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Abstract
In order to learn video object segmentation models, conventional methods require a large amount of pixel-wise ground
truth annotations. However, collecting such supervised data is time-consuming and labor-intensive. In this paper, we exploit
existing annotations in source images and transfer such visual information to segment videos with unseen object categories.
Without using any annotations in the target video, we propose a method to jointly mine useful segments and learn feature
representations that better adapt to the target frames. The entire process is decomposed into three tasks: (1) refining the
responses with fully-connected CRFs, (2) solving a submodular function for selecting object-like segments, and (3) learning
a CNN model with a transferable module for adapting seen categories in the source domain to the unseen target video. We
present an iterative update scheme between three tasks to self-learn the final solution for object segmentation. Experimental
results on numerous benchmark datasets demonstrate that the proposed method performs favorably against the state-of-the-art
algorithms.

Keywords Video object segmentation · Transfer learning · Weakly-supervised learning

1 Introduction

Nowadays, video data can be easily accessed and hence
visual analytics has become an important task in computer
vision. In this line of research, video object segmentation
is one of the effective ways to understand visual contents
and can facilitate various applications, such as video editing,
content retrieval, and object identification. While conven-
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tional methods rely on the supervised learning strategy to
effectively localize and segment objects in videos, collecting
such ground truth annotations is expensive and cannot scale
well to a large number of object categories in videos.

Recently, weakly-supervised methods for video object
segmentation (Tsai et al. 2016b; Zhang et al. 2017; Saleh et
al. 2017; Yan et al. 2017) have been developed to relax
the need for annotations where only class-level labels are
required. These approaches have significantly reduced the
labor-intensive step of collecting pixel-wise annotated train-
ing data on target categories.However, these target categories
are pre-defined. Thus, the trained model cannot be directly
applied to videos with unseen categories, i.e., object cat-
egories that are not covered by training data. Annotating
additional categories during the phase of testing would
require more efforts and is less practical. In this paper, we
propose an algorithm to reduce efforts in annotating both
pixel-level and class-level ground truths, in order to segment
objects of unseen categories in videos.

To this end, we make use of existing pixel-level annota-
tions in images from the PASCAL VOC dataset (Evering-
ham et al. 2010) with pre-defined categories, and design
a framework that transfers this knowledge to videos with
unseen object categories. That is, the proposed method is
able to learn useful representations for segmentation from
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the data in the image domain and adapt these representations
to segment objects in videos regardless of whether the object
categories are covered by the PASCAL VOC dataset. Thus,
while performing video object segmentation, our algorithm
does not require annotations in any forms, such as pixel-level
or class-level ground truths.

We formulate the video object segmentation problem for
unseen categories as a joint objective of refining and min-
ing useful segments from videos while learning transferable
knowledge from image representations. Since annotations
are not provided in videos in our setting, one can rely on
the response output from a convolutional neural network
(CNN) to segment the object. However, these responses are
often over-smoothed due tomultiple max-pooling and down-
sampling processes. Thus, the responses need refinement in
order to recover the high-resolution details for better object
localization and segmentation. To this end, we first refine the
responses using fully-connected conditional random fields
(CRFs) (Krähenbühl and Koltun 2011). Second, we design
an energy function to discover object-like segments from
the refined responses in videos based on the feature rep-
resentations learned from the image data. We then utilize
these discovered segments to update feature representations
in the CNNmodel, while a transferable module is developed
to learn the relationships between multiple seen categories
in images and the unseen category in a video. By jointly
considering both energy functions for refining and mining
better segments while learning transferable representations,
we develop an iterative optimization method to self-guided
video object segmentation. We also note that the proposed
framework is flexible as we can input either weakly-labeled
or unlabeled videos.

To validate the proposedmethod, we conduct experiments
on benchmark datasets for video object segmentation. First,
we evaluate our method on the DAVIS 2016 dataset (Per-
azzi et al. 2016)where some object categories are not covered
by the PASCALVOC dataset. Based on this setting, we com-
pare our method with the state-of-the-art methods for object
segmentation via transfer learning, including those using the
NLP-based GloVe embedding (Pennington et al. 2014) and
a decoupled network (Hong et al. 2016). In addition, we
demonstrate the effectiveness of the proposed iterative self-
learning strategy by comparing the results with and without
using this strategy. Second, we adopt the weakly-supervised
setting on theYouTube-Objects dataset (Prest et al. 2012) and
show that the proposed method performs favorably against
the state-of-the-art algorithms inbothvisual quality and accu-
racy. Third, we further evaluate the proposed algorithm on
unseen object segmentation, and apply it to the SegTrack
v2 dataset (Li et al. 2013), which contains numerous object
categories that do not appear in the PASCAL VOC dataset.

The contributions of this work are summarized as fol-
lows. First, we propose a framework for object segmentation

in unlabeled videos through a self-guided learning method.
Second, we develop a joint formulation to refine and mine
useful segments while adapting the feature representations to
the target videos. Third, we design a CNN module that can
transfer knowledge from multiple seen categories in images
to an arbitrary, i.e., either seen or unseen, object category in
a video.

We note that this paper is an extension of our pre-
vious work (Chen et al. 2018b), which is referred to as
VOSTRa . We make additional contributions in our method
for video object segmentation via transferable representa-
tions (VOSTR). First, we leverage the fully-connected CRFs
to refine the responses and obtain proposals of higher quality,
which help the CNN model learn better feature representa-
tions. Second, we integrate this refinement process into the
original objective, in which a joint formulation is proposed
and is optimized. Third, we provide comprehensive exper-
imental results and analysis on one additional dataset, i.e.,
SegTrack v2, to demonstrate the effectiveness of the pro-
posed method.

2 RelatedWork

Video Object Segmentation Video object segmentation
aims to separate foreground objects from the background.
Conventional methods utilize object proposals (Lee et al.
2011; Perazzi et al. 2015; Koh and Kim 2017) or graph-
ical models (Tsai et al. 2016a; Märki et al. 2016), while
recent approaches focus on learning CNN models from
image sequences with frame-by-frame pixel-level ground
truth annotations to achieve the state-of-the-art performance
(Cheng et al. 2017; Tokmakov et al. 2017b; Jain et al.
2017). For CNN-based methods, motion cues (Li et al.
2018) are usually used to effectively localize objects. Jain et
al. (2017) utilize a two-stream network by jointly consid-
ering appearance and motion information. The SegFlow
method (Cheng et al. 2017) further shows that jointly learn-
ing segmentation and optical flow in videos enhances both
performance. Note that, these approaches usually require
pre-training on videoswith frame-by-frame pixel-level anno-
tations (Cheng et al. 2017; Tokmakov et al. 2017b) or
bounding box ground truths (Jain et al. 2017) to obtain better
foreground segmentation.

Another line of research is to fine-tune the model based
on the object mask in the first frame (Caelles et al. 2017;
Khoreva et al. 2017) and significantly improves the segmen-
tation quality. More recently, Cheng et al. (2018) adopt a
part-based tracking method to deal with challenging factors
such as deformation and occlusion. Oh et al. (2018) propose a
siamese network to take advantage of mask propagation and
object detection. Other methods such as pixel-wise metric
learning (Chen et al. 2018a) or network modulation (Yang et
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Fig. 1 Overview of the proposed framework. Given a set of source
images Is with semantic segmentation annotations Ys , we first train
a source CNN model Gs . To predict object segmentation on a tar-
get video It without knowing any annotations, we initialize the target
network Gt from the parameters in Gs and perform adaptation via a
transferable layer T . A three-step self-learning scheme is performed.

We minimize the function Er to generate refined proposals P from
responses R, optimize the function Es for selecting object-like seg-
ments A from proposals P , and adapt feature representations in the
CNN model via optimizing E f . The entire self-learning process is per-
formed via iteratively updating the three energy functions to obtain the
final segmentation results

al. 2018) are proposed to facilitate the segmentation run-
time performance. In contrast to using the annotation from
the first frame, the proposed algorithm uses only a smaller
number of existing annotations from the image dataset and
transfers the feature representations to unlabeled videos for
object segmentation. In addition, our method is flexible for
the weakly-supervised learning setting, which cannot be
achieved by the above approaches.

Weakly-SupervisedVideoObject SegmentationTo reduce
the need of pixel-level annotations, weakly-supervisedmeth-
ods (Shi et al. 2017) have been developed to facilitate
the segmentation process, where only class-level labels are
required in videos. Numerous approaches are proposed to
collect useful semantic segments by training segment-based
classifiers (Tang et al. 2013) or ranking supervoxels (Zhong et
al. 2016). However, these methods rely on the quality of
the generated segment proposals and may produce inaccu-
rate results when taking low-quality segments as the input.
Zhang et al. (2015b) propose to utilize object detectors
together with object proposals to refine segmentation results
in videos. Furthermore, Tsai et al. (2016b) develop a co-
segmentation framework by linking object tracklets from
all the videos and improve the result. Recently, the SPFTN
method (Zhang et al. 2017) utilizes a self-paced learning
scheme to fine-tune segmentation results from object propos-
als. Different from the above algorithms that only target on
a pre-defined set of categories, our approach further extends
this setting to segmenting unlabeled videos where unseen
object categories are present.

Domain Adaptation and Transfer Learning Using cross-
domain data for unsupervised learning has been
explored in domain adaptation (Saenko et al. 2010)Saenko,
Kulis, Fritz, and Darrell; Gopalan et al. 2011; Patricia
and Caputo 2014; Ganin and Lempitsky 2015; Luo et al.
2017; Tsai et al. 2018). While domain adaptation methods
make the assumption that the same categories are shared
across different domains, transfer learning approaches focus
on transferring knowledge between categories. Numerous
transfer learning methods have been developed for object
classification (Tommasi et al. 2014) and detection (Lim et
al. 2011; Hoffman et al. 2014). Similar efforts have been
made for object segmentation. Hong et al. (2016) pro-
pose a weakly-supervised semantic segmentation method by
exploiting pixel-level annotations from different categories.
Recently, Hu et al. (2018) design a weighted transform func-
tion to transfer knowledge between the detected bounding
boxes and instance segments. In this work, we share the
similar motivation with Hong et al. (2016) but remove the
assumption of weak supervisions. Luo et al. (2017) tackle
the problem of domain adaptation for image classification
with few annotations available in the target domain. On the
contrary, we tackle the video object segmentation task, where
there are no available labels provided in the target video. To
the best of our knowledge, except for our conference version
(Chen et al. 2018b), this work is the first attempt for video
object segmentation by transferring knowledge from anno-
tated images to an unlabeled video of an unseen category.
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3 Algorithmic Overview

This section describes an overview of the proposed frame-
work and the developed objective function.

3.1 Overview of the Proposed Framework

We first describe the problem context of this work. Given a
number of source images Is = {I 1s , . . . , I Ns }with pixel-level
semantic segmentation annotations Ys = {y1s , . . . , yNs } and
the target sequence It = {I 1t , . . . , I Mt } without any labels,
our objective is to develop a self-guided learning algorithm
that segments the object inIt by transferring knowledge from
Is to It . In this work, the object category in It is allowed
to be arbitrary. It can be either covered by or different from
those in Is .

Figure 1 illustrates the proposed framework for segment-
ing the object in video It . First, we train a source CNN
model Gs using Is and Ys as the input and the desired out-
put, respectively. Second, we initialize the target network Gt

from the parameters in Gs . Since Is and It may not share
common object categories, we design a transferable layer T
that enables cross-category knowledge transfer, and append
it to the target network. The initialization of the transferable
layer T will be discussed later. With the input video It of an
unseen object category, we aim at adapting the target network
Gt so that the object in It can be better segmented.

To this end, we present a self-learning procedure with
three key components, namely (1) a fully-connected CRF
model for refining responses, (2) a rankingmodule formining
segment proposals, and (3) a CNN model for learning the
transferable feature representations. The three components
work sequentially and iteratively to discover the object in It .
After the target network Gt is applied to the input video It to
generate response outputs, we first use fully-connected CRFs
to refine the responsesR produced by Gt , and compile a set
of segment proposals P on the target video It . Second, to
select a set of more object-like proposals A among P , we
develop an energy function to re-rank these proposals based
on their objectness scores and mutual relationships. Third,
by treating the selected proposals A as the pseudo ground
truth, we update the transferable feature representations to
better segment the object in the video. The entire process can
be formulated as a joint and iterative optimization problem
with the objective function described in the following.

3.2 Objective Function

Our goal is to find high-quality segment proposals P from
the target video It that can guide the network to learn feature
representations F for better segmenting the given video It .
We carry out this task by jointly optimizing an energy func-
tion E that accounts for segment proposals P and features

Table 1 Notations in the proposed algorithm

Notation Representative

Gs Source network

Gt Target network

T Transferable layer

C Fully-connected CRFs

Is Source images

It Target sequence

Ys Semantic segmentation annotations of Is
R Responses produced by Gt

P Proposals generated from R
A Segments selected from P
Er Energy for refining R
Es Energy for selecting A from P
E f Energy for optimizing Gt

θ Parameters of Gt

F :

max
A,θ

E(It ,P,F;A, θ) = max
A,θ

Er (It ,R;P) + Es(P,F;A)

+ E f (It ,A; θ), (1)

where Er is the energy for refining the responses R yielded
by the CNN model Gt via using fully-connected CRFs, Es

is the energy for selecting a set of high-quality segments A
from the proposals P based on the features F , and θ is the
parameters of the CNN model that aims to optimize E f and
learn the feature representations F from the selected pro-
posalsA. After the optimization process, we obtain the final
segmentation results, which is the network output P . Note
that, here we do not include the responses R as the input
in E , since R is a intermediate product of the optimization
process. We summarize the notations in the proposed algo-
rithm in Table 1. Details of each energy function and the
optimization process are described in the following section.

4 Transferring Knowledge for Segmentation

In this section, we describe the proposed energy functions
for refining responses, mining segments, and learning the
transferable feature representations, respectively. Response
refining is carried out by using fully-connected CRFs, seg-
ment mining is formulated as a submodular optimization
problem, and transferable feature learning is accomplished
through a CNN model with a transferable module. After
introducing the energy functions for the three tasks, we
present an iterative optimization scheme to jointly optimize
the objective in (1).
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4.1 Refining Responses

Given a target video It , we can perform frame-by-frame
object segmentation by using the CNN model Gt with the
proposed transferable layer T . However, the deep CNN
model Gt with multiple max-pooling and down-sampling
layers typically yields over-smoothed responses for segmen-
tation. To refine its quality for localization and segmentation,
we apply fully-connected CRFs to the responses produced by
the CNN model, so that the high-resolution details for seg-
mentation can be recovered, which can in turn help the other
components.

Refinement with Fully-Connected CRFs To recover the
detailed local structure, we utilize an energy function based
on the fully-connected CRFs:

Er (It ,R;P) = −
∑

i

δi (xi ) −
∑

i j

δi j (xi , x j ), (2)

where δi (xi ) = − log r(xi ) is the unary potential, and r(xi ) is
the label assignment probability at pixel i , which is predicted
by the CNN model, i.e., obtained from R. δi j (xi , x j ) is the
pairwise potential for a pixel pair (i , j), which is formulated
as:

δi j (xi , x j ) = μ(xi , x j )
[
w1 exp

(
−

∥∥pi − p j
∥∥2

2σ 2
α

−
∥∥Ii − I j

∥∥2

2σ 2
β

)

+ w2 exp

(
−

∥∥pi − p j
∥∥2

2σ 2
γ

)]
, (3)

where μ(xi , x j ) = 1 if yi �= y j , and zero otherwise, which
means that only pixels with distinct labels y are penalized.
The remaining function contains two Gaussian kernels in
different feature spaces. The first kernel forces pixels in
neighboring positions (denoted as p) and with similar RGB
colors (denoted as I ) to have the same label, while the second
kernel only considers pixel positions. The constants σα , σβ ,
and σγ are hyper parameters introduced to control the scales
of the Gaussian kernels. The constants w1 and w2 are the
weights of the two Gaussian kernels.

4.2 Mining Segment Proposals

After refining the responses of the segmentation result, there
is still another defect about the generated segments due to
the unsupervised nature of this task. Namely, some gener-
ated segments do not well cover objects. Thus, we aim to
select high-quality segments and eliminate noisy ones from
the generated object segments. The major challenge of this

task lies in the lack of ground truth annotations in the tar-
get video, and thus we cannot train a classifier to guide the
selection process.

Inspired by the co-segmentation method (Tsai et al.
2016b), we observe that high-quality segments typically have
highermutual relationships. As a result, we gather all the pre-
dicted segments from the target video and construct a graph
to link each segment.We then formulate segment mining as a
submodular optimization problem, aiming to select a subset
of more object-like segments that share higher similarities.

Graph Construction on Segments We first feed the target
videoIt into theCNNmodel frame-by-frame and obtain a set
of segment proposalsP , where each proposal is a connected-
component in the predicted segmentation of the video It .
Then we construct a fully-connected graph G = (V, E) on
the set P , where each vertex v ∈ V is a segment, and each
edge e ∈ E models the pairwise relationship between two
segments. Our goal is to find a subset A of P that contains
proposals with higher object-like confidence.

Submodular Function Since there is no ground truth
available, we design a submodular function for mining the
segments belonging to the object by leveraging the following
three properties: (1) the selected segments should be simi-
lar to each other since they belong to the same object; (2)
the selected segments have higher responses in the output of
the CNNmodel; and (3) the selected segments usually move
differently from the background area in the video.

We formulate the submodular function for selecting
object-like segments by a facility location termH (Lazic et al.
2009) and a unary termU . The former enhances the similarity
between the selected segments, while the latter encourages
the high probability of each selected segment being a true
object. Both terms are defined based on the segment propos-
als P and the adopted feature representation F .

Specifically, we define the facility location term as

H(P,F;A) =
∑

i∈A

∑

j∈V
W (vi , v j ) −

∑

i∈A
φi , (4)

whereW denotes the pairwise relationship between a poten-
tial facility vi and a vertex v j , while φi is the cost to open a
facility, which is fixed to a constant α. We define W as the
similarity between two segments in order to encourage the
submodular function to choose a facility vi that is similar to
v j . To estimate this similarity, we represent each segment as
a feature vector and compute the inner product of the two
vectors. To form the feature vector for each segment, we
draw feature maps from the CNN model (conv1 to conv5)
and perform the global average pooling on each segment. It
is the adopted feature representation F in this work.
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In addition to the facility location term,we employ a unary
term to evaluate the quality of segments

U(P,F;A) = λo
∑

i∈A

o(i) + λm

∑

i∈A

m(i), (5)

where 
o(i) is the objectness score that measures the prob-
ability of segment i belonging to the region of the object,
and 
m(i) is the motion score that estimates the motion dif-
ference between segment i and the background region. λo
and λm are the weights for the two terms, respectively. The
objectness score 
o(i) is calculated by averaging the prob-
ability map of the CNN output layer on all the pixels within
the segment. For the motion score 
m(i), we first compute
the optical flow (Liu et al. 2009) for two consecutive frames,
and then we utilize the minimum barrier distance (Strand et
al. 2013; Zhang et al. 2015a) to convert the optical flow into a
saliency map, where larger distances represent larger motion
difference with respect to the background region.

Formulation for Segment Mining Our goal is to find a
subset A of P containing segments that are similar to each
other and have higher object-like confidence. Therefore, we
combine the facility location term H and the unary term U
to yield the energy Es in (1) as:

Es(P,F;A) = H(P,F;A) + U(P,F;A). (6)

We also note that the linear combination of two non-negative
terms preserves the submodularity (Zhu et al. 2014).

Discussions In this work, we are more interested in video
segmentation than image segmentation as pixel-level anno-
tations in videos are more difficult to obtain, especially when
there are unseen objects in videos. To this end,we take advan-
tages of continuous frames in the video, in which nearby
frames share high similarities in appearance, whereas sepa-
rate images would not have this property. This provides us
with a useful cue to perform segment mining in videos via
constructing the submodular objective. Although the general
objective and pipeline introduced in this work are also appli-
cable to image segmentation, it would require other ways to
effectively mine useful segments, which is outside the scope
of this paper.

4.3 Learning Transferable Feature Representations

Given the selected set of object-like segment proposals, the
ensuing task is to learn better feature representations based on
these segments. To this end, we propose to use a CNNmodel
fine-tuned on these segments via a self-learning scheme.
Since our target video may have a different set of object cat-
egories from those in the source domain, we further develop

a transfer learning method where a transferable layer is aug-
mented to the CNN model. With the proposed layer, our
network is able to transfer knowledge from seen categories
to the unseen category, without the need of any supervision
in the target video.

Inspired by the observation that an unseen object category
can be represented by a series of seen objects (Rochan and
Wang 2015), we develop a transferable layer that approxi-
mates an unseen category as a linear combination of seen
ones in terms of the output feature maps. In the following, we
first present our CNN objective for learning the feature rep-
resentations based on the selected segment proposals. Then
we introduce the details of the proposed layer for transferring
knowledge from the source domain to the target one.

Objective Function Given the target video It and the
selected segment proposals A as described in Sect. 4.2, we
use A as our pseudo ground truths and optimize the target
networkGt with parameters θg to obtain better feature repre-
sentations that match the target video. Specifically, we define
the energy function E f in (1) as:

E f (It ,A; θg, θT ) = −L(T (Gt (It )),A), (7)

where θT is the parameters of the transferable layer T and L
is the cross-entropy function to measure the loss between the
network prediction T (Gt (It )) and the pseudo ground truth
A. Note that we use the minus sign for the loss function L to
match the maximization formulation in (1).

Learning Transferable Knowledge Suppose there are Cs

categories in the source domain, we aim to transfer a source
network Gs pre-trained on the source images Is to the target
video. To achieve this, we first initialize the target network
Gt using the parameters in Gs . Given the target video It ,
we can generate frame-wise feature maps R = Gt (It ) =
{rc}Cs

c=1 through the network with Cs channels, where rc is
the outputmap of source category c. Since the target category
is unknown, we then approximate the desired output map, r ,
for the unseen category as a linear combination of these seen
categories through the proposed transferable layer T :

r = T (R) =
Cs∑

c=1

wc rc, (8)

where wc is the weight of the seen category c. Specifically,
the proposed transferable layer T can be performed via a
1 × 1 convolutional layer with Cs channels, in which the
parameter of channel c in θT corresponds to wc.

Since wc is not supervised by any annotations from the
target video, the initialization of wc is critical for obtaining
a better combination of feature maps from the seen cate-
gories. Thus, we initialize wc by calculating the similarity
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between each source category c and the target video. For
each image in the source and target domains, we extract its
feature maps from the fc7 layer of the network and compute
a 4096-dimensional feature vector on the predicted segment
via global average pooling. By representing each image as
a feature vector, we measure the similarity score between
source and target images by their inner product. Finally, the
initialized weightwini t

c for the category c can be obtained by
averaging largest scores on each target frame with respect to
the source images:

wini t
c = 1

|It |
|It |∑

i=1

max
j

〈
F i
t ,F

j
s,c

〉
, (9)

where |It | is the number of frames in the target video, F i
t ∈

R
4096 is the feature vector of the i th frame of It , and F j

s,c ∈
R
4096 is the feature vector of the j th image of source category

c.
Discussions In the proposed method, we do not make any

assumption about the number of segments in each frame
during learning a set of weights for linear combination in
(8). Thus, our method can predict multiple “instances” (e.g.,
Fig. 6) of one object category, in which these segments share
the sameweights for linear combination and tend tobe similar
to each other. However, the current method may not predict
multiple “objects” with diverse appearance, unless we intro-
duce other sets of linear combinations.

4.4 Joint Formulation andModel Training

Based on the formulations for response refinement in (2),
segment mining in (6), and transferable feature representa-
tion learning in (7), we jointly solve the three objectives, i.e.,
Er , Es , and E f in (1), via

max
A,θ

E(It ,P,F;A, θ)

= max
A,θ

Er (It ,R;P) + Es(P,F;A) + E f (It ,A; θ)

= max
A,θg,θT

−
∑

i

δi (xi ) −
∑

i j

δi j (xi , x j )

+ [H(P,F;A) + U(P,F;A)] − L(T (Gt (It )),A).

(10)

We decompose the optimization of (10) into three sub-
problems: (1) utilizing fully-connected CRFs for response
refinement to yield the proposal set P , (2) solving the sub-
modular function for segment mining to generate pseudo
ground truth A, and (3) updating the CNN model θg and
θT for transferable feature representation learning.We adopt
an iterative procedure to alternately optimize the three sub-

Algorithm 1 Unseen Object Segmentation
Source Image: Is , Ys
Target Video: It
Initialization: pre-trained Gs on source inputs, Gt ← Gs , wini t

c
via (9) (R,F) ← T (Gt (It )) P ← C(It ,R) via (2)
while P not converged do

A0 ← ∅, i ← 1
loop

a∗ = arg max
{Ai∈V}

Es(P,F;Ai ), whereAi ← Ai−1 ∪a, a ∈ V\A

if |A| > NA or D(Ai ) < β · D(Ai−1) when i ≥ 2 then
break

end if
Ai ← Ai−1 ∪ a∗, i ← i + 1

end loop
A ← Ai

Optimize E f : (θg, θT ) ← min L(T (Gt (It )),A)

(R,F) ← T (Gt (It )) P ← C(It ,R) via (2)
end while
Output: object segmentation P of It

problems. The initialization strategy and the optimization of
the three sub-problems are described below.

InitializationWefirst pre-train the source networkGs on the
PASCALVOC training set (Everingham et al. 2010) contain-
ing 20 object categories.We then initialize the target network
Gt from parameters in Gs and the transferable layer T as
described in Sect. 4.3. To obtain an initial set of segment
proposals, we forward the target video It to the target model
Gt with T and generate responsesR.

Optimizing Er by Fixing Es and Ef To refine the responses
produced by the CNN which are over-smoothed due to the
max-pooling and downsampling in the CNNmodel, we opti-
mize Er following Krähenbühl and Koltun (2011) to provide
higher quality proposals, in which we denote this process as
C. Note that, here we fix the parameters of CRFs and infer
refined proposals that provide the minimum of energy func-
tion −Er .

OptimizingEs byFixingEr,Ef After generating the refined
proposals P , we fix the network parameters and optimize A
via Es in (10).We adopt a greedy algorithm similar to Tsai et
al. (2016b). Starting from an empty set ofA, we add an initial
element a ∈ V\A toA that gives the largest energy gain. The
process is then repeated and stops when one of the following
conditions is satisfied: (1) the number of selected proposals
reaches a threshold, i.e., |A| > NA, and (2) the ratio of the
energy gain between two rounds is below a threshold, i.e.,
D(Ai ) < β · D(Ai−1), where D(Ai ) stands for the energy
gain, i.e., difference of Es between two rounds during the
optimization process, and β is the ratio.
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Fig. 2 Sample results of iteratively optimizing Er , Es , and E f . Starting
from the initial response R, we generate the proposals P via Er . Then
we solve Es to obtain object-like segmentsA as our pseudo ground truth

to optimize E f . By iteratively optimizing the three energy functions,
our algorithm gradually improves the quality of R, P and A to obtain
the final segmentation results

Optimizing Ef by Fixing Er and Es Once obtaining A as
the pseudo ground truths, we fixA and optimize the network
with the transferable layer, i.e., θg and θT , in E f of (10). We
alter the problem to a task that minimizes the network loss
L in an end-to-end fashion, jointly for θg and θT using the
SGD method.

Iterative Optimization To obtain the final A, θg , and θT ,
instead of directly solving (10), we solve it via an iterative
updating scheme among Er , Es , and E f until convergence.
To determine the convergence, we set the conditions: (1) The
IoU of segmentation between two iterations is larger than
90%. Namely, segmentation almost retains the same one. (2)
The maximum number of iterations is 3. Empirically, we
find that our method on most sequences converges in three
iterations.

Our algorithm contains three components: proposal min-
ing via submodular optimization, proposal refinement via
CRFs, and pseudo ground truth training via CNNs. The first
and third steps are sub-optimal, while the second step has an
optimal solution. Therefore, the energy of each term could
be optimized individually during the iterative optimization
process. Figure 2 shows an example of gradually updating
R, P and A via iteratively optimizing Er , Es , and E f . The
overall optimization process is summarized in Algorithm 1.

DiscussionsDifferent from previous methods that use the
fully-connectedCRFs as post-processing to improve the final

results, our method adopts the fully-connected CRFs as one
component during the training stage. That is, the energy func-
tion inCRFs receives the response fromproposals to generate
refined ones, which in turn serve as better pseudo ground
truth to help the CNNmodel learn better transferable feature
representations. In addition, we integrate this energy func-
tion into the final objective and perform iterative updating to
achieve final results.

5 Experimental Results

In this section, we first present implementation details of the
proposed method, and then we show experimental results on
numerous benchmark datasets. In addition, ablation studies
for evaluating the effects of the proposed components in the
algorithm are conducted. The source code and trainedmodels
will be made available to the public.

5.1 Implementation Details

In the submodular function for segment mining, we set
λo = 20 and λm = 35 for the unary term in (5). During the
submodular optimization in (6), we use NA = 0.8 · |P| and
β = 0.8. All the parameters are fixed in all the experiments.
For training the CNN model in (7), we employ two types
of fully convolutional networks (FCNs) (Long et al. 2015)
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Table 2 Training and testing time of our method on the DAVIS dataset

Stage Time (s)

Motion prior computing (per frame pair) 0.01

Feature extraction (per frame) 1.72

Response refining via (2) (per frame) 0.78

Segment mining via (6) (per frame) 0.01

CNN model training via (7) (per frame) 7.31

Inference (per frame) 0.01

including the VGG-16 (Simonyan and Zisserman 2014) and
ResNet-101 (He et al. 2016) architectures for both the source
and target networks using the Caffe library. The learning rate,
momentum, and batch size are set as 10−14, 0.99, and 1,
respectively. To further refine the final segmentation results,
we apply additional CRFs to the responses produced by our
fully-trained CNN model.

5.2 Training Time and Runtime Analysis

The training and testing (inference) time of each component
of our method is shown in Table 2. In the proposed method,
we pre-train the source network on the image dataset and use
its parameters to initialize the target network. For each new
video, we train the target network via the proposed iterative
optimization in Algorithm 1 so that the target network can
be applied to segment the unseen object in the testing video.
The first five rows of runtime in Table 2 are for training on
the new video, while the inference time is for applying the
trained model to each frame of the video.

All the timings are measured on a machine with an Intel
Xeon 2.5GHz processor and an NVIDIA GTX 1080 Ti
graphics card with 11GB memory. We compute the opti-
cal flow (Liu 2009) and utilize the minimum barrier distance
(Zhang et al. 2015a) to generate motion prior using MAT-
LAB. In the proposed algorithm,including feature extraction,
response refining, segment mining, and CNNmodel training
are implemented by using Python and the Caffe library on
the graphics card. The CNN model is fine-tuned for 2000
iterations. Note that we report the runtime averaged over all
the frames.

5.3 DAVIS Dataset

Wefirst conduct experiments on the DAVIS 2016 benchmark
dataset (Perazzi et al. 2016). Since our goal is to transfer the
knowledge from seen categories in images to unseen objects
in the video, we manually select all the videos with object
categories that are different from the 20 categories in thePAS-
CALVOCdataset. In the following, we first conduct ablation

Table 3 IoU of the selected segments with different weights of the
motion term on the DAVIS dataset

λm 0 5 15 25 35 45

Avg. IoU 57.2 57.4 60.5 60.6 61.0 60.3

Table 4 IoU of the selected segments with and without CRFs on the
DAVIS dataset

w/o CRFs w/ CRFs

Avg. IoU 61.0 63.5

Table 5 IoU of the final results with different learning rates on the
DAVIS dataset

lr 10−15 10−14 10−13

Avg. IoU 67.9 68.4 68.2

Table 6 IoU of the final results with different values of β on the DAVIS
dataset

β 0.6 0.7 0.8 0.9

Avg. IoU 68.0 68.1 68.4 68.3

studies and experiments to validate the proposed method.
Second, we show that our algorithm can be applied under
various settings on the entire set of the DAVIS 2016 dataset.

Impact of theMotion TermsOne critical component of our
framework is to mine useful segments for the further CNN
model training step. In the submodular function of (5), we
incorporate a motion term that accounts for object move-
ments in the video. To validate its effectiveness, we fix the
weightλo = 20 for the appearance andvary theweightλm for
the motion term. In Table 3, we show the IoU of the selected
segment proposals via solving (6) under various values ofλm .
The results show that the IoU is gradually improved when
increasing the motion weight, which indicates that the qual-
ity of selected segments becomes better, and hence we use
λm = 35 in all the following experiments.

Impact of Response Refinement In Table 4, we present the
IoU of the selected segment proposalswith andwithout using
fully-connectedCRFs.With the refinement byCRFs, the IoU
of the selected segments is improved by 2.5%. Therefore, the
CNN model is able to learn better feature representations.

Sensitivity to Learning Rate We provide the final results
under different learning rates on theDAVISdataset inTable 5.
We fix the initial learning rate as 10−14 according to the
results. We use a small learning rate to account for the
unnormalized loss computed across spatial dimensions in our
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Table 7 Learned weights of the
transferable layer on the DAVIS
dataset for transferring
knowledge from seen/source
categories (rows) to
unseen/target object categories
(columns)

Sequence Bear Bswan Camel Eleph Goat Malw Rhino

Aero 0.286 0.419 0.381 0.412 0.279 0.430 0.325

Bike 0.317 0.372 0.393 0.423 0.358 0.309 0.432

Bird 0.624 0.891 0.538 0.572 0.614 0.780 0.595

Boat 0.392 0.419 0.358 0.460 0.323 0.474 0.428

Bottle 0.401 0.336 0.307 0.410 0.349 0.387 0.368

Bus 0.392 0.262 0.266 0.440 0.306 0.200 0.327

Car 0.488 0.317 0.469 0.559 0.379 0.292 0.508

Cat 0.756 0.436 0.417 0.574 0.609 0.398 0.492

Chair 0.507 0.314 0.406 0.528 0.466 0.362 0.450

Cow 0.701 0.409 0.715 0.748 0.618 0.346 0.846

Table 0.341 0.310 0.186 0.301 0.291 0.504 0.257

Dog 0.700 0.476 0.534 0.603 0.788 0.417 0.576

Horse 0.547 0.330 0.898 0.770 0.692 0.260 0.776

Mbike 0.301 0.287 0.346 0.408 0.371 0.287 0.355

Person 0.504 0.429 0.731 0.639 0.554 0.366 0.629

Plant 0.463 0.418 0.364 0.437 0.428 0.451 0.474

Sheep 0.721 0.525 0.491 0.662 0.616 0.348 0.605

Sofa 0.366 0.309 0.366 0.447 0.404 0.291 0.412

Train 0.298 0.260 0.343 0.488 0.320 0.204 0.419

Tv 0.369 0.252 0.277 0.425 0.271 0.248 0.303

For each unseen category, the largest weight over all seen categories is marked in bold

Table 8 Results on the DAVIS 2016 dataset with categories excluded from the PASCAL VOC dataset

Methods Bear Bswan Camel Eleph Goat Malw Rhino Avg.

CVOS (Taylor et al. 2015) 86.4 42.2 85.0 49.4 7.4 24.5 52.0 49.6

MSG (Ochs and Brox 2011) 85.1 52.6 75.6 68.9 73.5 4.5 90.2 64.3

FST (Papazoglou and Ferrari 2013) 89.8 73.2 56.2 82.4 55.4 8.7 77.6 63.3

NLC (Faktor and Irani 2014) 90.7 87.5 76.8 51.8 1.0 76.1 68.2 64.6

LMP (Tokmakov et al. 2017a) 69.8 50.9 78.3 78.9 75.1 38.5 76.8 66.9

SPFTN (Zhang et al. 2017) 74.8 87.6 76.2 75.6 72.8 65.8 55.2 72.6

TransferNet (Hong et al. 2016) 73.7 83.4 65.5 76.1 78.1 17.9 42.4 62.4

VOSTRa (Chen et al. 2018b) (GloVe) 82.6 67.2 68.8 61.2 70.4 64.7 32.0 63.8

VOSTRa (Chen et al. 2018b) (init) 80.3 75.6 70.9 70.4 83.1 40.9 57.7 68.4

VOSTRa (Chen et al. 2018b) (final) 88.8 80.6 68.6 71.8 82.4 43.8 67.3 71.9

VOSTR (w/ response refinement at training) 90.1 84.2 72.3 70.6 82.7 72.4 66.5 77.0

VOSTR (final) 94.5 92.8 79.0 75.0 85.0 84.9 67.5 82.7

ARP (Koh and Kim 2017) 92.0 88.1 90.3 84.2 77.6 58.3 88.4 82.7

FSEG (Jain et al. 2017) 91.5 89.5 76.4 86.2 84.1 83.3 77.6 84.1

VOSTRa (Chen et al. 2018b) (ResNet) 91.8 90.3 77.5 85.7 84.8 84.9 86.0 85.9

VOSTR (ResNet) 93.3 92.7 80.7 87.7 85.4 88.2 88.2 88.0

Bold values indicate the best results in the groups

implementation. For example, if we perform normalization
on the loss, the corresponding learning rate is around 10−8.

Sensitivity to β for Submodular Optimization In Table 6,
we report the average IoU of the final results using different
values of β for submodular optimization in (6). It can be

observed that our method is robust to the value of β. Based
on the results in Table 6, we set β to 0.8.

Analysis of Transferring Visual Information We analyze
the proposed method for transferring visual information by
investigating the weights of the transferable layer. Table 7
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TSFGSMSOVCtupnI

TransferNet VOSTRa (initial) VOSTRa (final) VOSTR

TSFGSMSOVCtupnI

TransferNet VOSTRa (initial) VOSTRa (final) VOSTR

TSFGSMSOVCtupnI

TransferNet VOSTRa (initial) VOSTRa (final) VOSTR

Fig. 3 Sample results on the DAVIS dataset for unseen object categories. Our results contain less noisy segments and more details than the
approaches CVOS (Taylor et al. 2015), MSG (Ochs and Brox 2011), FST (Papazoglou and Ferrari 2013), TransferNet (Hong et al. 2016) and
VOSTRa (Chen et al. 2018b)

presents the learned weights of the transferable layer on the
DAVIS dataset for unseen object categories. For each target
video, the source categories with higher weights are similar
to the target video in appearance, which gives reasonable
transform of visual information.

Ablation Study In the middle group of Table 8, we show
the final segmentation results of our method using VGG-
16 architecture with various baselines and settings. We first
present a baseline method that uses the GloVe embeddings
(Pennington et al. 2014) to initialize weights, i.e., the similar-
ity between two categories, of the transferable layer. Since the
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TSFGSMSOVCtupnI

TransferNet VOSTRa (initial) VOSTRa (final) VOSTR

TSFGSMSOVCtupnI

TransferNet VOSTRa (initial) VOSTRa (final) VOSTR

TSFGSMSOVCtupnI

TransferNet VOSTRa (initial) VOSTRa (final) VOSTR

Fig. 4 Sample results on the DAVIS dataset for unseen object categories. Our results contain less noisy segments and more details than the
approaches CVOS (Taylor et al. 2015), MSG (Ochs and Brox 2011), FST (Papazoglou and Ferrari 2013), TransferNet (Hong et al. 2016) and
VOSTRa (Chen et al. 2018b)

GloVe is not learned in the image domain between categories,
the initialized weights may not reflect the true relationships
between the seen and unseen categories, and hence the results
are worse than the proposed method for initializing the trans-
ferable layer.

Furthermore,we show results at different stages, including
using the model with initialization before optimizing (10),
after optimization, after response refinement during training
and the final result with CRF refinement as post-processing.
After the optimization, the IoU is improved in 5 out of
7 videos, which shows the effectiveness of the proposed
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TSFGSMSOVCtupnI

RTSOVNCF a VOSTRa (no sup.) VOSTR

TSFGSMSOVCtupnI

RTSOVNCF a VOSTRa (no sup.) VOSTR

Fig. 5 Sample results on the DAVIS dataset with categories shared
in the PASCAL VOC dataset. Comparing with the approaches CVOS
(Taylor et al. 2015), MSG (Ochs and Brox 2011), FST (Papazoglou

and Ferrari 2013), FCN (Long et al. 2015), and VOSTRa (Chen et al.
2018b), our approachVOSTRproducesmore complete object segments
with details

Fig. 6 Sample failure cases.
Although our results differ from
the ground truths, the segmented
areas belong to the same
semantic category

Input Ground Truth Ours

self-learning scheme without using any annotations in the
target video. In addition, compared to our conference ver-
sion, VOSTRa , using CRFs at training and inference stages
improve the performance by 5.1% (from 71.9 to 77.0%) and
5.7% (from 77.0 to 82.7%), respectively. The results indicate
that the CRFs enhance our method when they are used for

post-processing as well as when they are employed to help
the CNN model learn better feature representations.

Overall Comparisons In Table 8, we show the comparisons
between our method and the state-of-the-art approaches. We
first demonstrate the performance of ourmethod usingVGG-
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Table 10 Results on the YouTube-Objects dataset

Methods Aero Bird Boat Car Cat Cow Dog Horse Mbike Train Avg.

DSA (Tang et al. 2013) 17.8 19.8 22.5 38.3 23.6 26.8 23.7 14.0 12.5 40.4 23.9

FCN (Long et al. 2015) 68.3 65.7 55.7 76.6 52.3 50.4 55.6 52.6 35.7 55.9 56.9

DET (Zhang et al. 2015b) 72.4 66.6 43.0 58.9 36.4 58.2 48.7 49.6 41.4 49.3 52.4

CoSeg (Tsai et al. 2016b) 69.3 76.1 57.2 70.4 67.7 59.7 64.2 57.1 44.1 57.9 62.3

SPFTN (Zhang et al. 2017) 81.1 68.8 63.4 73.8 59.7 64.5 63.4 58.2 52.4 45.5 63.1

VOSTRa (Chen et al. 2018b) (VGG) 74.6 65.3 66.9 79.5 64.2 68.3 67.3 61.7 51.5 59.4 65.9

VOSTR (VGG) 79.5 67.6 65.7 77.9 68.2 72.8 73.0 63.4 61.9 60.0 69.0

DeepLab (Chen et al. 2016) 80.6 67.8 66.9 73.3 55.3 61.8 63.9 45.5 54.7 56.4 62.6

FSEG (Jain et al. 2017) 83.4 60.9 72.6 74.5 68.0 69.6 69.1 62.8 61.9 62.8 68.6

VOSTRa (Chen et al. 2018b) (ResNet) 83.5 76.4 70.0 75.3 65.9 69.7 71.6 54.7 63.8 58.7 69.0

VOSTR (ResNet) 85.2 77.3 72.5 77.9 67.5 70.5 74.4 56.1 66.0 61.2 70.9

Bold values indicate the best results in the groups

16 architecture. Thework closest in the scope to the proposed
framework is the TransferNet method (Hong et al. 2016) that
transfers the knowledge between two image domains with
mutually exclusive categories in a weakly-supervised set-
ting. To compare with this approach, we use the authors’
public implementation and train the models with the same
setting as our method. We first show that VOSTRa achieves
better IoUs in 5 out of 7 videos and improves the overall
IoU by 9.5% on average. With the response refinement step
in our final model, the performance is further improved by
20.3% in IoU.We also note that our model with initialization
already performs favorably against Hong et al. (2016), which
demonstrates that the proposed transferable layer is effec-
tive in learning knowledge from seen categories to unseen
ones.

In addition, we present more results of video object seg-
mentation methods in Table 8 and show that the proposed
algorithm achieves better performance. Different from exist-
ing approaches that rely on long-term trajectory (Taylor et al.
2015; Ochs and Brox 2011) or motion saliency (Papazoglou
and Ferrari 2013; Faktor and Irani 2014) to localize fore-
ground objects, we use the proposed self-learning framework
to segment unseen object categories via transfer learning.We
note that the proposedmethod performs better than the CNN-
based model (Tokmakov et al. 2017a) that utilizes synthetic
videos with pixel-wise segmentation annotations.

We further employ the stronger ResNet-101 architecture
and compare with state-of-the-art unsupervised video object
segmentation methods. In the bottom group of Table 8, we
show that our approach performs better than FSEG (Jain et
al. 2017) using the same architecture and training data from
PASCAL VOC, i.e., the setting of the appearance stream in
FSEG (Jain et al. 2017). Since the motion stream in FSEG
adopts additional training data form the ImageNet-Video
dataset (Russakovsky et al. 2015), it is not fair to compare
our method with the motion stream and the joint model in

FSEG. In addition, compared to ARP (Koh and Kim 2017)
that adopts a non-learning based framework via proposal
post-processing and is specifically designed for video object
segmentation, our algorithm performs better and is flexible
under various settings such as using weakly-supervised sig-
nals. Visual comparisons are presented in Figs. 3 and 4.
Results on the Entire DAVIS 2016 Dataset In addition to
performing object segmentation on unseen object categories,
our method can adapt to the weakly-supervised setting by
simply initializing the weights in the transferable layer as a
one-hot vector, where only the known category is set to 1
and the others are 0. We evaluate this setting on the DAVIS
2016 dataset with categories shared in the PASCAL VOC
dataset. Note that, we still adopt the unsupervised setting for
the unseen categories. The results of each video from the
DAVIS 2016 dataset are shown in Table 9. In comparison
with a recent weakly-supervised method SPFTN (Zhang et
al. 2017) and the baseline FCN (Long et al. 2015) (our initial
result), our approach addresses the transfer learning prob-
lem and already outperforms their methods without refining
responses. By integrating the fully-connected CRFs objec-
tive, we further improve the performance by 8.9% and 8.5%
with respect to SPFTN and FCN, respectively.

Although the same categories are shared between the
source and target domains in this setting, we can still assume
that the object category is unknown in the target video.
Under this fully unsupervised settingwithout using anypixel-
wise annotations in videos during training, we show that our
method improves the results of FSEG (Jain et al. 2017) and
other unsupervised algorithms (Ochs and Brox 2011; Papa-
zoglou and Ferrari 2013; Faktor and Irani 2014). Sample
results are presented in Fig. 5. In addition, we provide some
failure cases in Fig. 6 caused by the objective of our method,
which is to segment all the objects with the same category in
a video.
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5.4 YouTube-Objects Dataset

We evaluate the proposed method on the YouTube-Objects
dataset (Prest et al. 2012) with annotations provided by Jain
and Grauman (2014) for 126 videos. Since this dataset con-
tains 10 object categories that are shared with the PASCAL
VOC dataset, we conduct experiments using the weakly-
supervised setting. In Table 10, we compare our method
with the state-of-the-art algorithms that use the class-level
weak supervision. With the VGG-16 architecture, the pro-
posed framework performs well in 6 out of 10 categories and
achieves the best IoU on average. Compared to the baseline
FCN model (Long et al. 2015) used in our algorithm, there
is a performance gain of 9% in our VOSTRa method. With
the response refinement, i.e., VOSTR, we further improve
the baseline FCN model by 12.1%. In addition, while exist-
ing methods rely on training the segment classifier (Tang et
al. 2013), integrating object proposals with detectors (Zhang
et al. 2015b), co-segmentation via modeling relationships
between videos (Tsai et al. 2016b), or self-paced fine-tuning
(Zhang et al. 2017), the proposed method utilizes a self-
learning scheme to achieve better segmentation results. With
the ResNet-101 architecture, we compare our method with
DeepLab (Chen et al. 2016) and FSEG (Jain et al. 2017). We
show that the proposed method improves the performance in
6 out of 10 categories and achieves the best averaged IoU.

5.5 SegTrack v2 Dataset

In Table 11, we provide experiments on the SegTrack v2
dataset (Li et al. 2013) that contains numerous unseen
objects. We use the ResNet-101 architecture and the training
data from PASCAL VOC, which is the same setting as the
appearance stream in FSEG (Jain et al. 2017). We show that
the proposed method performs better than FSEG (Jain et al.
2017), other unsupervised algorithms (Papazoglou and Fer-
rari 2013; Lee et al. 2011) and HVS (Grundmann et al. 2010)
that includes human annotations in the procedure. Compared
to our conference version, VOSTRa , we further improve the
performance by integrating the fully-connected CRFs to our
network.

6 Concluding Remarks

In this paper, we propose a self-learning framework to
segment objects in unlabeled videos. By utilizing existing
annotations in images,we design amodel to adapt seen object
categories from source images to the target video. The entire
process is decomposed into three sub-problems: (1) a fully-
connected CRF model to refine responses from the CNN
output, (2) a segment mining module to select object-like
proposals, and (3) a CNN model with a transferable layer
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that adapts feature representations for target videos. To opti-
mize the proposed formulation, we adopt an iterative scheme
to obtain final solutions. Extensive experiments and ablation
study show the effectiveness of our algorithm against other
state-of-the-art methods on numerous datasets.

Acknowledgements Funding was provided byMinistry of Science and
Technology (Grant Nos.MOST 107-2628-E-001-005-MY3 andMOST
108-2634-F-007-009).

References

Caelles, S., Maninis, K. K., Pont-Tuset, J., Leal-Taixé, L., Cremers,
D., & Gool, L. V. (2017). One-shot video object segmentation. In
CVPR.

Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille,
A. L. (2016). Deeplab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected crfs.
arXiv:1606.00915.

Chen, Y., Pont-Tuset, J., Montes, A., & Gool, L. V. (2018a). Blazingly
fast video object segmentation with pixel-wise metric learning. In
CVPR.

Chen, Y.W., Tsai, Y. H., Yang, C. Y., Lin, Y. Y., &Yang,M. H. (2018b).
Unseen object segmentation in videos via transferable representa-
tions. In ACCV.

Cheng, J., Tsai, Y. H., Wang, S., & Yang, M. H. (2017). Segflow: Joint
learning for video object segmentation and optical flow. In ICCV.

Cheng, J., Tsai, Y. H., Hung, W. C., Wang, S., & Yang, M. H. (2018).
Fast and accurate online video object segmentation via tracking
parts. In CVPR.

Everingham,M.,Gool, L. J.V.,Williams,C.K. I.,Winn, J.M.,&Zisser-
man, A. (2010). The pascal visual object classes (VOC) challenge.
IJCV, 88(2), 303–338.

Faktor, A., & Irani, M. (2014). Video segmentation by non-local con-
sensus voting. In BMVC.

Ganin, Y., & Lempitsky, V. (2015). Unsupervised domain adaptation
by backpropagation. In ICML.

Gopalan, R., Li, R., & Chellappa, R. (2011). Domain adaptation for
object recognition: An unsupervised approach. In ICCV.

Grundmann, M., Kwatra, V., Han, M., & Essa, I. (2010). Efficient hier-
archical graph-based video segmentation. In CVPR.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for
image recognition. In CVPR.

Hoffman, J., Guadarrama, S., Tzeng, E. S., Hu, R., Donahue, J., Gir-
shick, R., Darrell, T., & Saenko, K. (2014). LSDA: Large scale
detection through adaptation. In NIPS.

Hong, S., Oh, J., Lee, H., Han, B. (2016). Learning transferrable knowl-
edge for semantic segmentation with deep convolutional neural
network. In CVPR.

Hu, R., Dollár, P., He, K., Darrell, T., & Girshick, R. (2018). Learning
to segment every thing. In CVPR.

Jain, S., Xiong, B., & Grauman, K. (2017). Fusionseg: Learning to
combine motion and appearance for fully automatic segmention
of generic objects in videos. In CVPR.

Jain, S. D., & Grauman, K. (2014). Supervoxel-consistent foreground
propagation in video. In ECCV.

Khoreva,A., Perazzi, F., Benenson,R., Schiele,B.,&Sorkine-Hornung,
A. (2017). Learning video object segmentation from static images.
In CVPR.

Koh, Y. J., & Kim, C. S. (2017). Primary object segmentation in videos
based on region augmentation and reduction. In CVPR.

Krähenbühl, P., & Koltun, V. (2011). Efficient inference in fully con-
nected CRFs with Gaussian edge potentials. In NIPS.

Lazic, N., Givoni, I., Frey, B., & Aarabi, P. (2009). Floss: Facility loca-
tion for subspace segmentation. In ICCV.

Lee, Y. J., Kim, J., & Grauman, K. (2011). Key-segments for video
object segmentation. In ICCV.

Li, F., Kim, T., Humayun, A., Tsai, D., & Rehg, J. M. (2013). Video
segmentation by tracking many figure-ground segments. In ICCV.

Li, S., Seybold, B., Vorobyov, A., Lei, X., & Kuo, C. C. J. (2018).
Unsupervised video object segmentation with motion-based bilat-
eral networks. In ECCV.

Lim, J. J., Salakhutdinov, R., & Torralba A. (2011). Transfer learning
by borrowing examples for multiclass object detection. In NIPS.

Liu, C. (2009).Beyond pixels: Exploring new representations and appli-
cations for motion analysis. PhD thesis, MIT.

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional net-
works for semantic segmentation. In CVPR.

Luo, Z., Zou, Y., Hoffman, J., & Fei-Fei, L. (2017). Label efficient
learning of transferable representations across domains and tasks.
In NIPS.

Märki, N., Perazzi, F., & Wang, O., & Sorkine-Hornung, A. (2016).
Bilateral space video segmentation. In CVPR.

Ochs, P., & Brox, T. (2011). Object segmentation in video: A hierarchi-
cal variational approach for turning point trajectories into dense
regions. In ICCV.

Oh, S. W., Lee, J. Y., Sunkavalli, K., & Kim, S. J. (2018). Fast video
object segmentation by reference-guided mask propagation. In
CVPR.

Papazoglou,A.,&Ferrari,V. (2013). Fast object segmentation in uncon-
strained video. In ICCV.

Patricia, N., &Caputo, B. (2014). Learning to learn, from transfer learn-
ing to domain adaptation: A unifying perspective. In CVPR.

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global
vectors for word representation. In EMNLP (pp. 1532–1543).

Perazzi, F., Pont-Tuset, J., McWilliams, B., Gool L. V., Gross M., &
Sorkine-Hornung, A. (2016). A benchmark dataset and evaluation
methodology for video object segmentation. In CVPR.

Perazzi, F., Wang, O., Gross, M., & Sorkine-Hornung, A. (2015). Fully
connected object proposals for video segmentation. In CVPR.

Prest, A., Leistner, C., Civera, J., Schmid, C., & Ferrari, V. (2012).
Learning object class detectors from weakly annotated video. In
CVPR.

Rochan, M., & Wang, Y. (2015). Weakly supervised localization of
novel objects using appearance transfer. In CVPR.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al.
(2015). Imagenet large scale visual recognition challenge. IJCV,
115(3), 211–252.

Saenko, K., Kulis, B., Fritz, M., & Darrell, T. (2010). Adapting visual
category models to new domains. In ECCV.

Saleh, F. S., Aliakbarian,M. S., Salzmann,M., Petersson, L.,&Alvarez,
J.M. (2017). Bringing background into the foreground:Making all
classes equal in weakly-supervised video semantic segmentation.
In ICCV.

Shi, Z., Yang, Y., Hospedales, T. M., & Xiang, T. (2017). Weakly-
supervised image annotation and segmentation with objects and
attributes. PAMI, 39(12), 2525–2538.

Simonyan, K., & Zisserman, A. (2014). Very deep convolu-
tional networks for large-scale image recognition. CoRR.
abs/1409.1556:1187–1200.

Strand, R., Ciesielski, K. C., Malmberg, F., & Saha, P. K. (2013). The
minimum barrier distance. CVIU, 117(4), 429–437.

Tang, K., Sukthankar, R., Yagnik, J., & Fei-Fei, L. (2013). Discrimina-
tive segment annotation in weakly labeled video. In CVPR.

Taylor, B., Karasev, V., & Soatto, S. (2015). Causal video object seg-
mentation from persistence of occlusions. In CVPR.

123

http://arxiv.org/abs/1606.00915


International Journal of Computer Vision (2020) 128:931–949 949

Tokmakov, P., Alahari, K., & Schmid, C. (2017a). Learning motion
patterns in videos. In CVPR.

Tokmakov, P., Alahari, K.,&Schmid, C. (2017b). Learning video object
segmentation with visual memory. In ICCV.

Tommasi, T., Orabona, F., & Caputo, B. (2014). Learning categories
from few examples with multi model knowledge transfer. PAMI,
36, 928–941.

Tsai, Y. H., Hung, W. C., Schulter, S., Sohn, K., Yang, M. H., & Chan-
draker, M. (2018). Learning to adapt structured output space for
semantic segmentation. In CVPR.

Tsai, Y. H., Yang, M. H., & Black, M. J. (2016a). Video segmentation
via object flow. In CVPR.

Tsai, Y. H., Zhong, G., & Yang, M. H. (2016b). Semantic co-
segmentation in videos. In ECCV.

Yan, Y., Xu, C., Cai, D., & Corso, J. J. (2017). Weakly supervised actor-
action segmentation via robust multi-task ranking. In CVPR.

Yang, L., Wang, Y., Xiong, X., Yang, J., & Katsaggelos, A. K. (2018).
Efficient video object segmentation via network modulation. In
CVPR.

Zhang, D., Yang, L., Meng, D., Xu, D., & Han, J. (2017). SPFTN: A
self-paced fine-tuning network for segmenting objects in weakly
labelled videos. In CVPR.

Zhang, J., Sclaroff, S., Lin, Z., Shen, X., Price, B., &Mech, R. (2015a).
Minimum barrier salient object detection at 80 fps. In ICCV.

Zhang,Y.,Chen,X., Li, J.,Wang,C.,&Xia,C. (2015b). Semantic object
segmentation via detection in weakly labeled video. In CVPR.

Zhong, G., Tsai, Y. H., &Yang,M. H. (2016).Weakly-supervised video
scene co-parsing. In ACCV.

Zhu, F., Jiang, Z., & Shao, L. (2014). Submodular object recognition.
In CVPR.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	VOSTR: Video Object Segmentation via Transferable Representations
	Abstract
	1 Introduction
	2 Related Work
	3 Algorithmic Overview
	3.1 Overview of the Proposed Framework
	3.2 Objective Function

	4 Transferring Knowledge for Segmentation
	4.1 Refining Responses
	4.2 Mining Segment Proposals
	4.3 Learning Transferable Feature Representations
	4.4 Joint Formulation and Model Training

	5 Experimental Results
	5.1 Implementation Details
	5.2 Training Time and Runtime Analysis
	5.3 DAVIS Dataset
	5.4 YouTube-Objects Dataset
	5.5 SegTrack v2 Dataset

	6 Concluding Remarks
	Acknowledgements
	References




