single SemI shows 
the trend of faster convergence while yielding low validation 
error as compared to the single dynamic image. Moreover, 
the single SemI shows a smaller gap between validation and 
training loss which is considered to be better bias-variance 

tradeoff in machine learning theory as compared to its coun-
terpart (Geman et al. 1992; Li et al. 2016). We believe that 
the results prove the effectiveness of a single SemI in com-
parison to a single dynamic image.

Fig. 8   Activations generated 
for action ‘Archery’ from the 
third convolutional layer of 
ResNeXt101. The top image 
represents the RGB image. The 
left image below is generated 
using a single dynamic image, 
whereas the right one is gener-
ated using single SemI

Fig. 9   Training and validation loss of a single dynamic image and a 
single SemI. From the top (i) loss from ResNeXt101 using a single 
dynamic image, and (ii) loss from ResNeXt101 using a single SemI. 

We can notice a better bias-variance trade-off while using single 
SemI compared to the single dynamic image
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5.4 � Single SemI Versus Existing Representations

In this subsection, we provide the qualitative and quantita-
tive analysis for single SemI with a single dynamic image 
and a motion history image. We also compare the results 
of a single SemI with mean and max pooled images, which 
are also considered to be an alternative for generating 
motion summarized images (Bilen et al. 2018). The experi-
ments are carried out using ResNeXt50, ResNeXt101, and 
Inception-ResNetv2 on UCF101 split 1 only. All the repre-
sentations such as SemI, mean pooled image, max pooled 
image, motion history image, and single dynamic image are 
computed offline prior to the training of the networks. We 
qualitatively compare RGB images, single dynamic image, 
motion history image, and single SemI in Fig. 10. The visual 
difference in the representation can easily be noticed. The 
motion history image (MHI) fails to represent the motion of 
actions ‘biking’ and ‘lunges’ clearly, almost all the pixels 
become white as the motion is present in all regions through-
out the frames. The limitation of the dynamic images can 
be visualized from ‘basketball’, ‘lunges’, and ‘pizza tossing’ 
actions as it either fails to represent the motion with respect 
to the background (see basketball action) or it cannot cap-
ture the motion dynamics to its full potential (see lunges 
and pizza tossing) as compared to the SemI. For instance, 
in ‘lunges’ action, the hand movement in a single dynamic 
image is not clear, whereas the single SemI maps the motion 

well enough. Similarly, for ‘pizza tossing’ action, the cir-
cular motion of hands is quite visible with a single SemI as 
compared to the dynamic image. We present the comparative 
analysis for MHI, mean pooled, max pooled, single dynamic 
image, and single SemI, in Table 1, respectively.

The quantitative results show that the single SemI 
achieved 13.0%, 7.5%, 11.8%, and 1.5% gain in accura-
cies over single MHI, mean, max, and single dynamic 
image using ResNeXt101, respectively. The result proves 
our assumption that the use of prior segmentation and the 
addition of semantic information (background) can help in 
modeling better action–motion dynamics as compared to the 
existing representations. Intuitively, there are several reasons 
why the single SemI improves the recognition results. One 
thing which is observed from Fig. 10 is that the segmenta-
tion quantizes the input image such that the semantic infor-
mation could be added and leveraged by the classifier to 
learn the respective action. For instance, the single dynamic 
image averages out the basketball court. Even if one needs 
to add the semantic information, i.e., background to the 
dynamic image, it will not change the resultant representa-
tion. On the other hand, the single SemI provides the room 
for the background information to be incorporated in such a 
way that the motion information is retained along with the 
addition of semantic information which was not possible 
otherwise. The same phenomenon could be noticed in bik-
ing, billiards, and pizza tossing action. It is further noticed 

Fig. 10   Visualizing different image representations. From top to 
bottom, RGB image, MHI, single dynamic image, and single SemI. 
The pixels are mostly bright for MHI images are the motion is per-
formed throughout the frames. The single dynamic image omits out 
the motion characteristics due to the averaging of pixels which do not 

change throughout the frames. The single SemI uses prior segmenta-
tion, which segments different regions as per the motion character-
istics to improve the action–motion dynamics. The representations 
clearly show the difference
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that when applying Inception-ResNetv2, we can boost the 
accuracy further by 2.5% and 1.6% in comparison to the 
ResNeXt architectures. As the Inception-ResNetv2 is found 
to be consistently better than ResNeXt50 and ResNeXt101 
we will only report the results using Inception-ResNetv2 for 
our further analysis.

5.5 � Single Semantic Map

In the previous subsection, we used single SemI, which was 
generated using approximate rank pooling before feeding 
them to the deep learning architecture. To generate the sin-
gle SemM, we move the approximate rank pooling layer 
deeper in the architecture, which also proves the flexibility 
of the representation method. We compare the performance 
of ARP at different branching factors of Inception-ResNetv2 
architecture (see Fig. 5). The visualization of the single 
dynamic map and single SemM is shown in Fig. 11, which 
are acquired using RIPB2 of the Inception-ResNetv2. The 
strength of SemM is advocated by visualizing the maps of 

‘cliff diving’ action where the single dynamic map fails to 
capture any motion characteristic.

The comparison of mean class accuracy on UCF101 and 
HMDB51 datasets using a single dynamic map and single 
SemM is reported in Table 2. We show that by using single 
SemM, we can achieve better recognition results than that 
of the single dynamic map. The single SemM can achieve 
better recognition results than that of the single dynamic 
map when using either of ResNeXt and InceptionResNetv2 
architecture.

We achieve the best accuracy of 75.9% while breaking 
the network at RIPB 2 and 47.1% on HMDB51 by break-
ing the network at RIPB 3 with SemM. Considering the 
margin of gain we get, i.e., 3.2% and 4.3% on UCF101 and 
HMDB51; we can say that the single SemM improves the 
recognition results as well as benefits the boost in accuracy 
with RIPB using Inception-ResNetv2. Although the results 
are promising and in compliance with Bilen et al. (2016) 
it was observed that for each dataset the branching factor 
needs to be optimized which is apparent from the results 

Fig. 11   Visualization of RGB 
and segmented images when 
applied ARP after the first con-
volution layer of ResNeXt101

Table 2   Mean class accuracy 
for single dynamic maps and 
single SemM for UCF101 and 
HMDB51 datasets

Bold  indicates the highest achieved accuracy

Method Architecture UCF101 (%) HMDB51 (%)

Single-dynamic map (RIPB1) Inception-ResNetv2 71.7 41.9
Single-dynamic map (RIPB2) Inception-ResNetv2 72.7 42.4
Single-dynamic map (RIPB3) Inception-ResNetv2 72.5 42.8
Single SemM (RIPB1) Inception-ResNetv2 73.8 44.8
Single SemM (RIPB2) Inception-ResNetv2 75.9 46.5
Single SemM (RIPB3) Inception-ResNetv2 75.6 47.1
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shown in Table 2. To determine the branching point for 
ARP layer using very deep networks, a lot of experiments 
needs to be conducted. Furthermore, the performance may 
not be generalized for multiple datasets using the same 
branching point which is another point of concern. In this 
regard, we only use the SemI for further experiments and 
analysis.

5.6 � Multiple Semantic Images

Although it is presented in quantitative results that single 
SemI performs better than the existing video representa-
tions which summarize the motion in a single image, the 
accuracy is still not enough to compete with state-of-the-art 
methods. One reason for not attaining higher accuracy is 
the lack of annotated data needed to fine tune the network. 
Unfortunately, UCF101 and HMDB51 datasets have few 
videos for each category, therefore extracting multiple SemI 
could help in overcoming the said problem. The extraction 
of multiple SemI is accomplished by breaking each video 
in clips, i.e., duration of frames. In this regard, each video 
is divided into multiple clips with partially overlapping 
frames. It can also be considered as a data augmentation 
step where we increase the volume of data by dividing the 
original video to several clips with duration τ and stride � . 
For the network architecture Inception-ResNetv2, we add 

the temporal pooling layer (max pooling) to merge all the 
subsequences into one due to the best reported accuracy in 
Bilen et al. (2018). In order to show that the use of multiple 
SemIs can model better action–motion dynamics for com-
plex actions and many temporal changes, we visualize the 
SemI with different window sizes in Fig. 12. It can be visu-
ally noticed that for the periodic and longer motions such as 
‘biking’ action, the multiple SemI stretches the same motion 
dynamics onto the subsequent frames which introduces the 
motion blur kind of effect. The actions such as ‘hula hoop’ 
benefits from the long-term motion dynamics yet the motion 
is quite well preserved even with 10 frames. We can also 

Fig. 12   Visual Analysis of 
multiple SemIs with respect 
to the varying window sizes. 
The top row shows the original 
RGB frame, the second row 
shows the SemI for window size 
10, the third row comprises of 
images with window size 50, 
and the bottom row depicts the 
single SemI

Table 3   Effect of the window size and overlapping on mean class 
accuracy for UCF101

Bold indicates the highest achieved accuracy

Network architecture Window τ Stride � Accuracy (%)

Inception-ResNetv2 5 3 83.9
Inception-ResNetv2 10 2 86.7
Inception-ResNetv2 10 4 87.6
Inception-ResNetv2 10 6 88.0
Inception-ResNetv2 15 6 88.7
Inception-ResNetv2 15 9 88.9
Inception-ResNetv2 20 6 80.6
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notice a disadvantage of using the whole video length for 
summarization as depicted in ‘pommel horse’ action. The 
single SemI does not capture the complex motion pattern 
for this action. Due to the repetition of the same action over 
and over, the motion is averaged out. However, using fewer 
frames, i.e., 50 or 10, can reduce the said limitation.

In this regard, we will first perform analysis using dif-
ferent window sizes and strides, as shown in Table 3. We 
computed the mean class accuracy for UCF101’s first split 
and noticed that the best accuracy is achieved by using the 
duration of 15 with 40% overlap. It is interesting to see that 
the larger window sizes yield less accuracy for action recog-
nition in comparison to the smaller ones. The reason for such 
phenomenon is illustrated in Fig. 12 (Pommel Horse action). 
As the window size gets larger, the background, as well as 
the repetitive action, is averaged out, leading to the reduc-
tion in recognition performance. We experimented with 
several window sizes and strides, but only report the best 

and notable results to explain its effect on recognition per-
formance. For our further experiments, we will use τ = 15 
and � = 9 , respectively.

We now compare the recognition accuracy of multiple 
SemI with multiple dynamic images and RGB images in 
Table 4. The reason for the better performance of multiple 
SemI is similar to that of a single SemI. The dynamic images 
average out the semantic information (background), which 
helps to improve the recognition performance as proved 
in Table 1 and visualized in Fig. 12 (see Pommel Horse 
action). Another key advantage of multiple SemI is that it 
leverages the semantic information to model the change 
in the background from multiple windows. The dynamic 
images on UCF101 dataset attained ~ 1% less accuracy 
using Inception-ResNetv2 in comparison to the static RGB 
images; this observation complies with the study (Bilen et al. 
2018) where multiple dynamic images fail to achieve bet-
ter accuracy than the baseline. It is also interesting to note 

Table 4   Mean class 
classification accuracy for 
UCF101 and HMDB51 datasets

It also shows comparative analysis for RGB static images, multiple dynamic images, and multiple SemIs 
using ResNeXt and Inception-ResNetv2 architectures
Bold indicates the highest achieved accuracy

Method Architecture UCF101 (%) HMDB51 (%)

RGB static images Inception-ResNetv2 88.6 54.6
Multiple dynamic images Inception-ResNetv2 87.6 58.2
Multiple SemI Inception-ResNetv2 88.9 59.9

Fig. 13   Visualizing the static RGB images in the first row, SemI in the second row, WOF in the third row, and SemOF in the fourth row
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that the multiple SemIs improve the recognition accuracy 
by 0.3% with Inception-ResNetv2 which is commendable 
when compared to the performance of dynamic images. For 
HMDB51, multiple SemI achieved recognition accuracy of 
59.9%, which is 5.3% and 1.7% better than those of static 
RGB images and multiple dynamic images, respectively. We 
believe that the reason for the better gain is from the ability 
of multiple SemIs to represent more intricate action–motion 
dynamics and to leverage the semantic information better 
due to the complexity of backgrounds in HMDB51 dataset.

5.7 � Warped and Semantic Optical Flows

As illustrated in previous subsections, the ARP transforms 
the segmented frames to semantic images, i.e., low-level 
to mid-level motion representation. The optical flows are 
another example of mid-level motion representation which 
has been used extensively in terms of two-stream networks. 
It was proved in Bilen et al. (2018) that applying the ARP 
to optical flows transforms the mid-level representation to 
high-level, which can improve the recognition results. To 
this extent, we apply the ARP to the warped optical flows 

(WOF) from the segmented images overlaid with back-
ground information to generate semantic optical flows 
(SemOF). Similar to the previous analysis, we apply ARP 
to 15 optical flow frames for generating SemOF. We first 
visualize the warped optical flows and semantic optical flows 
in Fig. 13 to analyze the difference qualitatively. It can be 
visualized that the SemOF capture long-term motion dynam-
ics as compared to the warped optical flows. This is because 
the warped optical flows can only calculate the motion pat-
terns between subsequent frames—for instance, the SemOF 
for action ‘boxing punching bag’ and ‘billiards’ exhibit his-
tory of temporal actions for a longer span as compared to 
the warped optical flows.

We also compare the performance of warped and dynami-
cal optical flows with the SemOF quantitatively to prove 
its efficacy, as shown in Table 5. The SemOF achieved 
2.3%, 0.4%, and 3.6%, 0.3%, better accuracy on UCF101 
and HMDB51 than warped and dynamic optical flows, 
respectively. These results were obtained using Inception-
ResNetv2. The results prove that the transition from mid-
level to high-level motion representation improves the rec-
ognition performance.

5.8 � SR‑LSTM Versus Inception‑ResNetv2 
and ResNeXts

So far, we have used two deep networks, i.e., Inception-
ResNetv2 and ResNeXts. We showed that the Inception-
ResNetv2 could achieve better results than the ResNeXts. 
Considering that both the networks extract different features 
which are illustrated by the frequency responses obtained using 
the first convolutional layer as shown in Fig. 14, we assume 
that the features extracted by Inception-ResNetv2 are more 

Table 5   Mean class accuracy for UCF101 and HMDB51 datasets 
using warped, dynamic, and semantic optical flows

Bold indicates the highest achieved accuracy

Method Architecture UCF101 (%) HMDB51 (%)

WOF Inception-ResNetv2 85.3 56.0
Dynamic 

optical 
flows

Inception-ResNetv2 87.2 59.3

SemOF Inception-ResNetv2 87.6 59.6

Fig. 14   Visualizing the frequency response of the maximum filters using green channels for ResNeXt101 and Inception-ResNetv2 networks
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effective as compared to the ResNeXt architecture. The fre-
quency responses were obtained by passing the RGB image 
and applying the max pooling to select the filter activation with 
maximum values. We then plot the frequency responses of the 
green channel for the selected activation. The ResNeXt101 
weight shows the bandpass filter in the centers in a particular 
direction surrounded by the low pass filters in other direction. 
With respect to the signal processing analogy, we realize that 
the filters cut-off the upper half of the frequency range for most 
of the signal, which is similar to the antialiasing filter. On the 
other hand, the frequency response of Inception-ResNetv2’s 
max pooled image shows two high pass filters appearing on 
the horizontal edges while small magnitude low pass filters 
are present on the extreme ends. We assume that the low pass 
filters smooth the edges while the intensities in a particular 
range of two scales are computed for feature maps.

We know the SemI use ARP which retains the temporal 
information from the video sequences by ranking them. In 
this regard, we assume that by stacking the LSTM network 
in sequence with Inception-ResNetv2 the recognition results 
can be improved due to the learning of temporal variances 
introduced when dividing the video into different windows. 
We refer to this network as SR-LSTM. To prove the validity 
of our assumption, we carried out experiments on multi-
ple dynamic images, multiple SemI, WOF, dynamic optical 

flows, and SemOF using SR-LSTM and computed the mean 
class accuracy as shown in Table 6.

The trend shows that the SR-LSTM can improve the 
recognition performance for all the modalities used for 
action recognition. It is to be noted that all of these 
modalities somehow incorporate temporal information, 
let it be ARP or motion information from warped optical 
flows.

One interesting result which can be noticed is that the 
SemOF alone can achieve better results than the multiple 
dynamic images which incorporate both appearance and 
motion information. The probable reason is the combina-
tion of frame ranking with the optical flow images. The 
results comply with the study of Bilen et al. (2018) where 
the dynamic optical flows yield the recognition performance 
at par with multiple dynamic images, and the assumption of 
long-term motion helping the SemOF to perform better is 
also in agreement with the study (Varol et al. 2018).

The assumption of SR-LSTM leveraging the temporal 
information for improving the recognition holds since the 
recognition results are boosted for all the modalities. The 
multiple dynamic images see 1.2% growth from Inception-
ResNetv2 networks. The gain for multiple SemI is noted 
to be 1.4% compared to the baseline architecture. Warped 
optical flows record 1.0% gain, whereas the dynamic 

Table 6   Comparative analysis 
for UCF101 and HMD51 
using ResNeXt101, Inception-
ResNetv2, and SR-LSTM 
networks

Bold indicates the highest achieved accuracy

Method Architecture UCF101 (%) HMDB51 (%)

Multiple dynamic images Inception-ResNetv2 87.6 58.2
Multiple dynamic images SR-LSTM 88.8 60.1
Multiple SemI Inception-ResNetv2 88.9 59.9
Multiple SemI SR-LSTM 90.3 62.9
WOF Inception-ResNetv2 85.3 56.0
WOF SR-LSTM 86.3 56.8
Dynamic optical flows Inception-ResNetv2 87.2 59.3
Dynamic optical flows SR-LSTM 88.5 61.3
SemOF Inception-ResNetv2 87.6 59.6
SemOF SR-LSTM 89.8 62.4

Fig. 15   Illustration of multi-
stream network architecture 
using our proposed video 
representations
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optical flows show 1.3% gain in accuracy. All these gains 
are reported from UCF101 dataset. The similar trends 
are observed for HMDB51 as well. The highest gain for 
HMDB51 was observed for multiple SemI gaining 3.0% 
accuracy over Inception-ResNetv2.

5.9 � Two‑ and Four‑Stream Networks

It is well established throughout Sect. 2 that the research-
ers use multi-stream networks for boosting the recognition 
performance by combining the results of networks trained 
using different modalities. We performed the analysis for 
multi-stream networks using the combination of modalities 
such as RGB, multiple SemI, WOF, and SemOF. Each of 
the streams in multi-stream networks is trained separately 
for different modalities, but their results are combined using 
average scores for each class. The final classification label 
will be drawn by selecting the class having a maximum aver-
age score. Our proposed multi-stream networks, i.e., two- and 
four-stream network, are depicted in Fig. 15. The analysis for 
late fusion is performed using the SR-LSTM network as it 
achieved the best results for recognition on both datasets. The 
mean class accuracies for UCF101 and HMDB51 datasets 
using multi-stream networks are presented in Table 7. It can 
be observed that the static RGB + WOF yield less accuracy 
on UCF101 but performs better on HMDB51 in comparison 

to multiple SemI + warped optical flows. The results make 
sense as the SemI and WOF both exhibit mid-level motion 
information; therefore, for some actions, the representation 
seems redundant. On the other hand, RGB frames and WOF 
felicitate each other as the former has low-level, whereas the 
latter exhibits mid-level motion information.

The best results are achieved using multiple SemI and 
SemOF using a two-stream variant which gives a boost of 6.1%, 
4.4%, 8.4%, and 4.9% accuracy over individual modalities of 
static RGB, multiple SemI, WOF, and SemOF on UCF101. 
Similarly, the gain is noted to be 15.5%, 7.2%, 13.3%, and 7.7% 
from the individual modalities of static RGB images, multiple 
SemI, warped optical flows, and SemOF on HMDB51. Finally, 
the maximum accuracy was achieved using a four-stream vari-
ant which gives a boost of 1.2% and 3.4% over two-stream vari-
ant for UCF101 and HMDB51 datasets, respectively.

5.10 � Temporal Segment Networks

The temporal segment network has proved that using good 
practices for making deep architectures learn can improve 
the recognition results for applications such as action rec-
ognition. The main characteristics of temporal segment net-
works include a sparse sampling of short snippets from the 
video and the consensus among the snippets for drawing 
out the predictions. The temporal segment networks have 

Table 7   Comparative analysis 
for various combinations 
in terms of the mean class 
accuracy

The first section depicts the results from two- and four-stream variants, whereas the later section shows the 
result using temporal segment network variants. The () shows the credit for different CNNs to determine 
the consensus from a specific modality
Bold indicates the highest achieved accuracy

Combination UCF101 (%) HMDB51 (%)

Two- and four-stream variants
Static RGB + multiple SemI 92.8 64.6
Static RGB + WOF 94.2 68.1
Multiple dynamic images + WOF 92.0 64.7
Static RGB + dynamic optical flows 91.6 64.2
Multiple SemI + WOF 94.4 67.9
Static RGB + SemOF 93.9 67.8
WOF + dynamic optical flows 91.4 64.5
WOF + SemOF 92.1 65.8
Multiple dynamic images + dynamic optical flows 92.6 66.5
Multiple SemI + SemOF 94.7 70.1
Static RGB + Multiple SemI + WOF + SemOF 95.9 73.5
Temporal segment network variants
Static RGB + warped optical flow (1:1) 93.3 67.6
Multiple SemI + warped optical flow (1:1) 94.1 69.1
Multiple SemI + semantic optical flow (1:1) 94.5 70.6
Static RGB + semantic optical flow + warped optical flow 

(1:1:0.5)
94.6 71.3

Multiple SemI + Semantic Optical Flow + Warped Optical 
Flow (1:1:0.5)

95.2 71.8
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been used for two and three modalities in their original work 
(Wang et al. 2016b). One more parameter which is of the 
sheer importance is the segment number. It was shown in 
the study (Wang et al. 2018b) that using a higher number of 
segments yields better performance but with slower recogni-
tion. In this paper, we use the same architecture and method 
to train the network, but instead of using RGB and optical 
flows, we use multiple SemI and SemOF, respectively. To 
match the number of samples, we only consider the last two 
frames in a window to generate the WOF. The comparative 
analysis of different modalities using temporal segment net-
works is shown in Table 7. All the results reported using the 
same credits to determine the consensus of specific modality 
proposed in Wang et al. (2018b) and “5” as the number of 
segments. The results show that the three modalities with 
temporal segment networks achieve better results than our 
two-stream networks on both the datasets.

5.11 � Fine‑Tuning Using I3D + Kinetics

We proved the adaptability of SemI and SemOF by using 
these modalities with TSN. In this subsection, we evalu-
ated I3D which considers inception as its base network and 
is pre-trained on ImageNet + Kinetics dataset. We fine-tune 
the network on UCF and HMDB51 dataset using SemI and 
SemOF modalities. For this experiment, we use the learning 
rate of 0.02 for 5k steps, 0.01 for another 1k step, and 0.001 
for more 2k steps, respectively. As the original literature 
provides separate pre-trained networks for RGB and optical 
flows, we use the network pre-trained on RGB to fine-tune 
the SemI and the network pre-trained on optical flows to 
fine-tune the SemOF. Similar to the previous experiments, 
the classification scores from multiple streams will be com-
bined to report the recognition accuracy from two-stream 
and four-stream networks. The results are shown in Table 8.

The results are evident that the proposed representations, 
i.e., SemI and SemOF, yield better classification accuracy 

in comparison to the RGB and optical flows. We also show 
that the two-stream and four-streams using I3D network pre-
trained on ImageNet + Kinetics and fine-tuned on the pro-
posed representation achieve 99.1% and 83.7% recognition 
accuracies which are 1.2% and 3.2% better for UCF101 and 
HMDB51, respectively, in comparison to its original variant.

5.12 � Comparison with State‑of‑the‑Art Methods

In this section, we compare our experimental results with the 
state-of-the-art methods for action recognition using videos. 
We mentioned in Sect. 2 that most of the existing studies per-
form late fusion with improved dense trajectories (IDTs) to 
boost their recognition accuracy. In this regard, we divide the 
state-of-the-art results into two categories. The first includes 
the results without the use of IDTs so that the method could 
be judged on its intrinsic characteristics. The second present 
the recognition accuracies from the methods when combined 
with IDTs, accordingly. We assume that such categorization 
of results for comparison would be fair enough. We present 
the results without combining IDTs in Table 9.

We further divided the methods in Table 9 into four cat-
egories, i.e. single-stream, two-streams, temporal segment 
networks, and four-stream networks. It can be noticed that 
our two-stream SemIN outperforms many state-of-the-art 
methods; however, the best results were achieved using two-
stream I3D networks using SemI and SemOF as the learn-
ing representations. It should also be noticed that when the 
I3D method was only trained on HMDB51 and UCF101, 
even our two-stream networks outperformed their methods. 
The two-stream I3D (SemI + SemOF) improves the accu-
racy by 1.2% and 0.9% on HMDB51 and UCF101 datasets, 
respectively, in comparison to the original two-stream I3D 
pre-trained on ImageNet + kinetics. It further supports our 
claim that the proposed representations are not only better 
than the conventional ones, i.e. (RGB and OF) but also the 
existing ones such as DI, DOF, and MHI.

The temporal segment network with proposed representa-
tions not only improves the accuracy of the original study 
but also achieves better results than the existing works in its 
respective category, i.e. 95.2% and 71.8% for UCF101 and 
HMDB51, respectively.

We also achieved better results with four-stream SemIN 
(using the network pre-trained on ImageNet) by attaining 
95.9% and 73.5% on UCF101 and HMDB51 dataset. The 
four-stream SemIN improves the recognition accuracy by 
0.4% and 1.0% for UCF101 and HMDB51 from the one 
proposed in Bilen et al. (2018). The four-stream SemIN 
achieving more than 95% and 70% accuracy on UCF101 
and HMDB51 with the network pre-trained using ImageNet 
only, is a remarkable feat. It can also be noticed that the 
studies which use the ImageNet pre-trained network do not 
surpass the accuracy achieved with four-stream SemIN. 

Table 8   Comparison of mean class accuracy for different modalities 
using I3D pre-trained networks on ImageNet + Kinetics

Bold indicates the highest achieved accuracy

Methods UCF101 (%) HMDB51 (%)

I3D–RGB 95.5 74.7
I3D–WOF 96.6 77.1
I3D–SemI 96.8 76.9
I3D–SemOF 97.1 77.6
Two-stream I3D–RGB + WOF 97.9 80.5
Two-Stream I3D–SemI + WOF 98.4 81.1
Two-Stream I3D–RGB + SemOF 98.2 81.0
Two-Stream I3D–SemI + SemOF 98.9 81.9
Four-Stream I3D–

RGB + SemI + WOF + SemOF
99.1 83.7
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The result supports the fact that the intrinsic characteristics 
of the proposed representation (SemI and SemOF) which 
embeds the semantic information and the network architec-
ture (SR-LSTM) which sequences the LSTM with Inception-
ResNetv2 are the reasons behind improved accuracy. The 
four-stream I3D networks pre-trained on ImageNet + Kinet-
ics dataset outperforms all the state-of-the-art methods.

We also perform the fusion of two-stream and four-stream 
networks with IDTs for comparison with state-of-the-art works, 

as reported in Table 10. It should be noted that for fusing IDTs 
we only use the four-stream SemIN instead of I3D variant. It is 
surprising that the results from our four-stream networks out-
perform existing state-of-the-art methods combined with IDTs. 
The result implies that the improvement in accuracy is mostly 
due to the intrinsic characteristics of our video representation 
and network architecture. The combination of our four-stream 
networks with IDTs provides 1.5% and 3.3% boost of accuracy 
on UCF101 and HMDB51, respectively.

Table 9   Comparison of mean 
class accuracy with state-of-the-
art methods without the fusion 
of IDTs

Bold refers to the results obtained using the proposed work

Methods UCF101 (%) HMDB51 (%)

Single-stream network
C3D + SVM (Tran et al. 2015) 85.2 –
Objects + Motion(R*) (Jain et al. 2015) 88.5 61.4
Comp-LSTM (Srivastava et al. 2015) 75.8 44.0
CNN-hid6 (Zha et al. 2015) 79.3 –
MoFAP (Wang et al. 2016a) 88.3 61.7
Two-stream networks
2S-CNN (Yue-Hei Ng et al. 2015) 88.0 59.4
2S-CNN + Pool (Yue-Hei Ng et al. 2015) 88.2 –
2S-CNN + LSTM (Yue-Hei Ng et al. 2015) 88.6 –
TDD (Wang et al. 2015) 90.3 60.2
FSTCN (Sun et al. 2015) 88.1 59.1
KVMF (Zhu et al. 2016) 93.1 63.3
SR-CNN (Wang et al. 2016c) 92.6 –
Two stream DIN (CaffeNet) (Bilen et al. 2016) 76.9 42.8
Two stream I3D (Carreira and Zisserman 2017) 93.4 66.4
ST-pyramid networks (Yunbo Wang et al. 2017) 94.6 68.9
LTC (Varol et al. 2018) 91.7 64.8
Two stream DIN (ResNeXt50) (Bilen et al. 2018) 93.9 67.5
TLE (Diba et al. 2017) 95.6 71.1
Two-stream I3D (Carreira and Zisserman 2017) + (Kinetics 300k) 98.0 80.7
R(2 + 1)D-two stream (Tran et al. 2018) 97.3 78.7
S3D-G (Xie et al. 2018) 96.8 75.9
MF-Net (Chen et al. 2018b) 96.0 74.6
STC-ResNeXt101 (Diba et al. 2018) 96.5 74.9
A2-Net (Chen et al. 2018c) 96.4 –
ResNeXt-101 (64f) (Hara et al. 2018) 94.5 70.2
Two-stream networks (SemIN with SR-LSTM) 94.7 70.1
Two-stream I3D (SemI + SemOF) 98.9 81.9
Temporal segment networks
Temporal segment networks (Wang et al. 2016b) 94.2 69.4
TS-LSTM (Ma et al. 2018) 94.1 69.0
ARTNet with TSN (Wang et al. 2018a) 94.3 70.9
Temporal segment networks (multiple SemI + SemOF + WOF) 1:1:0.5 95.2 71.8
Four-stream networks
Four stream DIN (ResNeXt50) (Bilen et al. 2018) 95.0 71.5
Four stream DIN (ResNeXt101) (Bilen et al. 2018) 95.5 72.5
Four stream networks (SemIN with SR-LSTM) 95.9 73.5
Four-stream I3D (RGB + SemI + WOF + SemOF) 99.1 83.7
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5.13 � Discussion

In this section, we provide some insights with respect to the 
experimental analysis. The discussion here is based on the 
four-stream SemIN as we want to highlight the improve-
ment based on intrinsic characteristics of the proposed rep-
resentation rather than the networks pre-trained on kinetic 
sequences. It was found that the best relative performance 
when using multiple SemI was obtained for ‘Nun Chucks’ 
and ‘Pull Up’ action on UCF101 and HMDB51, respectively. 
However, when compared with static RGB images, the best 
accuracy improvement was obtained for ‘High Jump’ action 
on UCF101 while on the HMDB51 the best improvement 
was recorded for ‘Sommer Sault’ and ‘throw’ action, respec-
tively. We also found that some ‘Pizza Tossing’ and ‘Salsa 
Spin’ actions were confused with ‘Nun Chucks’ due to the 
similar circular motions, which are interestingly very dif-
ferent actions as per their characteristics. Furthermore, as 
pointed out in Bilen et al. (2018), the ‘Breast Stroke’ was 
confused with ‘Rowing’ and ‘Front Crawling’ actions. For 
the two-stream networks the actions which achieved the best 
relative performance on HMDB51 were ‘Pull Up,’ ‘Ride 
Bike,’ and ‘Golf’ whereas for the UCF101 the actions were 
‘Nun Chucks’ and ‘Jumping Jack.’ The four-stream network 
proposed in Bilen et al. (2018) suggested the most challeng-
ing actions be ‘Pizza Tossing,’ ‘Lunges,’ ‘Hammer Throw,’ 
‘Shaving Beard,’ and ‘Brushing Teeth’ with their respective 
accuracies of 74, 74.6, 77.2, 78.7 and 80.2%. Our proposed 
four-stream network improved the accuracy for each of these 
actions by 2.6%, 6.4%, 15.6%, 7.8%, and 0.3%, respectively. 
The most challenging actions on HMDB51 were found to 
be ‘Sword’ and ‘Wave.’ We assume that similar motion 

characteristics may be the reason due to which certain 
actions are confused with one another. However, if com-
bined with the pose analysis or facial landmarks, the SemI 
may overcome the shortcomings mentioned above.

6 � Conclusion and Future Work

In this paper, we propose an improvement to work pre-
sented in Bilen et al. (2018) by segmenting the image 
and overlaying it with a static background. Such pre-pro-
cessing method for adding semantics not only improves 
the action–motion dynamics but also is helpful in map-
ping semantic information for many actions which are 
performed at a particular location such as ‘Basketball,’ 
‘Breast Stroke,’ and more. We also exploit the design 
choices for computing semantic maps across intermedi-
ate layers of Inception-ResNetv2 to prove the flexibility 
of the representation method. We present the SR-LSTM 
network, which is the result of sequentially combining 
the base network, i.e., Inception-ResNetv2 with LSTMs. 
The experimental results show that LSTMs help to model 
the temporal dynamics from the extracted features by the 
network across time. The use of temporal information 
encoded by approximate rank pooling helps LSTMs to 
learn temporal dependencies and temporal variances to 
improve the recognition performance. It is reflected by 
the mean class accuracy on both UCF101 and HMDB51 
datasets. Our two- and four-stream variants of SR-LSTM 
networks show promising results and achieve state-of-the-
art performance. The maximum accuracy we achieved 
so far is from four-stream I3D networks using SemI and 

Table 10   Comparison of mean 
class accuracy with state-of-
the-art methods when combined 
with IDTs

Bold refers to the results obtained using the proposed work

Methods HMDB51 (%) UCF101 (%)

FV + IDT (Perronnin et al. 2010) 57.2 84.8
SFV + STP + IDT (Perronnin et al. 2010) 60.1 86.0
FM + IDT (Peng et al. 2014) 61.1 87.9
MIFS + IDT (Laptev 2005) 65.1 89.1
CNN + hid6 + IDT (Zhao and Pietikainen 2007) – 89.6
C3D ensemble + IDT (Tran et al. 2015) – 90.1
C3D + SVM + IDT (Tran et al. 2015) – 90.4
TDD + IDT (Wang et al. 2015) 65.9 91.5
Sympathy (de Souza et al. 2016) 70.4 92.5
Two-stream fusion + IDT (Feichtenhofer et al. 2016b) 69.2 93.5
ST-ResNet + IDT (Feichtenhofer et al. 2016a) 70.3 94.6
LTC + IDT (Varol et al. 2018) 67.2 92.7
Four stream + IDT with ResNeXt50 (Bilen et al. 2018) 74.2 95.4
Four stream + IDT with ResNeXt101 (Bilen et al. 2018) 74.9 96.0
Two-stream networks (SemIN with SR-LSTM) + IDT 72.3 95.7
Four stream networks (SemIN with SR-LSTM) + IDT 76.8 97.4
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SemOF, i.e., 99.1% and 83.7% on UCF101 and HMDB51. 
The modalities were also trained using temporal segment 
networks, which elicited a positive trend towards the 
improvement in recognition performance.

We already discussed some of the limitations with 
respect to the confusing classes in the previous section. 
Moreover, the SemI and SemOF do not map the motion 
dynamics well for many complex actions such as ‘Pommel 
Horse’ or the actions with abrupt motions such as ‘Cricket 
Shot’ and ‘Parallel Bars.’ Furthermore, the SemOF reveal 
similar motion characteristics for ‘Shaving Beard,’ ‘Brush-
ing Teeth,’ and ‘Applying Lipstick’ which does not con-
tribute to improving the recognition performance. We 
believe that by adding another semantic information such 
as objects, can improve the recognition performance where 
the objects are distinguishable for each of the above-men-
tioned actions. In future, we want to explore the use of 
SemI for cross domain and transfer learning approaches 
by considering the mutual actions in both datasets such 
as ‘Golf,’ ‘Dive,’ ‘Fencing,’ ‘Jump,’ ‘Pull Up,’ and more.
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