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Abstract
Wepropose a real-timeRGB-based pipeline for object detection and 6Dpose estimation.Our novel 3Dorientation estimation is
basedon avariant of theDenoisingAutoencoder that is trainedon simulatedviewsof a 3Dmodel usingDomainRandomization.
This so-called Augmented Autoencoder has several advantages over existing methods: It does not require real, pose-annotated
training data, generalizes to various test sensors and inherently handles object and view symmetries. Instead of learning an
explicit mapping from input images to object poses, it provides an implicit representation of object orientations defined
by samples in a latent space. Our pipeline achieves state-of-the-art performance on the T-LESS dataset both in the RGB
and RGB-D domain. We also evaluate on the LineMOD dataset where we can compete with other synthetically trained
approaches. We further increase performance by correcting 3D orientation estimates to account for perspective errors when
the object deviates from the image center and show extended results. Our code is available here https://github.com/DLR-RM/
AugmentedAutoencoder.

Keywords 6D object detection · Pose estimation · Domain randomization · Autoencoder · Synthetic data · Symmetries

1 Introduction

One of the most important components of modern com-
puter vision systems for applications such as mobile robotic
manipulation and augmented reality is a reliable and fast 6D
object detection module. Although, there are very encour-
aging recent results from Xiang et al. (2017), Kehl et al.
(2017), Hodaň et al. (2017), Wohlhart and Lepetit (2015),
Vidal et al. (2018), Hinterstoisser et al. (2016) and Tremblay
et al. (2018), a general, easily applicable, robust and fast
solution is not available, yet. The reasons for this are mani-
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fold. First and foremost, current solutions are often not robust
enough against typical challenges such as object occlusions,
different kinds of background clutter, and dynamic changes
of the environment. Second, existing methods often require
certain object properties such as enough textural surface
structure or an asymmetric shape to avoid confusions. And
finally, current systems are not efficient in terms of run-time
and in the amount and type of annotated training data they
require.

Therefore, we propose a novel approach that directly
addresses these issues. Concretely, our method operates on
single RGB images, which significantly increases the usabil-
ity as no depth information is required. We note though that
depth maps may be incorporated optionally to refine the esti-
mation. As a first step, we build upon state-of-the-art 2D
Object Detectors of Liu et al. (2016) and Lin et al. (2017)
which provide object bounding boxes and identifiers. On
the resulting scene crops, we employ our novel 3D orien-
tation estimation algorithm, which is based on a previously
trained deep network architecture. While deep networks are
also used in existing approaches, our approach differs in that
we do not explicitly learn from 3D pose annotations during
training. Instead, we implicitly learn representations from
rendered 3D model views. This is accomplished by training
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Fig. 1 Our full 6D object detection pipeline: after detecting an object
(2D Object Detector), the object is quadratically cropped and for-
warded into the proposed Augmented Autoencoder. In the next step,
the bounding box scale ratio at the estimated 3D orientation R̂′

obj2cam
is used to compute the 3D translation t̂obj2cam . The resulting euclidean

transformation Ĥ ′
obj2cam ∈ R4×4 already shows promising results as

presented in Sundermeyer et al. (2018), however it still lacks of accuracy

given a translation in the image plane towards the borders. Therefore,
the pipeline is extended by the Perspective Correction block which
addresses this problem and results in more accurate 6D pose estimates
Ĥobj2cam for objects which are not located in the image center. Addi-

tionally, given depth data, the result can be further refined (Ĥ (re f ined)
obj2cam )

by applying an Iterative Closest Point post-processing (bottom)

a generalized version of the Denoising Autoencoder from
Vincent et al. (2010), that we call ‘Augmented Autoencoder
(AAE)’, using a novel Domain Randomization strategy. Our
approach has several advantages: First, since the training
is independent from concrete representations of object ori-
entations within SO(3) (e.g. quaternions), we can handle
ambiguous poses caused by symmetric views because we
avoid one-to-many mappings from images to orientations.
Second, we learn representations that specifically encode 3D
orientations while achieving robustness against occlusion,
cluttered backgrounds and generalizing to different environ-
ments and test sensors. Finally, the AAE does not require
any real pose-annotated training data. Instead, it is trained to
encode 3D model views in a self-supervised way, overcom-
ing the need of a large pose-annotated dataset. A schematic
overview of the approach based on Sundermeyer et al. (2018)
is shown in Fig. 1.

2 RelatedWork

Depth-based methods [e.g. using point pair features (PPF)
from Vidal et al. (2018) and Hinterstoisser et al. (2016)]
have shown robust pose estimation performance on multiple
datasets, winning the SIXD challenge (Hodan 2017; Hodan
et al. 2018). However, they usually rely on the computation-
ally expensive evaluation of many pose hypotheses and do
not take into account any high level features. Furthermore,
existing depth sensors are often more sensitive to sunlight or
specular object surfaces than RGB cameras.

Convolutional neural networks (CNNs) have revolution-
ized 2D object detection from RGB images (Ren et al. 2015;
Liu et al. 2016; Lin et al. 2017). But, in comparison to 2D
bounding box annotation, the effort of labeling real images
with full 6D object poses is magnitudes higher, requires
expert knowledge and a complex setup (Hodaň et al. 2017).
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Nevertheless, the majority of learning-based pose esti-
mation methods, namely Tekin et al. (2017), Wohlhart and
Lepetit (2015), Brachmann et al. (2016), Rad and Lepetit
(2017) and Xiang et al. (2017), use real labeled images that
you only obtain within pose-annotated datasets.

In consequence, Kehl et al. (2017), Wohlhart and Lepetit
(2015), Tremblay et al. (2018) and Zakharov et al. (2019)
have proposed to train on synthetic images rendered from a
3D model, yielding a great data source with pose labels free
of charge. However, naive training on synthetic data does
not typically generalize to real test images. Therefore, a main
challenge is to bridge the domain gap that separates simulated
views from real camera recordings.

2.1 Simulation to Reality Transfer

There exist threemajor strategies to generalize fromsynthetic
to real data:

2.1.1 Photo-Realistic Rendering

The works of Movshovitz-Attias et al. (2016), Su et al.
(2015), Mitash et al. (2017) and Richter et al. (2016) have
shown that photo-realistic renderings of object views and
backgrounds can in some cases benefit the generalization per-
formance for tasks like object detection and viewpoint esti-
mation. It is especially suitable in simple environments and
performswell if jointly trainedwith a relatively small amount
of real annotated images. However, photo-realistic modeling
is often imperfect and requires much effort. Recently, Hodan
et al. (2019) have shown promising results for 2D object
detection trained on physically-based renderings.

2.1.2 Domain Adaptation

Domain adaptation (DA) (Csurka 2017) refers to leverag-
ing training data from a source domain to a target domain
of which a small portion of labeled data (supervised DA) or
unlabeled data (unsupervised DA) is available. Generative
adversarial networks (GANs) have been deployed for unsu-
pervised DA by generating realistic from synthetic images to
train classifiers (Shrivastava et al. 2017), 3D pose estimators
(Bousmalis et al. 2017b) and grasping algorithms (Bous-
malis et al. 2017a).While constituting a promising approach,
GANs often yield fragile training results. Supervised DA can
lower the need for real annotated data, but does not abstain
from it.

2.1.3 Domain Randomization

Domain randomization (DR) builds upon the hypothesis
that by training a model on rendered views in a variety of
semi-realistic settings (augmentedwith random lighting con-

ditions, backgrounds, saturation, etc.), it will also generalize
to real images. Tobin et al. (2017) demonstrated the potential
of theDRparadigm for 3D shape detection usingCNNs.Hin-
terstoisser et al. (2017) showed that by training only the head
networkofFasterRCNNofRen et al. (2015)with randomized
synthetic views of a textured 3D model, it also generalizes
well to real images. It must be noted, that their rendering is
almost photo-realistic as the textured 3D models have very
highquality.Kehl et al. (2017) pioneered an end-to-endCNN,
called ’SSD6D’, for 6D object detection that uses a moder-
ate DR strategy to utilize synthetic training data. The authors
render views of textured 3D object reconstructions at random
poses on top of MS COCO background images (Lin et al.
2014) while varying brightness and contrast. This lets the
network generalize to real images and enables 6D detection
at 10 Hz. Like us, for accurate distance estimation they rely
on iterative closest point (ICP) post-processing using depth
data. In contrast, we do not treat 3D orientation estimation
as a classification task.

2.2 Training Pose Estimation with SO(3) Targets

We describe the difficulties of training with fixed SO(3)
parameterizations which will motivate the learning of view-
based representations.

2.2.1 Regression

Since rotations live in a continuous space, it seems natu-
ral to directly regress a fixed SO(3) parameterizations like
quaternions. However, representational constraints and pose
ambiguities can introduce convergence issues as investi-
gated by Saxena et al. (2009). In practice, direct regression
approaches for full 3D object orientation estimation have not
been very successful (Mahendran et al. 2017). Instead Trem-
blay et al. (2018), Tekin et al. (2017) and Rad and Lepetit
(2017) regress local 2D-3D correspondences and then apply
a perspective-n- point (PnP) algorithm to obtain the 6D pose.
However, these approaches can also not deal with pose ambi-
guities without additional measures (see Sect. 2.2.3).

2.2.2 Classification

Classification of 3D object orientations requires a discretiza-
tion of SO(3). Even rather coarse intervals of ∼ 5o lead to
over 50.000 possible classes. Since each class appears only
sparsely in the training data, this hinders convergence. In
SSD6D (Kehl et al. 2017) the 3D orientation is learned by
separately classifying a discretized viewpoint and in-plane
rotation, thus reducing the complexity to O(n2). However,
for non-canonical views, e.g. if an object is seen from above,
a change of viewpoint can be nearly equivalent to a change
of in-plane rotation which yields ambiguous class combina-
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(a)

(b) (c)

Fig. 2 Causes of pose ambiguities

tions. In general, the relation between different orientations
is ignored when performing one-hot classification.

2.2.3 Symmetries

Symmetries are a severe issue when relying on fixed repre-
sentations of 3D orientations since they cause pose ambigu-
ities (Fig. 2). If not manually addressed, identical training
images can have different orientation labels assigned which
can significantly disturb the learning process. In order to cope
with ambiguous objects, most approaches in literature are
manually adapted (Wohlhart andLepetit 2015;Hinterstoisser
et al. 2012a; Kehl et al. 2017; Rad and Lepetit 2017). The
strategies reach from ignoring one axis of rotation (Wohlhart
and Lepetit 2015; Hinterstoisser et al. 2012a) over adapting
the discretization according to the object (Kehl et al. 2017)
to the training of an extra CNN to predict symmetries (Rad
and Lepetit 2017). These depict tedious, manual ways to fil-
ter out object symmetries (Fig. 2a) in advance, but treating
ambiguities due to self-occlusions (Fig. 2b) and occlusions
(Fig. 2c) are harder to address.

Symmetries do not only affect regression and classifica-
tion methods, but any learning-based algorithm that discrim-
inates object views solely by fixed SO(3) representations.

2.3 Learning Representations of 3D Orientations

We can also learn indirect pose representations that relate
object views in a low-dimensional space. The descriptor
learning can either be self-supervised by the object views
themselves or still rely on fixed SO(3) representations.

2.3.1 Descriptor Learning

Wohlhart and Lepetit (2015) introduced a CNN-based
descriptor learning approach using a triplet loss that min-
imizes/maximizes the Euclidean distance between simi-
lar/dissimilar object orientations. In addition, the distance
between different objects is maximized. Although mixing in
synthetic data, the training also relies on pose-annotated sen-
sor data. The approach is not immune against symmetries
since the descriptor is built using explicit 3D orientations.
Thus, the loss can be dominated by symmetric object views
that appear the same but have opposite orientations which
can produce incorrect average pose predictions.

Balntas et al. (2017) extended this work by enforcing
proportionality between descriptor and pose distances. They
acknowledge the problem of object symmetries byweighting
the pose distance loss with the depth difference of the object
at the considered poses. This heuristic increases the accuracy
on symmetric objects with respect to Wohlhart and Lepetit
(2015).

Our work is also based on learning descriptors, but in con-
trastwe train ourAugmentedAutoencoders (AAEs) such that
the learning process itself is independent of any fixed SO(3)
representation. The loss is solely based on the appearance of
the reconstructed object views and thus symmetrical ambi-
guities are inherently regarded. Thus, unlike Balntas et al.
(2017) and Wohlhart and Lepetit (2015) we abstain from
the use of real labeled data during training and instead train
completely self-supervised. This means that assigning 3D
orientations to the descriptors only happens after the training.

Kehl et al. (2016) train an Autoencoder architecture on
random RGB-D scene patches from the LineMOD dataset
Hinterstoisser et al. (2011). At test time, descriptors from
scene and object patches are compared to find the 6D pose.
Since the approach requires the evaluation of a lot of patches,
it takes about 670ms per prediction. Furthermore, using local
patches means to ignore holistic relations between object
features which is crucial if few texture exists. Instead we
train on holistic object views and explicitly learn domain
invariance.

3 Method

In the following, wemainly focus on the novel 3D orientation
estimation technique based on the AAE.
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Fig. 3 Experiment on the
dsprites dataset of Matthey et al.
(2017). Left: 64 × 64 squares
from four distributions (a–d)
distinguished by scale (s) and
translation (txy) that are used for
training and testing. Right:
Normalized latent dimensions
z1 and z2 for all rotations (r ) of
the distribution (a), (b) or (c)
after training ordinary
Autoencoders (AEs) (1), (2) and
an AAE (3) to reconstruct
squares of the same orientation

(a) Xs=1.0,txy=0.0,r∈[0,2π]

(b) Xs=0.6,txy=0.0,r∈[0,2π]

(c) Xs=1.0,txy∼U(−1,1),r∈[0,2π]

(d) Xs∼U(0.5,1),txy∼U(−1,1),r∈[0,2π]
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(2) Autoencoder (d) −→ (d)
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(3) Augmented Autoencoder (d) −→ (a)

3.1 Autoencoders

The original AE, introduced by Rumelhart et al. (1985), is
a dimensionality reduction technique for high dimensional
data such as images, audio or depth. It consists of an Encoder
� and aDecoder�, both arbitrary learnable function approx-
imators which are usually neural networks. The training
objective is to reconstruct the input x ∈ RD after pass-
ing through a low-dimensional bottleneck, referred to as the
latent representation z ∈ Rn with n << D :

x̂ = (� ◦ �)(x) = �(z) (1)

The per-sample loss is simply a sum over the pixel-wise L2
distance

�2 =
∑

i∈D
‖ xi − x̂i ‖2 (2)

The resulting latent space can, for example, be used for unsu-
pervised clustering.

Denoising Autoencoders introduced by Vincent et al.
(2010) have a modified training procedure. Here, artificial
random noise is applied to the input images x ∈ RD while
the reconstruction target stays clean. The trained model can
be used to reconstruct denoised test images. But how is the
latent representation affected?

Hypothesis 1 The Denoising AE produces latent repre-
sentations which are invariant to noise because it facilitates
the reconstruction of de-noised images.

We will demonstrate that this training strategy actually
enforces invariance not only against noise but against a vari-
ety of different input augmentations. Finally, it allows us to
bridge the domain gap between simulated and real data.

3.2 Augmented Autoencoder

The motivation behind the AAE is to control what the latent
representation encodes and which properties are ignored.We
apply random augmentations faugm(·) to the input images
x ∈ RD against which the encoding should become invari-
ant. The reconstruction target remains Eq. (2) but Eq. (1)
becomes

x̂ = (� ◦ � ◦ faugm)(x) = (� ◦ �)(x ′) = �(z′) (3)

Tomake evident that Hypothesis 1 holds for geometric trans-
formations, we learn latent representations of binary images
depicting a 2D square at different scales, in-plane transla-
tions and rotations. Our goal is to encode only the in-plane
rotations r ∈ [0, 2π ] in a two dimensional latent space
z ∈ R2 independent of scale or translation. Figure 3 depicts
the results after training aCNN-basedAEarchitecture similar
to the model in Fig. 5. It can be observed that the AEs trained
on reconstructing squares at fixed scale and translation (1)
or random scale and translation (2) do not clearly encode
rotation alone, but are also sensitive to other latent factors.
Instead, the encoding of the AAE (3) becomes invariant to
translation and scale such that all squareswith coinciding ori-
entation aremapped to the same code. Furthermore, the latent
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Fig. 4 Training process for the
AAE; a reconstruction target
batch xxx of uniformly sampled
SO(3) object views; b geometric
and color augmented input; c
reconstruction x̂̂x̂x after 40,000
iterations

(a)

(b) (c)

representation is much smoother and the latent dimensions
imitate a shifted sine and cosine function with frequency
f = 4

2π respectively. The reason is that the square has two
perpendicular axes of symmetry, i.e. after rotating π

2 the
square appears the same. This property of representing the
orientation based on the appearance of an object rather than
on a fixed parametrization is valuable to avoid ambiguities
due to symmetries when teaching 3D object orientations.

3.3 Learning 3D Orientation from Synthetic Object
Views

Our toy problem showed that we can explicitly learn rep-
resentations of object in-plane rotations using a geometric
augmentation technique. Applying the same geometric input
augmentations we can encode the whole SO(3) space of
views from a 3D object model (CAD or 3D reconstruction)
while being robust against inaccurate object detections.How-
ever, the encoder would still be unable to relate image crops
from real RGB sensors because (1) the 3D model and the
real object differ, (2) simulated and real lighting conditions
differ, (3) the network can’t distinguish the object from back-
ground clutter and foreground occlusions. Instead of trying to
imitate every detail of specific real sensor recordings in simu-
lation we propose a Domain Randomization (DR) technique
within the AAE framework to make the encodings invariant
to insignificant environment and sensor variations. The goal
is that the trained encoder treats the differences to real camera
images as just another irrelevant variation. Therefore, while
keeping reconstruction targets clean, we randomly apply
additional augmentations to the input training views: (1) ren-
dering with random light positions and randomized diffuse
and specular reflection [simple Phongmodel (Phong 1975) in
OpenGL], (2) inserting random background images from the
Pascal VOC dataset (Everingham et al. 2012), (3) varying
image contrast, brightness, Gaussian blur and color distor-

tions, (4) applying occlusions using random object masks or
black squares. Figure 4 depicts an exemplary training process
for synthetic views of object 5 from T-LESS (Hodaň et al.
2017).

3.4 Network Architecture and Training Details

The convolutional Autoencoder architecture that is used in
our experiments is depicted in Fig. 5. We use a bootstrapped
pixel-wise L2 loss, first introduced byWu et al. (2016). Only
the pixels with the largest reconstruction errors contribute
to the loss. Thereby, finer details are reconstructed and the
training does not converge to local minima like reconstruct-
ing black images for all views. In our experiments, we choose
a bootstrap factor of k = 4 per image, meaning that 1

4 of
all pixels contribute to the loss. Using OpenGL, we render
20,000 views of each object uniformly at random 3D orienta-
tions and constant distance along the camera axis (700 mm).
The resulting images are quadratically cropped using the
longer side of the bounding box and resized (nearest neigh-
bor) to 128× 128× 3 as shown in Fig. 4. All geometric and
color input augmentations besides the rendering with ran-
dom lighting are applied online during training at uniform
random strength, parameters are found in Table 1. We use
the Adam (Kingma and Ba 2014) optimizer with a learning
rate of 2 × 10−4, Xavier initialization (Glorot and Bengio
2010), a batch size = 64 and 40,000 iterations which takes
∼ 4 h on a single Nvidia Geforce GTX 1080.

3.5 Codebook Creation and Test Procedure

After training, the AAE is able to extract a 3D object from
real scene crops of many different camera sensors (Fig. 6).
The clarity and orientation of the decoder reconstruction is an
indicator of the encoding quality. To determine 3D object ori-
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Fig. 5 Autoencoder CNN architecture with occluded test input, “resize2x” depicts nearest-neighbor upsampling

Table 1 Augmentation
parameters of AAE; Scale and
translation is in relation to
image shape and occlusion is in
proportion of the object mask

50% Chance (30% per channel) Light (random position) and geometric

Add U(−0.1, 0.1) Ambient 0.4

Contrast U(0.4, 2.3) Diffuse U(0.7, 0.9)

Multiply U(0.6, 1.4) Specular U(0.2, 0.4)

Invert Scale U(0.8, 1.2)

Gaussian blur σ ∼ U(0.0, 1.2) Translation U(−0.15, 0.15)

Occlusion ∈ [0, 0.25]

Fig. 6 AAE decoder reconstruction of LineMOD (left) and T-LESS
(right) scene crops

entations from test scene crops we create a codebook (Fig. 7
top):

(1) Render clean, synthetic object views at nearly equidis-
tant viewpoints from a full view-sphere [based on a
refined icosahedron (Hinterstoisser et al. 2008)]

(2) Rotate each view in-plane at fixed intervals to cover the
whole SO(3)

(3) Create a codebook by generating latent codes z ∈ R128

for all resulting images and assigning their correspond-
ing rotation Rcam2obj ∈ R3×3

At test time, the considered object(s) are first detected in
an RGB scene. The image is quadratically cropped using the
longer side of the bounding box multiplied with a padding
factor of 1.2 and resized to match the encoder input size.
The padding accounts for imprecise bounding boxes. After
encoding we compute the cosine similarity between the test
code ztest ∈ R128 and all codes zi ∈ R128 from the code-
book:

cosi = zzzi zzztest
‖zzzi‖‖zzztest‖ (4)

The highest similarities are determined in a k-nearest neigh-
bor (kNN) search and the corresponding rotation matrices
{RkNN } from the codebook are returned as estimates of the
3D object orientation. For the quantitative evaluation we use
k = 1, however the next neighbors can yield valuable infor-
mation on ambiguous views and could for example be used
in particle filter based tracking. We use cosine similarity
because (1) it can be very efficiently computed on a single
GPU even for large codebooks. In our experiments we have
2562 equidistant viewpoints × 36 in-plane rotation = 92,232
total entries. (2)We observed that, presumably due to the cir-
cular nature of rotations, scaling a latent test code does not
change the object orientation of the decoder reconstruction
(Fig. 8).
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Fig. 7 Top: creating a codebook from the encodings of discrete synthetic object views; bottom: object detection and 3D orientation estimation
using the nearest neighbor(s) with highest cosine similarity from the codebook

Fig. 8 AAE decoder reconstruction of a test code ztest ∈ R128 scaled
by a factor s ∈ [0, 2.5]

3.6 Extending to 6D Object Detection

3.6.1 Training the 2D Object Detector

We finetune the 2D Object Detectors using the object views
on black background which are provided in the training
datasets of LineMOD and T-LESS. In LineMOD we addi-
tionally render domain randomized views of the provided 3D
models and freeze the backbone like in Hinterstoisser et al.
(2017). Multiple object views are sequentially copied into an
empty scene at random translation, scale and in-plane rota-
tion. Bounding box annotations are adapted accordingly. If
an object view is more than 40% occluded, we re-sample
it. Then, as for the AAE, the black background is replaced
with Pascal VOC images. The randomization schemes and
parameters can be found in Table 2. In T-LESS we train
SSD (Liu et al. 2016) with VGG16 backbone and RetinaNet
(Lin et al. 2017) with ResNet50 backbone which is slower

Table 2 Augmentation Parameters for Object Detectors, top five are
applied in random order; bottom part describes phong lighting from
random light positions

Chance
(per ch.)

SIXD train Rendered
3D models

Add 0.5 (0.15) U(−0.08, 0.08) U(−0.1, 0.1)

Contrast norm. 0.5 (0.15) U(0.5, 2.2) U(0.5, 2.2)

Multiply 0.5 (0.25) U(0.6, 1.4) U(0.5, 1.5)

Gaussian blur 0.2 σ ∼ U(0.5, 1.0) σ = 0.4

Gaussian noise 0.1 (0.1) σ = 0.04 –

Ambient 1.0 – 0.4

Diffuse 1.0 – U(0.7, 0.9)

Specular 1.0 – U(0.2, 0.4)

but more accurate, on LineMOD we only train RetinaNet.
For T-LESS we generate 60,000 training samples in total
and for LineMOD we generate 60,000 samples from the
training dataset plus 60,000 samples from 3D model ren-
derings with randomized lighting conditions (see Table 2).
The RetinaNet achieves 0.73mAP@0.5IoU on T-LESS and
0.62mAP@0.5IoU on LineMOD. On Occluded LineMOD,
the detectors trained on the simplistic renderings failed to
achieve good detection performance. However, recent work
of Hodan et al. (2019) quantitatively investigated the train-
ing of 2D detectors on synthetic data and they reached
decent detection performance on Occluded LineMOD by
fine-tuning FasterRCNN on photo-realistic synthetic images
showing the feasibility of a purely synthetic pipeline.

3.6.2 Projective Distance Estimation

Weestimate the full 3D translation treal fromcamera to object
center, similar to Kehl et al. (2017). Therefore, we save the
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2D bounding box for each synthetic object view in the code-
book and compute its diagonal length ‖bbsyn,i‖. At test time,
we compute the ratio between the detected bounding box
diagonal ‖bbreal‖ and the corresponding codebook diagonal
‖bbsyn,argmax(cosi )‖, i.e. at similar orientation. The pinhole
camera model yields the distance estimate t̂real,z

t̂real,z = tsyn,z × ‖bbsyn,argmax(cosi )‖
‖bbreal‖ × freal

fsyn
(5)

with synthetic rendering distance tsyn,z and focal lengths
freal , fsyn of the real sensor and synthetic views. It follows
that

� t̂ = t̂real,zK−1
real bbreal,c − tsyn,zK−1

synbbsyn,c (6)

t̂real = tsyn + � t̂ (7)

where � t̂ is the estimated vector from the synthetic to the
real object center, Kreal , Ksyn are the camera matrices,
bbreal,c, bbsyn,c are the bounding box centers in homoge-
neous coordinates and t̂real , tsyn = (0, 0, tsyn,z) are the
translation vectors from camera to object centers. In con-
trast to Kehl et al. (2017), we can predict the 3D translation
for different test intrinsics.

3.6.3 Perspective Correction

While the codebook is created by encoding centered object
views, the test image crops typically do not originate from
the image center. Naturally, the appearance of the object view
changeswhen translating the object in the image plane at con-
stant object orientation. This causes a noticeable error in the
rotation estimate from the codebook towards the image bor-
ders. However, this error can be corrected by determining the
object rotation that approximately preserves the appearance
of the object when translating it to our estimate t̂real .

(
αx

αy

)
=

( − arctan(t̂real,y/t̂real,z)

arctan(t̂real,x/
√
t̂2real,z + t̂2real,y)

)
(8)

R̂ob j2cam = Ry(αy)Rx(αx )R̂′
ob j2cam (9)

where αx , αy describe the angles around the camera axes
and Ry(αy)Rx(αx ) the corresponding rotation matrices to
correct the initial rotation estimate R̂′

ob j2cam from object to
camera. The perspective corrections give a notable boost in
accuracy as reported in Table 7. If strong perspective dis-
tortions are expected at test time, the training images x ′
could also be recorded at random distances as opposed to
constant distance. However, in the benchmarks, perspec-
tive distortions are minimal and consequently random online
image-plane scaling of x ′ is sufficient.

Table 3 Inference time of the RGB pipeline using SSD on CPUs or
GPU

4 CPUs (ms) GPU (ms)

SSD – ∼17

Encoder ∼100 ∼5

Cosine similarity 2.5 ms 1.3

Nearest neighbor 0.3 3.2

Projective distance 0.4 –

Total ∼24

Bold refers to the fastest method

Table 4 Single object pose estimation runtime w/o refinement

Method fps

Vidal et al. (2018) 0.2

Brachmann et al. (2016) 2

Kehl et al. (2016) 2

Rad and Lepetit (2017) 4

Kehl et al. (2017) 12

OURS 13 (RetinaNet)

42 (SSD)

Tekin et al. (2017) 50

3.6.4 ICP Refinement

Optionally, the estimate is refined on depth data using a
point-to-plane ICP approach with adaptive thresholding of
correspondences based on Chen and Medioni (1992) and
Zhang (1994) taking an average of ∼ 320 ms. The refine-
ment is first applied in direction of the vector pointing from
camera to the object where most of the RGB-based pose esti-
mation errors stem from and then on the full 6D pose.

3.6.5 Inference Time

The single shot multibox detector (SSD) with VGG16 base
and 31 classes plus the AAE (Fig. 5) with a codebook size
of 92,232 × 128 yield the average inference times depicted
in Table 3. We conclude that the RGB-based pipeline is real-
time capable at∼42 Hz on a Nvidia GTX 1080. This enables
augmented reality and robotic applications and leaves room
for tracking algorithms. Multiple encoders (15 MB) and cor-
responding codebooks (45 MB each) fit into the GPU mem-
ory, making multi-object pose estimation feasible (Table 4).

4 Evaluation

We evaluate the AAE and the whole 6D detection pipeline
on the T-LESS (Hodaň et al. 2017) and LineMOD (Hinter-
stoisser et al. 2011) datasets.
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Table 5 Ablation study on color augmentations for different test sensors

Train RGB Test RGB Dyn. light Add Contrast Multiply Invert AUCvsd

3D reconstruction (synthetic) Primesense (real) � 0.472 (± 0.013)

� � 0.611 (± 0.030)

� � � 0.825 (± 0.015)

� � � � 0.876 (± 0.019)

� � � � � 0.877 (± 0.005)

� � � 0.861 (± 0.014)

Primesense (real) Primesense (real) � � � 0.890 (± 0.003)

3D reconstruction (synthetic) Kinect (real) � 0.461 (± 0.022)

� � 0.580 (± 0.014)

� � � 0.701 (± 0.046)

� � � � 0.855 (± 0.016)

� � � � � 0.897 (± 0.008)

� � � 0.903 (± 0.016)

Kinect (real) Kinect (real) � � � 0.917 (± 0.007)

Object 5 tested on all scenes, T-LESS Hodaň et al. (2017). Standard deviation of three runs in brackets
Best scores using synthetic data in bold

dard deviation in red
(a) Effect of latent space size, stan- (b) Training on CAD model (bottom) vs. textured 3D

reconstruction (top)

Fig. 9 Testing object 5 on all 504 Kinect RGB views of scene 2 in T-LESS

4.1 Test Conditions

Few RGB-based pose estimation approaches (e.g. Kehl et al.
2017; Ulrich et al. 2009) only rely on 3D model informa-
tion.Mostmethods likeWohlhart andLepetit (2015), Balntas
et al. (2017) and Brachmann et al. (2016) make use of real
pose annotated data and often even train and test on the
same scenes (e.g. at slightly different viewpoints, as in the
official LineMOD benchmark). It is common practice to
ignore in-plane rotations or to only consider object poses
that appear in the dataset (Rad and Lepetit 2017; Wohlhart
and Lepetit 2015) which also limits applicability. Symmetric
object views are often individually treated (Rad and Lepetit
2017; Balntas et al. 2017) or ignored (Wohlhart and Lepetit
2015). The SIXD challenge (Hodan 2017) is an attempt to
make fair comparisons between 6D localization algorithms

by prohibiting the use of test scene pixels. We follow these
strict evaluation guidelines, but treat the harder problem of
6D detection where it is unknown which of the considered
objects are present in the scene. This is especially difficult in
the T-LESS dataset since objects are very similar. We train
the AAEs on the reconstructed 3D models, except for object
19-23 where we train on the CAD models because the pins
are missing in the reconstructed plugs.

We noticed, that the geometry of some 3D reconstruction
in T-LESS is slightly inaccurate which badly influences the
RGB-based distance estimation (Sect. 3.6.2) since the syn-
thetic bounding box diagonals are wrong. Therefore, in a
second training run we only train on the 30 CAD models.
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Table 6 T-LESS: Object recall for errvsd < 0.3 on all Primesense test scenes (SIXD/BOP benchmark from Hodan et al. (2018))

AAE AAE

SSD RetinaNet Brachmann et al. Kehl et al. Vidal et al. Drost et al. w/ GT 2D BBs

Data RGB† RGB† RGB‡ RGB† + Depth (ICP) RGB-D RGB-D + ICP Depth + ICP Depth + edge RGB† + Depth (ICP)

1 5.65 9.48 12.67 67.95 8 7 43 53 12.67 85.98

2 5.46 13.24 16.01 70.62 10 10 47 44 11.47 86.27

3 7.05 12.78 22.84 78.39 21 18 69 61 13.32 90.80

4 4.61 6.66 6.70 57.00 4 24 63 67 12.88 84.20

5 36.45 36.19 38.93 77.18 46 23 69 71 67.37 90.14

6 23.15 20.64 28.26 72.75 19 10 67 73 54.21 90.58

7 15.97 17.41 26.56 83.39 52 0 77 75 38.10 86.94

8 10.86 21.72 18.01 78.08 22 2 79 89 24.83 91.79

9 19.59 39.98 33.36 88.64 12 11 90 92 49.06 91.09

10 10.47 13.37 33.15 84.47 7 17 68 72 15.67 84.67

11 4.35 7.78 17.94 56.01 3 5 69 64 16.64 77.01

12 7.80 9.54 18.38 63.23 3 1 82 81 33.57 79.32

13 3.30 4.56 16.20 43.55 0 0 56 53 15.29 64.38

14 2.85 5.36 10.58 25.58 0 9 47 46 50.14 71.37

15 7.90 27.11 40.50 69.81 0 12 52 55 52.01 73.90

16 13.06 22.04 35.67 84.55 5 56 81 85 36.71 87.58

17 41.70 66.33 50.47 74.29 3 52 83 88 81.44 78.88

18 47.17 14.91 33.63 83.12 54 22 80 78 55.48 85.64

19 15.95 23.03 23.03 58.13 38 35 55 55 53.07 82.71

20 2.17 5.35 5.35 26.73 1 5 47 47 38.97 70.87

21 19.77 19.82 19.82 53.48 39 26 63 55 53.45 86.83

22 11.01 20.25 20.25 60.49 19 27 70 56 49.95 84.20

23 7.98 19.15 19.15 62.69 61 71 85 84 36.74 76.40

24 4.74 4.54 27.94 62.99 1 36 70 59 11.75 84.38

25 21.91 19.07 51.01 73.33 16 28 48 47 37.73 87.53

26 10.04 12.92 33.00 67.00 27 51 55 69 29.82 90.26

27 7.42 22.37 33.61 82.16 17 34 60 61 23.30 84.43

28 21.78 24.00 30.88 83.51 13 54 69 80 43.97 89.84

29 15.33 27.66 35.57 74.45 6 86 65 84 57.82 88.58

30 34.63 30.53 44.33 93.65 5 69 84 89 72.81 95.01

Mean 14.67 19.26 26.79 68.57 17.84 24.60 66.51 67.50 38.34 84.05

Time(s) 0.024 0.077 0.077 0.4 13.5 1.8 4.7 21.5 0.006 0.33

Bold values depict best performance or runtime for a given modality or detection type
RGB† depicts training with 3D reconstructions, except objects 19-23 −→ CAD models; RGB‡ depicts training on untextured CAD models only

Table 7 Effect of Perspective Corrections on T-LESS

Method RGB†

W/o correction 18.35

W/ correction 19.26 (+0.91)

RGB
†
depicts training with 3D reconstructions, except objects 19–23

→ CAD models
Bold values indicate the best performance for a given type of train and
test data

4.2 Metrics

Hodaň et al. (2016) introduced the (errvsd ), an ambiguity-
invariant pose error function that is determined by the
distance between the estimated and ground truth visible
object depth surfaces. As in the SIXD challenge, we report
the recall of correct 6D object poses at errvsd < 0.3 with tol-
erance τ = 20mmand> 10%object visibility. Although the
Average Distance of Model Points (ADD) metric introduced
by Hinterstoisser et al. (2012b) cannot handle pose ambigui-
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Table 8 LineMOD: Object recall (ADD Hinterstoisser et al. (2012b) metric) of methods that use different amounts of training and test data, results
taken from Tekin et al. (2017)

Test data RGB +Depth (ICP)

Train data RGB w/o real pose labels RGB with real pose labels –

Object Kehl et al. OURS Brachmann et al. Rad and Lepetit Tekin et al. Xiang et al. OURS Kehl et al.
+refine +refine +DeepIm

Ape 0.00 4.18 - 33.2 27.9 40.4 21.62 - 77.0 24.35 65

Benchvise 0.18 22.85 - 64.8 62.0 91.8 81.80 - 97.5 89.13 80

Cam 0.41 32.91 - 38.4 40.1 55.7 36.57 - 93.5 82.10 78

Can 1.35 37.03 - 62.9 48.1 64.1 68.80 - 96.5 70.82 86

Cat 0.51 18.68 - 42.7 45.2 62.6 41.82 - 82.1 72.18 70

Driller 2.58 24.81 - 61.9 58.6 74.4 63.51 - 95.0 44.87 73

Duck 0.00 5.86 - 30.2 32.8 44.3 27.23 - 77.7 54.63 66

Eggbox 8.90 81.00 - 49.9 40.0 57.8 69.58 - 97.1 96.62 100

Glue 0.00 46.17 - 31.2 27.0 41.2 80.02 - 99.4 94.18 100

Holepuncher 0.30 18.20 - 52.8 42.4 67.2 42.63 - 52.8 51.25 49

Iron 8.86 35.05 - 80.0 67.0 84.7 74.97 - 98.3 77.86 78

Lamp 8.2 61.15 - 67.0 39.9 76.5 71.11 - 97.5 86.31 73

Phone 0.18 36.27 - 38.1 35.2 54.0 47.74 - 87.7 86.24 79

Mean 2.42 32.63 32.3 50.2 43.6 62.7 55.95 62.7 88.6 71.58 79

Bold values indicate the best performance for a given type of train and test data

ties, we also present it for the LineMODdataset following the
official protocol in Hinterstoisser et al. (2012b). For objects
with symmetric views (eggbox, glue), Hinterstoisser et al.
(2012b) adapts the metric by calculating the average dis-
tance to the closest model point. Manhardt et al. (2018) has
noticed inaccurate intrinsics and sensor registration errors
between RGB and D in the LineMOD dataset. Thus, purely
synthetic RGB-based approaches, although visually correct,
suffer from false pose rejections. The focus of our experi-
ments lies on the T-LESS dataset.

In our ablation studies we also report the AUCvsd , which
represents the area under the ’errvsd vs. recall’ curve:

AUCvsd =
∫ 1

0
recall(errvsd) derrvsd (10)

4.3 Ablation Studies

To assess the AAE alone, in this subsection we only predict
the 3D orientation of Object 5 from the T-LESS dataset on
Primesense and Kinect RGB scene crops. Table 5 shows the
influence of different input augmentations. It can be seen
that the effect of different color augmentations is cumu-
lative. For textureless objects, even the inversion of color
channels seems to be beneficial since it prevents overfitting
to synthetic color information. Furthermore, training with
real object recordings provided in T-LESS with random Pas-
cal VOC background and augmentations yields only slightly
better performance than the training with synthetic data. Fig-

ure 9a depicts the effect of different latent space sizes on the
3D pose estimation accuracy. Performance starts to saturate
at dim = 64.

4.4 Discussion of 6D Object Detection results

Our RGB-only 6D object detection pipeline consists of 2D
detection, 3D orientation estimation, projective distance esti-
mation and perspective error correction. Although the results
are visually appealing, to reach the performance of state-
of-the-art depth-based methods we also need to refine our
estimates using a depth-based ICP. Table 6 presents our 6D
detection evaluation on all scenes of the T-LESS dataset,
which contains a high amount of pose ambiguities. Our
pipeline outperforms all 15 reported T-LESS results on the
2018 BOP benchmark from Hodan et al. (2018) in a frac-
tion of the runtime. Table 6 shows an extract of competing
methods. Our RGB-only results can compete with the RGB-
D learning-based approaches of Brachmann et al. (2016) and
Kehl et al. (2016). Previous state-of-the-art approaches from
Vidal et al. (2018) andDrost et al. (2010) perform a time con-
suming refinement search through multiple pose hypotheses
while we only perform the ICP on a single pose hypothesis.
That being said, the codebook iswell suited to generatemulti-
ple hypotheses using k > 1 nearest neighbors. The right part
of Table 6 shows results with ground truth bounding boxes
yielding an upper bound on the pose estimation performance.

The results in Table 6 show that our domain randomiza-
tion strategy allows to generalize from 3D reconstructions as
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(a) (b) (c)

Fig. 10 Failure cases; blue: true poses; green: predictions; a failed detections due to occlusions and object ambiguity, b failed AAE predictions of
glue (middle) and eggbox (right) due to strong occlusion and c inaccurate predictions due to occlusion

well as untextured CAD models as long as the considered
objects are not significantly textured. Instead of a perfor-
mance drop we report an increased errvsd < 0.3 recall due
to the more accurate geometry of the model which results in
correct bounding box diagonals and thus a better projective
distance estimation in the RGB-domain (Table 7).

In Table 8 we also compare our pipeline against state-
of-the-art methods on the LineMOD dataset. Here, our
synthetically trained pipeline does not reach the performance
of approaches that use real pose annotated training data.

There are multiple issues: (1) As described in Sect. 4.1
the real training and test set are strongly correlated and
approaches using the real training set can over-fit to it;
(2) the models provided in LineMOD are quite bad which
affects both, the detection and pose estimation performance
of synthetically trained approaches; (3) the advantage of not
suffering from pose-ambiguities does not matter much in
LineMODwhere most object views are pose-ambiguity free;
(4) We train and test poses from the whole SO(3) as opposed
to only a limited range in which the test poses lie. SSD6D
also trains only on synthetic views of the 3D models and we
outperform their approach by a big margin in the RGB-only
domain before ICP refinement.

4.5 Failure Cases

Figure 10 shows qualitative failure cases, mostly stemming
from missed detections and strong occlusions. A weak point
is the dependence on the bounding box size at test time to
predict the object distance. Specifically, under sever occlu-
sions the predicted bounding box tends to shrink such that it
does not encompass the occluded parts of the detected object
even if it is trained to do so. If the usage of depth data is
clear in advance othermethods for directly using depth-based
methods for distance estimation might be better suited. Fur-
thermore, on strongly textured objects, the AAEs should not
be trained without rendering the texture since otherwise the
texture might not be distinguishable from shape at test time.
The sim2real transfer on strongly reflective objects like satel-

lites can be challenging and might require physically-based
renderings. Someobjects, like long, thin pens can fail because
their tight object crops at training and test time appear very
near from some views and very far from other views, thus
hindering the learning of proper pose representations. As the
object size is unknown during test time, we cannot simply
crop a constantly sized area.

4.6 Rotation and Translation Histograms

To investigate the effect of ICP and to obtain an intuition
about the pose errors, we plot the rotation and transla-
tion error histograms of two T-LESS objects (Fig. 11).
We can see the view-dependent symmetry axes of both
objects in the rotation errors histograms. We also observe
that the translation error is strongly improved through the
depth-based ICP while the rotation estimates from the
AAE are hardly refined. Especially when objects are partly
occluded, the bounding boxes can become inaccurate and
the projective distance estimation (Sect. 3.6.2) fails to pro-
duce very accurate distance predictions. Still, our global
and fast 6D object detection provides sufficient accuracy
for an iterative local refinement method to reliably con-
verge.

4.7 Demonstration on Embedded Hardware

The presented AAEs were also ported onto a Nvidia Jet-
son TX2 board, together with a small footprint MobileNet
from Howard et al. (2017) for the bounding box detection.
A webcam was connected, and this setup was demonstrated
live at ECCV 2018, both in the demo session and during the
oral presentation. For this demo we acquired several of the
T-LESS objects. As can be seen in Fig. 12, lighting condi-
tions were dramatically different than in the test sequences
from the T-LESS dataset which validates the robustness and
applicability of our approach outside lab conditions. No ICP
was used, so the errors in depth resulting from the scal-
ing errors of the MobileNet, were not corrected. However,
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(a) Object 5, one view-dependent symmetry (b) Object 28, two view-dependent symmetries

Fig. 11 Rotation and translation error histograms on all T-LESS test scenes with our RGB-based (left columns) and ICP-refined (right columns)
6D object detection

Fig. 12 MobileNetSSD and AAEs on T-LESS objects, demonstrated
live at ECCV 2018 on a Jetson TX2

since small errors along the depth direction are less per-
ceptible for humans, our approach could be interesting for
augmented reality applications. The detection, pose estima-
tion and visualization of the three test objects ran at over
13 Hz.

5 Conclusion

We have proposed a new self-supervised training strategy
for Autoencoder architectures that enables robust 3D object
orientation estimation on various RGB sensors while train-
ing only on synthetic views of a 3D model. By demanding
the Autoencoder to revert geometric and color input aug-
mentations, we learn representations that (1) specifically
encode 3D object orientations, (2) are invariant to a signif-

icant domain gap between synthetic and real RGB images,
(3) inherently regard pose ambiguities fromsymmetric object
views. Around this approach, we created a real-time (42 fps),
RGB-based pipeline for 6D object detection which is espe-
cially suitable when pose-annotated RGB sensor data is not
available.
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