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Abstract
We study the problem of automatically detecting if a given multi-class classifier operates outside of its specifications (out-of-
specs), i.e. on input data from a different distribution than what it was trained for. This is an important problem to solve on
the road towards creating reliable computer vision systems for real-world applications, because the quality of a classifier’s
predictions cannot be guaranteed if it operates out-of-specs. Previously proposed methods for out-of-specs detection make
decisions on the level of single inputs. This, however, is insufficient to achieve low false positive rate and high false negative
rates at the same time. In this work, we describe a new procedure named KS(conf), based on statistical reasoning. Its main
component is a classical Kolmogorov–Smirnov test that is applied to the set of predicted confidence values for batches of
samples. Working with batches instead of single samples allows increasing the true positive rate without negatively affecting
the false positive rate, thereby overcoming a crucial limitation of single sample tests. We show by extensive experiments using
a variety of convolutional network architectures and datasets that KS(conf) reliably detects out-of-specs situations even under
conditions where other tests fail. It furthermore has a number of properties that make it an excellent candidate for practical
deployment: it is easy to implement, adds almost no overhead to the system, works with any classifier that outputs confidence
scores, and requires no a priori knowledge about how the data distribution could change.

Keywords Multi-class classification · Specifications · Distribution shift · Deep convolutional networks

1 Introduction

Over the last years, and in particular with the emergence of
deep convolutional networks (ConvNets), computer vision
systems have become accurate and reliable enough to per-
form tasks of practical relevance autonomously and over
long periods of time. This has opened opportunities for the
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deployment of automated image recognition systems inmany
commercial settings, such as video surveillance, self-driving
vehicles, and social media.

However, amajor concern our society has about automatic
decision systems is their reliability: if decisions are made
by a trained classifier instead of a person, how can we be
sure that the system works reliably now, and that it will con-
tinue to do so in the future? For other safety-critical software
components, such as device drivers, static code analysis and
formal verification techniques have been established to iden-
tify risks before even deploying the software. Unfortunately,
such methods are still in their infancy for machine learning.
Instead, quality control for trained system typically relies on
extensive testing, making use of data that (a) was not used
during training, and (b) reflects the expected situation at pre-
diction time. If a system works well on a sufficiently large
amount of data fulfilling both conditions, practical experi-
ence as well as statistical learning theory tell us that it will
also work well in the future. We call this operating within
the specifications (within-specs).
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In practice, problems emerge when a chance exists that
the data distribution at prediction time differs from the one
the creators of the classifier expected at training time, i.e.
when condition (b) is violated. Such operating outside of
the specifications (out-of-specs) can happen for a variety of
reasons, ranging from user errors, over problems with the
image acquisition setup, to unexpected objects occurring
in the images, and even deliberate sabotage. Standard per-
formance guarantees do not hold anymore in out-of-specs
situations, and the prediction quality often drops substan-
tially. This is irrespective of how well and on how much data
a classifier was originally trained: even a system that works
100% accurately under within-specs conditions can produce
predictions at chance level or worse when operating out-of-
specs. Consequently, the out-of-specs problem has emerged
as one of the major obstacles for deploying deep learning
solutions for real-world applications.

Surprising as it is, today’s most successful image classi-
fication methods, multi-class ConvNets, are themselves not
able to tell if they operate inside or outside the specifications.
For any input they will predict one of the class labels they
were trained for, no matter if the external situation matches
the training conditions or not.

Clearly, it would be highly desirable to have an auto-
matic test that can reliably tell when a given classifier
operates out-of-specs, e.g. to send a warning to a human
operator. Our main contribution in this work is such a test,
KS(conf), that is light-weight and theoreticallywell-founded,
yet very powerful in practice. It builds on the observations
that the confidence scores of a probabilistic classifier can be
expected to change when operating out-of-specs. Intuitively,
one would expect these changes not to be drastic enough
to yield a test of sufficient quality (high true positive rate,
low false positive rate), and this is indeed confirmed by a
number of experiments that we report on. The main insight
behind KS(conf) is that a more powerful test can be con-
structed by not judging individual samples, but batches of
inputs together. Specifically, it compares the score distribu-
tion of predicted values to a reference set using a classical
Kolmogorov–Smirnov test. The result is a simple and light-
weight yet powerful test that is particularly well suited for
practical use, because it works with arbitrary classifiers,
including pretrainedConvNets. It also requires neither access
to internal layers of the network nor a manipulation of the
input images. By adjusting the batch size, the true positive
rate can be improved without increasing the false positive
rate at the same time. This is in contrast to single sample
tests that only allow for a trade-off between both quantities.

Given the importance of the problem, in this work
we put particular emphasis on a thorough experimen-
tal evaluation. We demonstrate the power of KS(conf)
usingfive state-of-the-artConvNets architectures (ResNet50,
VGG19, SqueezeNet, MobileNet25, NASNetAlarge), chal-

lenging real-world image datasets (ImageNet ILSVRC 2012,
Animals with Attributes 2, DAVIS) and a variety of possi-
ble out-of-specs scenarios (new classes, change of low-level
image properties, loss of variability, problems in the image
acquisition setup). To support other researchers testing the
method for their own classifiers with their own data, we
make our source code publicly available under a free and
open-source license.

The rest of themanuscript is structured as follows: we first
formalize the setting in Sect. 2 and formulate first principles
that any practical test for out-of-specs operation should have.
We then discuss existing work for out-of-specs detection in
Sect. 3 andwehighlight connections to related research areas.
In Sect. 4 we describe our proposed method, including an
analysis of its resource requirements. In particular, we show
that it fulfills all the required criteria and also exhibits sev-
eral additional useful properties. After an introduction to the
experimental setting and data sources in Sect. 5, we present
our experimental evaluation divided into three parts, each
of which we consider of potentially independent interest: an
analysis of the limits of tests acting on single samples for
out-of-specs detection (Sect. 6), an analysis of batch-based
methods (Sect. 7), and a study how modern ConvNets react
to changes of their inputs acquisition setup. In Sect. 9 we
discuss shortcomings of the proposed approach and provide
an outlook on possible improvements. Finally, we conclude
with a summary in Sect. 10.

2 Testing for Out-of-Specs Operation

The task of testing for out-of-specs operation has appeared in
different variants in the literature. In this section, we formally
introduce the setting and define necessary criteria for tests to
be applicable in real-world settings.

Throughout this work, we take the perspective of a com-
puter vision system deployed in the real world in order to
solve a practical task, such as classifying products in a store.
The overarching goal is to determine whether the conditions
under which the classifier operates at any time differ from the
conditions for which it was created. Assuming a fully auto-
matic classification system, the only relevant difference that
can occur is a change in the input data distribution between
training/validation and prediction time. Consequently, we
define the goal of detecting out-of-specs operation as iden-
tifying such changes of the classifier’s input distribution,
which we formalize in the following way:

Definition 1 For a given classifier, let X denote its input,
which we treat as a random variable with underlying distri-
bution PX . The classifier is said to operate out-of-specs, if
the distribution, PX , at prediction time differs from the one
at training time.
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In the rest of this section, we introduce some important
properties that any test for out-of-specs operation should
have. First, we ask for the test to be

– passive: The test should not influence the behavior of the
classifier, even if an out-of-specs situation is detected.

The role of a passive test is to raise an alarm if a problemwas
detected, such that a human operator or expert can examine
the problem and potentially resolve it. This is in contrast to
active tests, that change the classifiers’ behavior, e.g. cause
them to refuse tomake predictions, or try to adapt them to the
new conditions. While in other situations such active behav-
ior might be desirable, in the context of this work we only
consider passive systems, because we expect them to find
easier acceptance by practitioners.

A second important constraint is that we expect out-of-
specs conditions to occur rarely, maybe never during the
lifetime of the system. Therefore, we particular care about
the ability to avoid false alarms and ask tests to be

– tunable: The false positive rate (FPR) should be adjus-
table to any user-preferred level, ideally on-the-fly with-
out interrupting the system’s operation.

In practice, reducing the false positive rate often comes at the
expense of a lower true positive rate (TPR), i.e. more out-of-
specs situations are missed, and the optimal setting reflects
a task-dependent trade-off between both quantities. Studies
have shown, however, that a too high false positive rate has
a disproportionately negative effect: it will annoy the human
operator, who then decides to ignore the alarms or switch off
the test completely (Cvach 2012; Edworthy 1994; Häkkinen
2010).

A third crucial property is that any test that is meant to
operate under real-world conditions needs to be

– agnostic: The test should not require a priori knowledge
how the data distribution could change.

Unfortunately, this condition is violated in many tests that
can be found in the literature, which assume that some data
of the out-of-specs situations is a priori available. We want to
avoid this, because in a real-world setting, the out-of-specs
distribution is typically not known until it occurs, so the test
must be able to capture any potential change.

Twomore properties describe the classifiers towhich a test
is applicable. For highest practical usefulness, a test should
be

– universal: The same test procedure should be applicable
to different classifier architectures.

– pretrained-ready: The test should be applicable to pre-
trained and fine-tuned classifiers and not require any
specific steps during training.

The first condition ensures that the same test remains useful,
even when new classifier architectures emerge. The second
condition reflects that practitioners typically do not have the
resources or expertise to train a classifier from scratch, but
prefer to rely on available pre-trained models.

Finally, in order to make a test as broadly applicable as
possible, it should be

– black-box ready: The test should not require knowledge
of any classifier internals, such as the depth, activation
functions or weight matrices of a ConvNet, or access
to intermediate computation results, such as a ConvNet
feature layer.

This condition ensures that the test can be used with pro-
prietary, e.g. commercial, classifiers, which typically do not
reveal their inner working mechanisms.

3 RelatedWork

A variety of methods have been proposed that aim at solving
the problem of detecting out-of-specs operation or similar
tasks. In this section, we discuss them in particular in light of
the criteria we introduced in the previous section. A tabular
overview of the properties of different methods can be found
in Table 1.

Out-of-specs detection A number of recent works have pro-
posed methods for detecting data samples that derive from a
different data distribution than expected. All of them implic-
itly rely on the assumption that these samples are atypical
with respect to the original data distribution, i.e. they per-
form a form of outlier detection. For general remarks about
this research direction, see our discussion below.

Most related to our setup, it has been reported in
Hendrycks and Gimpel (2017) that modern multi-class
ConvNets typically predict with lower confidence on data
that is sampled from a data distribution different from the
training data. Therefore, one obtains a simple test of out-of-
specs behavior by raising an alarmwhen the confidence score
of a data point falls below a threshold. This threshold classi-
fier indeed fulfills all criteriawedefined inSect. 2.Wediscuss
it in more detail in Sect. 6 and also provide an experimen-
tal comparison using more challenging image classification
tasks than what was reported in the original works.

In Liang et al. (2018) it was observed that the difference
in confidence scores between within-specs and out-of-specs
operation grew when adding a supportive perturbation to
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A
BC

Fig. 1 Illustration of the difference between outlier detection and out-
of-specs detection. Let the region A reflect the data distribution at
training time. Outlier detection methods are able to identify if at pre-
diction time data from a new region, e.g. B, occurs. They are not able
to identify if at prediction time only data from a subset of the training
region occurs, e.g. only data from C, or no data from C at all. Out-of-
specs detection aims at detecting all of these as well as any other change
of data distribution

the images and applying temperature scaling to the output.
The resulting ODIN test requires access to the network inter-
nals, so it does not fulfill the criterion of being black-box
ready. Nevertheless, we discuss and experimentally evalu-
ate it in Sect. 6, again going beyond the original work by
using state-of-the-art ConvNet classifiers andmore challeng-
ing classification tasks.

Several further authors, e.g. DeVries and Taylor (2018),
Lakshminarayanan et al. (2017), Lee et al. (2018), Li and
Gal (2017), and Louizos and Welling (2017), and also a sec-
tion of Hendrycks and Gimpel (2017), propose methods that
require changing the classifier architecture, the training pro-
cedure, or the evaluation methodology to improve the ability
of detecting if the data distribution changed. We do not dis-
cuss these further or evaluate them experimentally, because
they fail to fulfill several of the core conditions, in particular
of being universal, pretrained-ready and black-box ready.
This means they cannot simply be used in combination with
any given classifier.

Outlier/anomaly/novelty detection are classical tasks in unsu-
pervised machine learning or data mining (Chandola et al.
2009; Hawkins 1980; Hodge and Austin 2004). They aim at
identifying data points that are atypical in comparison to the
bulk of the data in order to either remove them, or study them
in more detail.

This is not the same problem as detecting an out-of-specs
situation, but only a subset of it. Figure 1 illustrates the dif-
ference. Indeed, one possible out-of-specs scenario is when
data samples of a type emerge that was not present at train-
ing time. For example, in a supermarket scenario an unknown
product appears. Another out-of-specs situations, however, is
when data of a type that is expected to occur fails to show up.
For example, in a supermarket suddenly only cheap products
are bought but no more expensive ones. A reliable out-of-
specs detector would raise an alarm in both scenarios, while
an outlier detector would only detect the first.

Classical outlier detection techniques work either proba-
bilistically, e.g. by nonparametric density estimation (Knorr

and Ng 1997), or geometrically, e.g. by one-class classifi-
cation (Tax 2001). Neither approach is directly suitable for
natural image data, though, because of the high data dimen-
sionality and diversity of image data.

Recent work on robust learning (Konstantinov and Lam-
pert 2019) aims at identifying outliers on the level of datasets
instead of individual samples. This allows the use of unreli-
able data sources, but it happens at training time and does not
address the problem of out-of-specs detection at prediction
time.

Failure prediction Similar approaches as for outlier detec-
tion have been used to identify failures, i.e. predict when the
label predicted by a classifier is incorrect (Bansal et al. 2014;
Daftry et al. 2016; Scheirer et al. 2011; Zhang et al. 2014) and
for score calibration (Guo et al. 2017; Platt 1999), i.e. adjust-
ing the predicted scores to better reflect the probability of an
error. These tasks are orthogonal to ours, as they concentrate
on the situation where the network operates on data from the
within-specs distribution, but nevertheless some predictions
should not be trusted.

Learning new classes A specific out-of-specs situation is
when new classes occur in the input data. Dedicated systems
to handle this situation at training time have been suggested
for continual (Kirkpatrick et al. 2017; Rebuffi et al. 2016) or
open set learning (Bendale and Boult 2015; Jain et al. 2014).
These methods operate at training time, though, and only for
specific classifier architectures, therefore, they violate sev-
eral of the relevant criteria of Sect. 2.

As an alternative, a threshold-based classifier was pro-
posed in Bendale and Boult (2016). The authors introduce a
score normalization procedure based on extreme-value the-
ory. The exact method require access to the image features
and the training set, though, so it is not pretrained-ready and
not blackbox-ready.

For the case that new classes occur at prediction time and
one still wants to classify them correctly, a variety of zero-
shot learning (Xian et al. 2018)methods have been proposed,
e.g. Akata et al. (2016), Lampert et al. (2014), Palatucci et al.
(2009). All of these require specific classifier architectures
and additional side-information about the class set, though,
and are therefore not applicable to the situation we are inter-
ested in.

DomainAdaptation/Transfer LearningThe study howclassi-
fier performance differs when the data distributions changes
between training and prediction time and how this can be pre-
vented is studied in the research area of domain adaptation
(Ben-David et al. 2010). Typical techniques adjust the classi-
fier training procedure to prevent a change in data distribution
from negatively affecting the prediction quality (Patel et al.
2015; Wang and Deng 2018). One way to do this is by learn-
ing invariant features (Ganin and Lempitsky 2015; Khosla
et al. 2012; Long et al. 2015; Tommasi et al. 2012) that ensure
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that even if the input data distribution changes in a certain
way, the difference disappears after feature extraction. An
alternativeway is to learn explicit transformation between the
features at training time and the features at prediction time,
such that a mechanism is available for adapting the classifier
to the new situation (Blitzer et al. 2006; Saenko et al. 2010).
Both approaches, however, require some information about
how the data distribution will change, at least in the form
of unlabeled samples. If even a labeled dataset for the new
distribution is available, transfer learning methods, such as
model fine-tuning can be employed (Kuzborskij et al. 2013;
Pan andYang 2009). In all cases, the criterion of being agnos-
tic to the out-of-specs conditions is violated, and often also
the black-box ready and pretrained-ready criteria. An excep-
tion is (Royer and Lampert 2015), which post-processes the
output scores at prediction time to match a new distribution.
This, however, is not a passive technique, and it only works
for a specific class of out-of-specs situations, namely changes
in class priors.

Time series analysis The detection of changes in the data
characteristics is also an important problem in time series
analysis. In change point analysis (Basseville and Nikiforov
1993; Pollak 1985), the goal is to find the time points at
which the characteristics of a time series make a substantial
change. This differs from the problem we are interest in sev-
eral ways. On the one hand, the problem has the additional
difficulty that the position in the sequence where the change
occurs is unknown. On the other hand, one typically deals
with low-dimensional data, and stronger statistical tech-
niques can be used because of the temporal structure of the
data.

Concept drift detection (Gama et al. 2014) is another task in
which one is interested in detected changes of a time series.
In contrast to change point analysis, subtle changes are of
interest, too. This is a hard task, and most existing methods
are not directly applicable, because they require label anno-
tations, e.g. Harel et al. (2014), Wang and Abraham (2015),
or low-dimensional data, e.g. Kuncheva and Faithfull (2014),
Sethi et al. (2016). An exception is (Zliobaite 2010), which
even discusses the use of a Kolmogorov–Smirnov test. How-
ever, that is in the context of binary classifiers without a clear
way to generalize the results tomulti-class classificationwith
large label sets.

4 KS(conf): Out-of-Specs Detection by
Statistical Testing of Batches

In this section we introduce the proposed KS(conf) method
for identifying when a classifier operates outside of the spec-
ifications.

We assume an arbitrary fixedmulti-class classifier that, for
any input, X , outputs a class label, Y , as well as a confidence
score, Z , for its decision. For simplicity of discussion, we
assume that the scores lie in the interval [0, 1], as it is the case
for probabilistic systems, such as ConvNets with softmax
output layer. Technically, this assumption is not necessary,
though, as the method we describe only requires the scores
to be bounded, i.e. lie in a finite interval, and that condition
can always be achieved by a suitable, e.g. sigmoid, score
transformation.

By our treatment of X as a random variable, Z also
becomes a random variable with an induced probability dis-
tribution that we call PZ . Analogously to the definition of
out-of-specs operation in Sect. 2, we introduce the concept
of out-of-specs prediction:

Definition 2 A classifier is said to predict out-of-specs, if the
output score distribution, PZ , at prediction time differs from
the one at training time.

Based on this nomenclature, we put forward the follow-
ing hypothesis: testing for out-of-specs prediction can serve
as an easy to implement and computationally light-weight
proxy of testing for out-of-specs operations, provided that a
suitable batch-based test is used. The last condition is impor-
tant, because—as our experiments will show—existing tests
based on single sample confidence scores are fundamentally
limited in their ability to achieve a high true positive rate and
a low false positive rate at the same time.

4.1 Kolmogorov–Smirnov Test of Confidences

We propose a new method for out-of-specs testing that we
call KS(conf), which stands for Kolmogorov-Smirnov test
of confidences. Its main component is the application of a
Kolmogorov–Smirnov (KS) test (Massey 1951) to the dis-
tribution of confidence values, which at prediction time is
estimated from batches of samples. KS(conf) has two main
routines: calibration that is run once, and batch testing that
is run continuously while the classifier is in operation.

Calibration In the calibration step, KS(conf) establishes a
reference distribution that reflects the within-specs condi-
tions. It is meant to be run when the classifier system is
installed at its destination and a human expert is still present
to ensure that the environment is indeed within-specs for the
duration of the calibration phase.

To characterize the within-specs regime, we use the con-
fidence scores, Zval

1 , . . . , Zval
n , of a set of validation images,

Xval
1 , . . . , Xval

n . For simplicity we assume all confidence
values to be distinct. In practice, this can be enforced
by perturbing the values by a small amount of random
noise.Because the Z -values are one-dimensionalwith known
range, one could, in principle, estimate a probability density
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Fig. 2 Illustration of (1): estimation of the cumulative distribution func-
tion (cdf) for n = 4 data points. After sorting, each data point Zk is
located at the k

n+1 -quantile, i.e. the cdf has value
k

n+1 . Between the data
points linear interpolation is used

function (pdf) from a reasonably sized set of samples. For
example, onewould divide the interval [0, 1] into regular bins
and count the fraction of samples falling into each of them.
For our purposes, uniform bins would be inefficient, though,
because classifier confidence scores typically concentrate at
high values and are therefore far from uniformly distributed.
To avoid a concentration of samples in a small number of
bins with the remaining ones empty, one would have to resort
to a data-adaptive estimation technique, e.g. data-dependent
bins. KS(conf) avoids the need for this by starting with a
pre-processing step. It estimates the cumulative distribution
function, F , of the scores, which is possible without binning,
see Fig. 2 for an illustration. First, one sorts the confidence
values such that one can assume the values Zval

1 , . . . , Zval
n

in monotonically increasing order. Then, for any p ∈ [0, 1],
the estimated cdf value at p is obtained by piecewise linear
interpolation: for k ∈ {0, . . . , n} with p ∈ [Zval

k , Zval
k+1],

F(p) = k

n + 1
+ p − Zval

k

(n + 1)
(
Zval
k+1 − Zval

k

) (1)

with the convention Zval
0 = 0 and Zval

n+1 = 1.
The quantity that KS(conf) actually works with are nor-

malized scores, Z ′ := F(Z), where F remains fixed after
calibration. By construction of F , the values Z ′ will be
distributed approximately uniformly in [0, 1], when Z ’s dis-
tribution matches the distribution at calibration time. If the
distribution of Z changes at a later time, this will be reflected
by the distribution of Z ′ differing from uniformity.

Besides removing the need for data-dependent (or any)
density estimation, the above transformation is also useful
for efficiency reasons: in the batch testing phase, we will not
have to compare two arbitrary distributions to each other,
but only the currently observed distribution with the uniform
one.

Batch testing The main step of KS(conf) is batch testing,
which identifies if the system currently predicts within-specs
or out-of-specs. This step it meant to be run repeatedly at

Fig. 3 Illustration of (2):KS statistics form = 3data points. To identify
the biggest absolute difference between the empirical cdf (dashed line,
black) and the uniform target cdf (solid line, gray), it suffices to check
the difference between the two curves at the location of the data points.
After sorting, at any Z ′

k the empirical cdf jumps from k−1
m to k

m , while
the target cdf has the value Z ′

k

the classifier’s operation time, i.e. after the system has been
activated to perform its actual task.

The batches of images, X1, . . . , Xm , used for testing can,
but do not have to, coincide with the image batches that are
often used for efficient classifier evaluation on parallel archi-
tectures such as GPUs. A possible real-word scenario would
be that batch testing is run at regular intervals, e.g. once per
hour for applications that are not time-critical.

The actual test consists of the following steps. First, one
applies the cdf that was learned during calibration to the con-
fidence scores, resulting in values, Z ′

1, . . . , Z
′
m . As above,we

treat these as sorted. Then, one computes their Kolmogorov–
Smirnov (KS) test statistics

KS :=max

(
max

k=1,...,m

{
Z ′
k−

k − 1

m

}
, max
k=1,...,m

{
k

m
−Z ′

k

})
. (2)

KS measures the largest absolute difference between the
empirical cdf of the observed batch and a linear increasing
reference cdf, see Fig. 3 for an illustration. For a system that
operates within-specs (and therefore predicts within-specs),
Z ′ will be close to uniformly distributed, and KS can be
expected to be small. It will not be exactly 0, though, because
of finite-sample effects. A particularly appealing property
of the KS statistic is that its stochastic fluctuations are well
understood and confidence thresholds for the finite-sample
situation have been derived (Massey 1951). This yields the
Kolmogorov–Smirnov test: for any α ∈ [0, 1] there is a
threshold θα , such that when we consider the test outcome
positive for KS > θα , then the expected probability of a
false positive test result is α. The values θα can be com-
puted numerically (Marsaglia et al. 2003) or approximated
well (in the regime n � m that we are mainly interested

in) by θα ≈ (
−0.5 log( α

2 )

m )
1
2 . A list of tabulated values can be

found in Table 10.
The Kolmogorov–Smirnov test has several advantages

over other tests. Importantly, it is distribution-free, i.e. the
thresholds θα are the same regardless of what the distri-

123



International Journal of Computer Vision (2020) 128:970–995 977

bution PZ is. Also, it is invariant under reparameterization
of the sample space, which in particular means that the KS
statistics and the test outcome we compute when compar-
ing Z ′ to the uniform distribution are identical to the one
for comparing the original Z to the original within-specs
distribution. This fact implies that KS(conf) will not be neg-
atively affected by classifiers that produce overly confident
outputs, and that KS(conf) is compatible with and invariant
to potential classifier score calibration techniques. Finally,
the Kolmogorov–Smirnov test is known to have asymptotic
power 1, meaning that if given enough data, it will detect any
possible difference between distributions.

While one could imagine constructing tests based on other
measures of similarity between distributions, these generally
do not share the advantageous properties of KS(conf). For
example, total variation distance requires density estima-
tion and can therefore only be approximated, not computed
exactly. It is also not invariant under reparametrizations of the
scores.Kullback-Leibler or Jensen-Shannon divergence can-
not reliably be estimated at all from finite sample sets, unless
one makes additional assumptions about the underlying dis-
tributions. Furthermore, they might take infinite values.

Properties and resource requirements A quick check of
its properties shows that KS(conf) fulfills all criteria for a
practical test that we introduced in Sect. 2. Furthermore, it
can be implemented in a straight-forward way and requires
only standard components, such as sorting and linear inter-
polation. The largest resource requirements occur during
calibration, where the network has to be evaluated for n
inputs and the resulting confidence values have to be sorted.
The calibration step is performed only once and offline
though, before actually running the classification system
under real-time conditions. Therefore, O(n log n) runtime is
not a major problem, and even very large n remain practical.
A potential issue is the O(n) storage requirements, if cali-
bration is meant to run on very small devices or very large
validation sets. Luckily, there exist specific data structures
that allow constructing approximate cdfs of arbitrary preci-
sion in an incremental way from streaming data, for example,
t-digests (Dunning and Ertl 2014).

The batch testing step runs during the standard operation
of the classification system and therefore needs to be as effi-
cient as possible. Implemented as described above, it requires
applying the cdf function to every sample, which typically
would be done by an O(log n)-binary search. Subsequently,
them confidence values need to be sorted, and the maximum
out of 2m values identified. Overall, the runtime complexity
is at worst O(m log n) and thememory requirement is O(m).

In summary, with only logarithmic overhead, KS(conf)’s
computational cost is negligible compared to evaluating the
classifier itself. For even more restricted settings one could

rely on incremental variants of the Kolmogorov–Smirnov
test, e.g. dos Reis et al. (2016).

5 Experiments: Overview

In the following sections we report on a variety of exper-
iments that compare different methods for out-of-specs
detection, including KS(conf), and provide an in-depth anal-
ysis of their success and failure cases. Given the large number
of different scenarios, we only provide summary results and
highlight specific cases that we consider of specific interest.
A complete set of results as well as source code for their
reproduction is available on the accompanying website.1

5.1 Experimental Setup

With our objective of practical usefulness in mind, we aim in
our experiments for results that can be expected to general-
ize also to future image classification systems. We therefore
emphasize three aspects in our experiments: (1) tackling a
challenging task of high-resolution natural image classifi-
cation; (2) obtaining results for a diverse set of ConvNet
classifiers that constitute the state-of-the-art in different
application scenarios; (3) working under as realistic condi-
tions as possible, in particular not making use of information
that is not available for real-world systems. This focus consti-
tutes a major difference to many existing works that provide
results on simpler datasets, such asMNISTorCIFAR, bench-
mark only few and relatively small network architectures, or
adjust hyper-parameters on out-of-specs data.

Specifically, we reports results for five popular ConvNet
architectures: ResNet50 (He et al. 2016) and VGG19
(Simonyan and Zisserman 2014) are standards in the com-
puter vision community; SqueezeNet (Iandola et al. 2016)
and MobileNet25 (Howard et al. 2017) have smaller com-
putational and memory requirements, making them suitable,
e.g., for mobile and embedded applications; NASNetAlarge
(Zoph et al. 2018) achieves state-of-the-art performance in
the ImageNet challenges, but is quite large and has high com-
putational requirements. Technical details of the networks are
given in Table 2.

All classifiers are pretrained on the training part of the
ImageNet ILSVRC 2012 dataset (Russakovsky et al. 2015)
(1.2 million training images of 1000 classes), which is the
dataset most commonly used for this purpose.2 We use the
50.000 validation images of the same dataset as reference
set for within-specs behavior. We do not make use of ground
truth labels of the validation set (or the test set) at any time, as

1 http://cvml.ist.ac.at/KSconf/.
2 We use the publicly available models from
https://github.com/taehoonlee/tensornets.
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Table 2 Details of the ConvNets used for the experimental evaluation

Network name ILSVRC2012 error Number of
parameters (M)

Speed: GPU CPU

Top-1 (%) Top-5 (%) bs = 1 (ms) bs = 10 (ms) bs = 100 (ms) bs = 1 (ms)

MobileNet25 (Howard et al. 2017) 48.4 24.2 0.48 3.3 5.2 34 682

SqueezeNet (Iandola et al. 2016) 45.6 21.4 1.2 5.7 10.1 113 2288

ResNet50 (He et al. 2016) 25.1 7.9 26 12.2 34.1 293 –

VGG19 (Simonyan and Zisserman 2014) 28.7 10.2 144 9.9 53.5 385 –

NASNetAlarge (Zoph et al. 2018) 17.5 3.9 94 45.8 227.9 2107 –

Evaluation time (excluding image preprocessing and network initialization) for different batch sizes (bs) on powerful GPU hardware (NVIDIA
Tesla P100) or weak CPU hardware (Raspberry Pi Zero). Missing entries are due to memory limitations

those would not be available for actually deployed systems,
either.

At prediction time, for within-specs operation we use
the 100,000 images of the ILSVRC 2012 test set as data
source. For out-of-spec operation, we study three situations:
(1) images with different contents than what is present in
ILSVRC, e.g. new object classes; (2) images with the same
contents as ILSVRC but different low-level characteristics
that could, e.g., be caused by image acquisition problems;
and (3) images with of the same type as ILSVRC, but occur-
ring repeated over time, i.e. “frozen” images as they can occur
during image transmission failures.

As additional data sources, we use the 10 test classes (pro-
posed split) of the Animals with Attributes 2 (AwA2) dataset
(Xian et al. 2018). These are 7913 natural images of simi-
lar appearance as ILSVRC, but showing classes that are not
present in the larger dataset. Additionally, we also use the
3456 images from the DAVIS (Perazzi et al. 2016) dataset
(480p part). Those images are in fact video frames and there-
fore also exhibit different characteristics than the still images
of ILSVRC, such as motion blur.

To simulate repeating images, for each test imagewe form
virtual data sets that consist of as many copies of that images
as currently required. Results reported for this setting are
always average values over all tested images.

In Sect. 8, where we provide a detailed assessment how
state-of-the-art network react to potential problems in the
image acquisition, we create images with synthetic distor-
tions, such as added noise or blur. These are described in
detail in the corresponding sections.

6 Experiments: Out-of-Specs Detection from
Single Samples

Previous work on detecting if a classifier operates on unex-
pected data, in particular (Hendrycks and Gimpel 2017;
Liang et al. 2018), act on individual data samples. At predic-
tion time, for every input image a separate decision is made
whether it stems from a within-specs or out-of-specs situa-

tion. The experimental evaluation was limited to rather small
networks and image sizes, though. In this section, we repeat
and extend these single-sample experiments in themore chal-
lenging and diverse situation that we are interested in.

Following (Hendrycks and Gimpel 2017) we test a
threshold-based detector that classifies a sample as out-of-
specs if its confidence score lies below a threshold. By
varying the threshold and recording the false positive as well
as the true positive rate, one obtains a receiver operating
characteristic (ROC) curve, one for each classifier and each
out-of-specs situation.

Figure 4 shows the curves for the out-of-specs case where
the classifier’s input is the AwA2 (all classes) or DAVIS
data. Also listed the area under the ROC curve (AUC) val-
ues, which corresponds to the probability that a randomly
selected within-specs samples has a higher confidence score
than a randomly selected out-of-specs sample. In order to
better understand the limitations of detecting out-of-specs
situations from single samples, we visualize the actual score
distribution in Fig. 5 and include an estimate of the total-
variation distances between the out-of-specs situations and
the respective within-specs ones.

We do not include separate experimental results for the
case when the out-of-specs condition is caused by repeating
images, because for single-sample tests these can be deduced
from other experiments: for ILSVRC-test, single-sample
tests are inherently unable to distinguish the scenario of
repeating images from the within-specs one. Consequently,
the best true positive rate is identical to the false positive rate,
i.e. chance performance, and the AUC is 0.5. For AwA2 and
DAVIS, the average AUC over all images is identical to the
values in Fig. 4.

6.1 Discussion of Results

From Fig. 4 one can see that overall the DAVIS situation is
easier to detect than AwA2, but in neither case and for none
of the ConvNets a threshold-based classifier is a strong tool
for out-of-specs detection.
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Fig. 4 ROC curves of a threshold-based classifier based on confidence
scores of five ConvNets classifiers for two data sources. AUC denotes
the area under the ROC curve. One can see that the DAVIS out-of-specs

situations is generally easier to detect than the AwA2, but none of the
classifiers is able to achieve high TPR and high FPR at the same time

Fig. 5 Distribution of confidence scores (x-axis) for different ConvNets and data sources. The dashed line indicates the average score. The TV
value is the estimated total-variation distance between the plotted distribution and the corresponding within-specs situation

From Fig. 5 we can understand the reasons. The first row
reflects within-specs behavior. It confirms the folk wisdom
that ConvNet scores are biased towards high values. How-
ever, it also shows remarkable variability between different
networks. For example, MobileNet25 has a rather flat dis-
tribution compared to, e.g., VGG19, and the distribution for
NASNetAlarge peaks not at 1 but rather at 0.9. The other
two rows show that out-of-specs operation indeed leads to
a change of score distribution. The effect is not as strong
as one might have expected, though, and in particular, there
is no drastic shift of confidence scores towards very small
values. The estimated total-variation distances between the
out-of-specs situations and the respective within-specs ones
quantify this effect. In particular, the TV value provides a the-
oretical upper limit on how well any single-sample test can
distinguish between two distributions, even if it had access
to perfect information about the distributions. Formally, the
following two statements hold:

Theorem 1 1. For any single-sample test (not only
threshold-based), the difference between true positive
rate and false positive rate cannot be larger than TV .

2. No threshold-based test can achieve an AUC higher than
1
2 (1 + 2TV − TV 2).

The first statement was proved in Kailath (1967) with cor-
rection in Toussaint (1972). The second statement follows
from the implied upper bound to the ROC curve.

To illustrate the result, we look at AwA2, in which images
have similar low-level characteristics as in the within-specs
situation and TV < 0.2 for all classifiers. The theorem implies
that none of the ConvNets would allow a single-sample test
that achieves a TPR more than 0.2 higher the FPR, and the
AUC of a threshold-based test cannot exceed 0.68. Indeed,
this analysis is consistent with the results in Fig. 4. Unfor-
tunately, for practical applications these values are clearly
insufficient.
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Table 3 Detection quality (AUC) of a threshold-based test with ODIN
pre-/postprocessing

AwA2 DAVIS

MobileNet25 0.58 (+0.04) 0.74 (+0.05)

SqueezeNet 0.54 ( 0.00) 0.76 (+0.05)

ResNet50 0.71 (+0.07) 0.80 (+0.05)

VGG19 0.60 (+0.01) 0.79 (+0.04)

NASNetAlarge 0.62 (+0.06) 0.69 ( 0.00)

The values in brackets indicate the difference to the plain test, as in
Fig. 4. ODIN’s hyperparameters are chosen to maximize detection
quality, i.e. not agnostically. Nevertheless, the improvements are rather
limited

6.2 Results with Pre- and Post-Processing

A potential remedy for above problem could be image pre-
processing and score post-processing, e.g. like the ODIN
procedure in Liang et al. (2018). There it was reported that
the quality of a threshold-based detector could be improved
drastically by adding a supportive perturbation to the image
before classifying it and post-processing the scores by tem-
perature scaling. By adopting these steps the resulting test
is not blackbox-ready anymore, because computing the sup-
portive perturbations requires access to the network’s internal
structure and parameters.

For completeness, we evaluated the tests anyway, follow-
ing the description and source code of Liang et al. (2018).
We provide a summary of results here, more details can be
found as part of the accompanying website. Table 3 shows
the highest AUC score achieved for any choice of temper-
ature and strength of supportive perturbation on the AwA2
and DAVIS data. One can see certain improvements over
a threshold-based test without pre- and postprocessing, as
reported in Fig. 4. However, they are smaller than the ones
reported in Liang et al. (2018). In particular, as a test of out-
of-specs prediction, the quality is still far from sufficient for
real-world problems. Consequently, we do not make use of
pre- or postprocessing in the rest of this work. However, if
desired, ODIN or any other image preprocessing and score
post-processing techniques could readily be combined with
KS(conf) or any other universal test that only requires con-
fidence scores as input.

7 Experiments: Out-of-Specs Detection from
Batches

In this section, we report on an experimental evaluation
of batch-based tests for detecting out-of-specs operation.
Besides KS(conf), we test a variety of alternative ways for
combining the set of confidence scores in the batch and how

to come up to awithin-specs or out-of-specs decision. Specif-
ically, we include the following tests as baselines:

Mean-based testsWe saw in Sect. 6 that on average, the con-
fidence scores are in fact lower in the out-of-specs situation
than within-specs, but that the high variance prevents single-
sample test from being reliable. The use of batches allows
reducing the variance, which suggests a straight-forward test
for out-of-specs behavior: for a batch of images, compute the
average confidence and report a positive test if that value lies
below a threshold.

To set the threshold, we have two options:

– z-test We compute the mean, μ, and variance, σ 2, of
the confidence values on the validation set. Under an
assumption of Gaussianity, the distribution of the aver-
age confidence over a within-specs batch of size m will
have variance σ 2/m. We set the threshold to identify the
lower α-quantile of that Gaussian.

– (non-parametric) mean test To avoid the assumption of
Gaussianity, we use a bootstrap-like strategy: we sample
many batches from the validation set and compute the
mean confidence for each of them. The threshold is set
such that at most a fraction α of the batches is flagged as
positive.

The z-test has the desirable property that the threshold can
be adapted on-the-fly even after the test has already been
deployed. The mean test can be expected to work better for
small batches, where the assumption of Gaussianity is likely
violated, but any change of threshold will require a new step
of bootstrapping, which, in particular, requires access to the
previously confidence values or to new validation data.

Probabilistic tests Assuming probabilistic classifier outputs,
the right way of combining scores within a batch is by mul-
tiplying them, or equivalently, averaging their logarithms.
Doing so yields two tests, log-z and log-mean that follow the
same steps as the z-test and the mean-tests, respectively, but
work with the logarithms of the confidence values.

Symmetric tests The four tests described above are asymmet-
ric: they will detect if the confidences become too low, but
not if they become too high. To cover that possibility, we also
include symmetric versions of the above tests, for which we
determine two thresholds, an upper and a lower one, allowing
for α/2 false positives on each side.

Label-based test Instead of using the confidence values, it
would also be possible to detect out-of-specs behavior from
the distribution of actually predicted labels.

– χ2 test During calibration, we compute the relative fre-
quency of labels on the validation set. For any batch, we
perform a χ2 goodness-of-fit test, whether the empirical
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(a) KS(conf) (b) mean-test (c) z-test (d) χ2-test

Fig. 6 False positive rates of KS(conf) and three baselines across five
different classifiers (colors) and different batch sizes (bs, symbols). The
x-axis indicates the target FPR, the y-axis indicates the tests’ actual
FPR. For an ideal test all entries should lie on the diagonal or below

with no discernable pattern in the deviations. KS(conf) and the mean-
test achieve this, while the z-test and the χ2-test produce more false
positives than targeted, in particular for small batch sizes (Color figure
online)

distribution is likely to originate from the stored one and
report a positive test if the p-value lies below the desired
FPR.

7.1 Results: False Positive Rates

As discussed in Sect. 2, it is a crucial property of a prac-
tical test to have a controllable false positive rate. We
check this property for KS(conf) and the other batch-based
tests by the following procedure: for any batch size bs ∈
{1, 10, 100, 1000} and α ∈ {0.0001, 0.0005, 0.001, 0.005,
0.01, 0.05, 0.1, 0.5} we set the test’s parameter for a target
FPR of at most α. Then we run the test on batches sampled
randomly from the ILSVRC test set, i.e. fully under within-
specs conditions. Consequently, all positive tests are false
positives and the fraction of tests that return positively is the
FPR.

Exemplary results are depicted in Fig. 6, where we report
the average FPR of four of the tests. The remaining results
are summarized below and can be found in the accompa-
nying website. Each plot contains 160 measurements: one
for each combination of 5 classifier (encoded in color), 4
batch sizes (encoded in symbols) and 8 target FPRs (encoded
by x-coordinate). The y-coordinate shows the actually mea-
sured FPR, averaged over 10,000 repeats. For an ideal test,
all points should lie on the diagonal or below.

One can see that KS(conf) and the mean-test respect
the FPR rather well. For KS(conf), this is expected, as the
underlying Kolmogorov–Smirnov test has well understood
statistics and optimal thresholds are known for any FPR and
batch size. For the mean-test, the reason is that the thresh-
olds were obtained by simulating the testing procedure on
within-specs datamany times. This is computationally costly,
especially for large batch sizes, but it ensures that the FPR is
respected, as long as the validation set size is large enough.
The same outcomes also hold for the log-mean test and the

symmetric variants of both tests, which are not visualized
here.

In contrast, the z-test often produces more false positives
than intended, especially for small batch sizes. This is an
indication that the assumption of Gaussianity, which is vio-
lated for small batch sizes, actuallymatters in practice.While
not depicted here, the log-z test and the symmetric variants
have the same problem as the z-test.

Finally, the label-based χ2-test produces far too many
false positives. The likely reason for this is the large number
of classes: a rule of thumb says that the χ2-test is reliable
when each bin of the distribution has at least 5 expected
entries. This criterion is clearly violated in our situation,
where the number of samples in a batch is often even smaller
than the number of classes (which is the number of bins).

In summary, of all methods, only KS(conf) achieves the
twodesirable properties that the FPR is respected for all batch
sizes, and that adjusting the thresholds is possible efficiently
and without access to validation data. Tests based on aver-
aging the scores or logarithms of the scores should only be
used with the bootstrap-based procedure for threshold selec-
tion. The z-approximation aswell as theχ2-based test are not
reliable enough for practical use, so we exclude them from
further experiments.

7.2 Results: True Positive Rate

The ultimate qualitymeasure for any test iswhether, at a fixed
FPR, it can reliably detect if the input distribution changes in
any way. For this, we run the different batch-based tests on
different out-of-specs situations: as a diverse scenario, we
use the classifiers to make predictions on a mixture of all
AwA2 classes or on the DAVIS data. As a specific scenario,
we use each of the AwA2 classes individually as out-of-specs
data source. Finally, as static scenario, we use all ILSVRC-
test data, AwA2 data or DAVIS data, but the classifiers run
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Table 4 True positive rates,
averaged across 5 ConvNets, of
KS(conf) and baselines
(columns) under different
out-of-specs conditions (rows)

KS(conf) Mean Log-mean Sym. mean Sym. log-mean

Diverse

AwA2 (all classes) 1.00 0.99 0.85 0.97 0.80

DAVIS 1.00 1.00 1.00 1.00 1.00

Specific

AwA2-bat 1.00 1.00 1.00 1.00 1.00

AwA2-blue-whale 1.00 0.00 0.00 0.43 0.00

AwA2-bobcat 1.00 0.00 0.00 1.00 0.00

AwA2-dolphin 1.00 1.00 0.60 1.00 0.60

AwA2-giraffe 1.00 1.00 1.00 1.00 1.00

AwA2-horse 1.00 1.00 1.00 1.00 1.00

AwA2-rat 1.00 1.00 1.00 1.00 1.00

AwA2-seal 1.00 0.00 0.00 1.00 0.00

AwA2-sheep 1.00 0.00 0.00 0.80 0.00

AwA2-walrus 1.00 1.00 1.00 1.00 1.00

Static

ILSVRC (test) 1.00 0.40 0.34 0.96 0.96

AwA2 (all classes) 1.00 0.51 0.44 0.96 0.44

DAVIS 1.00 0.71 0.65 0.97 0.65

For all tests, the target FPR is set to 0.01 and the batch size to 1000. Test that fail occasionally (TPR < 1) are
marked in bold, tests that fail completely (TPR = 0) in bold underlined

on static data, i.e. each batches consists of multiple copies of
the same image.

The first two cases correspond to a situation in which the
classifier operates unperturbed, but on unexpected data. The
third case reflects the situationwhere the input to the classifier
is perturbed, e.g. because of network problems or by explicit
manipulation. Note that it can still be interpreted as change
in data distribution, only that the distribution at prediction
time is a delta-peak on a single image.

For the diverse and specific situations, we compute the
fraction of positive tests out of randomly created 10,000
batches. For the static situation, we create one batch for each
image of the respective dataset and report the averages. In all
cases, the system runs completely out-of-specs. Therefore,
all positive tests are correct and reported averages directly
correspond to the TPR.

Because of the large number of scenarios and results,
we only report on some characteristic cases and unexpected
findings. The full set can be found in the accompanying web-
site. Specifically, we first provide a quantitative summary
(Table 4) and we then discuss the qualitative dependence
between TPR and FPR (Fig. 7), between TPR and batch size
(Fig. 8).

Quantitative Summary Table 4 summarizes the results
numerically at a single glance. It reports averaged TPRs
across the five ConvNets for batch size 1000 and FPR 0.01.

It shows that in the diverse settingwith allAwA2classes or
the DAVIS dataset as out-of-specs data, KS(conf), the mean

test and, to a lesser degree, the symmetric mean test do a
good job detecting the change of distribution. The logarith-
mic variants overall achieve lower TPRs.

In the specific scenario, only KS(conf) reliably detects all
of the 10 out-of-specs cases. The other tests show a more
diverse picture. Out of the 10 object classes used, only 5 are
reliably detected by all tests. Of the remaining ones, themean
test misses four completely. The symmetric mean test does
better, but still often fails to identify the out-of-specs situa-
tion for 2 of the classes. The log-mean test and symmetric
log-mean do worse than their non-logarithmic counterparts
across the board and have problems with all five classes.

Finally, in the static scenario, KS(conf) again identifies
all out-of-specs situations, while the mean, log-mean and
symmetric log-mean tests have severe problems. Only the
symmetric mean test is able to recognize the out-of-specs
operation in a substantial fraction of the cases (96%–97%),
but it also never achieves a perfect detection rate, as KS(conf)
does.

A special case is the static scenario using ILSVRC data.
On first sight, it might not be obvious how any of the tests
is able to detect this out-of-specs situation at all. After all,
all individual images come from the same distribution at the
training data. A test based on single samples would not be
able to do better than chance level, and given that in the static
scenario all images in a batch are identical, the statistics com-
puted from a batch, e.g. the mean, are identical, regardless of
the batch size. The answer lies in the way how the thresholds
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(a) AwA2, bs = 10 (b) AwA2, bs = 100 (c) AwA2, bs = 1000

(d) AwA2 static, bs = 10 (e) AwA2 static, bs = 100 (f) AwA2 static, bs = 1000

Fig. 7 Exemplary curves of true positive rates (TPR, y-axis) versus tar-
get false positive rates (FPR; x-axis) for SqueezeNet on diverse AwA2
data (top row) and static AwA2 data (bottom row) with different batch
sizes, bs. Note that the curves differ slightly from typical ROC-curves

because the x-axis shows the tests’ target FPR, not a measured one. In
particular, this means that the TPR might not reach a value of 1 even
for FPR = 1. For a discussion of the results, see Sect. 7.2

(a) VGG19, DAVIS

(b) SqueezeNet, AwA2

(c) ResNet50, bat

(d) SqueezeNet, seal

(e) MobileNet25, static-ILSVRC(test)

(f) NASNetAlarge, static-DAVIS

Fig. 8 Exemplary curves of true positive rates (TPR, y-axis) for different tests run with different batch size (x-axis) on different out-of-specs data
with FPR = 0.01. For a discussion of the results, see Sect. 7.2
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are chosen: these depend on the batch size, as for independent
samples the computed statistics become more concentrated
the larger the batch size. This results in a smaller interval
of acceptable values, more rejected batches, and therefore a
higher TPR.

Dependence between TPR and FPR For single-sample
tests, the trade-off between TPR and FPR is of crucial impor-
tance. It is less critical for batch-based tests, though, because
for a well-defined test, increasing the batch size will increase
the TPR without negatively affecting the FPR.

Figure 7 (top row) illustrates this effect on the example
of the SqueezeNet classifier on AwA2 data. For very small
batches (bs = 10), most tests perform similarly and none of
them is able to achieve high TPR and low FPR at the same
time. When increasing the batch size, the TPR increases for
all tests across all FPR values, with the mean test usually
achieving the best results, followed closely by KS(conf). For
sufficiently large batch (bs = 1000), some tests are able
to achieve high TPR even at very low FPR, in particular
KS(conf) and, slightly below, the mean test and the symmet-
ric mean test.

An interestingphenomenon is illustrated in thebottom row
of Fig. 7: in the static out-of-specs situation, the selected FPR
has a much weaker influence on the TPR than in the diverse
scenario. Except for KS(conf) and the symmetric mean test,
all tests have regimes where their average TPR is even below
the targeted FPR. Note, however, that these occur for high
FPRvalues, so they are not of core interest for practical appli-
cations.

Dependence between TPR and batch size One insight from
of our experiments is that, at a fixed FPR, the batch size
needed to achieve a certain TPR depends strongly on the
characteristics of the out-of-specs situation. For the sake of
concreteness, we use a fixed FPR = 0.01 in the discussion
of this effect.

For the diverse scenarios all test reliably detect the out-of-
specs situation if the batch sizes is at least 50–100 (DAVIS)
or 1000–5000 (AwA2). Figure 8a and b illustrates the eas-
iest (DAVIS, VGG19) and the most difficult (SqueezeNet,
AwA2) cases. In several of the easier cases, KS(conf) require
slightly larger batch sizes than some of the other tests, pre-
sumably because the other tests make implicit assumptions
that are indeed fulfilled in these situations.

In the specific scenario, KS(conf) reliably detects all of the
10 out-of-specs caseswith batches of size 50–1000. Figure 8c
and d illustrates the diversity of these problems, again by dis-
playing an easy (ResNet50, bat) and a hard case (SqueezeNet,
seal).

The difference between KS(conf) and the other tests
becomes most apparent in the case where the out-of-specs
situation is not just due to different image data, but also
due to a lack of diversity. KS(conf) reliably detects this

static situation already at batch sizes as low as 30. All other
tests, however, have problems and reach high TPR only for
large batch sizes, or not at all. Figure 8e and f illustrates
two examples (MobileNet25, static ILSVRC-test; NASNe-
tAlarge, static DAVIS).

7.3 Results: Fine-Grained Analysis

Amain result of the previous section is that all test, except for
KS(conf), fail in some of the tested situations. To shed more
light on this effect, we performed additional fine-grained
experiments, where we create batches as mixtures where a
fraction of β of the images is taken from from AwA2 classes
and a fraction 1 − β from ILSVRC2012-test. By varying
β ∈ [0, 1] we are able to control not only the type of out-of-
specs situation, but also the strength. While, technically, all
mixtures with β > 0, are out-of-specs, it is clear that mix-
tures with smaller β will be harder for tests to detect, if only
because each batch contains fewer out-of-specs examples.

For each situation,we run all detectionmethodswith batch
size 1000 and FPR = 0.01. The results fall into three char-
acteristic clusters: 1) some sources, for example AwA2-bat,
are identified reliably by all tests for all ConvNets, as long
as the mixture proportions exceed a critical value. 2) other
sources, for example AwA2-bobcat, are identified reliably
by some tests, but not at all by others. 3) for some sources,
here AwA2-blue-whale, tests show different sensitivities, i.e.
some tests work only for high mixture proportions. Figure 9a
illustrates the above examples for the ResNet50 classifier.

Interestingly, the results differ substantially not only
between data sources but also between networks. For exam-
ple, ResNet50 allows for perfect detection at lower mixture
proportions than MobileNet25. For NASNetAlarge on blue
whale data, the symmetric mean test works as least as well
as KS(conf), while the same test on the same images fails
completely for VGG19. An illustration of these examples is
provided in Fig. 9b.

A possible explanation of the observed effects lies in the
fact that score distributions differ not only strongly between
ConvNets, as we had observed in Fig. 5, but also between
different data sources for the same ConvNets. For example,
AwA2-bat exhibits a pattern as onewould ideally expect from
an unknown class: confidences are overall much lower, so the
difference in distribution is easy to detect for all tests. The dis-
tribution for AwA2-blue-whale data differs much less from
thewithin-specs situation, making it harder to detect. Finally,
AwA2-bobcat shows quite unexpected behavior: even though
no images of this classwere used at training time the networks
make overall more confident predictions than for within-
specs data. This is also the reasonwhy the single-sidedmean-
based tests fail for this out-of-specs situation. For space rea-
sons,wedonot include illustrations of all discussed score dis-
tributions. They can be found on the accompanying website.
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ResNet50 - bat ResNet50 - blue whale ResNet50 - bobcat

(a) Examples of three different clusters of detection performance. Left: reliable detection by all methods. Middle: large differences
in required batch size for different classifiers. Right: some methods fail to detect the out-of-specs situation.

MobileNet25 - bat NASNetAlarge - blue whaleVGG19 - blue whale

(b) Examples of variability between different networks. Left: MobileNet25 requires larger batches to reliably detection an
out-of-specs situation (here: AwA2 bat) than, e.g., ResNet50 (upper row, left). Middle/right: on the same image data (here:
AwA2 blue-whale), a test (here: sym.mean) might work well for one ConvNet (here: NASNetAlarge) but not at all for another
ConvNet (here: VGG19).

Fig. 9 Results of detecting out-of-specs behavior with different tests for different ConvNets and data sources. x-axis: fraction of out-of-specs
(AwA2, DAVIS) versus within-specs (ILSVRC-test) data in batch. y-axis: detection rate (TPR)

7.4 Discussion of Results

Overall, our experiments show that KS(conf) works reliably
in all experimental conditions we tested. This is in agreement
with the expectations from theory, because the underly-
ing Kolmogorov–Smirnov test is known to have asymptotic
power 1, meaning that if given enough data, it will detect
any possible difference between distributions. In contrast to
this, the baseline tests show highly volatile behavior, making
them unsuitable as a reliable out-of-specs detector.

On first sight, the results of diverse vs. specific vs. static
situations might appear counter-intuitive. Intuitively, one
could expect that a more specialized data distribution, e.g.
all images showing the same object class, should be easier
to detect than a more generic distribution, and for KS(conf)
this is indeed the case.

For the baseline tests, however, the opposite seems to be
true. The explanation lies in a bias-variance trade-off: all
baseline tests essentially perform outlier detection, i.e. they
trigger if a batch contains a certain number of images that
would have been unlikely to occur in thewith-specs situation.
For a generic out-of-specs distributions, any sufficiently large
batch is likely to contain sufficiently many such unexpected
images, and the tests will indeed trigger quite reliably. For a
highly peaked out-of-specs distribution, however, the score
distribution has a higher bias and lower variance: depend-

ing on the data, is will consists either mostly of atypical
images, which indeed is easily detected, or mostly of typical
images, which causes the test to miss the batch. It is in this
aspect where KS(conf) works fundamentally different than
the other tests. As it compares the full distribution of scores,
it identifies not only the situation when the scores are too low
or too high, but also when the score distribution in a batch is
not diverse enough.

8 Experiments: Detecting Changes to the
Image Acquisition Setup

We now turn our attention to a specific form of out-of-specs
operation for image classifiers: changes in the characteris-
tics of the image acquisition setup, such as increased pixel
noise due to an aging image sensor, or image blur due to a
misaligned lens.

In order to study these in a quantitative way, we create new
test images by applying characteristic manipulations to the
images of the ILSVRC test set. Specifically, we perform the
following operations. Details of their implementation can be
found in the corresponding sections.

– loss-of-focus: we blur the image by filtering with a Gaus-
sian kernel,
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original loss-of-focus (σ = 2) sensor noise (σ = 20) dead pixels (p = 1%)

incorrect geometry incorrect colors under-exposure (c = 1/2) over-exposure (c = 1/2)
(vertical flip) (RGB↔BGR)

Fig. 10 Illustration of the effect of camera system changes on the input images (Color figure online)

– sensor noise: we add Gaussian random noise to each
pixel,

– dead pixels: we set a random subset of pixels to pure
black or white,

– incorrect geometry:weflip the image horizontally or ver-
tically, or we rotate it by 90, 180 or 270 degrees,

– incorrect RGB/BGR color processing: we swap the B and
R color channel,

– under- and over-exposure: we scale all image intensities
towards 0 or 255.

Figure 10 illustrates the operations at low to medium
strength.

The main goal of our experiments in this section is not
to compare the power of different out-of-specs tests, as
we believe the previous sections did so in sufficient detail.
Instead, we are interested in the effect itself: how exactly do
different ConvNets react if their inputs change due to external
effects, such as incorrect camera installation, incorrect image
exposure, or broken sensor pixels? We find this a question of
independent interest, with potential influence on the design
of image classification system for practical tasks.

For each situation we first illustrate the changes in score
distributions by three complimentary quantities: the area
under the ROC curve, reflecting in how far the confidence
scores of distorted images are lower than for undistorted
images; the total variation distance, providing a classifier-
independent measure of similarity between the distributions,

and the smallest batch size at which KS(conf) with FPR =
0.01 consistently identifies the change in all cases across
10,000 batches, serving as a proxy how hard the detection of
the change is for an actual out-of-specs test.

We then highlight individual cases in more details, con-
centrating on the extreme or unexpected cases. As a more
in-depth analysis could find further noteworthy effects, the
raw data and the code of the analysis are available for public
use.

8.1 Loss of Focus

To analyze how a defocussing of the camera setup influ-
ences the ConvNet outputs, we create 100,000 perturbed test
images by applying aGaussian filterwith varianceσ , for each
σ ∈ {1, 2, . . . , 10}. The filtering is performed in horizontal
and vertical directions, but not across color channels.

X̃t = Xt ∗ gσ (3)

for t = 1, . . . , 100000. Note that here and in the following
sections, all operations act on the original images, that is,
before potential rescaling or normalization that are part of
the ConvNets’ preprocessing.

Table 5 summarizes the characteristics of the resulting
confidence score distributions. On the one hand, it shows
the expected trend, that stronger distortions lead to stronger
difference in score distribution and are easier to detect. On
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Table 5 Distribution characteristics for a loss of focus in image acquisition

Loss of focus MobileNet25 SqueezeNet ResNet50 VGG19 NASNetAlarge

AUC TV bs AUC TV bs AUC TV bs AUC TV bs AUC TV bs

σ = 1 0.56 0.09 3000 0.69 0.27 300 0.66 0.22 300 0.70 0.26 300 0.55 0.08 3000

σ = 2 0.74 0.36 100 0.86 0.55 30 0.80 0.44 50 0.86 0.56 30 0.66 0.24 300

σ = 3 0.85 0.53 30 0.92 0.67 30 0.87 0.57 30 0.91 0.66 30 0.75 0.39 100

σ = 4 0.88 0.60 30 0.95 0.76 30 0.91 0.64 30 0.93 0.71 30 0.80 0.48 50

σ = 5 0.91 0.67 30 0.97 0.80 10 0.92 0.68 30 0.95 0.76 10 0.84 0.55 30

σ = 6 0.94 0.73 10 0.97 0.82 10 0.93 0.69 30 0.96 0.80 30 0.87 0.60 30

σ = 8 0.96 0.80 10 0.98 0.85 10 0.91 0.65 30 0.97 0.83 10 0.92 0.68 30

σ = 10 0.97 0.83 10 0.99 0.88 10 0.88 0.60 30 0.97 0.84 10 0.94 0.73 30

For each network (in columns) and blur strength, σ , (in rows), AUC denotes the area under the ROC curve between the confidences scores of the
distorted and the undistorted images. TV denotes the estimated total variation distance between their distributions. bs denotes the batch size required
for KS(conf) with FPR = 0.01 to correctly report all tested batches as out-of-specs

Fig. 11 Illustration of the different reaction of MobileNet and NASNetAlarge to image blur in terms of the distribution of their confidence scores
(value on x-axis). See Sect. 8.1 for a discussion

the other hand, what is noteworthy is a rather big differ-
ence between different networks. For some networks, such
as SqueezeNet and VGG19, already a rather mild blur level,
such as σ = 2, leads to a substantial change of score distri-
bution, which can be detected quite reliably even by a single-
sample threshold test. In contrast, for NASNetAlarge the
impact on the score distribution ismuch smaller, and the same
level of detection quality would only be achieved by a much
stronger blur of σ = 6. Similarly, for batch-based testing, the
necessary batch size for reliably detection differs by a factor
of 10 between the both extremes. TheResNet50 shows a curi-
ous pattern: very strong blurs,σ ≥ 8, becomeharder to detect
than weaker ones, at least for single-sample tests. Figure 11
illustrates this behavior by showing the actual distribution
of confidence scores. For MobileNet25, with stronger distor-
tion, the scores become more and more concentrated around
very low values. For ResNet50, the same effect happens until
σ = 5, though in weaker form, but for σ = 10, the scores
are more spread out again across all confidence values. This
means in particular, that the ResNet50 will often produce a
high confidence values even for very highly blurred images,
while for the MobileNet25 this is almost never the case.

8.2 Sensor Noise

To analyze the effect of sensor noise, we create 100,000
perturbed test images by adding independent Gaussian
noise with variance σ in all color channels, for σ ∈
{5, 10, 15, 20, 30, 50, 100}:

X̃t [h, w, c] = clip255
0

(
Xt [h, w, c] + σ rnd()

)
(4)

for t = 1, . . . , 100000, where rnd() generates sam-
ples from a standard Gaussian distribution and clip255

0 (·)
denotes the operation of clipping a value to the interval
[0, 255]. h andw range over the horizontal and vertical coor-
dinates, respectively, and c over the three color channels.

The characteristics of the resulting confidence score
distributions are summarized in Table 6. Similar to the out-
of-focus case, for each tested ConvNet, there is an obvious
trend that stronger distortions are generally easier to detect.
In fact, the weakest tested noise level, σ = 5, was unde-
tectable from the score distributions for all networks. Also
similar to the out-of-focus case, there are substantial dif-
ferences in how strongly the different ConvNets react to
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Table 6 Distribution characteristics for sensor noise in image acquisition

Noise strength MobileNet25 SqueezeNet ResNet50 VGG19 NASNetAlarge

AUC TV bs AUC TV bs AUC TV bs AUC TV bs AUC TV bs

σ = 5 0.52 0.03 – 0.52 0.03 – 0.52 0.03 – 0.52 0.03 – 0.50 0.02 –

σ = 10 0.56 0.08 3000 0.58 0.11 1000 0.54 0.06 5000 0.53 0.05 – 0.51 0.02 –

σ = 15 0.60 0.15 500 0.64 0.20 300 0.56 0.09 3000 0.56 0.08 3000 0.51 0.03 –

σ = 20 0.65 0.22 300 0.69 0.28 300 0.59 0.13 1000 0.59 0.13 1000 0.52 0.04 10,000

σ = 30 0.73 0.34 100 0.73 0.35 100 0.66 0.23 300 0.67 0.24 300 0.54 0.06 3000

σ = 50 0.80 0.46 50 0.76 0.40 100 0.77 0.41 100 0.78 0.42 50 0.58 0.14 1000

σ = 100 0.85 0.56 30 0.81 0.57 30 0.81 0.49 50 0.82 0.48 50 0.73 0.38 100

For each network (in columns) and noise strength, σ , (in rows), AUC, TV and bs are reported as for Table 5. Missing entries in the bs column
indicate that the maximal tested batch size of 10,000 was not sufficient to reliably detect the manipulation

Fig. 12 Illustration of the distribution of confidence scores (value on x-axis) for NASNetAlarge under different amounts of image noise. A
discussion is provided in Sect. 8.2

the image distortions. The SqueezeNet is most susceptible,
followed by the MobileNet25 and the ResNet50. VGG19
is less affected, with even σ = 10 leading to almost no
change in score distribution and being undetected by the
batch-based test. NASNetAlarge is least affected by noise,
with σ = 20 being the smallest noise level that is detectable
at all, and the score distribution hardly changes even up to
σ = 50.

Figure 12 shows the NASNetAlarge’s actual score distri-
bution. One can see that it remains rather stable up to σ = 50,
and even atσ = 100 a substantial amount of probabilitymass
is still present at high confidence values.

8.3 Pixel Defects

We analyze the effect of cold and hot dead pixel defects
by creating 100,000 perturbed test images with salt-and-
pepper noise. We distort a random subset of p percent
of the pixels, setting half of them to pure black and half
of them to pure white, for p ∈ {1%, 5%, 10%, 20%,
40%, 60%, 80%, 100%}. Formally, the operation is

X̃t [h, w, c] =

⎧
⎪⎨

⎪⎩

0 if (h, w) ∈ Jdead,

255 if (h, w) ∈ Jhot,

Xt [h, w, c] otherwise.

(5)

for t = 1, . . . , 100000, where Jdead and Jhot are disjoint
random subsets of size � 1

2 pN	 each, where N is the number
of pixels in the image.

Table 7 reports on the characteristics of the resulting con-
fidence score distributions. For the MobileNet25 and, to
a lesser degree, for the SqueezeNet, the expected pattern
emerges that a large amount of pixel defects strongly impacts
the score distribution and the corresponding out-of-specs sit-
uation can therefore be detected rather easily. For the other
ConvNets, however, we observe a different pattern. For each
of them, a small number of pixel defects, e.g. up to p = 10%,
leads to a divergence of the score distribution compared to the
undistorted case. This is visible in an increasing TV and AUC
values, and a decreasing required batch size for KS(conf).
Higher levels, however, influence the ConvNets in different
way: for ResNet50, the TV value remains almost constant
between p = 10% and p = 80%, while the AUC value
declines again. This indicates that probability mass is redis-
tributed from lower to higher confidence values, not in the
other direction as one might have suspected. For example,
at p = 60%, the AUC value is only 0.60, meaning that a
threshold-based classifier would be hardly better than ran-
dom at detecting this situation of heavily distorted images.
For SqueezeNet, we observe the opposite effect: the AUC
value remains stable over a wide range of p-values, while
the TV value increases. For VGG19, there is range between
p = 30% and p = 40% distorted pixels, where the TV and
AUC values are lower than even at p = 5%. Even high levels
of distortion then lead to a big change in score distribution,
though, and can easily be detected. NASNetAlarge shows a
similar pattern, but shifted to even higher distortion levels.
Until p = 60%, the distribution gets more and more differ-
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Table 7 Distribution characteristics for pixel defects in image acquisition

Pixel defects (%) MobileNet25 SqueezeNet ResNet50 VGG19 NASNetAlarge

AUC TV bs AUC TV bs AUC TV bs AUC TV bs AUC TV bs

p = 1 0.58 0.12 1000 0.66 0.24 300 0.67 0.25 300 0.60 0.14 1000 0.54 0.06 5000

p = 5 0.67 0.26 300 0.67 0.24 300 0.73 0.34 100 0.71 0.31 300 0.59 0.14 1000

p = 10 0.75 0.37 100 0.75 0.38 100 0.75 0.38 100 0.76 0.39 100 0.62 0.20 300

p = 20 0.83 0.50 30 0.74 0.41 50 0.78 0.43 50 0.72 0.32 100 0.67 0.29 300

p = 30 0.85 0.53 30 0.64 0.38 100 0.74 0.40 50 0.68 0.24 300 0.72 0.37 100

p = 40 0.85 0.55 30 0.60 0.43 100 0.67 0.39 50 0.68 0.24 300 0.78 0.47 50

p = 50 0.85 0.57 30 0.61 0.47 50 0.62 0.41 50 0.73 0.32 100 0.84 0.57 30

p = 60 0.85 0.60 30 0.62 0.51 50 0.60 0.43 50 0.81 0.47 30 0.88 0.63 30

p = 80 0.87 0.69 30 0.64 0.62 30 0.64 0.40 50 0.91 0.73 10 0.55 0.16 1000

p = 100 0.84 0.69 10 0.66 0.71 30 0.84 0.66 10 0.92 0.76 10 0.58 0.54 50

For each network (in columns) and defect probability, p, (in rows), AUC, TV and bs are reported as for Table 5

Fig. 13 Illustration of the distribution of confidence scores (value on x-axis) for the give ConvNets under different amounts of pixel defects. A
discussion is provided in Sect. 8.3

ent from the undistorted case. At p = 80%, however, both
the TV and the AUC values drop substantially, making this
specific amount of distortion extremely hard to detect.

The observations from the numeric summaries are con-
firmed by the actual score distributions, a subset of which

we depict in Fig. 13. It shows drastically that for all net-
works the score distributions fluctuate: while for undistorted
images high confidences scores dominate, for higher amounts
of distortion (p = 40%), the scores are far lower for
most networks. When the number of pixel defects is very
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Table 8 Distribution characteristics for under-exposure (upper table) or over-exposure (lower table) in image acquisition

Exposure factor MobileNet25 SqueezeNet ResNet50 VGG19 NASNetAlarge

AUC TV bs AUC TV bs AUC TV bs AUC TV bs AUC TV bs

(a) Under-exposure

c = 1/2 0.53 0.04 10,000 0.61 0.15 500 0.55 0.07 3000 0.58 0.10 1000 0.50 0.02 –

c = 1/3 0.56 0.09 3000 0.67 0.23 300 0.60 0.14 500 0.63 0.16 300 0.51 0.02 –

c = 1/4 0.61 0.15 500 0.72 0.32 100 0.65 0.20 300 0.67 0.23 300 0.51 0.03 –

c = 1/5 0.65 0.21 300 0.77 0.39 100 0.69 0.25 300 0.72 0.30 100 0.52 0.04 10,000

c = 1/10 0.81 0.46 50 0.89 0.60 30 0.83 0.47 50 0.87 0.57 30 0.57 0.10 3000

c = 1/20 0.91 0.66 30 0.93 0.70 30 0.94 0.73 30 0.97 0.81 10 0.67 0.25 300

c = 1/50 0.89 0.71 30 0.91 0.76 10 0.99 0.91 10 0.99 0.94 10 0.90 0.62 30

c = 1/100 0.91 0.84 10 0.89 0.84 10 1.00 0.97 5 1.00 0.97 5 0.99 0.91 10

(b) Over-exposure

c = 1/2 0.54 0.05 5000 0.71 0.30 100 0.59 0.13 1000 0.65 0.20 300 0.50 0.02 –

c = 1/3 0.60 0.15 500 0.76 0.38 100 0.68 0.25 300 0.74 0.35 100 0.51 0.03 –

c = 1/4 0.65 0.23 300 0.77 0.42 50 0.74 0.35 100 0.80 0.45 50 0.52 0.04 10,000

c = 1/5 0.68 0.28 100 0.79 0.44 50 0.79 0.42 50 0.84 0.52 30 0.54 0.05 3000

c = 1/10 0.77 0.41 50 0.87 0.57 30 0.90 0.61 30 0.93 0.70 30 0.62 0.18 300

c = 1/20 0.91 0.66 30 0.96 0.79 30 0.95 0.76 30 0.98 0.85 10 0.75 0.39 100

c = 1/50 1.00 0.97 5 1.00 0.98 5 0.98 0.87 10 1.00 0.96 5 0.93 0.70 30

c = 1/100 1.00 0.98 1 1.00 0.98 1 1.00 0.97 5 1.00 0.98 5 0.99 0.93 10

For each network (in columns) and exposure factor, c, (in rows), AUC, TV and bs are reported as for Table 5

high (p = 80%), the scores generally increase again. For
p = 100%, i.e. the images consist of a random arrangement
of black and white pixels, for all ConvNets the score distri-
bution is quite peaked, but not necessarily at low values. For
example, for SqueezeNet and ResNet50, confidence values
around 0.5 are most common, while for MobileNet25 and
VGG19, the values are lower. A special case is NASNetA-
large, which changes its score distribution much less than the
other networks. It is most spread out around p = 60% (not
depicted), but then returns to high values again for stronger
distortions. For p = 80% the distribution is comparable to
the one for unperturbed images, and for p = 100% the pre-
dicted confidence values are on average even higher than that.

8.4 Under- and Over-Exposure

To study the effect of exposure changes, for each factor
c ∈ {1/2, 1/3, 1/4, 1/5, 1/10, 1/20, 1/50, 1/100} we cre-
ate 100,000 perturbed test images by scaling the intensity
values towards 0 (under-exposure),

X̃t [h, w, c] = c · Xt [h, w, c] (6)

or towards 255 (over-exposure),

X̃t [h, w, c] = 255 − c · (255 − Xt [h, w, c]) (7)

for t = 1, . . . , 100000.

The characteristics of the resulting confidence score distri-
butions are reported in Table 8. For each ConvNet, it shows a
conventional picture: the larger the amount of under- or over-
exposure the more the resulting score distribution differs
from the original one. As in previous cases, the variabil-
ity between ConvNets is large, though. For SqueezeNet and
VGG19, a factor of c = 1/5 has a substantial influence and
can be detected ratherwell. ForNASNetAlarge, the score dis-
tribution for this factor is still almost indistinguishable from
the situation of undistorted images. More extreme factors are
then also easily detectable, though. Overall, over-exposure
seems to have a bit more influence on the score distribution
than under-exposure.

Figure 14 gives further insight into specific property of
the score distributions, illustrated on the example of VGG19.
One can see that with stronger over- or under-exposure up
to c = 1/5, the confidence scores indeed overall decrease.
However, it is not a uniform change of probability mass from
high to low. Instead, the original peak at high confidence
scores is gradually decreased while a new peak of low con-
fidence scores emerges. At c = 1/50, only the peak at low
values remains.

The bimodal shape of the distribution implies that even
though the average confidence is low, predictions with high
confidence are still quite likely to occur, at least when the
network operations of images with an intermediate amount
of under- or over-exposure.
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under-exposure

over-exposure

Fig. 14 Illustration of the distribution of confidence scores (value on x-axis) for the VGG19 ConvNet under different amounts of under- or
over-exposure. A discussion is provided in Sect. 8.4

Table 9 Distribution characteristics for problems with geometry or color processing in image acquisition

Transformation MobileNet25 SqueezeNet ResNet50 VGG19 NASNetAlarge

AUC TV bs AUC TV bs AUC TV bs AUC TV bs AUC TV bs

Horizontal flip 0.50 0.02 – 0.51 0.02 – 0.51 0.02 – 0.52 0.03 – 0.50 0.02 –

Vertical flip 0.68 0.27 300 0.70 0.30 100 0.70 0.30 100 0.73 0.34 100 0.62 0.21 300

90◦ 0.69 0.29 300 0.70 0.29 300 0.71 0.30 100 0.74 0.35 100 0.62 0.20 300

180◦ 0.68 0.27 300 0.71 0.30 100 0.70 0.30 300 0.73 0.34 100 0.62 0.20 300

270◦ 0.69 0.29 100 0.70 0.30 100 0.71 0.30 100 0.74 0.35 100 0.62 0.20 300

RGB↔BGR 0.58 0.12 1000 0.60 0.14 500 0.62 0.18 300 0.62 0.17 300 0.54 0.07 3000

8.5 Geometry and Color Preprocessing

To simulate incorrect camera installations or geometry pre-
processing, we benchmark KS(conf) with horizontally and
vertically flipped images, as well as images that were rotated
by 90, 180 or 270 degrees. To simulate incorrect color pre-
processing, we use images in which the R and B channel have
been swapped. For each transformation, we create 100,000
perturbed test images.

Table 9 summarizes the characteristics of the score dis-
tribution. One can see that all of the network outputs are
unaffected by horizontal flips of the training set. Presum-
ably, the networks either learned a horizontal symmetry of
the visual world, or this behavior was enforced by a data aug-
mentation step during training. Vertical flips and rotations do
have an impact on the score distribution that can be detected
reliably using batches of 100 to 300 samples, while single-
sample threshold classifiers would not be able to achieve
high TPR or low FPR at the same time. Surprisingly, a swap
of color channels does not strongly influence the score dis-
tribution. The corresponding out-of-specs situation can be
detected well by a batch-based test, but with values of 300
to 3000 the necessary batch size is rather high. Tests that act
on a single-sample cannot be expected to work much better
than random chance for this situation.

8.6 Discussion of Results

In summary over all experiments of this section, the main
consistent aspect is that all tested ConvNets behave quite
differently. A priori it is hard to predict how the outputs of a
ConvNet will be affected by specific image distortions.

The two networks that target efficiency and a small mem-
ory footprint, MobileNet25 and SqueezeNet, were generally
most affected by image distortions. On the one hand, this
means that their predictions might become unreliable over
time if they operate continuously using images from a camera
system whose image quality might deteriorate over time. On
the other hand, these network at least allow the reliable iden-
tification of such out-of-specs conditions in most situations.

The NASNetAlarge was consistently the least affected
by the simulated changes to the camera setup. This, how-
ever, does not automatically mean that its predicted class
labels are more accurate, only that their confidence scores
are less useful for predicting out-of-specs situations. This dis-
tinction is particularly apparent in the case of pixel defects,
where the network consistently outputs very high confidence
scores even to images that consist to a large part, or even
completely, of a random arrangement of black and white pix-
els. Of course, the predicted labels in this situation are not
actually the correct object classes, but in fact all images get
assigned the same ILSVRC class label window screen.
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9 Shortcomings and Possible Improvements

While our analysis shows that KS(conf) has many desirable
properties and excellent practical performance, it also has
some shortcomings that we discuss in this section.

One fundamental limitation is the need towork on batches.
Mathematically, KS(conf) is defined also when applied to
individual images, i.e. batches of size 1. However, it is not
very powerful in this setting. From Eq. (2) form = 1 and the
thresholds in Table 10, one can see that it acts as a symmetric
test with two thresholds in that case. An image is reported
as outlier with FPR at most α, if its confidence score lies
in the top α

2 -quantile or in the bottom α
2 -quantile of scores

observed at calibration time. Given our prior knowledge that
confidence scores often do decrease rather than increase, it
would be interesting to explore if an asymmetric version of
KS(conf) can be derived that preserves the test’s asymptotic
power but requires smaller batch sizes in general.

The other extremal situation, when KS(conf) is used with
very a large batch size, is also noteworthy. Because the
Kolmogorov–Smirnov test has perfect asymptotic efficiency,
it will—given a large enough batch—identify any difference
in distribution, no matter how small it may be. This can be
considered a shortcoming, because it means that in order to
avoid misdetections due to finite sampling, the validation set
also has to grow. This situation can easily be avoided by
keeping the batch size at a reasonable level, or a variant of
KS(conf) can be derived based on the two-sample instead of
one-sample variant of the Kolmogorov–Smirnov test. How-
ever, the effect shows that a test routine of arbitrarily high
quality might not be practical after all. On the other hand,
it might also not be desirable, as a human user will only be
interested in being warned about relevant difference in the
data distribution, not an arbitrary small one.

Another aspect that needs further study is the adaptation of
KS(conf) to the situation where images within a batch are not
independent, such as image sequences or videos. The clas-
sical Kolmogorov–Smirnov test is not directly applicable in
this case, because the null distribution of the KS statistics for
dependent data cannot easily be determined. Consequently, a
more empirical version of the test, in particular with a more
involved calibration phase, might be required. We plan to
address this in future work.

Finally, a fundamental limitation of KS(conf) is that
as a statistical test it makes the assumption of a data-
generating distribution at prediction time. In some situations
this assumption can be violated, e.g. when the input data can
be manipulated adversarially. Specifically, KS(conf) might
fail to identify that a network operates out-of-specs if the
adversary has the power to manipulate every image in the
batch by an image- and classifier-dependent procedure. This
problem is not specific to KS(conf), though. It is clear that
any test based on confidence scores can be made to fail when

an adversary has the ability to tune the manipulations such
that the confidence scores are preserved.

10 Conclusion

In this work, we discussed the problem of detecting the
situation that an image classifier runs outside of its speci-
fications, i.e. when the distribution of data it has to classify
differs from the distribution of data it was trained for. We
put forward the hypothesis that it suffices to test if the classi-
fier predicts out-of-specs, i.e. if the distribution of predicted
confidence scores differs from the original one, provided a
suitably strong detectionmethod is used.We introduced such
a procedure, named KS(conf), based an application of the
classical statistical Kolmogorov–Smirnov test to the distri-
bution of the confidence values of the predicted labels.

By extensive experiments we showed that single-sample
tests, as they had been proposed in the literature, are funda-
mentally limited in their ability to identify the out-of-specs
situation. Batch-based tests are more powerful, as they can
leverage the additional information provided by a set of
confidence values. For small batch sizes we found para-
metric tests, e.g. a mean test, to be competitive. However,
in order to reliably identify any change in the score distri-
bution, larger batches are required, and KS(conf) achieves
the best detection performance of the tested method in this
regime. Specifically, we found a batch size of 1000 sufficient
to achieve 100% true positive rate for all test scenarios with
a false positive rate no larger than 1%.

As a study of independent interest, we showed that dif-
ferent ConvNets react very differently to low-level changes
of the input data, as they might be caused, for example, by
changes to the image acquisition setup. On the one hand, we
expect this to help practitioners in their choice of network
architecture. On the other hand, we see it as a call for caution
that experimental studies in this field must be thorough and
broad in order to avoid the risk of overfitting to individual
datasets or network architectures.

In conclusion, we hope that our work leads to more
research on how to make automatic decision systems more
trustworthy. To support this effort, our code and data are pub-
licly available via the authors’ homepage.
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