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Abstract
Face frontalization refers to the process of synthesizing the frontal view of a face from a given profile. Due to self-occlusion
and appearance distortion in the wild, it is extremely challenging to recover faithful high-resolution results meanwhile
preserve texture details. This paper proposes a high fidelity pose in-variant model (HF-PIM) to produce photographic and
identity-preserving results. HF-PIM frontalizes the profiles through a novel texture fusion warping procedure and leverages
a dense correspondence field to bind the 2D and 3D surface spaces. We decompose the prerequisite of warping into dense
correspondence field estimation and facial texture map recovering, which are both well addressed by deep networks. Different
from those reconstruction methods relying on 3D data, we also propose adversarial residual dictionary learning to supervise
facial texture map recovering with onlymonocular images. Furthermore, a multi-perception guided loss is proposed to address
the practical misalignment between the ground truth frontal and profile faces, allowing HF-PIM to effectively utilize multiple
images during training. Quantitative and qualitative evaluations on five controlled and uncontrolled databases show that the
proposed method not only boosts the performance of pose-invariant face recognition but also improves the visual quality of
high-resolution frontalization appearances.

Keywords Face frontalization · Realistic face generation · Pose-invariant face recognition

Communicated by Xavier Alameda-Pineda, Elisa Ricci, Albert Ali
Salah, Nicu Sebe, Shuicheng Yan.

B Zhenan Sun
znsun@nlpr.ia.ac.cn

Jie Cao
jie.cao@cripac.ia.ac.cn

Yibo Hu
yibo.hu@cripac.ia.ac.cn

Hongwen Zhang
hongwen.zhang@cripac.ia.ac.cn

Ran He
rhe@nlpr.ia.ac.cn

1 Center for Research on Intelligent Perception and Computing,
CASIA, Beijing, China

2 National Laboratory of Pattern Recognition, CASIA, Beijing,
China

3 School of Artificial Intelligence, University of Chinese
Academy of Sciences, Beijing, China

4 Center for Excellence in Brain Science and Intelligence
Technology, CAS, Beijing, China

1 Introduction

Face frontalization refers to predicting the frontal view image
from a given profile. It is an effective preprocessing method
for pose-invariant face recognition. Frontalized profile faces
can be directly used by general face recognition methods
without retraining the recognition models. Recent studies
have shown that frontalization is a promising approach to
address long-standing problems caused by pose variation in
the face recognition system. Additionally, generating photo-
graphic frontal faces are beneficial for a series of face-related
tasks, including face reconstruction, face attribute analysis,
facial animation, etc.

Due to the appealing prospect in theories and applica-
tions, research interest has been lasting for years. In the early
stage, most traditional face frontalization methods (Dovgard
and Basri 2004; Hassner 2013; Hassner et al. 2015; Ferrari
et al. 2016; Zhu et al. 2015) are 3D-based. These methods
mainly leverage theories of monocular face reconstruction to
recover 3D faces and then render frontal view images. The
well-known 3DMorphable Model (3DMM) (Blanz and Vet-
ter 1999) has been widely employed to express facial shape
and appearance information. Recently, great breakthroughs
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have been made by the methods based on Generative Adver-
sarial Networks (GAN) (Goodfellow et al. 2014). These
methods frontalize faces from the perspective of 2D image-
to-image translation and build deep networks with novel
architectures. The visual realism has been improved signif-
icantly, for instance, in Multi-PIE (Gross et al. 2010), some
synthesized results (Huang et al. 2017; Zhao et al. 2018)
from small pose profiles are so photographic that it is diffi-
cult for human observers to distinguish them from the real
ones. Moreover, frontalized results have been proven to be
effective for tackling the pose discrepancy in face recogni-
tion. Through the “recognition via generation” framework,
current methods (Zhao et al. 2017, 2018) achieve state-
of-the-art pose-invariant face recognition performance on
multiple datasets, including Multi-PIE, IJB-A (Klare et al.
2015) and CFP (Sengupta et al. 2016).

Even though significant improvements have been made,
there are still some ongoing issues for in-the-wild face
frontalization. For traditional 3D-based approaches, due to
the shortage of 3D data and the limited representation power
of existing 3D models, their performances are commonly
less competitive compared with GAN-based methods albeit
some improvements (Cole et al. 2017; Tran and Liu 2018)
have beenmade. However, GAN-basedmethods heavily rely
on minimizing the pixel-wise loss to deal with the noisy data
for in-the-wild settings. As discussed in many other image
restoration tasks (Huang et al. 2017; Johnson et al. 2016),
the consequence is that the outputs lack variations and tend
to keep close to the statistical meaning of the training data.
The results will be over-smoothed with little high-level tex-
ture information.Hence, current frontalization results are less
appealing in high-resolution, and the output size is often lim-
ited to 128 × 128.

To address the above issues, this paper proposes a High
Fidelity Pose Invariant Model (HF-PIM) that combines the
advantages of 3D and GAN based methods. In HF-PIM, we
frontalize the profiles via a novel texture fusion warping
procedure. Inspired by recent progress in 3D face analysis
(Güler et al. 2017, 2018), we introduce a dense correspon-
dence field to bind the 2D and 3D surface spaces. Thus, the
prerequisite of our warping procedure is decomposed into
two well-constrained problems: dense correspondence field
estimation and facial texture map recovering. We build an
end-to-end neural network to simultaneously address the two
problems and benefit from its greater representation power
than traditional 3D-based methods. Furthermore, we pro-
pose Adversarial Residual Dictionary Learning (ARDL) to
get rid of the reliance on 3D data. Thanks to the 3D-based
deep framework and the capacity of ARDL for fine-grained
texture representation (Dana 2017), high-resolution results
with faithful texture details can be obtained. Considering that
the profile and frontal face pairs obtained in unconstrained
environments have large discrepancies in expressions, illu-

minations, backgrounds, etc., (i.e., misalignment), we extend
ourmodel tomulti-perception guidedHF-PIM to address this
problem. In this modification, we propose a multi-perception
guided loss to utilize supervision information from mul-
tiple possible resources. We make extensive comparisons
with state-of-the-art methods on the Multi-PIE, IJB-A, LFW
(Huang et al. 2007), and CFP datasets. We also frontalize
256 × 256 images from CelebA-HQ (Karras et al. 2018)
to push forward the advance in high-resolution face frontal-
ization. Quantitative and qualitative results demonstrate our
method dramatically improves pose-invariant face recog-
nition and produces photographic high-resolution results,
potentially benefitting many real-world applications.

A preliminary version (Cao et al. 2018) of this work has
been accepted by the Thirty-second Conference on Neural
Information Processing Systems (NeurIPS 2018).We extend
it in four ways: (1) we emphasize the proposed fusion warp-
ing that can be easily integrated into an end-to-end neural
network to address the problem of background synthesis
effectively. (2) We extend the perceptual loss (Johnson et al.
2016) to the multi-perception guided loss and propose multi-
perception guided HF-PIM to address the misalignment
between the ground truth frontal and profile faces obtained
in unconstrained environments. (3) We conduct experiments
on CFP and add numerous evaluation metrics, including FID
(Heusel et al. 2017), ROC curves and more visualization
results, to demonstrate the effectiveness of our model. (4)
We conduct ablation study to reveal how the components of
our model work and make discussions about limitations.

To summarize, our main contributions are listed as fol-
lows:

– A novel High Fidelity Pose Invariant Model (HF-PIM)
is proposed to produce identity-preserving and realistic
frontalized face images with a higher resolution.

– Through dense correspondence field estimation and
facial texturemap recovering, our warping procedure can
frontalize profile images with large poses and preserve
abundant latent 3D shape information.

– Without the need of 3D data, we propose ARDL to
supervise the process of facial texture map recover-
ing, effectively compensating the texture representation
capacity of the 3D-based framework.

– Towards overcoming the misalignment between the
ground truth frontal and profile faces, we introduce a
multi-perception guided loss to utilize supervision infor-
mation from multiple possible resources.

– A unified end-to-end neural network is built to integrate
all algorithmic components, which makes the training
process elegant and flexible.

– Extensive experimental results on five face frontalization
databases demonstrate that the proposedmethod not only
boosts pose-invariant face recognition in the wild, but
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also dramatically improves the visual quality of high-
resolution images.

The remainder of this paper is organized as follows: Sect. 2
provides a brief review of related works. Section 3 presents
the details of our HF-PIM for face frontalization. Section 4
describes the experimental results, Sect. 5 discusses the
limitations and future work, and Sect. 6 summarizes the con-
clusions.

2 RelatedWorks

2.1 Generative Adversarial Network

Introduced by Goodfellow et al. (2014), Generative Adver-
sarial Network (GAN) plays a min-max game to improve
both discriminator and generator. The generator tries to
map a given input distribution to a target data distribu-
tion whereas the discriminator tries to distinguish the data
produced by the generator from the real one. With the con-
straints of the min-max game, GAN can encourage the
generated images to be close to the real image manifolds.
Recently, deep convolutional generative adversarial network
(DCGAN) (Radford et al. 2016) has demonstrated the supe-
rior performance of image generation. Info-GAN (Chen
et al. 2016) applies information regularization to optimiza-
tion. Furthermore, Wasserstein GAN (Arjovsky et al. 2017)
improves the learning stability of GAN and provides solu-
tions for debugging and hyperparameter searching for GAN.
These successful theoretical analyses of GAN show the
effectiveness andpossibility of photorealistic face imagegen-
eration and synthesis.

2.2 Face Frontalization

Face frontalization is an extremely challenging synthesis
problem due to its ill-posed nature. Recent methods address-
ing this problem can be divided into three categories: 3D/2D
local texture warping (Hassner et al. 2015; Zhu et al. 2015),
statistic modeling (Sagonas et al. 2015) and deep learning
based methods (Cole et al. 2017; Kan et al. 2014; Li et al.
2019; Yang et al. 2015; Yim et al. 2015). Hassner et al. (2015)
employ a single unmodified 3D reference surface to produce
the frontal view face. A joint frontal view reconstruction and
landmark localization are optimized by the minimization of
the nuclear norm in Sagonas et al. (2015).

With the development of deep learning, Kan et al. (2014)
propose SPAE for face frontalization by employing auto-
encoders. Yim et al. (2015) introduce multi-task learning for
frontal view synthesis. Yang et al. (2015) employ a recurrent
transformation unit to synthesize discrete 3D views. More-
over, Cole et al. (2017) decompose faces into a sparse set of

landmarks and aligned texture maps, and then combine them
by a differentiable image warping operation.

GAN has dominated the field of face frontalization since
it is firstly used by DR-GAN (Tran et al. 2017). Later, TP-
GAN (Huang et al. 2017) is proposed with a two-pathway
structure and perceptual supervision. CAPG-GAN (Hu et al.
2018) introduces poseguidance through inserting conditional
information carried by five-point heatmaps. PIM (Zhao et al.
2018) proposes a “learning to learn” strategy for high-quality
and identity-preserving face frontalization. CR-GAN (Tian
et al. 2018) introduces a generation sideway to maintain the
completeness of the learned embedding space and utilizes
both labeled and unlabeled data to further enrich the embed-
ding space for realistic generations. All those methods treat
face frontalization as a 2D image-to-image translation prob-
lemwithout considering the intrinsic 3D properties of human
face. They indeed perform well in the situation where train-
ing data is sufficient and captured well controlled. However,
in-the-wild setting often leads to inferior performance, as we
discussed in Sect. 1.

The attempt to combine prior knowledge of 3D face has
been made by FF-GAN (Yin et al. 2017), 3D-PIM (Zhao
et al. 2018) and UV-GAN (Deng et al. 2018). Their and our
methods are all 3D-based but there are many differences.
In FF-GAN, a CNN is trained to regress the 3DMM coef-
ficients of the input. Those coefficients are integrated as a
supplement of low-frequency information. 3D-PIM incor-
porates a simulator with the aid of a 3DMM to obtain prior
information to accelerate the training process and reduce
the amount of required training data. In contrast, we do not
employ 3DMM to present shape or texture information. We
introduce a novel dense correspondence field and frontalize
the profiles through warping. UV-GAN leverages an out-of-
the-box method to project a 2D face to a 3D surface space.
Their network can be regarded as a 2D image-to-image trans-
lation model in the facial texture space. In contrast, once the
training procedure is finished, our model can estimate the
latent 3D information from the profiles without the need for
any additional out-of-the-box methods.

2.3 Pose-invariant Face Recognition

Different from frontalization methods, conventional
approaches aim to achieve pose-invariant face recognition
by leveraging robust local descriptors or metric learning.
Among them, patch-based approaches are very effective for
eliminating relatively small pose discrepancy. For instance,
StackFlow (Ashraf et al. 2008) discovers viewpoint-induced
spatial deformities at the patch level and warps the non-
frontal face image to the fontal one progressively.Without the
need of accurate face alignment, Lucey and Chen (2008) pro-
pose “patch-whole” algorithm that decomposes the gallery
image into an ensemble of statistically independent patches.
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However, in recent years,most of thesemethods are exceeded
by deep learning approaches. With the support of big data,
a deep network is trained in a pose-agnostic manner or sev-
eral ones designed for a specific pose are fused jointly to
tackle pose variance. Taigman et al. (2014) propose the
first recognition pipeline that includes face frontalization
and deep identity representation extraction. Subsequently,
Masi et al. (2016) employ multiple pose-specific models and
utilize multiple identity representations with the aid of 3D
modeling. Similarly, the idea of utilizing an ensemble of
pose-specific CNN features to reduce the sensitivity of the
recognition system to pose variations is proposed by AbdAl-
mageed et al. (2016). To further improve the robustness of the
pose-invariant representations extracted from multiple fea-
ture extractors, Li et al. (2016) propose a novel data cleaning
strategy. Consensus-Driven Propagation (CDP) (Yan et al.
2018) is proposed to carefully aggregatemulti-view informa-
tion by constructing a relational graph in a bottom-upmanner.
Inspired by the human visual system, Han et al. (2018) pro-
pose the contrastive convolution network, which focuses
on those contrastive characteristics between the two faces
to be compared. DREAM block is proposed by Cao et al.
(2018) to bridge the discrepancy between frontal and pro-
file faces. However, most of the mentioned methods require
well-annotated data but collecting faces covering all poses
is expensive and even impractical. In contrast, by employing
profilingmethods to synthesize the ground truth, ourHF-PIM
can utilize both paired or unpaired faces during the training
process.

Achieving pose-invariant face recognition by data aug-
mentation is another promising research direction.Masi et al.
(2016) render unseen viewpoints by 3D modeling to better
capture intra-subject appearance variations and then train a
deep network to achieve face recognition across poses. Later
on, inspired by Shrivastava et al. (2017), DA-GAN (Zhao
et al. 2017, 2018), which acts as a 2D face image refiner, is
proposed to boost pose-invariant face recognition. In brief,
the refiner improves the quality of data augmented by con-
ventional methods. The training process benefits from those
refined data and the performance is boosted. Thus, DA-GAN
is amethod for augmenting training data. Note that UV-GAN
mentioned above canbeused to benefit face recognition in the
samemannerwithDA-GAN, so it is also a data augmentation
method. In contrast, our HF-PIM is trained to directly rotate
the given profile to the frontal face, which can be directly
used for face recognition/verification.

3 High Fidelity Pose Invariant Model

The goal of face frontalization is to model the mapping from
profile face X to the corresponding frontal face Y (X,Y ∈
R

N×N×3). As a reminder, we use Ii j to denote the pixel

value of the coordinate (i, j) in an image I . To learn the
mapping, we employ image pairs (X,Y) for model training
and expect the produced frontalized result Ŷ to be as close
to the ground truth as possible. Inspired by recent progress
in 3D face analysis (Güler et al. 2017, 2018), we propose
a brand-new framework which frontalizes the given profile
face through recovering geometry and texture information
without explicitly building a 3D face model. Concretely, the
facial texturemap and a novel dense correspondence field are
leveraged to produce Y through warping. The facial texture
mapT lies inUVspace—a space inwhich themanifold of the
face is flattened into a contiguous 2D atlas. T represents the
surface of the 3D face. The dense correspondence field F =
(u; v)(u, v ∈ R

N×N ) is specifiedby the following statement:
assume that the coordinate of a point in T is (ui j , vi j ), after
warping, the corresponding coordinate inY is (i, j). Figure 1
provides an intuitionistic illustration. Formally, given T and
Fwith respect toY , T iswarped intoY through the following
formulation:

Yi j = warp(i, j; F, T ) = Tui j ,vi j . (1)

Equation 1 depicts how F establishes the correspon-
dence between a 2D face image and its facial texture
map. For every pixel in a 2D face, its value is repre-
sented by the corresponding pixels in the facial texture
map, and F specifies the location of the correspond-
ing pixels. Since our proposed F builds a point-to-point
correspondence, we refer to it as dense correspondence
field.

Our proposed warping procedure inherits the virtue of
morphable model construction: geometry and texture are
well disentangled by dense correspondence. However, there
are many limitations for traditional construction methods,
including heavily relying on 3D data, neglect of image back-
ground, etc. To overcome those limitations, we design an
end-to-end neural network to provide F and T for Eq. 1.
Concretely, we introduce a fully convolutional network C
to estimate the dense correspondence field F, a transforma-
tive autoencoder Et − Dt to recover the facial texture map
T , and a deep backend neural network R with fusion warp-
ing. As shown in Fig. 2a, our correspondence field estimator
C takes the profile as the input and produces the predicted
dense correspondence field of the frontal view face. Our
transformative autoencoder, Et − Dt , also takes the profile
and produces the recovered facial texture map and the facial
texture feature map. Finally, the frontalized face is synthe-
sized by fusion warping: the warping layer combines the
predicted dense correspondence field and the facial texture
map to produce the frontalized facial part; Then, the backend
neural network R produces the complete frontalized face by
fusing the frontalized facial part and the facial texture fea-
ture map. In the following, we describe how to estimate the
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Fig. 1 aVisual examples of the dense correspondence field F = (u; v).
RGB color images are on the first row. Corresponding u and v are on
the second and the third row respectively. Color indicates the values
of the pixels in F. b A visual illustration about the warping procedure
proposed in Eq. 1. Those red dots and purple lines indicate the relation-
ships between the facial texture map, dense correspondence field and
the RGB color image (Color figure online)

dense correspondence field F of the frontal view in Sect. 3.1.
Then, the recovering procedure of the facial texture map T
via ARDL is illustrated in Sect. 3.2. The backend network
and the fusion warping are introduced in Sect. 3.3. Further-
more, HF-PIM is extended to the multi-perception guided
version in Sect. 3.4 to deal with the practical data misalign-
ment problem. The overall training method is summarized in
Sect. 3.5.

3.1 Dense Correspondence Field Estimation

To obtain the ground truth dense correspondence field F of
monocular frontal face images for training, we employ a face
reconstruction method for 3D shape information estimation.
Concretely, we employ BFM (Paysan et al. 2009) as the 3D
face model. Through the model fitting method proposed by
Zhu et al. (2016), we get estimated shape parameters contain-
ing coordinates of vertices. To build F, we follow Cao et al.
(2019) and map those vertices to UV space via the cylindri-
cal unwrapping described in Booth and Zafeiriou (2014).We
cull those non-visible vertices via z-buffering.

To infer the dense correspondence field of the frontal view
from the profile image, we build a transformative autoen-
coder, C , with U-Net Ronneberger et al. (2015) architecture.
U-Net architecture has been widely employed in segmenta-
tion tasks for dense prediction. Considering that predicting
the segmentation masks and predicting the correspondence
fields can be both regarded as the process of extracting
meaningful geometrical representations and making dense
predictions, we use U-Net architecture to build the corre-
spondence field autoencoder C . Given the input profile, C
first encodes it into pose-invariant shape representations and
then recover dense correspondence field of the frontal view.
Those shortcuts in U-Net guarantee the preservation of spa-
tial information in the output. To superviseC during training,
we minimize the pixel-wise error between the estimated map
and the ground truth F, namely:

Lcorr = ‖C(X) − F‖1, (2)

where ‖·‖1 denotes calculating the mean of the element-wise
absolute value summation of a matrix.

3.2 Facial Texture Map Recovery

We employ a transformative autoencoder consisting of the
encoder Et and the decoder Dt for facial texture map recov-
ering. However, the ground truth facial texture map T of
monocular face image captured in the wild is absent. To
sidestep the demand for the ground truth T , we introduce
Adversarial Residual Dictionary Learning (ARDL), as illus-
trated in Fig. 2b. During the training procedure, only Y is
required instead of T .

We first describe the dictionary layer in our network. In
the field of fine-grained visual recognition, recent advances
(Cimpoi et al. 2015; Dana 2017; Sun et al. 2018) have
demonstrated the superiority of dictionary embeddings.
Inspired by the fact that dictionary embeddings are effec-
tive for representing the texture details of different sub-
species, we integrate a dictionary embedding layer into
our network. Given a set of facial texture feature embed-
dings B = {b1, · · · , bn}, our dictionary layer encodes
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Fig. 2 a The framework of our HF-PIM to frontalize face images.
The procedures of dense correspondence field estimation (i), facial tex-
ture map recovering (ii) and frontal view warping (iii) are discussed
in Sects. 3.1, 3.2 and 3.3, respectively. b The discriminator employed

for ARDL, which is discussed in Sect. 3.2. “FC Layer” denotes a fully
connected layer. c The discriminator employed for ordinary adversarial
learning, which is discussed in Sect. 3.4

the embeddings into a fixed length dictionary representa-
tion E = {e1, · · · , em}. Concretely, E is calculated as:

ek =
n∑

i=1

eik =
n∑

i=1

wik(bi − ck) =
n∑

i=1

wik r ik, (3)

where C = {c1, · · · , cm} denotes the learnable codebook.
Our dictionary layer takes the residual as the input, and the
residual vector r ik = bi − ck . wik is the corresponding
weight for rik . Inspired by Van Gemert et al. (2008) that
assigns a descriptor to each codeword, we set the weight as:

wik = exp(−sk ‖bi − ck‖2)
∑m

j=1 exp(−s j
∥∥bi − c j

∥∥2)

= exp(−sk‖r ik‖2)
∑m

j=1 exp(−s j
∥∥r i j

∥∥2)
,

(4)

where s = (s1, · · · , sm) is the smoothing factor,which is also
learnable. In summary, we optimize the codebook and the

smoothing factor tomake the dictionary layermap the feature
embeddings to the dictionary representation. The mapping is
denoted as Ddic(·) in the following parts. In our network, we
use the output of the encoder Et as the input of the dictionary
layer.

We then introduce how we combine dictionary represen-
tation with adversarial learning. Our inspiration comes from
such an observation: when the identity label is fixed, for X
across different poses, the recovered texture map T should
be invariant. To this end, Et should eliminate those discrep-
ancies caused by different views and encode the input into
pose-invariant facial texture representation.We introduce the
adversarial learning mechanism to supervise Et by making
Ddic as its rival. Formally, the adversarial loss introduced by
ARDL is formulated as:

Ladv = EX∼pdata [log Ddic(Et (X))]. (5)
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Accordingly, Ddic is optimized to minimize:

Ldic = EX,Y∼pdata [log Ddic(Et (Y))

+ log(1 − Ddic(Et (X))], (6)

where we add a fully connected (FC) layer upon Ddic to
make binary predictions standing for real and fake. Through
optimizing Eqs. 5 and 6 alternatively, Et manages to make
the encodings of the profile and the frontal view as similar
as possible. In the meantime, Ddic tries to find the clues
standing for pose information,which provides the adversarial
supervision information for Et . This procedure is illustrated
in Fig. 2b.

3.3 FusionWarping

In this subsection, we propose fusion warping that augments
the procedure inEq. 1 to produce the non-facial parts simulta-
neously with the facial one. As indicated by Fig. 1b, ordinary
warping only produces the facial part of the image. The val-
ues of pixels standing for non-facial parts are undefined, so
post process is necessary to complete the missing regions. In
our fusion warping, a backend neural network R with sev-
eral convolution layers is employed to integrate the warping
result with the second last convolution layers in Dt . The final
output of Dt , i.e., the predicted facial texture map, remains to
be warped into the facial region through Eq. 1. In the mean-
time, the output of the second last layer of Dt , which can be
regarded as the facial texture feature map (denoted as T∗),
is fed into R along with the warped facial part. The recon-
struction loss with fusion warping is formulated as follows:

Lrec = ∥∥R(warp(F, T )�T∗) − Y
∥∥
1 , (7)

where � denotes the concatenation operation on the feature
channel. In Eq. 7, the dense correspondence field F and the
facial texture map T are the predicted facial geometric and
texture representations, respectively. Whereas the concate-
nated T∗ provides the information of the non-facial part,
which stands for the background in the frontalized image.
Our backend network R integrates these representations and
produces the final results. Hence, our network is trained to
produce realistic frontalized faces as well as the backgrounds
without the need of post process.

3.4 Multi-perception Guided Loss

In this subsection, we introduce the multi-perception guided
loss to deal with the practical data misalignment problem.
Recall that employing the perceptual loss introduced by a
fixed neural network is originally proposed by Johnson et al.
(2016) for image style transfer. TP-GANHuang et al. (2017)

first use the perceptual loss in face frontalization. The per-
ceptual loss focuses on the similarity in feature-level and
preserve the identity information of the input, which greatly
benefits pose-invariant face recognition. In this paper, the
perceptual loss is formulated as:

L p = ∥∥φ(R(warp(F, T )�T∗)) − φ(Y)
∥∥2
2 , (8)

where φ(·) denotes the extracted identity representation
obtained by the second last fully connected layer within the
identity preserving network and ‖·‖2 denotes the vector 2-
norm. In our experiment, we employ Light CNN (Wu et al.
2018) as our identity preserving network.

Furthermore, we extend the original perceptual loss to
multi-perception guided loss. The intuition comes from such
an observation: when employing the original perceptual loss,
we assume that the identity label of each face pair is different
across the entire training set. However, inmost unconstrained
datasets (e.g., the CFP dataset), multiple frontal faces can be
provided for each person. But those images are not optimal:
their expressions, illuminations, backgrounds, and other fac-
tors may vary from each other and the given profiles. This
condition is referred to as themisalignment problem between
the ground truth frontal and profile faces. On the one hand,
it is desirable to utilize the multiple images for guidance.
On the other hand, the noise introduced by them must be
reduced to yield better performance. To this end, we propose
multi-perception guided HF-PIM by replacing the original
perceptual loss with the multi-perception guided loss, as
illustrated in Fig. 3. Formally, we formulate the modified
perceptual loss as:

L p =
∥∥∥∥φ(R(warp(F, T )�T∗)) −

∑N

i=1
diφ(Y i )

∥∥∥∥
2

2
. (9)

As described in Eq. 3, our multi-perception guided HF-
PIM is trained to minimize the distance between the frontal-
ized images and the fused representation of the N ground
truth ones in feature-level. di denotes the learnable weight-
ing factor for each ground truth frontal view face. Since d
is learnable, our network is trained to adjust the contribu-
tion of each frontal face to the fused representation. In our
experiments, we set N = 4 for the sake of the convenience
of network training.

Our discriminator Drgb is modified to evaluate the coeffi-
cient d jointly with predicting the reality of frontalized faces.
Specifically, Drgb takes paired images as input. The real pair
consists of two real faces, and the fake pair consists of a real
face as well as a frontalized face. The two images are drawn
from the same identity and concatenated together as the input.
At the end of the second last convolution layer in Drgb, we
add another branch which consists of a convolution layer and
a fully connected one to output the weight prediction q for a
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Fig. 3 An illustration about themodification inmulti-perception guided
HF-PIM. Given the frontalized face and a set of real frontal faces of the
same identity as the ground truth, Drgb outputs the weight prediction
(denoted as q) to calculate theweighting factor d for obtaining the fused
identity representation

given image pair. Sigmoid activation is applied to scale q to
the range of [0, 1]. Then the weighting factor is calculated as
di = qi∑N

j=1 q j
. Inspired by Tran et al. (2018), we also apply

dropout on q. This simple modification makes the network
takes perceptual guidance of multiple images varying from
1 to N .

Besides the minor modifications in the network struc-
ture, the date sampling scheme is also altered accordingly
to ensure N images of the same identity are sampled for
each training batch. Compared with the original version, no
modification is required for our multi-perception guided HF-
PIM during the testing phase because the discriminators are
discarded and only the generator is employed to frontalize
the profiles.

3.5 Overall TrainingMethod

Wealso introduce the adversarial loss in theRGBcolor image
space following thoseGAN-basedmethods (Tran et al. 2017;
Huang et al. 2017; Hu et al. 2018; Zhao et al. 2018; Yin et al.
2017). A CNN named Drgb is employed to give adversarial
supervision in color space, as shown in Fig. 2c. Note that
our method can be easily extended to those advanced ver-
sions (Arjovsky et al. 2017; Mao et al. 2017) of GAN. But
in this paper, we simply use the original form of adversar-
ial loss function (Goodfellow et al. 2014) to prove that the
effectiveness comes from our own contributions.

In summary, all the involved algorithmic components in
our network are differentiable. Hence, the parameters can be
optimized in an end-to-end manner via gradient backpropa-
gation. The whole training process is described in Algorithm
1. Note that λrec, λcorr , λadv , λp, and λg are pre-defined
weights for the coresponding loss terms.

Algorithm 1 Training algorithm of HF-PIM
1: Input: profile X , the ground truth frontal view Y with ground truth

dense correspondence field F, maximum iteration i ter and the iden-
tity preserving network Wu et al. (2018).

2: Output: the frontalized result Ŷ
3: Initializing C, Et , Dt , R, Ddic, Drgb
4: i ← 0
5: while i < i ter do
6: Sampling training data
7: Model forward propagation
8: Calculating Lrec, Lcorr , Ldic, Ladv and L p
9: Calculating the adversarial losses in the RGB color image space,

i.e., Lg (for the generator) and Ld (for the discriminator)
10: L ← λrecLrec + λcorr Lcorr + λadvLadv + λpL p + λg Lg
11: Optimize C, R, Et , Dt by minimizing L
12: Optimize Ddic by minimizing Ldic
13: Optimize Drgb by minimizing Ld
14: i ← i + 1
15: end while

4 Experiments

4.1 Datasets

To demonstrate the superiority of our method in both
controlled and unconstrained environments and produce
high-resolution face frontalization results, we conduct our
experiment on the following five datasets:

Multi-PIE (Gross et al. 2010) is established for studying
on PIE (pose, illumination, and expression) invariant face
recognition. 4 sessions, 20 illumination conditions, 15 poses
and 6 expressions of 337 subjects were captured in controlled
environments.We employ Setting-2 proposed byHuang et al.
(2017) to split the Multi-PIE dataset. Concretely, we use the
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face images with the neutral expression under 20 illumina-
tions and 13 poses within ±90◦. The two poses from the
two additional cameras (08_1 and 19_1) located above the
subject are not considered. The first 200 subjects are used
for training and the rest 137 ones for testing. Each testing
identity has one gallery image from his/her first appearance.
Hence, there are 72,000 and 137 images in the probe and
gallery sets, respectively.

LFW (Huang et al. 2007) is a benchmark database for face
recognition. It contains 13,233 images of 5,749 people and
has been widely used to evaluate synthesis or verification
performance of various methods under unconstrained envi-
ronments. Since the face images in LFW are collected from
the web and contain various pose, expression and illumina-
tion variations, it is extremely challenging to synthesize a
photorealistic frontal face. In our experiment, LFW is only
used for testing. Following the verification protocol (Huang
et al. 2007), face images are divided into 10 folds that contain
different identities and 600 face pairs.

IJB-A (Klare et al. 2015) is one of the most challenging
in-the-wild face recognition datasets at present. It has 5, 396
images and 20, 412 video frames of 500 subjects with large
pose variations captured from in-the-wild environments to
avoid the near frontal bias. In this paper, we follow the test-
ing protocols in Klare et al. (2015) for face recognition and
verification.

CFP (Sengupta et al. 2016) is a face dataset established
specifically for frontal to profile face verification problem.
The yaw angle of most profiles in this dataset are nearly 90◦.
It consists of 500 subjects and there are 10 frontal and 4 pro-
file images per subject. The experimental protocols provided
by CFP divide the data into 10 splits with a pairwise disjoint
set of individuals in each split. There are 50 individuals, 350
same and 350 not-same pairs per split. In this paper, we focus
on the Frontal-Profile protocols to demonstrate the effective-
ness of our model.

CelebA-HQ (Karras et al. 2018) established by Karras
et al. (2018) is a high-resolution subset of CelebA (Liu
et al. 2015). CelebA (Liu et al. 2015) is a large-scale face
attributes dataset. Contained images cover large pose varia-
tions and background clutter. CelebA-HQ consists of 30000
faces chosen from CelebA. In Karras et al. (2018), a series
of processing methods have been applied to improve the res-
olution and image quality of the selected faces.

4.2 Experimental Settings

Implementation Details. In our experiment, face images are
normalized to 128×128 and 256×256 for regular and high-
resolution face frontalization, respectively. Image intensities
are linearly scaled to the range of [−1, 1]. We use the land-
marks of the centers of eyes and mouth to normalize face
images by the method proposed by Wu et al. (2018). To test

on different datasets, we train several different HF-PIM by
using different training data. To test on the Multi-PIE, we
train our network on the training set of Multi-PIE. To test
on LFW and IJB-A, the training data consists of the training
set of CelebA-HQ and Multi-PIE. Note that the images in
CelebA-HQ are downsampled to 128 × 128 in this case. To
test on CFP, we fine-tune the network employed for testing
on LFW and IJB-A on the training split of CFP. To generate
256× 256 results, we train our HF-PIM only on the training
set of CelebA-HQ. We adapt the model architecture in Zhu
et al. (2017) to build our networks.We determine the weights
for various loss terms in Algorithm 1 by cross-validation on
Multi-PIE. Our empirical rule is that adjusting the weight to
make all the losses have the same order of magnitude, and
we simply increase/decrease the weight by a factor of 10. In
our experiments, we set λrec to 10 and all the other weights
to 1. We use Adam optimizer with a learning rate of 1e-4 and
β1 = 0.5, β2 = 0.99. Our proposed method is implemented
based on the deep learning library Pytorch (Paszke et al.
2017). Two NVIDIA Titan X GPUs with 12GB GDDR5X
RAM are employed for the training and testing processes.
Evaluation Metrics Evaluating the face recognition perfor-
mances by “recognition via generation” is the most common
method to measure the quality of the frontalized faces, which
means profiles are frontalized first, and then the performance
is evaluated on those processed face images. Besides, the
visual quality is compared, as most GAN-based methods do.
TheFréchet InceptionDistance (FID) (Heusel et al. 2017) has
been recently proposed tomeasure the performance of image
generation tasks. In our experiment, FID is also employed to
measure the performances quantificationally.
Generating Paired Training Data For the Multi-PIE dataset,
subjects have images across different poses captured simul-
taneously. Those images are perfect for training. However,
the faces in CelebA-HQ are all captured in the wild, so paired
data is not available. To address this issue, we employ HPEN
(Zhu et al. 2015) to rotate the frontal view faces to profiles.
To meet the requirement of HPEN, we first detect the facial
landmarks by applying the official implementation1 of Bulat
and Tzimiropoulos (2017). In this process, we discard 29
samples which the algorithm failed to detect the landmarks.
Then, we employ the “Pose Adaptive 3DMM fitting” part of
HPEN to fit the BFM (Paysan et al. 2009) face model and
get the fitted parameters, including pose, shape and expres-
sion. We calculate the yaw angles from the pose parameters
and divide the subjects by yaw angles: if the yaw angle is
smaller than ± 5◦, we treat this face as the frontal view one
and send it to the training set; if the yaw angle is larger than
± 15◦, we regard this face as a profile and send it to the test-
ing set; otherwise, we discard this sample. Hence, we have
19, 203 and 5, 998 in the training and the testing sets of

1 https://github.com/1adrianb/face-alignment.
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Table 1 Comparisons of rank-1
recognition rates (%) across
views on Multi-PIE

Method ± 15◦ ± 30◦ ± 45◦ ± 60◦ ± 75◦ ± 90◦

DR-GAN Tran et al. (2017) 94.9 91.1 87.2 84.6 – –

FF-GAN Yin et al. (2017) 94.6 92.5 89.7 85.2 77.2 61.2

Light CNN Wu et al. (2018) 98.6 97.4 92.1 62.1 24.2 5.5

TP-GAN Huang et al. (2017) 98.7 98.1 95.4 87.7 77.4 64.6

CAPG-GAN Hu et al. (2018) 99.8 99.6 97.3 90.3 83.1 66.1

3D-PIM Zhao et al. (2018) 99.6 99.5 98.8 98.4 95.2 86.7

PIM Zhao et al. (2018) 99.3 99.0 98.5 98.1 95.0 86.5

HF-PIM (Ours) 99.99 99.98 99.88 99.14 96.40 92.32

CelebA-HQ, respectively. Finally, we employ the rotation
part of HPEN to produce the corresponding profiles of the
frontal faces in the training set. Concretely, we profile these
faces to ± 15◦,± 30◦, . . . ,± 75◦,± 90◦ (just like Multi-
PIE). We only alter the pose parameters, so other attributes,
e.g., expressions, illuminations, etc., remain unchanged.

4.3 Frontalization Results in Controlled Situations

In this subsection, we systematically compare our method
with DR-GAN (Tran et al. 2017), TP-GAN (Huang et al.
2017), FF-GAN (Yin et al. 2017), CAPG-GAN (Hu et al.
2018), PIM (Zhao et al. 2018) and 3D-PIM (Zhao et al. 2018)
on the Multi-PIE dataset. Those profiles with extreme poses
(75◦ and 90◦) are very challenging cases.

To demonstrate the superiority of our model on iden-
tity preserving, we test the face recognition performance
on Multi-PIE. Remind that our performance is evaluated by
the “recognition via generation” framework. Concretely, pro-
files are first frontalized by our model and then used directly
for recognition. After the frontalization preprocessing, Light
CNN (Wu et al. 2018) is employed as the feature extrac-
tor. We compute the cosine distance of the extracted feature
vectors for face recognition. The manners for evaluating TP-
GAN, FF-GAN, PIM, CAPG-GAN, and 3D-PIM are the
same as our model. Light CNN is used for these methods
except FF-GAN (their feature extractor is not publicly avail-
able). DR-GAN is evaluated in a differentmanner: the feature
vectors are directly extracted by their model. Thus, no extra
feature extractor is needed for DR-GAN. Besides frontaliza-
tionmethods, the performance of Light CNN is also included
as the baseline. The results are reported across different poses
in Table 1. For those poses less than 60◦, the performances of
most methods are quite good, whereas our method performs
obviously better. We infer that the performance has almost
saturated in this case. For those extreme poses, our method
still achieves state-of-the-art recognition performance. Note
that we employ the original HF-PIM rather than the multi-
perception guided one. The reason is that for the Multi-PIE
dataset, images across different poses are captured simulta-

neously in a totally controlled situation. Thus, for a given
profile, the corresponding frontal face is perfectly matched.
There is no need to involvemulti-perception guidance in such
a case.

Visual inspections on Multi-PIE are shown in Fig. 4. The
ID numbers of the subjects in the figure are consecutive (from
201 to 225). We observe that HF-PIM can not only well pre-
serve the overall facial structure but also recover the unseen
ears and cheeks in an identity consistent way. For most sub-
jects, the frontalized results preserve both the visual realism
and the characteristics of identities very well. These results
also suggest that given enough training data and a proper
network structure, it is feasible to synthesize a photorealistic
frontal face image from a large pose.

FID is adopted to reveal the performance of general image
generation tasks. Lower FID score indicates that the Wasser-
stein distance between two distributions is smaller. In our
experiment, we followMiyato and Koyama (2018) and com-
pute FID between the frontal faces and the frontalized ones.
InMiyato andKoyama (2018), InceptionV3model (Szegedy
et al. 2015) is employed to extract feature vectors from
images for calculating FID. However, we argue that Incep-
tion models are trained for image classification and may not
effectively reflect the quality of faces. Thus, we also employ
Light CNN as the feature extractor. The results are reported
across different yaw angles in Table 2. FID between the pro-
files and the real frontal faces across different angles are also
reported as a reference. We can see that employing different
feature extractors, Inception V3 or Light CNN, leads to simi-
lar observations: our frontalized faces have lower FID scores
than the original profiles, indicating that faces frontalized by
our HF-PIM become more similar with the frontal ones in
feature level.

The time complexity is also an important factor in face
recognition applications.Hence,wemake comparisons of the
inference time with both the traditional 3D-based methods
(LFW-HPEN Zhu et al. 2015 and LFW-3D Hassner et al.
2015) and GAN-based methods (DR-GAN Tran et al. 2017
and CAPG-GAN Hu et al. 2018), as shown in Table 3. We
employ a single NVIDIA Titan XP GPU and a single CPU
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Fig. 4 Visualization results on Multi-PIE. The numbers stand for the ID of the subjects below. For each subject, the input image is on the top, the
frontalized result is in the middle and the ground truth on the bottom. The illuminations of the inputs are randomly collected
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Table 2 FID across different views on Multi-PIE

Feature Extractor ±15◦ ±30◦ ±45◦ ±60◦ ±75◦ ±90◦

Light CNN Wu et al. (2018) 6.920/6.681 7.826/7.467 10.495/8.196 13.982/9.600 19.571/11.669 33.885/14.663

Inception V3 Szegedy et al. (2015) 16.583/15.698 45.269/33.368 68.367/46.529 77.426/64.120 96.710/82.192 154.055/129.166

Numbers in italics denote the distance between the profile set and the frontal face set. Numbers in bold type denote the distance between the
frontalized face set and the real frontal face set

Table 3 Comparisons of the inference time (ms) on frontalizing a 128 × 128 image

Setting LFW-HPEN Zhu
et al. (2015)

LFW-3D Hassner
et al. (2015)

DR-GAN Tran
et al. (2017)

CAPG-GAN Hu
et al. (2018)

Ours

CPU 1.01 ×103 1.37 ×102 – – 4.57 ×102

GPU – – 14.95 29.67 5.77

“–” means the result is not reported

Table 4 Face
recognition/verification
performance (%) comparisons
on IJB-A

Method Verification Recognition

FAR=0.01 FAR=0.001 Rank-1 Rank-5

DR-GAN Tran et al. (2017) 77.4± 2.7 53.9± 4.3 85.5± 1.5 94.7± 1.1

FF-GAN Yin et al. (2017) 85.2± 1.0 66.3± 3.3 90.2± 0.6 95.4± 0.5

PIM Zhao et al. (2018) 93.3± 1.1 87.5± 1.8 94.4± 1.1 –

Light CNN Wu et al. (2018) 91.5± 1.0 84.3± 2.4 93.0± 1.0 –

HF-PIM (Ours) 95.3± 0.7 89.9± 1.3 96.4± 0.5 98.1± 0.2

The results are averaged over 10 testing splits. “–” means the result is not reported

Table 5 Face verification performance (%) comparisons on LFW

Method ACC AUC

TP-GAN Huang et al. (2017) 96.13 99.42

FF-GAN Yin et al. (2017) 96.42 99.45

CAPG-GAN Hu et al. (2018) 99.37 99.90

Light CNN Wu et al. (2018) 99.39 99.87

HF-PIM (Ours) 99.41 99.92

Bold values indicate the best performance among all the compared
methods

(i7-4790) forGPUandCPUsettings in the table, respectively.
We can see that our HF-PIM on GPU is the fastest among all
the comparedmethods. Even in theCPU setting, ourHF-PIM
still takes less than 1 second.

4.4 Frontalization Results in theWild

Extending face frontalization to in-the-wild setting is a very
challenging problem of significant importance. In this paper,
we evaluate our method on three widely used in-the-wild
datasets, including IJB-A, LFW, and CFP. Note that to make
fair comparisons with previous methods, we only use the
training set of CelebA-HQ and Multi-PIE to test on IJB-A
and LFW. To test on CFP, we fine-tune the network employed
for testing on LFW and IJB-A on the training set of CFP

for each split and introduce multi-perception guidance. This
model is denoted as HF-PIM (mpg). Quantitative results are
summarized in Tables 4, 5, and 6 for IJB-A, LFW, and CFP,
respectively. The ROC curves are shown in Figs. 5, 6, and
7. Additionally, we also compare our results with DA-GAN
Zhao et al. (2017) in Table 7. Since all the methods compared
in Table 4 do not use the training data of IJB-A, which is
different from DA-GAN, we do not include DA-GAN in that
table. To compare with DA-GAN, we follow their training
protocol and finetune our baseline model, i.e., Light CNN
Wu et al. (2018), on the training data of each split.

We can see that the face frontalization methods only
marginally improve the performance on LFW because most
faces in this dataset are (near) frontal view. Besides, the
baseline model Light CNN has already achieved relatively
high performance. But our method still outperforms existing
frontalization methods in this case.

When tested on IJB-A that contains lots of images with
large poses, our method shows a significant improvement for
face verification and recognition. The visualization compar-
ison2, which is shown in Fig. 8, also proves our superiority
for preserving the identity information and the texture details.

2 Visualization results produced by other methods are released by their
authors. Different methods usually report visual examples of different
identities. We try our best to find those identities reported by most
methods.
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Table 6 Face recognition
performance (%) comparisons
on CFP

Method Frontal-profile

ACC EER AUC

DR-GAN Tran et al. (2017) 93.41± 1.17 6.45± 0.16 97.96± 0.06

DR-GAN (color) Tran et al. (2018) 93.64± 1.51 6.22± 0.32 98.18± 0.38

PIM Zhao et al. (2018) 93.10± 1.01 7.69± 1.29 97.65± 0.62

Light CNN Wu et al. (2018) 92.47± 1.44 8.71± 1.80 97.77± 0.76

HF-PIM 94.00± 0.97 8.86± 1.74 97.41± 0.65

HF-PIM (mpg) 94.71± 0.83 5.86± 1.13 98.21± 0.55

Human 94.57± 1.10 5.02± 1.07 98.92± 0.46

The results are averaged over 10 testing splits. “–” means the result is not reported

Fig. 5 ROC curves on the IJB-A verification protocol

Fig. 6 ROC curves on the LFW verification protocol

Thanks to the 3D-based framework and the powerful adver-
sarial residual dictionary learning, our HF-PIM produces
results with very high fidelity. For othermethods, they indeed
produce reasonable images but redundant manipulations can
be observed. For instance, DR-GAN makes the eyes of the
subject in the second row in IJB-A open; TP-GAN and
CAPG-GAN tend to change the skin color and background.

Fig. 7 ROC curves on the CFP verification protocol

When compared with DA-GAN, we can see despite that
our baseline model is inferior, our method still achieves a
comparable performance. We argue that a completely fair
comparison with DA-GAN is impossible because our model
and DA-GAN are designed to boost face recognition in
entirely different manners. Besides, DA-GANdoes not focus
on generating photorealistic face images.

The results on the CFP dataset also demonstrate the effec-
tiveness of our model. It is notable that the training set for the
original HF-PIMconsists of no profiles in 90◦ captured under
unconstrained situation but nearly all the profiles in CFP are
90◦. Thus, the limitations of HF-PIM mainly result from
the lack of data, which is overcome by the multi-perception
guided version. Although the original HF-PIMdoes not show
obvious advantages over the baseline Light CNN in Table 6
and Fig. 7, HF-PIM (mpg) dramatically improves the veri-
fication performance, even comparable with human experts.
Since face frontalization on CFP is a very challenging prob-
lem, few methods have reported their visualization results.
Thus, we mainly make comparisons with DR-GAN Tran
et al. (2018) in Fig. 9. We can see that generating convinc-
ing frontalization results even for extreme poses in the wild
is possible. Our HF-PIM can faithfully preserve the visual
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Table 7 Comparisons between
our HF-PIM and DA-GAN
(Zhao et al. 2017) on IJB-A. The
results are averaged over 10
testing splits

Method Verification Recognition

FAR=0.01 FAR=0.001 Rank-1 Rank-5

Baseline 96.3 ± 0.7 92.0 ± 0.6 96.6 ± 0.6 98.7 ± 0.3

DA-GAN Zhao et al. (2017) 97.6 ± 0.7 93.0 ± 0.5 97.1 ± 0.7 98.9 ± 0.3

Baseline 93.95 ± 1.04 91.79 ± 0.74 95.29 ± 0.81 97.60 ± 0.65

HF-PIM 96.53 ± 0.72 93.49 ± 0.66 97.26 ± 0.46 98.17 ± 0.23

The baseline models of HF-PIM and DA-GAN are different
Bold values indicate the best performance among all the compared methods

Fig. 8 Visualization comparisons of face frontalization results. The samples on the left are drawn from LFW and the right side are from IJB-A

Fig. 9 Visualization comparisons of the frontalization results on CFP. a The input profiles. b The faces frontalized by our Multi-perception Guided
HF-PIM. c The faces frontalized by our HF-PIM without the multi-perception guided loss. d The faces synthesized by DR-GAN (Tran et al. 2018)
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Fig. 10 High-resolution
frontalized results on the testing
set of CelebA-HQ. From left to
right, the first column is the
input profile images, and the
second column is our frontalized
results. The results of
CAPG-GAN and TP-GAN are
shown in the third and the fourth
columns, respectively

properties except pose. The expression, illumination and res-
olution of our frontalization results are very consistent with
the inputs. In contrast, DR-GAN tends to produce results
with similar hues, which indicates the heavy reliance on the
pixel-wise loss.

4.5 High-Resolution Face Frontalization

Generating high-resolution results has great importance on
extending the application of face frontalization. However,
due to its difficulty, few methods consider producing images
with a size larger than 128 × 128. To further demonstrate
our superiority, frontalized 256 × 256 results on CelebA-
HQ are proposed in this paper. Some samples are shown
in Figs. 10 and 11. We also make comparisons with TP-
GAN and CAPG-GAN. Note that since results on CelebA-
HQ have not been reported by previous methods, we contact
the authors to get their model and produce 128× 128 results
through carefully following their instructions. The images
in CelebA-HQ contain rich textures that are difficult for the
generator to reproduce faithfully. Even in such a challenging

situation, HF-PIM is still able to produce plausible results.
By contrast, the results of Hu et al. (2018) and Huang et al.
(2017) look less appealing.

4.6 Ablation Study

The superiority of our novel 3D-based deep framework has
been verified by the comparisons with other methods. In this
section, we propose two groups of variants: one group is
designed to verify the effectiveness of the reconstruction loss
(Lrec) as well as the adversarial loss (Lg), and whether it is
necessary to employ symmetric loss like TP-GAN Huang
et al. (2017); The other group is designed to verify the effec-
tiveness of our proposed ARDL.

In the first group, let us denote our HF-PIM as “with Lrec,
with Lg , without Lsym”. We investigate the following vari-
ants:

– V1 (“without Lrec, with Lg , without Lsym”): We directly
remove Lrec from the total loss function.
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Fig. 11 More frontalization
results on CelebA-HQ. The first
and the third rows are the input
images. The second and the
fourth rows are corresponding
frontalized images

– V2 (“with Lrec, without Lg , without Lsym”): We remove
Lg , i.e., the adversarial loss measured in the RGB color
space, from the loss function. Accordingly, Drgb is also
excluded from the training process.

– V3 (“with Lrec, with Lg , with Lsym”): The symmetric
loss originally used in TP-GAN is added to the total loss
function.

In the second group, recall that our proposedADRL subtly
integrates both the deep dictionary representation and the
adversarial learning into HF-PIM. Hence, we denote our HF-
PIM as “with DL, with Ladv” in the second group. DLmeans
dictionary learning, and Ladv is the adversarial lossmeasured
in the embedding space, as described in Eq. 5. Specifically,
the following variants are investigated:

– V4 (“without DL, with Ladv”):We remove the dictionary
learning in ADLR. In this case, the dictionary embedding
layer is replaced by a fully connected layer.

– V5 (“with DL, without Ladv”): We remove the adversar-
ial learning in ADLR. In this case, Ddic is removed and

Ladv is obtained through calculating the vector 2-norm
of (Et (Y) − Et (X)).

– V6 (“without DL, without Ladv”): We directly remove
ARDL from our network. In this case, Ddic is removed
and Ladv is excluded from the training process.

We summarize the mentioned variants and report quanti-
tative results in Table 8. Furthermore, we report the visual-
ization results in Fig. 12. Through the comparisons between
our HF-PIM and its variants, the effectiveness of our model
is demonstrated. The effectiveness of the adversarial loss
and the reconstruction loss is verified by the inferior per-
formances of V1 and V2, respectively. We can see that very
symmetric faces can be obtained by V3. However, the visual
quality and the recognition performances drop markedly in
this case. The reason is that human faces are not strictly
symmetric (hair, accessories, expressions, etc.). Thus, the
symmetric loss is not included in our HF-PIM. The effective-
ness of our ARDL can be demonstrated by V4, V5, and V6.
Both quantitative and qualitative results indicate that the dic-
tionary embedding layer ismore powerful than ordinary fully
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Table 8 (a) A summary of the
variants involved in our ablation
study. (b) Face recognition
performance (%) comparisons
for our HF-PIM and its
variations on the IJB-A dataset

Model Lrec Lg Lsym Model DL Ladv

(a)

HF-PIM � � − HF-PIM � �
V1 − � − V4 − �
V2 � − − V5 � −
V3 � � � V6 − −

Model Verification Recognition

FAR=0.01 FAR=0.001 Rank-1 Rank-5

(b)

V1 92.1±1.2 85.3±2.0 91.9±1.4 93.2±1.1

V2 94.4±0.8 88.6±1.7 94.0±1.1 95.8±0.9

V3 93.9±1.0 87.3±2.0 93.4±1.2 94.1±0.8

V4 95.0±0.7 89.1±1.5 95.6±0.8 97.0±0.4

V5 94.7±0.8 89.1±1.6 95.2±0.9 96.9±0.4

V6 94.1±1.0 87.7±1.9 94.3±1.1 96.1±0.8

HF-PIM 95.3±0.7 89.9±1.3 96.4±0.5 98.1±0.2

Bold values indicate the best performance among all the compared methods
�/− mean that the variant includes/excludes the corresponding loss. The results are averaged over 10 testing
splits

Fig. 12 Qualitative comparisons on synthetic results between HF-PIM and its variants
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connected one on representing fine-grained texture informa-
tion. Besides, we can see that adversarial training criterion
on texture space brings more improvements.

5 Limitations and Discussion

Although ourmethod can achieve compelling results and pre-
serve the identity information across many different datasets,
there is still room for improvement, especially for high-
resolution face frontalization. We can see that the visual
qualities of the high-resolution face frontalization results
look less convincing. Sometimes our model tends to pro-
duce more warped bulged regions than the normal side (e.g.,
the fourth subject in the last row in Fig. 11). We argue that
high-resolution face frontalization is much challenging but
few datasets provide paired face images at 256 × 256. So,
we employ the profiling method in Zhu et al. (2015) to over-
come the lack of data. However, these synthetic training data
is not perfect, making the high-resolution results less appeal-
ing than 128 × 128 ones. Given training data with higher
quality, it is predictable that our model indeed produces real-
istic results.

Existing methods (Huang et al. 2017; Tran et al. 2017;
Zhao et al. 2018; Yin et al. 2017; Hu et al. 2018) measure
the performance of face recognition to reflect the quality
of frontalized results. This measurement cannot be applied
to those datasets without identity labels (e.g., CelebA-HQ)
and neglects texture information that is not sensitive to iden-
tity. However, those textures also play an import role on the
visual quality and should be preserved faithfully. For face
attribute analysis, data augmentation andmany other applica-
tions, recovering high-resolution frontal faces with detailed
texture information has great potential for making progress.
Therefore, finding new applications for face frontalization
and putting forward new metrics need further research.

6 Conclusion

This paper has proposed High Fidelity Pose Invariant
Model (HF-PIM) to produce realistic and identity-preserving
frontalization results with a higher resolution. HF-PIM com-
bines the advantages of 3D and GAN based methods and
frontalizes profile images via a novel facial texture fusion
warping procedure. By leveraging a novel dense correspon-
dence field, the prerequisite of warping is decomposed into
dense correspondence field estimation and facial texture
recovering, which are well addressed by a unified end-to-end
neural network. We also have introduced Adversarial Resid-
ual Dictionary Learning (ARDL) to supervise facial texture
map recovering without the need of 3D data. Furthermore,
the multi-perception guided loss is proposed to overcome

the practical data misalignment problem in unconstrained
environments. Exhaustive experiments have shown that our
proposed method can preserve more identity information
as well as texture details, which makes the high-resolution
results far more realistic.

Acknowledgements Thiswork is funded by theNational KeyResearch
and Development Program of China (Grant Nos. 2016YFB1001001,
2017YFC0821602), the National Natural Science Foundation of China
(Grant Nos. 61622310, 61427811, U1836217), andBeijingNatural Sci-
ence Foundation (Grant No. JQ18017).

References

AbdAlmageed, W., Wu, Y., Rawls, S., Harel, S., Hassner, T., Masi,
I., Choi, J., Lekust, J., Kim, J., Natarajan, P., et al. (2016). Face
recognition using deep multi-pose representations. In IEEE winter
conference on applications of computer vision (WACV) (pp. 1–9).

Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. In
International conference on machine learning (ICML) (pp. 214–
223).

Ashraf, A. B., Lucey, S., & Chen, T. (2008). Learning patch correspon-
dences for improved viewpoint invariant face recognition. In IEEE
conference on computer vision and pattern recognition (CVPR)
(pp. 1–8).

Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of
3D faces. In Annual conference on computer graphics and inter-
active techniques (SIGGRAPH) (pp. 187–194).

Booth, J., & Zafeiriou, S. (2014). Optimal UV spaces for facial mor-
phable model construction. In IEEE international conference on
image processing (ICIP) (pp. 4672–4676).

Bulat, A., & Tzimiropoulos, G. (2017). How far are we from solving the
2D & 3D face alignment problem? (and a dataset of 230,000 3D
facial landmarks). In IEEE international conference on computer
vision (ICCV) (pp. 1021–1030).

Cao, J., Hu, Y., Yu, B., He, R., & Sun, Z. (2019). 3D aided duet GANs
for multi-view face image synthesis. IEEE Transactions on Infor-
mation Forensics and Security (TIFS), 14(8), 2028–2042.

Cao, J., Hu, Y., Zhang, H., He, R., & Sun, Z. (2018). Learning a
high fidelity pose invariant model for high-resolution face frontal-
ization. In Conference on neural information processing systems
(NeurIPS).

Cao, K., Rong, Y., Li, C., Tang, X., & Loy, C.C. (2018). Pose-robust
face recognition via deep residual equivariant mapping. In IEEE
conference on computer vision and pattern recognition (CVPR)
(pp. 5187–5196).

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., &
Abbeel, P. (2016). InfoGAN: Interpretable representation learning
by information maximizing generative adversarial nets. In Con-
ference on neural information processing systems (NeurIPS) (pp.
2172–2180).

Cimpoi,M.,Maji, S., &Vedaldi, A. (2015). Deep filter banks for texture
recognition and segmentation. In IEEE conference on computer
vision and pattern recognition (CVPR) (pp. 3828–3836).

Cole, F., Belanger, D., Krishnan, D., Sarna, A., Mosseri, I., & Freeman,
W.T. (2017). Synthesizing normalized faces from facial identity
features. In IEEE conference on computer vision and pattern
recognition (CVPR) (pp. 3386–3395).

Dana, H.Z.J.X.K. (2017). Deep TEN: Texture encoding network. In
IEEE conference on computer vision and pattern recognition
(CVPR) (pp. 2896–2905).

123



International Journal of Computer Vision (2020) 128:1485–1504 1503

Deng, J., Cheng, S., Xue, N., Zhou, Y., & Zafeiriou, S. (2018). UV-
GAN: Adversarial facial UV map completion for pose-invariant
face recognition. In IEEE conference on computer vision and pat-
tern recognition (CVPR) (pp. 7093–7102).

Dovgard, R., &Basri, R. (2004). Statistical symmetric shape from shad-
ing for 3D structure recovery of faces. In European conference on
computer vision (ECCV) (pp. 99–113).

Ferrari, C., Lisanti, G., Berretti, S., & Del Bimbo, A. (2016). Effec-
tive 3D based frontalization for unconstrained face recognition.
In International conference on pattern recognition (ICPR) (pp.
1047–1052).

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,Warde-Farley, D.,
Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversar-
ial nets. In Conference on neural information processing systems
(NeurIPS) (pp. 2672–2680).

Gross, R.,Matthews, I., Cohn, J., Kanade, T., &Baker, S. (2010).Multi-
PIE. Image and Vision Computing (IVC), 28(5), 807–813.

Güler, R. A., Neverova, N., & Kokkinos, I. (2018). DensePose: Dense
human pose estimation in the wild. In IEEE conference on com-
puter vision and pattern recognition (CVPR).

Güler, R. A., Trigeorgis, G., Antonakos, E., Snape, P., Zafeiriou, S., &
Kokkinos, I. (2017). Densereg: Fully convolutional dense shape
regression in-the-wild. In IEEE Conference on computer vision
and pattern recognition (CVPR) (vol. 2, p. 5).

Han, C., Shan, S., Kan,M.,Wu, S., &Chen, X. (2018). Face recognition
with contrastive convolution. InEuropean conference on computer
vision (ECCV) (pp. 118–134).

Hassner, T. (2013). Viewing real-world faces in 3D. In IEEE interna-
tional conference on computer vision (ICCV) (pp. 3607–3614).

Hassner, T., Harel, S., Paz, E.,&Enbar, R. (2015). Effective face frontal-
ization in unconstrained images. In IEEE conference on computer
vision and pattern recognition (CVPR) (pp. 4295–4304).

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Klambauer, G.,
& Hochreiter, S. (2017). GANs trained by a two time-scale update
rule converge to aNash equilibrium. InConference on neural infor-
mation processing systems (NeurIPS) (pp. 6629–6640).

Hu, Y., Wu, X., Yu, B., He, R., & Sun, Z. (2018). Pose-guided photore-
alistic face rotation. In IEEE conference on computer vision and
pattern recognition (CVPR) (pp. 8398–8406).

Huang, G. B., Ramesh, M., Berg, T., & Learned-Miller, E. (2007).
Labeled faces in the wild: A database for studying face recog-
nition in unconstrained environments. Tech. rep., University of
Massachusetts, Amherst.

Huang, H., He, R., Sun, Z., & Tan, T. (2017). Wavelet-SRnet: A
wavelet-based CNN for multi-scale face super resolution. In IEEE
international conference on computer vision (ICCV) (pp. 1689–
1697).

Huang, R., Zhang, S., Li, T., & He, R. (2017). Beyond face rotation:
Global and local perception GAN for photorealistic and identity
preserving frontal view synthesis. In IEEE international confer-
ence on computer vision (ICCV) (pp. 2458–2467).

Johnson, J., Alahi, A., & Fei-Fei, L. (2016). Perceptual losses for real-
time style transfer and super-resolution. In European conference
on computer vision (ECCV) (pp. 694–711).

Kan, M., Shan, S., Chang, H., & Chen, X. (2014). Stacked progressive
auto-encoders (SPAE) for face recognition across poses. In IEEE
conference on computer vision and pattern recognition (CVPR)
(pp. 1883–1890).

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018). Progressive grow-
ing of GANs for improved quality, stability, and variation. In
International conference on learning representations (ICLR).

Klare, B.F., Jain, A.K., Klein, B., Taborsky, E., Blanton, A., Cheney, J.,
Allen, K., Grother, P., Mah, A., & Burge, M. (2015). Pushing the
frontiers of unconstrained face detection and recognition: IARPA
janus benchmark a. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 1931–1939).

Li, J., Zhao, J., Zhao, F., Liu, H., Li, J., Shen, S., Feng, J., & Sim, T.
(2016). Robust face recognition with deep multi-view represen-
tation learning. In ACM international conference on multimedia
(ACM-MM) (pp. 1068–1072).

Li, P., Wu, X., Hu, Y., He, R., & Sun, Z. (2019). M2FPA: A multi-
yaw multi-pitch high-quality database and benchmark for facial
pose analysis. IEEE international conference on computer vision
(ICCV).

Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep learning face
attributes in the wild. In IEEE international conference on com-
puter vision (ICCV) (pp. 3730–3738).

Lucey, S., & Chen, T. (2008). A viewpoint invariant, sparsely regis-
tered, patch based, face verifier. International Journal of Computer
Vision (IJCV), 80(1), 58–71.

Mao, X., Li, Q., Xie, H., Lau, R. Y., Wang, Z., & Smolley, S. P. (2017).
Least squares generative adversarial networks. In IEEE interna-
tional conference on computer vision (ICCV) (pp. 2813–2821).

Masi, I., Rawls, S.,Medioni,G.,&Natarajan, P. (2016). Pose-aware face
recognition in thewild. In IEEEconference on computer vision and
pattern recognition (CVPR) (pp. 4838–4846).

Masi, I., Trn, A. T., Hassner, T., Leksut, J. T., & Medioni, G. (2016).
Do we really need to collect millions of faces for effective face
recognition? In European conference on computer vision (ECCV)
(pp. 579–596).

Miyato, T., & Koyama, M. (2018). cGANs with projection discrim-
inator. In International conference on learning representations
(ICLR).

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z.,
Lin, Z., Desmaison, A., Antiga, L., & Lerer, A. (2017). Automatic
differentiation in pytorch. In Conference on neural information
processing systems (NeurIPS-W).

Paysan, P.,Knothe,R.,Amberg,B., Romdhani, S.,&Vetter, T. (2009).A
3D facemodel for pose and illumination invariant face recognition.
In IEEE international conference on advanced video and signal
based surveillance (AVSS) (pp. 296–301).

Radford, A., Metz, L., & Chintala, S. (2016). Unsupervised repre-
sentation learning with deep convolutional generative adversarial
networks. In International conference on learning representations
(ICLR).

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional
networks for biomedical image segmentation. In International
conference on medical image computing and computer assisted
intervention (MICCAI) (pp. 234–241).

Sagonas, C., Panagakis, Y., Zafeiriou, S., & Pantic, M. (2015). Robust
statistical face frontalization. In IEEE international conference on
computer vision (ICCV) (pp. 3871–3879).

Sengupta, S., Chen, J. C., Castillo, C., Patel, V. M., Chellappa, R.,
& Jacobs, D. W. (2016). Frontal to profile face verification in the
wild. In IEEEwinter conference onapplications of computer vision
(WAC) (pp. 1–9).

Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., & Webb,
R. (2017). Learning from simulated and unsupervised images
through adversarial training. In IEEE conference on computer
vision and pattern recognition (CVPR) (vol. 2, p. 5).

Sun, X., Nasrabadi, N.M., &Tran, T. D. (2018). Supervised deep sparse
coding networks. In IEEE international conference on image pro-
cessing (ICIP) (pp. 346–350).

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper
with convolutions. In IEEE conference on computer vision and
pattern recognition (CVPR) (pp. 1–9).

Taigman, Y., Yang, M., Ranzato, M., & Wolf, L. (2014). Deepface:
Closing the gap to human-level performance in face verification.
In IEEE international conference on computer vision (ICCV) (pp.
1701–1708).

123



1504 International Journal of Computer Vision (2020) 128:1485–1504

Tian, Y., Peng, X., Zhao, L., Zhang, S., & Metaxas, D. N. (2018).
CR-GAN: Learning complete representations for multi-view gen-
eration. In International joint conference on artificial intelligence
(IJCAI).

Tran,L.,&Liu,X. (2018).Nonlinear 3D facemorphablemodel. In IEEE
conference on computer vision and pattern recognition (CVPR).

Tran, L.,Yin,X.,&Liu,X. (2017).Disentangled representation learning
GAN for pose-invariant face recognition. In IEEE conference on
computer vision and pattern recognition (CVPR) (vol. 3, p. 7).

Tran, L.Q., Yin, X., & Liu, X. (2018). Representation learning by
rotating your faces. In IEEE transactions on pattern analysis and
machine intelligence (TPAMI).

Van Gemert, J. C., Geusebroek, J. M., Veenman, C. J., & Smeulders,
A.W. (2008). Kernel codebooks for scene categorization. In Euro-
pean conference on computer vision (ECCV) (pp. 696–709).

Wu, X., He, R., Sun, Z., & Tan, T. (2018). A light cnn for deep face rep-
resentation with noisy labels. IEEE Transactions on Information
Forensics and Security, 13(11), 2884–2896.

Yan, J., Lin, D., & Loy, C. C. (2018). Consensus-driven propagation in
massive unlabeled data for face recognition. In European confer-
ence on computer vision (ECCV).

Yang, J., Reed, S.E., Yang, M.H., & Lee, H. (2015). Weakly-supervised
disentangling with recurrent transformations for 3D view syn-
thesis. In Conference on neural information processing systems
(NeurIPS) (pp. 1099–1107).

Yim, J., Jung, H., Yoo, B., Choi, C., Park, D., &Kim, J. (2015). Rotating
your face using multi-task deep neural network. In IEEE con-
ference on computer vision and pattern recognition (CVPR) (pp.
676–684).

Yin, X., Yu, X., Sohn, K., Liu, X., & Chandraker, M. (2017). Towards
large-pose face frontalization in the wild. In IEEE international
conference on computer vision (ICCV) (pp. 1–10).

Zhao, J., Cheng, Y., Xu, Y., Xiong, L., Li, J., Zhao, F., Jayashree, K.,
Pranata, S., Shen, S., Xing, J., et al. (2018). Towards pose invari-
ant face recognition in the wild. In IEEE conference on computer
vision and pattern recognition (CVPR) (pp. 2207–2216).

Zhao, J., Xiong, L., Cheng, Y., Cheng, Y., Li, J., Zhou, L., Xu, Y.,
Karlekar, J., Pranata, S., Shen, S., et al. (2018). 3D-aided deep
pose-invariant face recognition. In International joint conference
on artificial intelligence (IJCAI).

Zhao, J., Xiong, L., Jayashree, P. K., Li, J., Zhao, F., Wang, Z., Pranata,
P. S., Shen, P. S., Yan, S., & Feng, J. (2017). Dual-agent GANs
for photorealistic and identity preserving profile face synthesis. In
Conference on neural information processing systems (NeurIPS)
(pp. 66–76).

Zhao, J., Xiong, L., Li, J., Xing, J., Yan, S., & Feng, J. (2018). 3D-aided
dual-agent gans for unconstrained face recognition. IEEE trans-
actions on pattern analysis and machine intelligence (TPAMI).

Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-
to-image translation using cycle-consistent adversarial networks.
In IEEE international conference on computer vision (ICCV) (pp.
2242–2251).

Zhu, X., Lei, Z., Liu, X., Shi, H., & Li, S. Z. (2016). Face alignment
across large poses:A 3D solution. In IEEE conference on computer
vision and pattern recognition (CVPR) (pp. 146–155).

Zhu,X., Lei, Z.,Yan, J., Yi,D.,&Li, S. Z. (2015).High-fidelity pose and
expression normalization for face recognition in the wild. In IEEE
conference on computer vision and pattern recognition (CVPR)
(pp. 787–796).

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Towards High Fidelity Face Frontalization in the Wild
	Abstract
	1 Introduction
	2 Related Works
	2.1 Generative Adversarial Network
	2.2 Face Frontalization
	2.3 Pose-invariant Face Recognition

	3 High Fidelity Pose Invariant Model
	3.1 Dense Correspondence Field Estimation
	3.2 Facial Texture Map Recovery
	3.3 Fusion Warping
	3.4 Multi-perception Guided Loss
	3.5 Overall Training Method

	4 Experiments
	4.1 Datasets
	4.2 Experimental Settings
	4.3 Frontalization Results in Controlled Situations
	4.4 Frontalization Results in the Wild
	4.5 High-Resolution Face Frontalization
	4.6 Ablation Study

	5 Limitations and Discussion
	6 Conclusion
	Acknowledgements
	References




