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Abstract
We introduce a neural architecture for navigation in novel environments. Our proposed architecture learns to map from first-
person views and plans a sequence of actions towards goals in the environment. The Cognitive Mapper and Planner (CMP) is
based on two key ideas: (a) a unified joint architecture for mapping and planning, such that the mapping is driven by the needs
of the task, and (b) a spatial memory with the ability to plan given an incomplete set of observations about the world. CMP
constructs a top-down belief map of the world and applies a differentiable neural net planner to produce the next action at
each time step. The accumulated belief of the world enables the agent to track visited regions of the environment. We train and
test CMP on navigation problems in simulation environments derived from scans of real world buildings. Our experiments
demonstrate that CMP outperforms alternate learning-based architectures, as well as, classical mapping and path planning
approaches in many cases. Furthermore, it naturally extends to semantically specified goals, such as “going to a chair”. We
also deploy CMP on physical robots in indoor environments, where it achieves reasonable performance, even though it is
trained entirely in simulation.

Keywords Visual navigation · Spatial representations · Learning for navigation

1 Introduction

As humans, when we navigate through novel environments,
we draw on our previous experience in similar conditions.
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We reason about free-space, obstacles and the topology of
the environment, guided by common sense rules and heuris-
tics for navigation. For example, to go from one room to
another, I must first exit the initial room; to go to a room at
the other end of the building, getting into a hallway is more
likely to succeed than entering a conference room; a kitchen
is more likely to be situated in open areas of the building
than in the middle of cubicles. The goal of this paper is to
design a learning framework for acquiring such expertise,
and demonstrate this for the problem of robot navigation in
novel environments.

However, classic approaches to navigation rarely make
use of such common sense patterns. Classical SLAM based
approaches (Davison and Murray 1998; Thrun et al. 2005)
first build a 3D map using LIDAR, depth, or structure from
motion, and then plan paths in this map. These maps are
built purely geometrically, and nothing is known until it
has been explicitly observed, even when there are obvious
patterns. This becomes a problem for goal directed naviga-
tion. Humans can often guess, for example, where they will
find a chair or that a hallway will probably lead to another
hallway but a classical robot agent can at best only do unin-
formed exploration. The separation between mapping and
planning alsomakes the overall system unnecessarily fragile.
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Fig. 1 Top: network architecture: our learned navigation network con-
sists of mapping and planning modules. The mapper writes into a latent
spatial memory that corresponds to an egocentric map of the environ-
ment, while the planner uses this memory alongside the goal to output
navigational actions. The map is not supervised explicitly, but rather
emerges naturally from the learning process. Bottom: we also describe
experiments wherewe deploy our learned navigation policies on a phys-
ical robot

For example, the mapper might fail on texture-less regions in
a corridor, leading to failure of the whole system, but precise
geometry may not even be necessary if the robot just has to
keep traveling straight.

Inspired by this reasoning, recently there has been
an increasing interest in more end-to-end learning-based
approaches that go directly from pixels to actions (Zhu et al.
2017; Mnih et al. 2015; Levine et al. 2016) without going
through explicit model or state estimation steps. These meth-
ods thus enjoy the power of being able to learn behaviors from
experience.However, it is necessary to carefully design archi-
tectures that can capture the structure of the task at hand. For
instance Zhu et al. (2017) use reactive memory-less vanilla
feed forward architectures for solving visual navigation prob-
lems, In contrast, experiments by Tolman (1948) have shown
that even rats build sophisticated representations for space in
the form of ‘cognitive maps’ as they navigate, giving them
the ability to reason about shortcuts, something that a reactive
agent is unable to.

This motivates our Cognitive Mapping and Planning
(CMP) approach for visual navigation (Fig. 1). CMP con-
sists of (a) a spatial memory to capture the layout of the
world, and (b) a planner that can plan paths given partial
information. The mapper and the planner are put together
into a unified architecture that can be trained to leverage reg-
ularities of the world. The mapper fuses information from

input views as observed by the agent over time to produce
a metric egocentric multi-scale belief about the world in a
top-down view. The planner uses this multi-scale egocentric
belief of the world to plan paths to the specified goal and
outputs the optimal action to take. This process is repeated
at each time step to convey the agent to the goal.

At each time step, the agent updates the belief of the world
from the previous time step by (a) using the ego-motion to
transform the belief from the previous time step into the cur-
rent coordinate frame and (b) incorporating information from
the current view of the world to update the belief. This allows
the agent to progressively improve its model of the world as
it moves around. The most significant contrast with prior
work is that our approach is trained end-to-end to take good
actions in the world. To that end, instead of analytically com-
puting the update to the belief (via classical structure from
motion) we frame this as a learning problem and train a con-
volutional neural network to predict the update based on the
observed first person view. We make the belief transforma-
tion and update operations differentiable thereby allowing
for end-to-end training. This allows our method to adapt to
the statistical patterns in real indoor scenes without the need
for any explicit supervision of the mapping stage.

Our planner uses the metric belief of the world obtained
through the mapping operation described above to plan paths
to the goal. We use value iteration as our planning algorithm
but crucially use a trainable, differentiable and hierarchical
version of value iteration. This has three advantages, (a) being
trainable it naturally deals with partially observed environ-
ments by explicitly learning when and where to explore, (b)
being differentiable it enables us to train the mapper for navi-
gation, and (c) being hierarchical it allows us to plan paths to
distant goal locations in time complexity that is logarithmic
in the number of steps to the goal.

Our approach is a reminiscent of classical work in naviga-
tion that also involves building maps and then planning paths
in these maps to reach desired target locations. However, our
approach differs from classical work in the following signifi-
cant way: except for the architectural choice of maintaining a
metric belief, everything else is learned from data. This leads
to some very desirable properties: (a) ourmodel can learn sta-
tistical regularities of indoor environments in a task-driven
manner, (b) jointly training themapper and the plannermakes
our planner more robust to errors of the mapper, and (c) our
model can be used in an onlinemanner in novel environments
without requiring a pre-constructed map.

This paper originally appeared at CVPR 2017. In this
journal article, we additionally describe real world deploy-
ment of our learned policies on a TurtleBot 2 platform, and
report results of our deployment on indoor test environments.
We have also incorporated feedback from the community.
In particular, we have added comparisons to a policy that
very closely resembles a classical mapping and planning
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method. We have also included more visualizations of the
representations produced by the mapper. Finally, we situate
the current work in context of the new research directions
that are emerging in the field at the intersection of machine
learning, robotics and computer vision.

2 RelatedWork

Navigation is one of the most fundamental problems in
mobile robotics. The standard approach is to decompose the
problem into two separate stages: (1) mapping the environ-
ment, and (2) planning a path through the constructed map
(Khatib 1986; Elfes 1987). Decomposing navigation in this
manner allows each stage to be developed independently, but
prevents each from exploiting the specific needs of the other.
A comprehensive survey of classical approaches formapping
and planning can be found in Thrun et al. (2005).

Mapping has been well studied in computer vision and
robotics in the form of structure from motion and simultane-
ous localization and mapping (Fuentes-Pacheco et al. 2015;
Izadi et al. 2011; Henry et al. 2010; Snavely et al. 2008)
with a variety of sensing modalities such as range sensors,
RGB cameras and RGB-D cameras. These approaches take
a purely geometric approach. Learning based approaches
(Zamir et al. 2016; Hadsell et al. 2009) study the problem in
isolation thus only learning generic task-independent maps.
Path planning in these inferred maps has also been well stud-
ied, with pioneering works fromCanny (1988), Kavraki et al.
(1996) and Lavalle and Kuffner Jr (2000). Works such as
(Elfes 1989; Fraundorfer et al. 2012) have studied the joint
problem of mapping and planning. While this relaxes the
need for pre-mapping by incrementally updating the map
while navigating, but still treat navigation as a purely geomet-
ric problem, Konolige et al. (2010) and Aydemir et al. (2013)
proposed approaches which leveraged semantics for more
informed navigation. Kuipers and Byun (1991) introduce a
cognitive mapping model using hierarchical abstractions of
maps. Semantics have also been associated with 3D envi-
ronments more generally (Koppula et al. 2011; Gupta et al.
2013).

As an alternative to separating out discrete mapping
and planning phases, reinforcement learning (RL) methods
directly learn policies for robotic tasks (Kim et al. 2003;
Peters and Schaal 2008; Kohl and Stone 2004). A major
challenge with using RL for this task is the need to pro-
cess complex sensory input, such as camera images. Recent
works in deep reinforcement learning (DRL) learn policies
in an end-to-end manner (Mnih et al. 2015) going from pix-
els to actions. Follow-up works (Mnih et al. 2016; Gu et al.
2016; Schulman et al. 2015) propose improvements to DRL
algorithms, (Oh et al. 2016; Mnih et al. 2016; Wierstra et al.
2010; Heess et al. 2015; Zhang et al. 2016) study how to

incorporate memory into such neural network based models.
We build on the work from Tamar et al. (2016) who study
how explicit planning can be incorporated in such agents,
but do not consider the case of first-person visual navigation,
nor provide a framework for memory or mapping. Oh et al.
(2016) study the generalization behavior of these algorithms
to novel environments they have not been trained on.

In context of navigation, learning and DRL has been used
to obtain policies (Toussaint 2003; Zhu et al. 2017; Oh et al.
2016; Tamar et al. 2016; Kahn et al. 2017; Giusti et al.
2016; Daftry et al. 2016; Abel et al. 2016). Some of these
works (Kahn et al. 2017; Giusti et al. 2016), focus on the
problem of learning controllers for effectively maneuvering
around obstacles directly from raw sensor data. Others, such
as (Tamar et al. 2016; Blundell et al. 2016; Oh et al. 2016),
focus on the planning problem associated with navigation
under full state information (Tamar et al. 2016), designing
strategies for faster learning via episodic control (Blundell
et al. 2016), or incorporate memory into DRL algorithms
to ease generalization to new environments. Most of this
research [except (Zhu et al. 2017)] focuses on navigation
in synthetic mazes which have little structure to them. Given
these environments are randomly generated, the policy learns
a random exploration strategy, but has no statistical regulari-
ties in the layout that it can exploit.We instead test on layouts
obtained from real buildings, and show that our architecture
consistently outperforms feed forward and LSTM models
used in prior work.

The research most directly relevant to our work is the con-
temporary work of Zhu et al. (2017). Similar to us, Zhu et al.
also study first-person view navigation using macro-actions
in more realistic environments instead of synthetic mazes.
Zhu et al. propose a feed forward model which when trained
in one environment can be finetuned in another environment.
Such a memory-less agent cannot map, plan or explore the
environment, which our expressive model naturally does.
Zhu et al. also don’t consider zero-shot generalization to pre-
viously unseen environments, and focus on smaller worlds
where memorization of landmarks is feasible. In contrast,
we explicitly handle generalization to new, never before seen
interiors, and show that our model generalizes successfully
to floor plans not seen during training.

Relationship to contemporary research In this paper,
we used scans of real world environments to construct
visually realistic simulation environments to study repre-
sentations that can enable navigation in novel previously
unseen environments. Since conducting this research, over
the last year, there has been a major thrust in this direction in
computer vision and related communities. Numerous works
such as (Chang et al. 2017; Dai et al. 2017; Ammirato et al.
2017) have collected large-scale datasets consisting of scans
of real world environments, while (Savva et al. 2017; Wu
et al. 2018; Xia et al. 2018) have built more sophisticated
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simulation environments based on such scans. A related and
parallel stream of research studies whether or not models
trained in simulators can be effectively transferred to the real
world (Sadeghi and Levine 2017; Bruce et al. 2018), and
how the domain gap between simulation and the real world
may be reduced (Xia et al. 2018). A number of works have
studied related navigation problems in such simulation envi-
ronments (Henriques and Vedaldi 2018; Chaplot et al. 2018;
Anderson et al. 2018b). Researchers have also gone beyond
specifying goals as a desired location in space and finding
objects of interest as done in this paper, for example, Wu
et al. (2018) generalize the goal specification to also include
rooms of interest, and Das et al. (2018) allow goal specifi-
cation via templated questions. Finally, a number of works
have also pursued the problem of building representation
for space in context of navigation. (Parisotto and Salakhut-
dinov 2018; Bhatti et al. 2016; Khan et al. 2018; Gordon
et al. 2018) use similar 2D spatial representations, Mirowski
et al. (2017) use fully-connected LSTMs,while Savinov et al.
(2018) develop topological representations. Interesting rein-
forcement learning techniques have also been explored for
the task of navigation (Mirowski et al. 2017; Duan et al.
2016).

3 Problem Setup

To be able to focus on the high-level mapping and planning
problem we remove confounding factors arising from low-
level control by conducting our experiments in simulated real
world indoor environments. Studying the problem in simula-
tionmakes it easier to run exhaustive evaluation experiments,
while the use of scanned real world environments allows us
to retains the richness and complexity of real scenes. We
also only study the static version of the problem, though
extensions to dynamic environments would be interesting to
explore in future work.

We model the robot as a cylinder of a fixed radius
and height, equipped with vision sensors (RGB cameras or
Depth cameras) mounted at a fixed height and oriented at
a fixed pitch. The robot is equipped with low-level con-
trollers which provide relatively high-level macro-actions
Ax,θ . Thesemacro-actions are (a) stay in place, (b) rotate left
by θ , (c) rotate right by θ , and (d)move forward x cm, denoted
by a0, a1, a2 and a3, respectively.We further assume that the
environment is a grid world and the robot uses its macro-
actions to move between nodes on this graph. The robot also
has access to its precise egomotion. This amounts to assum-
ing perfect visual odometry (Nistér et al. 2004), which can
itself be learned (Haarnoja et al. 2016), but we defer the joint
learning problem to future work.

We want to learn policies for this robot for navigating in
novel environments that it has not previously encountered.

We study two navigation tasks, a geometric task where the
robot is required to go to a target location specified in robot’s
coordinate frame (e.g. 250 cm forward, 300 cm left) and a
semantic task where the robot is required to go to an object
of interest (e.g. a chair). These tasks are to be performed in
novel environments, neither the exact environment map nor
its topology is available to the robot.

Our navigation problem is defined as follows. At a given
time step t , let us assume the robot is at a global position
(position in the world coordinate frame) Pt . At each time
step the robot receives as input the image of the environment
E , It = I (E , Pt ) and a target location (xgt , ygt , θ

g
t ) (or a

semantic goal) specified in the coordinate frame of the robot.
The navigation problem is to learn a policy that at every time
steps uses these inputs (current image, egomotion and target
specification) to output the action that will convey the robot
to the target as quickly as possible.

Experimental testbed We conduct our experiments on
the Stanford large-scale 3D Indoor Spaces (S3DIS) dataset
introduced by Armeni et al. (2016). The dataset consists of
3D scans (in the formof texturedmeshes) collected in 6 large-
scale indoor areas that originate from 3 different buildings of
educational and office use. The dataset was collected using
theMatterport scanner [1]. Scans from 2 buildings were used
for training and the agents were tested on scans from the 3rd
building. We pre-processed the meshes to compute space
traversable by the robot.We also precompute a directed graph
Gx,θ consisting of the set of locations the robot can visit as
nodes and a connectivity structure based on the set of actions
Ax,θ available to the robot to efficiently generate training
problems. More details in Sect. 4.

4 Mapping

Wedescribe how themapping portion of our learned network
can integrate first-person camera images into a top-down 2D
representation of the environment, while learning to leverage
statistical structure in the world. Note that, unlike analytic
mapping systems, the map in our model amounts to a latent
representation. Since it is fed directly into a learned planning
module, it need not encode purely free space representations,
but can instead function as a general spatial memory. The
model learns to store inside the map whatever information
is most useful for generating successful plans. However to
make description in this section concrete, we assume that the
mapper predicts free space.

The mapper architecture is illustrated in Fig. 2. At every
time step t we maintain a cumulative estimate of the free
space ft in the coordinate frame of the robot. ft is represented
as a multi-channel 2D feature map that metrically represents
space in the top-down view of the world. ft is estimated from
the current image It , cumulative estimate from the previous
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Fig. 2 Architecture of the mapper: the mapper module processes first
person images from the robot and integrates the observations into a latent
memory, which corresponds to an egocentric map of the top-view of the
environment. The mapping operation is not supervised explicitly—the
mapper is free to write into memory whatever information is most use-

ful for the planner. In addition to filling in obstacles, the mapper also
stores confidence values in the map, which allows it to make probabilis-
tic predictions about unobserved parts of the map by exploiting learned
patterns

time step ft−1 and egomotion between the last and this step
et using the following update rule:

ft = U
(
W ( ft−1, et ) , f ′

t

)
where, f ′

t = φ (It ) . (1)

here,W is a function that transforms the free space prediction
from the previous time step ft−1 according to the egomotion
in the last step et ,φ is a function that takes as input the current
image It and outputs an estimate of the free space based
on the view of the environment from the current location
(denoted by f ′

t ). U is a function which accumulates the free
space prediction from the current view with the accumulated
prediction from previous time steps. Next, we describe how
each of the functions W , φ and U are realized.

The functionW is realized using bi-linear sampling.Given
the ego-motion, we compute a backward flow field ρ(et ).
This backward flowmaps each pixel in the current free space
image ft to the location in the previous free space image
ft−1 where it should come from. This backward flow ρ can
be analytically computed from the ego-motion (as shown in
Sect. 1). The function W uses bi-linear sampling to apply
this flow field to the free space estimate from the previous
frame. Bi-linear sampling allows us to back-propagate gradi-
ents from ft to ft−1 (Jaderberg et al. 2015), which will make
it possible to train this model end to end.

The function φ is realized by a convolutional neural net-
work. Because of our choice to represent free space always
in the coordinate frame of the robot, this becomes a relatively
easy function to learn, given the network only has to output
free space in the current coordinate, rather than in an arbi-

trary world coordinate frame determined by the cumulative
egomotion of the robot so far.

Intuitively, the network can use semantic cues (such as
presence of scene surfaces like floor and walls, common fur-
niture objects like chairs and tables) alongside other learned
priors about size and shapes of common objects to generate
free space estimates, even for object that may only be partial-
ity visible. Qualitative results in Sect. 2 show an example for
this where our proposed mapper is able to make predictions
for spaces that haven’t been observed.

The architecture of the neural network that realizes func-
tion φ is shown in Fig. 2. It is composed of a convolutional
encoder which uses residual connections (He et al. 2016a)
and produces a representation of the scene in the 2D image
space. This representation is transformed into one that is in
the egocentric 2D top-down view via fully connected layers.
This representation is up-sampled using up-convolutional
layers (also with residual connections) to obtain the update
to the belief about the world from the current frame.

In addition to producing an estimate of the free space from
the current view f ′

t the model also produces a confidence
c′
t . This estimate is also warped by the warping function W
and accumulated over time into ct . This estimate allows us
to simplify the update function, and can be thought of as
playing the role of the update gate in a gated recurrent unit.
The update function U takes in the tuples ( ft−1, ct−1), and
( f ′

t , c
′
t ) and produces ( ft , ct ) as follows:

ft = ft−1ct−1 + f ′
t c

′
t

ct−1 + c′
t

and ct = ct−1 + c′
t (2)

123



1316 International Journal of Computer Vision (2020) 128:1311–1330

Fig. 3 Architecture of the hierarchical planner: the hierarchical planner
takes the egocentric multi-scale belief of the world output by the map-
per and uses value iteration expressed as convolutions and channel-wise
max-pooling to output a policy. The planner is trainable and differ-

entiable and back-propagates gradients to the mapper. The planner
operates at multiple scales (scale 0 is the finest scale) of the problem
which leads to efficiency in planning

We chose an analytic update function to keep the overall
architecture simple. This can be replaced with more expres-
sive functions like those realized by LSTMs (Hochreiter and
Schmidhuber 1997).

Mapper performance in isolation To demonstrate that
our proposed mapper architecture works we test it in isola-
tion on the task of free space prediction. Section 2 shows
qualitative and quantitative results.

5 Planning

Our planner is based on value iteration networks proposed
by Tamar et al. (2016), who observed that a particular type of
planning algorithm called value iteration (Bellman 1957) can
be implemented as a neural networkwith alternating convolu-
tions and channel-wise max pooling operations, allowing the
planner to be differentiated with respect to its inputs. Value
iteration can be thought of as a generalization of Dijkstra’s
algorithm, where the value of each state is iteratively recal-
culated at each iteration by taking amax over the values of its
neighbors plus the reward of the transition to those neighbor-
ing states. This plays nicely with 2D grid world navigation
problems, where these operations can be implemented with
small 3 × 3 kernels followed by max-pooling over chan-
nels. Tamar et al. (2016) also showed that this reformulation
of value iteration can also be used to learn the planner (the
parameters in the convolutional layer of the planner) by pro-
viding supervision for the optimal action for each state. Thus
planning can be done in a trainable and differentiable man-
ner by very deep convolutional network (with channel wise

max-pooling). For our problem, the mapper produces the 2D
top-view of the world which shares the same 2D grid world
structure as described above, and we use value iteration net-
works as a trainable and differentiable planner (Fig. 3).

Hierarchical planning Value iteration networks as pre-
sented inTamar et al. (2016)(v2) are impractical to use for any
long-horizon planning problem. This is because the planning
step size is coupled with the action step size thus leading to
(a) high computational complexity at run time, and (b) a hard
learning problem as gradients have to flow back for as many
steps. To alleviate this problem, we extend the hierarchical
version presented in Tamar et al. (2016)(v1).

Our hierarchical planner plans at multiple spatial scales.
We start with a k times spatially downsampled environment
and conduct l value iterations in this downsampled environ-
ment. The output of this value iteration process is center
cropped, upsampled, and used for doing value iterations at a
finer scale. This process is repeated to finally reach the resolu-
tion of the original problem. This procedure allows us to plan
for goals which are as far as l2k steps away while performing
(and backpropagating through) only lk planning iterations.
This efficiency increase comes at the cost of approximate
planning.

Planning in partially observed environments Value
iteration networks have only been evaluated when the envi-
ronment is fully observed, i.e. the entire map is known while
planning. However, for our navigation problem, the map is
only partially observed. Because the planner is not hand
specified but learned from data, it can learn policies which
naturally take partially observedmaps into account. Note that
the mapper produces not just a belief about the world but also
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an uncertainty ct , the planner knows which parts of the map
have and haven’t been observed.

6 Joint Architecture

Our final architecture, Cognitive Mapping and Planning
(CMP) puts together the mapper and planner described
above. At each time step, the mapper updates its multi-scale
belief about the world based on the current observation.
This updated belief is input to the planner which outputs
the action to take. As described previously, all parts of the
network are differentiable and allow for end-to-end training,
and no additional direct supervision is used to train the map-
ping module—rather than producing maps that match some
ground truth free space, themapper producesmaps that allow
the planner to choose effective actions.

Training procedureWe optimize the CMP network with
fully supervised training using DAGGER Ross et al. (2011).
We generate training trajectories by sampling arbitrary start
and goal locations on the graphGx,θ .Wegenerate supervision
for training by computing shortest paths on the graph.We use
an online version of DAGGER, where during each episode we
sample the next state based on the action from the agent’s
current policy, or from the expert policy. We use scheduled
sampling and anneal the probability of sampling from the
expert policy using inverse sigmoid decay.

Note that the focus of this work is on studying different
architectures for navigation. Our proposed architecture can
also be trained with alternate paradigms for learning such
policies, such as reinforcement learning. We chose DAGGER

for training ourmodels becausewe found it to be significantly
more sample efficient and stable in our domain, allowing us
to focus on the architecture design.

7 Experiments

The goal of this paper is to learn policies for visual navigation
for different navigation tasks in novel indoor environments.
We first describe these different navigation tasks, and perfor-
mance metrics. We then discuss different comparison points
that quantify the novelty of our test environments, diffi-
culty of tasks at hand. Next, we compare our proposed CMP
architecture to other learning-based methods and to classical
mapping and planning based methods. We report all num-
bers on the test set. The test set consists of a floor from an
altogether different building not contained in the training set.
(See dataset website and Sect. 4 for environment visualiza-
tions.)

Tasks We study two tasks: a geometric task, where the
goal is to reach a point in space, and a semantic task, where

the goal is to find objects of interest. We provide more details
about both these tasks below:

1. Geometric task The goal is specified geometrically in
terms of position of the goal in robot’s coordinate frame.
Problems for this task are generated by sampling a start
node on the graph and then sampling an end node which
is within 32 steps from the starting node and preferably in
another room or in the hallway [we use room and hallway
annotations from the dataset (Armeni et al. 2016)]. This
is same as the PointGoal task as described in Anderson
et al. (2018a).

2. Semantic task We consider three tasks: ‘go to a chair’,
‘go to a door’ and ‘go to a table’. The agent receives a
one-hot vector indicating the object category it must go to
and is considered successful if it can reach any instance of
the indicated object category. We use object annotations
from the S3DIS dataset (Armeni et al. 2016) to setup this
task. We initialize the agent such that it is within 32 time
steps of at least one instance of the indicated category,
and train it to go towards the nearest instance. This is
same as the ObjectGoal task as described in Anderson
et al. (2018a).

The same sampling process is used during training and test-
ing. For testing, we sample 4000 problems on the test set.
The test set consists of a floor from an altogether different
building not contained in the training set. These problems
remain fixed across different algorithms that we compare.
We measure performance by measuring the distance to goal
after running the policies for a maximum number of time
steps (200), or if they emit the stop action.

Performance metrics We report multiple performance
metrics: (a) the mean distance to goal, (b) the 75th percentile
distance to goal, and (c) the success rate (the agent succeeds
if it is within a distance of 3 steps of the goal location) as a
function of number of time-steps. We plot these metrics as a
function of time-steps and also report performance at 39 and
199 time steps in the various tables. For the most competitive
methods, we also report the SPL metric1 (higher is better) as
introduced in Anderson et al. (2018a). In addition to mea-
suring whether the agent reaches the goal, SPL additionally
also measures the efficiency of the path used and whether the
agent reliably determines that it has reached the goal or not.

1 For computing SPL, we use the shortest-path on the graph as the
shortest-path length. We count both rotation and translation actions for
both the agent’s path and the shortest path. An episode is considered
successful, if the agent ends up within 3 steps of the goal location. For
the geometric task, we run the agent till it outputs the ‘stay-in-place’
action, or for a maximum of 200 time steps. For the semantic task, we
train a separate ‘stop’ predictor. This ’stop’ predictor is trained to predict
if the agent is within 3 steps of the goal or not. The probability at which
the episode should be terminated is determined on the validation set.
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Training details Models are trained asynchronously
using TensorFlow (Abadi et al. 2015). We used ADAM
(Kingma and Ba 2014) to optimize our loss function and
trained for 60K iterations with a learning rate of 0.001 which
was dropped by a factor of 10 every 20K iterations (we
found this necessary for consistent training across different
runs). We use weight decay of 0.0001 to regularize the net-
work and use batch-norm (Ioffe and Szegedy 2015). We use
ResNet-50 (v et al. 2016b) pre-trained on ImageNet (Deng
et al. 2009) to represent RGB images. We transfer supervi-
sion from RGB images to Depth images using cross modal
distillation (Gupta et al. 2016) between RGB-D image pairs
rendered from meshes in the training set to obtain a pre-
trained ResNet-50 model to represent Depth images.

7.1 Baselines

Our experiments are designed to test performance at visual
navigation in novel environments.Wefirst quantify the differ-
ences between training and test environments using a nearest
neighbor trajectory method. We next quantify the difficulty
of our environments and evaluation episodes by training a
blind policy that only receives the relative goal location at
each time step.Next,we test the effectiveness of ourmemory-
based architecture. We compare to a purely reactive agent to
understand the role of memory for this task, and to a LSTM-
based policy to test the effectiveness of our specific memory
architecture. Finally, we make comparisons with classical
mapping and planning based techniques. Since the goal of
this paper is to study various architectures for navigation
we train all these architectures the same way using DAG-

GER (Ross et al. 2011) as described earlier. We provide more
details for each of these baselines below.

1. Nearest neighbor trajectory transfer To quantify sim-
ilarity between training and testing environments, we
transfer optimal trajectories from the train set to the test
set using visual nearest neighbors (in RGB ResNet-50
feature space). At each time step, we pick the location
in the training set which results in the most similar view
to that seen by the agent at the current time step. We
then compute the optimal action that conveys the robot
to the same relative offset in the training environment
from this location and execute this action at the current
time step. This procedure is repeated at each time step.
Such a transfer leads to very poor results.

2. No image, goal location only with LSTM Here, we
ignore the image and simply use the relative goal loca-
tion (in robot’s current coordinate frame) as input to
a LSTM, and predict the action that the agent should
take. The relative goal location is embedded into a K
dimensional space via fully connected layers with ReLU
non-linearities before being input to the LSTM.

3. Reactivepolicy, single frameWenext compare to a reac-
tive agent that uses the first-person view of the world. As
described above we use ResNet-50 to extract features.
These features are passed through a few fully connected
layers, and combined with the representation for the rela-
tive goal location which is used to predict the final action.
We experimented with additive and multiplicative com-
bination strategies and both performed similarly.

4. Reactive policy, multiple frames We also consider the
case where the reactive policy receives 3 previous frames
in addition to the current view.Given the robot’s step-size
is fairly large we consider a late fusion architecture and
fuse the information extracted fromResNet-50. Note that
this architecture is similar to the one used in Zhu et al.
(2017). The primary differences are: goal is specified in
terms of relative offset (instead of an image), training
uses DAGGER (which utilizes denser supervision) instead
of A3C, and testing is done in novel environments. These
adaptations are necessary to make an interpretable com-
parison on our task.

5. LSTM based agent Finally, we also compare to an
agent which uses an LSTM based memory. We introduce
LSTM units on the multiplicatively combined image and
relative goal location representation. Such an architec-
ture also gives the LSTM access to the egomotion of the
agent (via how the relative goal location changes between
consecutive steps). Thus this model has access to all the
information that our method uses. We also experimented
with other LSTM based models (ones without egomo-
tion, inputting the egomotion more explicitly, etc.), but
weren’t able to reliably train them in early experiments
and did not pursue them further.

6. Purely geometricmappingWe also compare to a purely
geometric incremental mapping and path planning pol-
icy. We projected observed 3D points incrementally into
a top-down occupancy map using the ground truth ego-
motion and camera extrinics and intrinsics. When using
depth images as input, these 3D points are directly avail-
able. When using RGB images as input, we triangulated
SIFT feature points in the RGB images (registered using
the ground truth egomotion) to obtain the observed 3D
points (we used the COLMAP library (Schönberger and
Frahm 2016)). This occupancy map was used to compute
a grid-graph (unoccupied cells are assumed free). For the
geometric task, we mark the goal location on this grid-
graph and execute the action that minimizes the distance
to the goal node. For the semantic task, we use purely
geometric exploration along with a semantic segmen-
tation network trained2 to identify object categories of
interest. The agent systematically explores the environ-

2 We train this semantic segmentation network to segment chairs, doors
and table on the S3DIS dataset (Armeni et al. 2016).
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ment using frontier-based exploration (Yamauchi 1997)3

till it detects the specified category using the semantic
segmentation network. These labels are projected onto
the occupancy map using the 3D points, and nodes in
the grid-graph are labelled as goals. We then output the
action that minimizes the distance to these inferred goal
nodes.
For this baseline, we experimented with different input
image sizes, and increased the frequency at which RGB
or depth images were captured. We validated a num-
ber of other hyper-parameters: (a) number of points in
a cell before it is considered occupied, (b) number of
intervening cell to be occupied before it is considered
non-traversable, (c) radius for morphological opening of
the semantic labels on the map. 3D reconstruction from
RGB images was computationally expensive, and thus
we report comparisons to these classical baselines on a
subset of the test cases.

7.2 Results

Geometric task We first present results for the geometric
task. Figure 4 plots the error metrics over time (for 199 time
steps), while Table 1 reports these metrics at 39 and 199
time steps, and SPL (with a max episode length of 199). We
summarize the results below:

1. Wefirst note that nearest neighbor trajectory transfer does
not workwell, with themean andmedian distance to goal
being 22 and 25 steps respectively. This highlights the
differences between the train and test environments in
our experiments.

2. Next, we note that the ‘No Image LSTM’ baseline per-
forms poorly as well, with a success rate of 6.2% only.
This suggests that our testing episodes aren’t trivial. They
don’t just involve going straight to the goal, but require
understanding the layout of the given environment.

3. Next, we observe that the reactive baseline with a single
frame also performs poorly, succeeding only 8.2% of the
time. Note that this reactive baseline is able to perform
well on the training environments obtaining a mean dis-
tance to goal of about 9 steps, but perform poorly on the
test set only being able to get towithin 17 steps of the goal
on average. This suggests that a reactive agent is able to
effectively memorize the environments it was trained on,
but fails to generalize to novel environments, this is not
surprising given it does not have any form of memory to
allow it to map or plan. We also experimented with using
Drop Out in the fully connected layers for this model but

3 We sample a goal location outside the map, and try to reach it, as for
the geometric task. As there is no path to this location, the agent ends
up systematically exploring the environment.

found that to hurt performance on both the train and the
test sets.

4. Using additional frames as input to the reactive pol-
icy leads to a large improvement in performance, and
boosts performance to 20%, and to 56%whenusing depth
images.

5. The LSTM based model is able to consistently out-
perform these reactive baseline across all metrics. This
indicates that memory does have a role to play in navi-
gation in novel environments.

6. Our proposed method CMP, outperforms all of these
learning based methods, across all metrics and input
modalities. CMP achieves a lower 75th percentile dis-
tance to goal (14 and 1 as compared to 21 and 5 for
the LSTM) and improves the success rate to 62.5% and
78.3% from 53.0% and 71.8%. CMP also obtains higher
SPL (59.4% vs. 51.3% and 73.7% vs. 69.1% for RGB
and depth input respectively).

7. We next compare to classical mapping and path plan-
ning. We first note that a purely geometric approach
when provided with depth images does really really well,
obtaining a SPL of 80.6%. Access to depth images and
perfect pose allows efficient and accurate mapping, lead-
ing to high performance. In contrast, when using only
RGB images as input (but still with perfect pose), per-
formance drops sharply to only 15.9%. There are two
failure modes: spurious stray points in reconstruction
that get treated as obstacles, and failure to reconstruct
texture-less obstacles (such as walls) and bumping into
them. In comparison, CMP performs well even when
presented with just RGB images, at 59.6% SPL. Further-
more, when CMP is trained with more data [6 additional
large buildings from the Matterport3D dataset (Chang
et al. 2017)], performance improves further, to 70.8%
SPL for RGB input and 82.3% SPL for depth input.
Though we tried our best at implementing the classical
purely geometry-based method, we note that they may
be improved further by introducing and validating over
more and more hyper-parameters, specially for the case
where depth observations are available as input.

Variance over multiple runs We also report variance in
performance over five re-trainings from different random ini-
tializations of the network for the 3most competitivemethods
(Reactive with 4 frames, LSTM, and CMP) for the depth
image case. Figure 16 shows the performance, the solid line
shows the median metric value and the surrounding shaded
region represents the minimum and maximum metric value
over the five re-trainings. As we are using imitation learning
(instead of reinforcement learning) for training our models,
variation in performance is reasonably small for all models
and CMP leads to significant improvements.
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Fig. 4 Geometric task: We plot the mean distance to goal, 75th per-
centile distance to goal (lower is better) and success rate (higher is
better) as a function of the number of steps. Top row compares the 4
frame reactive agent, LSTM based agent and our proposed CMP based
agent when using RGB images as input (left three plots) andwhen using

depth images as input (right three plots). Bottom row compares clas-
sical mapping and planning with CMP (again, left is with RGB input
and right with depth input). We note that CMP outperforms all these
baselines, and using depth input leads to better performance than using
RGB input (Color figure online)

Table 1 Results for the geometric task: we report the mean distance to goal location, 75th percentile distance to goal, success rate and SPL for
various methods for the geometric task

Unshaded table reports metrics at time step 39, while the shaded table reports metrics for selected competitive methods at time step 199. Top part
of the table reports comparisons between learning-based methods, while the bottom part report comparisons to classical purely geometry-based
methods
Best performance across different methods was bolded

Ablations We also studied ablated versions of our pro-
posed method. We summarize the key takeaways, a learned
mapper leads to better navigation performance than an ana-
lytic mapper, planning is crucial (specially for when using
RGB images as input) and single-scale planning works
slightly better than the multi-scale planning at the cost of
increased planning cost. More details in Sect. 3.

Additional comparisons between LSTM and CMPWe
also conducted additional experiments to further compare
the performance of the LSTM baseline with our model in

the most competitive scenario where both methods use depth
images. We summarize the key conclusions here and provide
more details in Sect. 3. We report performance when the tar-
get ismuch further away (64 time steps away) inTable 5 (top).
We see a larger gap in performance between LSTMandCMP
for this test scenarios. We also compared performance of
CMP and LSTM over problems of different difficulty and
observed that CMP is generally better across all values of
hardness, but for RGB images it is particularly better for
cases with high hardness (Fig. 15). We also evaluate how
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Fig. 5 Semantic task: we plot the success rate as a function of the num-
ber of steps for different categories. Top row compares learning based
approaches (4 frame reactive agent, LSTM based agent and our pro-
posed CMP based agent). Bottom row compares a classical approach

(using exploration along with semantic segmentation) and CMP. Left
plots show performancewhen usingRGB input, right plots show perfor-
mance with depth input. See text for more details (Color figure online)

Table 2 Results for semantic task: we report success rate at 39 and 199 time steps, and SPL

We report performance for individual categories as well as their average. Top part reports comparisons with RGB input, bottom part reports
comparisons with depth input. We compare learning based methods and a classical baseline (based on exploration and semantic segmentation). We
also report performance of CMP when trained with more data (+6 MP3D Envs)
Italic indicated that that row of numbers should not be directly compared with other numbers in the table as it was trained on more data
Best performance across different methods was bolded

well these models generalize when trained on a single scene,
and when transferring across datasets. We find that there is a
smaller drop in performance for CMP as compared to LSTM
(Table 5 (bottom)). More details in Sect. 3. Figure 6 visu-
alizes and discusses some representative success and failure
cases for CMP, video examples are available on the project
website.

Semantic task We next present results for the semantic
task, where the goal is to find object of interest. The agent
receives a one-hot vector indicating the object category it
must go to and is considered successful if it can reach any
instance of the indicated object category. We compare our
method to the best performing reactive and LSTM based

baseline models from the geometric navigation task.4 This is
a challenging task specially because the agent may start in
a location from which the desired object is not visible, and
it must learn to explore the environment to find the desired
object. Figure 5 and Table 2 reports the success rate and the
SPL metric for the different categories we study. Figure 6

4 This LSTM is impoverished because it no longer receives the ego-
motion of the agent as input (because the goal can not be specified as
an offset relative to the robot). We did experiment with a LSTM model
which received egomotion as input but weren’t able to train it in initial
experiments.
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Fig. 6 Representative success and failure cases for CMP: we visualize
trajectories for some typical success and failure cases for CMP. Dark
gray regions show occupied space, light gray regions show free space.
The agent starts from the blue dot and is required to reach the green
star (or semantic regions shown in light gray). The agent’s trajectory is
shown by the dotted red line. While we visualize the trajectories in the
top view, note that the agent only receives the first person view as input.
Top plots show success cases for geometric task. We see that the agent
is able to traverse large distances across multiple rooms to get to the
target location, go around obstacles and quickly resolve that it needs

to head to the next room and not the current room. The last two plots
show cases where the agent successfully backtracks. Bottom plots show
failure cases for geometric task: problems with navigating around tight
spaces [entering through a partially opened door, and getting stuck in
the corner (the gap is not big enough to pass through)], missing open-
ings which would have lead to shorter paths, thrashing around in space
without making progress. Right plots visualize trajectories for ‘go to
the chair’ semantic task. The top figure shows a success case, while the
bottom figure shows a typical failure case where the agent walks right
through a chair region (Color figure online)

shows sample trajectories for this task for CMP. We summa-
rize our findings below:

1. This is a hard task, performance for all methods is much
lower than for the geometric task of reaching a specified
point in space.

2. CMP performs better than the other two learning based
baselines across all metrics.

3. Comparisons to the classical baseline of geometric
exploration followed by use of semantic segmentation
(Fig. 5 (bottom) orange vs. blue line) are also largely
favorable to CMP. Performance for classical baseline
with RGB input suffers due to inaccuracy in estimat-
ing the occupancy of the environment. With depth input,
this becomes substantially easier, leading to better per-
formance.A particularly interesting case is that of finding
doors. As the classical baseline explores, it comes close
to doors as it exits the room it started from. However, it
is unable to stop (possibly being unable to reliably detect
them). This explains the spike in performance in Fig. 5.

4. We also report SPL for this task for the different methods
in Table 2. We observe that though the success rates are
high, SPLnumbers are low. In comparison to success rate,
SPL additionally measures path efficiency and whether
the agent is able to reliably determine that it has reached
the desired target. Figure 5 (bottom) shows that the suc-

cess rate continues to improve over the length of the
episodes, implying that the agent does realize that it has
reached the desired object of interest. Thus, we believe
SPL numbers are low because of inefficiency in reach-
ing the target, specially as SPL measures efficiency with
respect to the closest object of interest using full environ-
ment information. This can be particularly strict in novel
environments where the agent may not have any desired
objects in view, and thus needs to explore the environment
to be able to find them. Nevertheless, CMP outperforms
learning-based methods on this metric, and also outper-
forms our classical baseline when using RGB input.

5. CMP when trained with additional data [6 additional
buildings from the Matterport3D dataset (Chang et al.
2017)] performs much better [green vs. orange lines in
Fig. 5 (bottom)], indicating scope for further improve-
ments in such polcies as larger datasets become available.
Semantic segmentation networks for the classical base-
line can similarly be improved using more data (possibly
also from large-scale Internet datasets), but we leave
those experiments and comparisons for future work.

7.3 Visualizations

We visualize activations at different layers in the CMP net-
work to check if the architecture conforms to the intuitions
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Fig. 7 We visualize the output of the map readout function trained
on the representation learned by the mapper (see text for details) as
the agent moves around. The two rows show two different time steps
from an episode. For each row, the gray map shows the current posi-
tion and orientation of the agent (red ∧), and the locations that the
agent has already visited during this episode (red dots). The top three
heatmaps show the output of the map readout function and the bottom
three heatmaps show the ground truth free space at the three scales used
by CMP (going from coarse to fine from left to right). We observe that
the readout maps capture the free space in the regions visited by the
agent (room entrance at point A, corridors at points B and C) (Color
figure online)

Fig. 8 We visualize first-person images and the output of the readout
function output for free-space prediction derived from the representa-
tion produced by the mapper module [in egocentric frame, that is the
agent is at the center looking upwards (denoted by the purple arrow)].
In the left example, we canmake a prediction behind the wall, and in the
right example, we can make predictions inside the room (Color figure
online)

that inspired the design of the network. We check for the fol-
lowing three aspects: (a) is the representation produced by the
mapper indeed spatial, (b) does the mapper capture anything
beyond what a purely geometric mapping pipeline captures,
and (c) do the value maps obtained from the value iteration
module capture the behaviour exhibited by the agent.

Is the representation produced by the mapper spatial?
We train simple readout functions on the learnedmapper rep-
resentation to predict free space around the agent. Figure 7
visualizes the output of these readout functions at two time
steps from an episode as the agent moves. We see that the
representation produced by the mapper is in correspondence

Fig. 9 We visualize the first person image, prediction for all free space,
prediction for free space in a hallway, and prediction for free space
inside a room (in order). Once again, the predictions are in an egocentric
coordinate frame [agent (denoted by the purple arrow) is at the center
and looking upwards]. The top figure pane shows the case when the
agent is actually in a hallway, while the bottom figure pane shows the
case when the agent is inside a room (Color figure online)

with the actual free space around the agent. The representa-
tion produced by the mapper is indeed spatial in nature. We
also note that readouts are generally better at finer scales.

What does the mapper representation capture? We
next try to understand as to what information is captured
in these spatial representations. First, as discussed above the
representation produced by the mapper can be used to pre-
dict free space around the agent. Note that the agent was
never trained to predict free space, yet the representations
produced by the mapper carry enough information to predict
free space reasonable well. Second, Fig. 8 shows free space
prediction for two cases where the agent is looking through
a doorway. We see that the mapper representation is expres-
sive enough to make reasonable predictions for free space
behind the doorway. This is something that a purely geomet-
ric system that only reasons about directly visible parts of the
environment is simply incapable of doing. Finally, we show
the output of readout functions that were trained for differ-
entiating between free space in a hallway vs. free space in a
room. Figure 9 (top) shows the prediction for when the agent
is out in the hallway, and Fig. 9 (bottom) shows the prediction
forwhen the agent is in a room.We see that the representation
produced by the mapper can reasonably distinguish between
free space in a hallway vs. free space in a room, even though
it was never explicitly trained to do so. Once again, this is
something that a purely geometric description of the world
will be unable to capture.

Do the value maps obtained from the value iteration
module capture the behaviour exhibited by the agent?
Finally, Fig. 10 visualizes a one channel projection of the
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Fig. 10 Wevisualize the value function for five snapshots for an episode
for the single scale version of our model. The top row shows the agent’s
location and orientation with a red triangle, nodes that the agent has vis-
ited with red dots and the goal location with the green star. Bottom row
shows a 1 channel projection of the value maps (obtained by taking the
channel wisemax) and visualizes the agent location by the black dot and
the goal location by the pink dot. Initially the agent plans to go straight
ahead, as it sees the wall it develops an inclination to turn left. It then
turns into the room (center figure), planning to go up and around to the
goal but as it turns again it realizes that that path is blocked (center right
figure). At this point the value function changes (the connection to the
goal through the top room becomes weaker) and the agent approaches
the goal via the downward path (Color figure online)

value map for the single scale version of our model at five
time steps from an episode. We can see that the value map
is indicative of the current actions that the agent takes, and
how the value maps change as the agent discovers that the
previously hypothesised path was infeasible.

8 Real World Deployment

We have also deployed these learned policies on a real robot.
We describe the robot setup, implementation details and our
results below.

Robot description We conducted our experiments on a
TurtleBot 2 robot. TurtleBot 2 is a differential drive plat-
form based on the Yujin Kobuki Base. We mounted an
Orbbec Astra camera at a height of 80 cm, and a GPU-
equipped high-end gaming laptop (Gigabyte Aero 15′′ with
an NVIDIA 1060 GPU). The robot is shown in Fig. 11 (left).
We used ROS to interface with the robot and the cam-
era. We read out images from the camera, and an esti-
mate of the robot’s 2D position and orientation obtained
from wheel encoders and an onboard inertial measurement

unit (IMU). We controlled the robot by specifying desired
linear and angular velocities. These desired velocity com-
mands are internally used to determine the voltage that
is applied to the two motors through a proportional inte-
gral derivative (PID) controller. Note that TurtleBot 2 is a
non-holonomic system. It only moves in the direction it is
facing, and its dynamics can be approximated as a Dubins
Car.

Implementation of macro-actions Our policies output
macro actions (rotate left or right by 90◦, move forward
40 cm). Unlike past work (Bruce et al. 2018) that uses human
operators to implement such macro-actions for such sim-
ulation to real transfer, we implement these macro-actions
using an iterative linear-quadratic regulator (iLQR) con-
troller (Jacobson and Mayne 1970; Li and Todorov 2004).
iLQR leverages known system dynamics to output a dynam-
ically feasible local reference trajectory (sequence of states
and controls) that can convey the system from a specified
initial state to a specified final state (in our case, rotation
of 90◦ or forward motion of 40 cm). Additionally, iLQR is
a state-space feedback controller. It estimates time-varying
feedback matrices, that can adjust the reference controls to
compensate for deviations from the reference trajectory (due
to mis-match in system dynamics or noise in the environ-
ment). These adjusted controls are applied to the robot. More
details are provided in Sect. 5.

PolicyWe deployed the policy for the geometric task onto
the robot.As all other policies, this policywas trained entirely
in simulation.Weused the ‘CMP [+6MP3DEnv]’ policy that
was trained with the six additional large environments from
Matterport3D dataset (Chang et al. 2017) (on top of the 4
environments from the S3DIS (Armeni et al. 2016) dataset).
Apart from improves performance in simulation (SPL from
59.6% to 70.8%), it also exhibited better real world behavior
in preliminary runs.

Results We ran the robot in 10 different test configura-
tions (shown in Fig. 12). These tests were picked such that
there was no straight path to the goal location, and involved
situation like getting out of a room, going from one cubi-
cle to another, and going around tables and kitchen counters.

Fig. 11 Real world deployment: we report success rate on different test
cases for real world deployment of our policy on TurtleBot 2. The pol-
icy was trained for the geometric task using RGB images in simulation.

Right plot shows breakdown of runs. 68% runs succeeded, 20% runs
failed due to infractions, and the remaining 12% runs failed as the agent
was unable to go around obstacles (Color figure online)
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Fig. 12 Real world experiments: images and schematic sketch of the
executed trajectory for each of the 5 runs for the 10 test cases that were
used to test the policy in the real world. Runs are off-set from each other
for better visualization. Start location [always (0, 0)] is denoted by a
solid circle, goal location by a start, and the final location of the agent is
denoted by a square. Legend notes the distance of the goal location from
the final position. Best seen in color on screen (Color figure online)

We found the depth as sensed from the Orbbec camera to be
very noisy (and different from depth produced in our sim-
ulator), and hence only conducted experiments with RGB
images as input. We conducted 5 runs for each of the 10 dif-
ferent test configurations, and report the success rate for the
10 configurations in Fig. 11 (middle). A run was considered
successful if the robot made it close to the specified target
location (within 80 cm) without brushing against or colliding
with any objects. Sample videos of execution are available
on the project website. The policy achieved a success rate
of 68%. Executed trajectories are plotted in Fig. 12. This is
a very encouraging result, given that the policy was trained
entirely in simulation on very different buildings, and the
lack of any form of domain adaptation. Our robot, that only
uses monocular RGB images, successfully avoids running
into obstacles and arrives at the goal location for a number
of test cases.

Figure 11 (right) presents failure modes of our runs. 10
of the 16 failures are due to infractions (head-on collisions,
grazing against objects, and tripping over rods on the floor).
These failures can possibly be mitigated by use of a finer
action space for more dexterous motion, additional instru-
mentation such as near range obstacle detection, or coupling
with a collision avoidance system. The remaining 6 failures
correspond to not going around obstacles, possibly due to
inaccurate perception.

9 Discussion

In this paper, we introduced a novel end-to-end neural
architecture for navigation in novel environments. Our archi-
tecture learns to map from first-person viewpoints and uses a
planner with the learnedmap to plan actions for navigating to
different goals in the environment. Our experiments demon-
strate that such an approach outperforms other directmethods
which do not use explicit mapping and planning mod-
ules. While our work represents exciting progress towards
problems which have not been looked at from a learning per-
spective, a lot more needs to be done for solving the problem
of goal oriented visual navigation in novel environments.

A central limitations in our work is the assumption of
perfect odometry. Robots operating in the real world do not
have perfect odometry and amodel that factors in uncertainty
inmovement is essential before such amodel can be deployed
in the real world.

A related limitation is that of building and maintaining
metric representations of space. This does not scale well for
large environments. We overcome this by using a multi-scale
representation for space. Though this allowsus to study larger
environments, in general it makes planning more approx-
imate given lower resolution in the coarser scales which
could lead to loss in connectivity information. Investigat-
ing representations for spaces which do not suffer from such
limitations is important future work.

In this work, we have exclusively used DAGGER for train-
ing our agents. Though this resulted in good results, it suffers
from the issue that the optimal policy under an expert may be
unfeasible under the information that the agent currently has.
Incorporating this in learning through guided policy search
or reinforcement learning may lead to better performance
specially for the semantic task.
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A1: Backward Flow Field � from Egomotion

Consider a robot that rotates about its position by an angle θ

and then moves t units forward. Corresponding points p in
the original top-view and p′ in the new top-view are related
to each other as follows (Rθ is a rotation matrix that rotates
a point by an angle θ ):

p′ = Rt
θ p − t or p = Rθ (p

′ + t) (3)

Thus given the egomotion θ and t , for each point in the new
top-view we can compute the location in the original top-
view from which it came from.
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Fig. 13 Output visualization for mapper trained for free space predic-
tion: we visualize the output of themapperwhen directly trained for task
of predicting free space. We consider the scenario of an agent rotating
about its current position, the task is to predict free space in a 3.20m
neighborhood of the agent, supervision for this experiment at end of the
agents rotation. The top row shows the 4 input views. The bottom row
shows the ground truth free space, predicted free space by analytically
projecting the depth images, learned predictor using RGB images and
learned predictor using Depth images. Note that the learned approaches
produce more complete output and are able to make predictions where
no observations were made (Color figure online)

A2: Mapper Performance in Isolation

To demonstrate that our proposed mapper architecture works
we test it in isolation on the task of free space prediction. We
consider the scenario of an agent rotating about its current
position, and the task is to predict free space in a 3.20 meter
neighborhood of the agent. We only provide supervision for
this experiment at end of the agents rotation. Figure 13 illus-
trates what the mapper learns. Observe that our mapper is
able to make predictions where no observations are made.
We also report the mean average precision for various ver-
sions of the mapper Table 3 on the test set (consisting of
2000 locations from the testing environment). We compare
against an analytic mapping baseline which projects points
observed in the depth image into the top view (by back pro-
jecting them into space and rotating them into the top-down
view).

Fig. 14 We report the mean distance to goal, 75th percentile distance
to goal (lower is better) and success rate (higher is better) for Reactive,
LSTM and CMP based agents on different test environments from an
internal dataset of Matterport scans. We show performance when using
RGB images (top row) and depth images (bottom row) as input.We note
that CMP consistently outperforms Reactive and LSTM based agents

A3: Additional Experiments

Additional experiment on an internalMatterport dataset
We also conduct experiments on an internal Matterport
dataset consisting of 41 scanned environments. We train on
27 of these environments, use 4 for validation and test on
the remaining 10. We show results for the 10 test environ-
ments in Fig. 14. We again observe that CMP consistently
outperforms the 4 frame reactive baseline and LSTM.

Ablations We also present performance of ablated ver-
sions of our proposed method in Table 4.

Single scale planning We replace the multi-scale planner
with a single-scale planner. This results in slightly better per-
formance but comes at the cost of increased planning cost.

No planning We swap out the planner CNN with a shal-
lowerCNN.This also results in drop in performance specially
for the RGB case as compared to the full system which uses
the full planner.

Analytic mapper We also train a model where we replace
our learned mapper for an analytic mapper that projects
points from the depth image into the overhead view and use
it with a single scale version of the planner. We observe that

Table 3 Mapper unit test: we report average precision for free space prediction when our proposed mapper architecture is trained directly for the
task of free space prediction on a test set (consisting of 2000 locations from the testing environment)

Method Modality CNN Architecture Free space prediction AP

Analytic projection Depth – 56.1

Learned mapper RGB ResNet-50 74.9

Learned mapper Depth ResNet-50 Random Init. 63.4

Learned mapper Depth ResNet-50 Init. using (Gupta et al. 2016) 78.4

We compare against an analytic mapping baseline which projects points observed in the depth image into the top view (by back projecting them
into space and rotating them into the top-down view)
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Table 4 Ablative analysis for
CMP: we follow the same
experimental setup as used for
table in the main text. See text
for details

Method Mean 75th percentile Success%age

RGB Depth RGB Depth RGB Depth

Geometric task

Initial 25.3 25.3 30 30 0.7 0.7

No Image LSTM 20.8 20.8 28 28 6.2 6.2

CMP

Full model 7.7 4.8 14 1 62.5 78.3

Single-scale planner 7.9 4.9 12 1 63.0 79.5

Shallow planner 8.5 4.8 16 1 58.6 79.0

Analytic map – 8.0 – 14 – 62.9

Table 5 We report additional
comparison between best
performing models. See text for
details

Mean 75th percentile Success rate (in%)

Init. LSTM CMP Init. LSTM CMP Init. LSTM CMP

Far away goal (maximum 64 steps away)

Run for 79 steps 47.2 15.2 11.9 58 29 19.2 0.0 58.4 66.3

Run for 159 steps 47.2 12.5 9.3 58 19 0 0.0 69.0 78.5

Generalization

Train on 1 floor 25.3 8.9 7.0 30 18 10 0.7 58.9 67.9

Transfer from IMD 25.3 11.0 8.5 30 21 15 0.7 48.6 61.1

Fig. 15 We show how performance of LSTM and CMP compare across
geometric navigation tasks of different hardness. We define hardness as
the gap between the ground truth and heuristic (Manhattan) distance
between the start and goal, normalized by the ground truth distance.
For each range of hardness we show the fraction of cases where LSTM
gets closer to the goal (LSTMBetter), both LSTM and CMP are equally
far from the goal (Both Equal) and CMP gets closer to goal than LSTM
(CMP Better). We show results when using RGB images as input (left
plot) and when using Depth images as input (right plot). We observe
that CMP is generally better across all values of hardness, but for RGB
images it is particularly better for cases with high hardness

this analytic mapper actually works worse than the learned
one thereby validating our architectural choice of learning to
map.

Additional comparisons between LSTM and CMPWe
also report additional experiments on the Stanford S3DIS
dataset to further compare the performance of the LSTM
baseline with our model in the most competitive scenario
where both methods use depth images. These are reported in
Table 5. We first evaluate how well do these models perform
in the settingwhen the target is much further away (instead of

Fig. 16 We show the variance in performance over five re-trainings
from different random initializations of the agents when using depth
images as input (the solid line plots the median performance and the
surrounding shaded region represents theminimumandmaximumvalue
across five different runs). We note that the variation in performance is
reasonably small for all models and CMP consistently outperforms the
two baseline (Color figure online)

sampling problems where the goal is within 32 time steps we
sample problems where the goal is 64 times steps away). We
present evaluations for two cases, when this agent is run for
79 steps or 159 steps (see ‘Far away goal’ rows in Table 5).
We find that both methods suffer when running for 79 steps
only, because of limited time available for back-tracking, and
performance improves when running these agents for longer.
We also see a larger gap in performance between LSTM and
CMP for both these test scenarios, thereby highlighting the
benefit of our mapping and planning architecture.

We also evaluate how well these models generalize when
trained on a single scene (‘Train on 1 scene’). We find that
there is a smaller drop in performance for CMP as compared
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to LSTM.We also found CMP to transfer from internal Mat-
terport dataset to the Stanford S3DIS Dataset slightly better
(‘Transfer from internal dataset’).

We also study how performance of LSTM and CMP com-
pares across geometric navigation tasks of different hardness
in Fig. 15. We define hardness as the gap between the ground
truth and heuristic (Manhattan) distance between the start and
goal, normalized by the ground truth distance. For each range
of hardness we show the fraction of cases where LSTM gets
closer to the goal (LSTM Better), both LSTM and CMP are
equally far from the goal (Both Equal) and CMP gets closer
to goal than LSTM (CMP Better). We observe that CMP is
generally better across all values of hardness, but for RGB
images it is particularly better for cases with high hardness.

A4: Simulation Testbed Details

We pre-processed the meshes to compute space traversable
by the robot. Top views of the obtained traversable space are
shown in Figs. 17 and 18 (training and validation) and Fig. 19
(testing) and indicate the complexity of the environments we
are working with and the differences in layouts between the
training and testing environments. Recall that robot’s action
spaceAx,θ consists of macro-actions. We pick θ to be π − 2
which allows us to pre-compute the set of locations (spa-
tial location and orientation) that the robot can visit in this
traversable space. We also precompute a directed graph Gx,θ

consisting of this set of locations as nodes and a connectivity
structure based on the actions available to the robot.

Our setup allows us to study navigation but also enables
us to independently develop and design ourmapper and plan-
ner architectures. We developed our mapper by studying
the problem of free space prediction from sequence of first
person view as available while walking through these envi-
ronments. We developed our planner by using the ground
truth top view free space as 2D mazes to plan paths through.
Note that this division was merely done to better understand
each component, the final mapper and planner are trained
jointly and there is no restriction on what information gets
passed between the mapper and the planner.

A5: Macro-action Implementation using ILQR

We use the robot 2D location and orientation as the state s,
the linear and angular velocity as the control inputs u to the
system, and function f to model the dynamics of the system
as follows:

st =
⎡

⎣
xt
yt
θt

⎤

⎦ut =
[
vt
ωt

]
f (st,ut) =

⎡

⎣
xt + vtΔt cos(θt )
yt + vtΔt sin(θt )

θt + ωtΔt

⎤

⎦ (4)

Fig. 17 Maps for area52, area3 area1 and area6. Light area shows
traversable space. Red bar in the corner denotes a length of 32 units
(12.80 m).We also show some example geometric navigation problems
in these environments, the task is to go from the circle node to the star
node (Color figure online)

Fig. 18 Map for area51. Light area shows traversable space. Red bar
in the corner denotes a length of 32 units (12.80 m).We also show some
example geometric navigation problems in these environments, the task
is to go from the circle node to the star node (Color figure online)
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Fig. 19 Map for area4. This floor was used for testing all the models.
Light area shows traversable space. Red bar in the corner denotes a
length of 32 units (12.80 m). We also show some example geometric
navigation problems in these environments, the task is to go from the
circle node to the star node (Color figure online)

Given an initial state s0, and a desired final state sT (= 0
without loss of generality), iLQR solves the following opti-
mization problem:

argmin
ut

∑
t st

t Qst + ut t Rut (5)

subject to st+1 = f (st,ut)for t ∈ [1, . . . , T ] (6)

where matrices Q and R are specified to be appropriately
scaled identity matrices, Δt controls the frequency with
which we apply the control input, and T determines the
total time duration we have to finish executing the macro-
action. Matrix Q incentives the system to reach the target
state quickly, and matrix R incentives applying small veloc-
ities. The exact scaling of matrices Q and R, Δt and T are
set experimentally by running the robot on a variety of start
and goal state pairs.

Given Dubins Car dynamics are non-linear, iLQR opti-
mizes the cost function by iteratively linearizing the system
around the current solution. As mentioned, iLQR outputs
xreft , ureft , and a set of feedback matrices Kt . The control
to be applied to the system at time step t is obtained as
ureft + Kt

(
s̃t − sreft

)
, where s̃t is the estimated state of the

system asmeasured from the robotswheel encoders and IMU
(after appropriate coordinate transforms).
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