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Abstract
Multi-face tracking in unconstrained videos is a challenging problem as faces of one person often can appear drastically
different in multiple shots due to significant variations in scale, pose, expression, illumination, and make-up. Existing multi-
target tracking methods often use low-level features which are not sufficiently discriminative for identifying faces with such
large appearance variations. In this paper,we tackle this problemby learning discriminative, video-specific face representations
using convolutional neural networks (CNNs). Unlike existing CNN-based approaches which are only trained on large-scale
face image datasets offline, we automatically generate a large number of training samples using the contextual constraints for
a given video, and further adapt the pre-trained face CNN to the characters in the specific videos using discovered training
samples. The embedding feature space is fine-tuned so that the Euclidean distance in the space corresponds to the semantic
face similarity. To this end, we devise a symmetric triplet loss function which optimizes the network more effectively than
the conventional triplet loss. With the learned discriminative features, we apply an EM clustering algorithm to link tracklets
across multiple shots to generate the final trajectories. We extensively evaluate the proposed algorithm on two sets of TV
sitcoms and YouTube music videos, analyze the contribution of each component, and demonstrate significant performance
improvement over existing techniques.

Keywords Face tracking · Transfer learning · Convolutional neural networks · Triplet loss

1 Introduction

Multi-target tracking (MTT) aims at locating all targets of
interest (e.g., faces, pedestrians, players, and cars) and infer-
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ring their trajectories in a video over time while maintaining
their identities. This problem is at the core of numerous com-
puter vision applications such as video surveillance, robotics,
and sports analysis. Multi-face tracking is one important
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Fig. 1 Multi-face tracking. We tackle the problem of tracking multi-
ple faces of people while maintaining their identities in unconstrained
videos. Such videos consist of many shots from different cameras. The
main challenge is to address large appearance variations of faces from
different shots due to changes in pose, view angle, scale, makeup, illu-
mination, camera motion and heavy occlusions

domain of MTT that can be applied to high-level video
understanding tasks such as face recognition, content-based
retrieval, and interaction analysis.

The problem of multi-face tracking is particularly chal-
lenging in unconstrained scenarios where the videos are
generated from multiple moving cameras with different
views or scenes as shown in Fig. 1. Examples include auto-
matic character tracking in movies, TV sitcoms, or music
videos. It has attracted increasing attention in recent years due
to the fast-growing popularity of such videos on the Internet.
Unlike tracking in the constrained counterparts (e.g., a video
from a single stationary or moving camera) where the main
challenge is to deal with occlusions and intersections, multi-
face tracking in unconstrained videos needs to address the
following issues: (1)Avideo often consists ofmany shots and
the contents of two neighboring shots may be dramatically
different; (2) It entails dealing with re-identifying faces with
large appearance variations due to changes in scale, pose,
expression, illumination, and makeup in different shots or
scenes; and (3) The results of face detection may be unreli-
able due to low resolution, occlusion, nonrigid deformation,
motion blurring and complex backgrounds.

Multi-target tracking has been extensively studied in
the literature with the primal focus on humans. Recent
approaches often address multi-face tracking by tracking-
by-detection techniques. These methods first apply an object
detector to locate faces in every frame, and apply data asso-
ciation approaches (Brendel et al. 2011; Collins 2012; Yang
and Nevatia 2012a; Zhang et al. 2008; Zhao et al. 2012)
that use visual cues (e.g., appearance, position, motion, and
size) in an affinity model to link detections or tracklets (track
fragments) into trajectories. Suchmethods are effectivewhen
the targets are continuously detected and when the camera
is either stationary or slowly moving. However, for uncon-
strained videos with many shot changes and intermittent
appearance of targets, the data association problem becomes
more difficult because the assumptions such as appearance
and size consistency, and continuous motion no longer hold
in neighboring shots. Therefore, the design of discriminative
features plays a critical role in identifying faces across shots
in unconstrained scenarios.

Existing MTT methods (Yang and Nevatia 2012a; Zhang
et al. 2008; Zhao et al. 2012) use combinations of low-
level features such as color histograms, Haar-like features,
or HOG (Dalal and Triggs 2005) to construct an appearance
model for each target. However, these hand-crafted features
often are not sufficiently discriminative to identify faces with
large appearance changes. For example, low-level features
extracted from faces of two different persons under the same
pose (e.g., frontal poses) are likely more similar than those
extracted from faces of the same person under different poses
(e.g., frontal and profile poses).

Deep convolutional neural networks (CNNs) have demon-
strated significant performance improvements on recognition
tasks, e.g., image classification (Krizhevsky et al. 2012). The
features extracted from the activation of a pre-trained CNN
have been shown to be effective for generic visual recogni-
tion tasks (Donahue et al. 2014). In particular, CNN-based
features have shown impressive performance on face recog-
nition and verification tasks (Sun et al. 2014b, a; Schroff et al.
2015; Hu et al. 2014). These models are often trained using
large-scale face recognition datasets in a fully supervised
manner and then serve as feature extractors for unseen face
images. However, these models may not achieve good per-
formance in unconstrained videos as the visual domains of
the training and testing sets may be significantly different.

In this paper, we address this domain shift by adapting
a pre-trained CNN to the specific videos. Due to the lack
of manual annotations of target identities, we collect a large
number of training samples of faces by exploiting contextual
constraints of tracklets in the video. With these automati-
cally discovered training samples, we adapt the pre-trained
CNN so that the Euclidean distance between the embed-
ded features reflects the semantic distance between face
images. Using the learned discriminative features, we apply
anExpectation-Maximization (EM) clustering algorithm that
links the tracklets across multiple shots into the face trajec-
tories according to the people’s identities. We analyze the
contribution of each component in the proposed algorithm
and demonstrate the effectiveness of the learned features to
identify characters in 10 longTV sitcom episodes and singers
in 8 challenging music videos. We further apply our adaptive
feature learning approach to other objects (e.g., pedestrians)
and show competitive performance on pedestrian tracking
across cameras.

We make the following contributions in this work:

– We present an end-to-end person tracking system for
unconstrained videos with large appearance variations.
In contrast to prior work that requires manual clean-up in
building the training set (e.g., removing false positives),
our system takes raw videos as the input and performs
detection, tracking, feature adaptation, and clustering in
a fully automatic way.
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– We propose a symmetric triplet loss function which
simultaneously pulls positive pairs closer and pushes
away the negative samples from the positive pairs in the
triplets. Our results show that the proposed loss func-
tion significantly improves the performance of learned
networks.

– We leverage contextual constraints to mine a large num-
ber of informative training samples from the given video
for learning discriminative features.

– We develop a new dataset with 8 music videos from
YouTube containing annotations of 3845 face tracklets
and 117,598 face detections. This benchmark dataset is
challenging (with frequent shot changes, large appear-
ance variations, and rapid camera motion) and crucial
for evaluating multi-face tracking algorithms in uncon-
strained environments.

– We demonstrate the proposed adaptive feature learning
approach can be extended to tracking other objects, and
present empirical results on pedestrian tracking across
cameras using the DukeMTMC dataset (Ristani et al.
2016).

2 RelatedWork and Problem Context

2.1 Multi-target Tracking

In recent years, numerousmulti-target trackingmethods have
been proposed by applying a pre-learned object detector to
locate instances in every frame, and determine the trajecto-
ries by solving a data association problem (Brendel et al.
2011; Collins 2012; Pellegrini et al. 2009; Yang and Neva-
tia 2012a; Zhang et al. 2008; Zhao et al. 2012). A plethora
of global optimization methods have been developed for data
association based on theViterbi decoding scheme (Andriluka
et al. 2008), Hungarian algorithm (Stauffer 2003; Perera
et al. 2006; Kaucic et al. 2005), quadratic Boolean pro-
gramming (Leibe et al. 2007),maximumweight-independent
sets (Brendel et al. 2011), linear programming (Jiang et al.
2007; Berclaz et al. 2011), energyminimization (Andriyenko
and Schindler 2011; Andriyenko et al. 2012), and min-cost
network flow (Zhang et al. 2008). Some methods tackle
the data association problem with a hierarchical associa-
tion framework. For example, Xing et al. (2009) propose
a two-stage association method to combine local and global
tracklets association to track multiple targets. Huang et al.
(2008) propose a three-level association approach by first
linking the detections from consecutive frames into short
tracklets at the bottom level and then applying iterative
Hungarian algorithm and an EM algorithm at higher lev-
els. Yang and Nevatia (2012b) extend the three-level work
in Huang et al. (2008) through learning an online discrimi-
native appearance model.

Data association can also be formulated as a linear
assignment problem. Existing algorithms typically integrate
appearance and motion cues into an affinity model to infer
and link detections (or tracklets) into trajectories (Brendel
et al. 2011; Zhang et al. 2008; Andriyenko et al. 2012; Huang
et al. 2006; Li et al. 2007). However, these MTT methods
do not perform well in unconstrained videos where abrupt
changes across different shots occur, and the assumptions of
smooth appearance change no longer hold.

To identify targets across shots, discriminative appearance
features are required to discern targets in various circum-
stances. Most existing multi-target tracking methods (Zhang
et al. 2008; Ben Shitrit et al. 2011; Huang et al. 2008; Li
et al. 2009; Wu et al. 2013a) use color histograms as fea-
tures and Bhattacharyya distance or correlation coefficient as
affinity measures. Several methods (Andriyenko et al. 2012;
Andriyenko and Schindler 2011; Roth et al. 2012;Wang et al.
2014; Kuo and Nevatia 2011) use hand-crafted features, e.g.,
Haar-like (Viola and Jones 2001), SIFT (Fulkerson et al.
2008; Lowe 2004), HOG (Dalal and Triggs 2005) features,
or combination (Roth et al. 2012; Wang et al. 2014; Kuo
and Nevatia 2011). For robustness, some approaches (Zhang
et al. 2015; Kuo et al. 2010; Yang and Nevatia 2012b, a)
adaptively select the most discriminative features for a spe-
cific video (Breitenstein et al. 2009; Collins et al. 2005;
Grabner and Bischof 2006). However, all these hand-crafted
feature representations are not tailored for faces, and thus are
less effective at handling the large appearance variations in
unconstrained scenarios.

2.2 Unsupervised Domain Adaptation

The unsupervised domain adaptation task (Long et al. 2013;
Fernando et al. 2015; Ganin and Lempitsky 2014; Tzeng
et al. 2014) in our work is to transfer a face classifier from a
source domain (e.g., offline face images) to a target domain
(e.g., video) where there is no labeled training data for target
video.

Several unsupervised domain adaptation methods use
feature space alignment to minimize the distance between
domains in the feature space by learning a transformation
from source to target domains (Fernando et al. 2013, 2015;
Saenko et al. 2010) or a joint adaptation layer that embeds
features into a new domain-invariant space (Long et al.
2013; Tzeng et al. 2014). Tzeng et al. (2014) use two CNNs
for the source and target domains with shared weights and
train the network with the classification loss in the source
domain and themaximummean discrepancy (MMD)metric.
Ganin et al. (2016) embed domain adaptation into learn-
ing representation. The adaptation is achieved by aligning
the distributions of features across two domains with stan-
dard back-propagation training. Gupta et al. (2016) consider
a similar network architecture for cross-modality supervi-
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sion transfer, and Sun and Saenko (2016) perform end-to-end
adaptation in deep neural networks.

There also exist numerous algorithms on unsupervised
domain adaptation and transfer with adversarial learning
(Goodfellow et al. 2014), where the domain difference is
measured by a discriminator network (Liu and Tuzel 2016;
Taigman et al. 2016). For example, Taigman et al. (2016)
consider cross-domain transfer of images from one style
to another without instance-level correspondence between
domains using adversarial loss. The coupled GAN (Liu and
Tuzel 2016) scheme constructs individual networks for each
domain with partially shared higher-layer parameters for
generator and discriminator to generate coherent images of
two domains. Tzeng et al. (2017) combine discriminative
modeling, untied weight sharing and a GAN loss in a uni-
fied framework for adversarial domain adaptation. Recently,
Shu et al. (2018) propose to refine a classifier by unteth-
ering the model from the source training signal and apply
approximated natural gradients to further minimize the clus-
ter assumption violation. In contrast, we leverage contextual
constraints between tracklets in a target video to mine a large
number of informative training samples for learning discrim-
inative features.

2.3 Visual Constraints in Multi-target Tracking

Several approaches (Cinbis et al. 2011; Tapaswi et al. 2014;
Wang et al. 2014; Wu et al. 2013a, b) exploit visual con-
straints from videos for improving tracking performance.
These visual constraints are often derived from the spatio-
temporal relationships among the extracted tracklets (Cinbis
et al. 2011; Wu et al. 2013b). Two types of constraints are
commonly used: (1) all samples in the same tracklet repre-
sent the same object and (2) a pair of tracklets in the same
frame indicates that two different objects are present. Prior
work either uses these constraints implicitly for learning a
cast-specific metric (Cinbis et al. 2011; Wang et al. 2014); or
explicitly for linking cluster or tracklet (Wu et al. 2013a, b).

Numerous cues fromcontextual constraints have also been
used for tracking, e.g., clothing (El Khoury et al. 2010), pose-
lets (Zhang et al. 2015), script (Bauml et al. 2013; Sivic et al.
2009; Everingham et al. 2006), speech (Paul et al. 2014),
gender (Zhou et al. 2015), video editing style (Tapaswi et al.
2014), clustering prior (Tang et al. 2015), and dynamic clus-
tering constraints (Zhang et al. 2016). For examples, the
methods in Ramanan et al. (2007), Tapaswi et al. (2012)
and Anguelov et al. (2007) incorporate clothing appearance
for improving person identification accuracy. Joon Oh et al.
(2015) require ground-truth head annotations to estimate sev-
eral contextual regions (e.g. head, upper body and full body).
Each region is fed into one or more CNNs to obtain a set of
feature vectors. Zhang et al. (2015) match the person predic-
tions coming from poselets to the ground truths to compute

part activations. Lin et al. (2010) present a probabilistic con-
text model to jointly tag people across multiple domains of
people, events, and locations. The work (Everingham et al.
2006; Anguelov et al. 2007) exploits speaker analysis to
improve face labeling.

The contextual constraints in our work differ from the
recent literature in the following three aspects: (1) unlike
existing methods (Anguelov et al. 2007; El Khoury et al.
2010; Tapaswi et al. 2012; Du and Chellappa 2016) that
exploit contextual constraints by augmenting face features
with contextual features, our algorithm learns more discrim-
inative face features using the symmetric triplet loss; (2) our
work further propagates the relationship of contextual con-
straints to discover a larger set of positive and negative pairs
for training the triplet network effectively; and (3) in contrast
to existing approaches (El Khoury et al. 2010; Joon Oh et al.
2015; Zhang et al. 2015) that require ground-truth head anno-
tations to generate contextual regions, our algorithm does not
need any additional manual annotations.

2.4 CNN-Based Representation Learning

Recent face recognition and verification methods (Rao et al.
2017, 2019) focus on learning identity-preserving feature
representations from deep neural networks. While the mod-
els may differ, these CNN-based face representations [e.g.,
DeepID (Sun et al. 2014b), DeepFace (Taigman et al. 2014),
FaceNet (Schroff et al. 2015),VGG-Face (Parkhi et al. 2015)]
are learned by training CNNs using large-scale datasets in a
fully supervised manner. These CNNs then operate as fea-
ture extractors for face recognition, identification, and face
clustering. In this work, we also use a CNN to learn identity-
preserving features from a face recognition dataset. Themain
difference lies in that we further adapt the pre-trained rep-
resentation to a specific video, thereby further improve the
specificity of the model and enhance discriminative strength.
In addition,we introduce a symmetric triplet-based loss func-
tion and demonstrate its effectiveness over the commonly
used contrastive loss and triplet loss.

2.5 Adapting Pre-trained CNN Features to Specific
Videos

There exist several methods to fine-tune a pre-trained CNN
to learn video-specific features on vision tasks, such as single
object tracking (Bertinetto et al. 2016) and video object seg-
mentation (Caelles et al. 2017; Yoon et al. 2017). However,
most of thesemethods requiremanual supervision to generate
the training samples. Bertinetto et al. (2016) propose to adapt
the parameters of a pre-trained deepmodel given an exemplar
of the object in the first frame. Caelles et al. (2017) segment a
particular entity in a video by fine-tuning the pre-trained net-
work given the image/ground-truth segmentation mask pair
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Fig. 2 Algorithm pipeline. Our multi-face tracking algorithm has four
main steps: a Pre-training a CNN on a large-scale face recognition
dataset to learn identity-preserving features; b Preprocessing the target
video with shot detecting and face detecting; c Generating face pairs
or face triplets from the tracklets in a specific video with the proposed

spatio-temporal constraints and contextual constraints, d Adapting the
pre-trained CNN to learn video-specific features from the automatically
generated training samples, and e linking tracklets within each shot and
then across shots to form the face trajectories

in the first frame. In contrast, our approach fine-tunes the pre-
trained CNN with training samples automatically generated
from spatio-temporal and contextual constraints.

2.6 Long-TermObject Tracking

The goal of long-term object tracking (Kalal et al. 2012; Per-
nici 2012) is to locate a specific target over time evenwhen the
target leaves and re-enters the scene. These trackers perform
well on various types of targets such as cars and faces. How-
ever, online trackers are designed to handle scenes recorded
by a stationary or slow-moving camera and thus not effective
in tracking faces in unconstrained videos for two reasons.
First, these trackers are prone to drift due to online model
update with noisy examples. Second, hand-crafted features
are not sufficiently discriminative to re-identify faces across
shots.We tackle the first issue by processing the video offline,
i.e., apply a face detector in every frame and associate all the
tracklets in the video. For the second issue, we learn adaptive
discriminative representation to account for large appearance
variations of faces across shots or scenes.

3 Algorithmic Overview

Our goal is to track multiple faces across multiple shots in
an unconstrained video while maintaining identities of the
persons of interest. To achieve this, we learn discriminative
features that are adapted to the appearance variations in the
specific videos.We then determine the identities of the track-
lets through clustering them in the learned feature space and
produce the final trajectories. We summarize the main steps
of the proposed algorithm in Fig. 2.

(a) Pre-training The CNN model based on the
AlexNet (Krizhevsky et al. 2012) is pre-trained using
an external face dataset to learn identity-preserving fea-
tures (Sect. 4.1).

(b) Input preprocessingThe input video is divided into non-
overlapping shots using an off-the-shelf shot change
detector. Within each shot, we apply a face detector and
link adjacent detections into short tracklets.

(c) Discovering the training samples We discover a large
collection of training samples (in pairs or triplets) from
the tracklets based on the spatio-temporal and contex-
tual constraints (Sect. 4.2).

(d) Learning video-specific feature space We adapt the
pre-trained CNN model using the automatically dis-
covered training samples to account for large appear-
ance changes of faces pertaining to a specific video
(Sect. 4.3). We present an improved symmetric triplet
loss which enhances the discriminative ability of the
learned features.

(e) Linking tracklets Within each shot, the tracklets are
linkedfirst by a conventionalmulti-face trackingmethod
into short trajectories. Then, we use an EM algorithm to
cluster all trajectories in the video based on the leaned
features. Finally, we assign the tracklets in each cluster
to the same identity (Sect. 5).

4 Learning Discriminative Features

In this section, we present the algorithmic details for learning
video-specific features.After describing how the generic face
features are obtained from the pre-training step, we introduce
the process of discovering training examples and learning
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discriminative features using the proposed symmetric triplet
loss function.

4.1 Supervised Pre-training

We learn identity-preserving features by pre-training a deep
neural network on a large-scale face recognition dataset.
Based on the AlexNet architecture (Krizhevsky et al. 2012),
we replace the output layer with K nodes where each node
corresponds to a specific person. We train the network on an
external CASIA-WebFace dataset (Yi et al. 2014) (494,414
images of 10,575 subjects) for face recognition in a fully
supervised manner. We select 9427 persons, 80% of the
images (431,300 images) for training and the remaining 20%
(47,140 images) as the validation set. Each face image is nor-
malized to 227× 227× 3 pixels. We use stochastic gradient
descent with an initial learning rate of 0.01 that decreases by
a factor of 10 for every 20,000 iterations using the Caffe (Jia
et al. 2014) toolbox.

4.2 Discovering Training Samples

4.2.1 Shot Detection and Tracklets Linking

We first use a shot change detection method to divide each
input video into non-overlapping shots.1 Next, we use a face
detector (Mathias et al. 2014) to locate faces in each frame.
Given the face detections for each frame, we use a two-
threshold strategy (Huang et al. 2008) to generate tracklets
within each shot by linking the detected faces in adjacent
frames based on similarities in appearances, positions, and
scales. Note that the two-threshold strategy for linking detec-
tions could be replaced by more sophisticated methods, e.g.,
tracking using particle filters (Huang et al. 2006; Breitenstein
et al. 2009).Wediscard tracklets shorter thanfive frames. The
extracted face tracklets are formed in a conservative manner
with limited temporal spans up to the length of each shot.

4.2.2 Spatio-Temporal Constraints

Existing methods typically exploit spatio-temporal con-
straints from tracklets to generate training samples from the
video. Given a set of tracklets, we can discover a large collec-
tion of positive and negative training sample pairs belonging
to the same/different persons: (1) all pairs of faces in one
tracklet are from one person and (2) two face tracklets that
appear in the same frame contain faces of different persons.

Let Ti = {xi1, . . . , xini } denote the i th face tracklet of
length ni .We generate a set of positive pairsP+ by collecting
all within-tracklet face pairs:

1 http://sourceforge.net/projects/shot-change/.
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to nega�ve samples

T The tracklet formed in videos

Legends:
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Fig. 3 Contextual constraints generation. Here, we label the faces inT1
andT3 as the same identity given the sufficiently high similarity between
the contextual features of T1 and T3. With this additional constraint,
we can propagate the constraints transitively and derive that the faces
from T1 and T4 (or T5, T6) are in fact belonging to different identities,
and the faces from T3 and T2 are from different people

P+ = {(xik, xil )}, s.t. ∀k, l = 1, . . . , ni , k �= l. (1)

Similarly, if tracklets Ti and T j overlap in some frames,
we can generate a set of negative pairs N− by collecting all
between-tracklet face pairs:

N− = {(xik, x j
l )}, s.t. ∀k = 1, . . . , ni , ∀l = 1, . . . , n j . (2)

4.2.3 Contextual Constraints

With the spatio-temporal constraints, we can obtain a large
number of face pairs without manual labeling. These train-
ing pairs, however, may have some biases. First, the positive
(within-tracklet) pairs occur close in time (e.g., only sev-
eral frames apart in one shot), which means that the positive
face pairs often do not have large appearance variations. Sec-
ond, the negative pairs are all generated from tracklets that
co-occur in the same shot. Consequently, the learned model
may not be effective in distinguishing or linking faces across
shots (as we do not have training samples for these cases)
(Fig. 3).

To address these problems, we mine additional positive
and negative face pairs for learning our video-specific fea-
tures. The idea is to exploit contextual information beyond
facial regions for identifying persons across shots. Specif-
ically, we identify the clothing region following Du and
Chellappa (2016) and extract features using the AlexNet
model. Given the i th face detection xi in one frame, we
locate the torso region si by using a probabilistic mask
I (p ∈ vs.i |xi ) (See Fig. 4), where p is a pixel in the current
frame. We learn this probabilistic mask from the statistics
of body part’s spatial relationship on the Human in 3D
dataset (Bourdev and Malik 2009). We do not include sam-
ples for extracting contextual constraints from video frames
that do not capture one’s body part, e.g., the camera focuses
on one’s face.

To generate more positive training samples, we try to find
the tracklet groups that are highly likely from same per-
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Fig. 4 Face detections and clothing regions. Although the two images
belong to different shots, we can determine the face detection results
are from the same persons by measuring similarity of face and clothing.
Thus, they can be used as positive training samples

sons. By using the concatenated face and clothing features,
we apply a Hierarchical Agglomerative Clustering (HAC)
algorithm with a stopping criterion to gather the tracklets
into clusters. In HAC, the distance between two clusters
Ta = {xai } and Tb = {xbj } is defined as the average element-
wise distance, i.e.,

Dab = 1

|Ta |
1

|Tb|
∑

i

∑

j

‖f(xai ) − f(xbk )‖22 , (3)

where f(·) denotes the feature vector in the embedded feature
space. For the tracklets which have overlapped frames, their
distances are set as infinity. We also set the stopping thresh-
old with a low value (θ = 0.8 in our experiments) so that the
HAC algorithm only finds confident tracklet clusters. These
grouped tracklets generally contain faces with similar cloth-
ing in the different shots or scenes and thus provide additional
positive tracklet pairs. In addition, by leveraging these posi-
tive pairs, we can discovermore negative pairs by transitively
propagating the relationship among tracklets. For example,
suppose we know that the tracklets A and B are from dif-
ferent persons, and the tracklets A and C are from the same
person, automatically implies that the tracklet B and C are
from different persons.

Figure 3 illustrates the generation process of contextual
constraints. Here, the tracklets T1 and T2 co-occur in one
shot and the tracklets T3, T4, T5 and T6 co-occur in another
shot. Using only spatio-temporal constraints, we are not
able to obtain training samples from different shots. As a
result, the tracklets T1 and T4 may be incorrectly iden-
tified as the same person. However, from the contextual
cues, we may be able to identify that the tracklets T1 and
T3 are the same person. Using this additional positive con-
straints, we can automatically generate additional negative
constraints, e.g., T1 is a different person from T4, T5 and
T6.

4.3 Learning Adaptive Discriminative Features

With the discovered trainingpairs fromapplyingboth contex-
tual and spatio-temporal constraints, we optimize the embed-
ding function f(·) such that the distance D(f(x1), f(x2)) in
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CNN CNN

Shared 
Weights CNN

Posi�ve 
pair

Triplet NetworkSiamese Network

)( 1xf )( 2xf )( 1xf )( 2xf )( 3xf

Fig. 5 Siamese versus Triplet network. Illustration of the Siamese net-
work (left) with pairs as inputs and the triplet network (right) with
triplets as inputs for learning discriminative features adaptively. The
Siamese network consists of two CNNs and uses a contrastive loss.
The Triplet network consists of three CNNs and uses a triplet loss. The
CNNs in each network share the same architectures and parameters and
are initializedwith parameters of the CNNpre-trained on the large-scale
face recognition dataset

the embedding space reflects the semantic similarity of two
face images x1 and x2:

D(f(x1), f(x2)) = ‖f(x1) − f(x2)‖22. (4)

We set the feature dimension of f(·) as 64 in all of our exper-
iments. We first describe two commonly used loss functions
for optimizing the embedding space: (1) contrastive loss and
(2) triplet loss, and then present a symmetric triplet loss func-
tion for feature learning.

4.3.1 Contrastive Loss

The Siamese network (Chopra et al. 2005; Hadsell et al.
2006) consists of two identical CNNs with the shared archi-
tecture and parameters as shown in Fig. 5. Minimizing the
contrastive loss function encourages small distance of two
images of the same person and large distance otherwise.
Denote (x1, x2) ∈ {P+,N−} as a pair of training images
generated with the spatio-temporal constraints. Similar to
Chopra et al. (2005) and Hadsell et al. (2006), the contrastive
loss function is:

L p =
{

1
2D(f(x1), f(x2)) if (x1, x2) ∈ P+
1
2 max(0, τ − D(f(x1), f(x2))) if (x1, x2) ∈ N−

(5)

where τ (τ = 1 in all our experiments) is the margin. Intu-
itively, if x1 and x2 are from the same person, the loss is
1
2D(f(x1), f(x2)) and we aim to decrease D(f(x1), f(x2)).
Otherwise, we increase D(f(x1), f(x2)) until it is larger than
the margin τ .
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(a) (b) (c)

Fig. 6 Conventional triplet loss versus SymTriplet loss. a Illustration of
the negative partial gradient direction to the triplet samples. The top row
is the conventional triplet loss, and the bottom is the SymTriplet loss.
We highlight the triplet samples xik (blue), x

i
l (red), and x j

m (magenta).
The circles denote faces from the same person whereas the triangle

denotes a different person. The gradient directions are color-coded. b
The corresponding motion trajectories driven by the gradient flow of
the conventional triplet loss and the triplet loss; c Illustration of the
intra-class distances, inter-class distances, and training loss of the two
triplet formulations with respect to the number of iterations (Color fig-
ure online)

4.3.2 Triplet Loss

The triplet-based network (Schroff et al. 2015) consists
of three identical CNNs with the shared architecture and
parameters as shown in Fig. 5. One triplet consists of two
face images of the same person and one face image from
another person. We generate a set of triplets S from two
tracklets Ti and T j belonging to different persons: S =
{(xik, xil , x j

m)}, s.t. ∀k, l = 1, . . . , ni , k �= l, ∀m =
1, . . . , n j . Here we aim to ensure that the embedded dis-
tance of the positive pair (xik, x

i
l ) is closer than that of the

negative pair (xik, x
j
m) by a distance margin α (α = 1). For

one triplet, the triplet loss is of the form:

Lt = 1

2
max

(
0, D(f(xik), f(x

i
l )) − D(f(xik), f(x

j
m)) + α

)
.

(6)

4.3.3 Symmetric Triplet Loss

The conventional triplet loss in (6), takes only two of
the three distances into consideration: D(f(xik), f(x

i
l )) and

D(f(xik), f(x
j
m)) although there are three distances in each

triplet. We illustrate the problem of the conventional triplet
loss by analyzing thegradients of the loss function.Wedenote
the difference vector between the triplet (xik , x

i
l and x j

m):

�l,k = f(xil ) − f(xik),�m,k = f(x j
m) − f(xik),

�m,l = f(x j
m) − f(xil ). (7)

For non-zero triplet loss in (6), we can compute the gradients
as

∂Lt

∂f(xik)
= −(�l,k − �m,k),

∂Lt

∂f(xil )
= �l,k,

∂Lt

∂f(x j
m)

= −�m,k . (8)

Figure 6a shows the positive and negative gradient direc-
tions for each sample. There are two issues with the triplet
loss in (6).

(1) The loss function pushes the negative data point x j
m

away from only one of the positive pair xik rather than
both xik and xil .

(2) The gradients on the positive pair (xik, x
i
l ) are not sym-

metric with respect to the negative data xik .

As shown in Fig. 6b, the above two issues cause that the
positive pair xik and xil move in inconsistent directions. In
some cases, the training may lead to increased intra-class
distance between positive pair (shown in Fig. 6c).

To address these issues, we propose a symmetric triplet
loss function (SymTriplet) by considering all three distances
as:

Ls = max
[
0, D(f(xik), f(x

i
l ))−

1

2
(D(f(xik), f(x

j
m))

+ D(f(xil ), f(x
j
m))) + α

]
, (9)
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where α is the distance margin.
The gradients induced from the proposed SymTriplet loss

are

∂Ls

∂f(xik)
= −(2�l,k − �m,k),

∂Ls

∂f(xil )
= 2�l,k + �m,l ,

∂Ls

∂f(x j
m)

= −(�m,k + �m,l). (10)

The bottom row in Fig. 6a shows the negative gradient
directions. The proposed SymTriplet loss directly optimizes
the embedding space such that the positive pair are pulled
closer to each other and the negative sample (x j

m) is pulled
away from the two positive samples (xik, x

i
l ), as shown in

Fig. 6b. This property allows us to improve the discriminative
strength of the learned features.

4.4 Training Algorithm

We train the triplet network model with the SymTriplet loss
function and stochastic gradient decentmethodwithmomen-
tum. We compute the derivatives of (9) as follows:

∂Ls

∂W
=

{
∂ L̃s
∂W Ls > 0,
0 Ls = 0,

(11)

where

∂ L̃s

∂W
= 2(f(xik) − f(xil ))

∂f(xik) − ∂f(xil )

∂W

− (f(xik) − f(x j
m))

∂f(xik) − ∂f(x j
m)

∂W

− (f(xil ) − f(x j
m))

∂f(xil ) − ∂f(x j
m)

∂W
. (12)

We can compute the gradients from each input triplet exam-

ples given the values of f(xik), f(x
i
l ), f(x

j
m) and

∂f(xik )
∂W ,

∂f(xil )
∂W ,

∂f(x j
m )

∂W , which can be obtained using the standard forward
and backward propagations separately for each image in the
triplet examples. We summarize the main training steps in
Algorithm 1.

5 Multi-face Tracking via Tracklet Linking

We use a two-step procedure to link face tracklets generated
in Sect. 4.2: (1) linking the face tracklets within each shot
into shot-level tracklets, and (2) merging shot-level tracklets
across multiple shots into trajectories.

Algorithm 1 Stochastic gradient descent with SymTriplet
loss
1: Input: Training samples {(xik , xil , x j

m)}.
2: Output: Network parametersW,
3: for t = 1 → Max number of iterations do ∂Ls

∂W = 0

4: for all training triplet samples (xik , x
i
l , x

j
m) do

5: Compute f(xik), f(x
i
l ) and f(x j

m) by forward propagation;

6: Compute
∂f(xik )
∂W ,

∂f(xil )
∂W and ∂f(x j

m )
∂W by back propagation;

7: Compute ∂Ls
∂W according to (11) and (12).

8: end for
9: Update the parametersWt ← Wt−1 − λt

∂Ls
∂W

10: end for

5.1 Linking TrackletsWithin Each Shot

We use a typical multi-object tracking framework for link-
ing tracklets within each shot. First, we extract features from
each detected face using the learned deep network. We mea-
sure the linking probabilities between two tracklets using
temporal, kinematic and appearance information. Then, we
use the Hungarian algorithm to determine a globally opti-
mal label assignment (Huang et al. 2008; Xing et al. 2009)
and link tracklets with the same label are linked into shot-
level tracklets. We leave the detailed process of calculating
linking probabilities between two tracklets in the supplemen-
tary material (https://sites.google.com/site/shunzhang876/
facetracking).

5.2 EM Clustering for Linking Tracklets Across Shots

Instead of resorting to simple hierarchical agglomerative
clustering algorithms, we apply an EM-based clustering
algorithm which can account for non-spherical clusters and
outliers. We iteratively update the Gaussian models for the
clusters using the member tracklets, and determine the track-
let membership using the updated models—the expectation-
maximization procedure. Since the dimensionality of the
learned feature space is too large for Gaussian distribution
modeling,wefirst embed the tracklets into a low-dimensional
space for clustering. Among the low-dimensional feature
embedding methods, we use t-SNE (t-distributed Stochas-
tic Neighbor Embedding) algorithm (Van der Maaten and
Hinton 2008). The outlier tracklets such as incorrect detec-
tions or the faces of background actors are likely to scatter
randomly in the embedded space. As a result, they usu-
ally do not belong to the clusters formed by EM procedure
or form a separate cluster. Once the EM procedure is
converged, we detect the outlier tracklets and filter out
by testing their Mahalanobis distance to the nearest clus-
ter.

Unlike linear methods like PCA, t-SNE is a non-linear
dimensionality reduction algorithm. It defines two proba-
bility distributions on the element similarity in the original
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and embedded space, and computes the embedded points
which minimize the Kullback-Leibler divergence between
the two distributions. The details of the t-SNE algorithm
can be found in Van der Maaten and Hinton (2008). The
detailed process of the EM clustering algorithm is sum-
marized in Algorithm 2. The initial clusters are setup by
running K-means, and the data membership is determined
by finding the cluster minimizing the Mahalanobis dis-
tance

c∗ = argmin
c

(√
(x − μc)	�−1

c (x − μc)

)
. (13)

Then each cluster mean μc and covariance �c is updated
using the member data, and this procedure is iterated until
convergence. During the iteration, if a cluster becomes
empty, it is discarded and a new cluster is initialized at
a random position. To effectively capture the outliers, we
maintain one outlier cluster with a large variance in the
EM procedure. Upon convergence, the tracklets far from
all clusters are classified as outliers and discarded. The
tracklets in the same clusters are given with the same
identities and linked together to form the final trajecto-
ries.

Algorithm 2 Tracklet linking using EM clustering
1: procedure EM_Clustering(K , tracklets) 
 K is number of

inlier clusters
2: C = K-means(t-SNE(tracklets), K + 1)
3: The outlier cluster : cout = argmaxc(�c)

4: The inlier clusters : Cin = C\{cout }
5: while not converged do
6: Set the outlier threshold θo = avg(D�o (xo)), xo ∈ cout
7: for each data x, do
8: if minc∈Cin D�c (x) > θo then
9: Classify x into the outlier cluster
10: else
11: Classify x into argminc∈Cin D�c (x)
12: end if
13: end for
14: if any cluster is empty then
15: Randomly re-initialize the cluster.
16: end if
17: end while
18: end procedure

6 Experimental Results

In this section, we first describe the implementation details,
datasets, and evaluation metrics. Next, we present the evalu-
ation results of the proposed algorithm against the state-of-
the-art methods. More experimental results and videos are
available in the supplementary material (https://sites.google.
com/site/shunzhang876/facetracking). The code of the pro-

posed algorithm for tracking persons-of-interest (TPI) and
annotated datasets are available on our project website.2

6.1 Implementation Details

CNN fine-tuningWe adapt the pre-trained CNNwith the pro-
posedSymTriplet loss. For feature embedding,we replace the
classification layer in the pre-trained network with 64 output
nodes. We use stochastic gradient descent with the momen-
tum term set to 0.9. For the network training, we set a fixed
learning rate to 0.00001 for finetuning and a weight decay of
0.0001. We use a mini-batch size 128 and train the network
for 2000 epochs.

6.2 Datasets

We evaluate the proposed algorithm on three types of videos
containing multiple persons:

1. Videos in a laboratory setting: Frontal (Wu et al.
2013a)

2. TV sitcoms: The Big Bang Theory (BBT) (Wu et al.
2013a, b) andBuffy theVampire Slayer (BUFFY) (Sivic
et al. 2009; Everingham et al. 2006; Du and Chellappa
2016) datasets

3. Music video dataset from YouTube

Frontal video Frontal is a short video in a constrained
scene acquired indoors with a fixed camera. Four persons
facing the camera move around and occlude each other.
BBT dataset We select the first 7 episodes from Season 1 of
the Big Bang Theory TV Sitcom (referred to as Bbt01- 07).
Each video is about 23min long with the main cast of 5–13
people and is recorded mostly indoors. The main difficulty
lies in identifying faces of the same person from frequent
changes of camera views and scenes, where there are large
appearance variations in viewing angle, pose, scale, and illu-
mination.
BUFFY dataset The BUFFY dataset has been widely eval-
uated in the context of automatic face labeling (Sivic et al.
2009; Everingham et al. 2006; Du and Chellappa 2016). The
dataset contains three episodes (episode 2, 5 and 6) fromSea-
son 5 of the TV series Buffy the Vampire Slayer (referred to
as Buffy02, Buffy05, and Buffy06). Each video is about
40minutes longwith themain cast of 13–19 people. The illu-
mination condition in this video dataset is more challenging
than that in the BBT dataset as it contains many scenes with
dim light.
Music video dataset We contribute a new dataset consisting
of 8music videos fromYouTube.Weprovide full annotations
of 3845 face tracklets and 117,598 face detections. Compared

2 https://sites.google.com/site/shunzhang876/facetracking.
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Person 1 Person 2

Person 3 Person 4

Person 5 Person 6

Fig. 7 Sampling ground-truth thumbnail faces of 6 people on the T-

ara sequence to illustrate the challenge of similar looking in our dataset

to existing face tracking datasets, the new dataset presents
a new set of challenges (e.g., frequent shot/scene changes,
large appearance variations, and rapid camera motion) that
are crucial for developing multi-face tracking algorithms in
unconstrained environments. It is challenging to track mul-
tiple faces in these videos due to large variations caused
by frequent shot/scene changes, large appearance variations,
and rapid camera motion. Three sequences (T- ara,West-

life and Pussycat Dolls) are recorded from live music
performance with multiple cameras in different views. The
other sequences (Bruno Mars, Apink, Hello Bubble,
Darling and Girls Aloud) are MTV videos. Faces in
these videos often undergo large appearance variations due to
changes in pose, scale,makeup, illumination, cameramotion,
and occlusions.
Challenges of the presented music video dataset:

(i) The music video dataset contains faces with similar
appearances. In the T- ara, HelloBubble, Darling,
Apink and GirlsAloud sequences, numerous faces
resemble to each other. Figure 7 shows cropped face
images from the T- ara sequence, in which all six per-
sons have similar looks. It is difficult to distinguish
person 3 and 4, and person 5 and 6 have very sim-
ilar looks. As all 6 persons have similar looks, it is
challenging for face recognition methods to perform
well, especially under the unsupervised setting. More
similar cropped images can be found in Figures 1–
4 of the supplementary material (https://sites.google.
com/site/shunzhang876/facetracking). Although exist-
ing ace datasets contain a large number of images in the
wild, the number of faces with similar looks is small,
and most of them can be easily distinguished.

(ii) Although the music video dataset contains only 52 sub-
jects, it includes a number of face images captured from

Back-view faces Blurring faces

Occluded faces and half faces Faces with makeup

Cluttered background Illumination changes

Fig. 8 The music video dataset presents a set of challenges, such as
different cluttered background, large appearance changes, large viewing
angle changes, motion blurring and so on

a wide range of viewpoints with different poses. In
addition, these images are captured in different cam-
era conditions (lighting, zoom, and poses). Thus, the
face images contain large appearance variations in clut-
tered backgrounds. As shown in Fig. 8, this dataset is
challenging as it contains heavy occlusion, motion blur,
and low contrast.

6.3 EvaluationMetrics

We evaluate the proposed method in two main aspects. First,
to evaluate the effectiveness of the learned video-specific
features,weuse a bottom-uphierarchical agglomerative clus-
tering algorithm to merge pairs of tracklets until all tracklets
have been merged into the pre-defined number of clusters
(i.e., the actual number of people in the video). We measure
the quality of clustering using the weighted purity:

W = 1

M

∑

c

mc · pc, (14)

where each cluster c containsmc elements and its purity pc is
measured as the fraction of the largest number of faces from
the same person to mc, and M denotes the total number of
faces in the video.

Second, we evaluate the method with the metrics com-
monly used in multi-target tracking (Zhang et al. 2015),
including Recall, Precision, F1, FAF, IDS, Frag, MOTA, and
MOTP. We list the definitions of these metrics in the supple-
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mentary material(https://sites.google.com/site/shunzhang
876/facetracking). The up and down arrows indicate whether
higher or lower scores are better for each metric.

6.4 Evaluation on Features

We evaluate the proposed adaptive features against several
alternatives summarized in Table 1.

6.4.1 Adaptive Features Versus off-the-shelf Features

We evaluate the proposed features (TPI-Siamese, TPI-
Triplet, TPI-SymTriplet andTPI-SymTriplet-Contx) adapted
to a specific video against the off-the-shelf features (HOG,
AlexNet, Pre-trained,VGG-Face andVGG-Face2) in Table 2
and 3. We show that the identity-preserving features (Pre-
trained, VGG-Face and VGG-Face2) trained on face datasets
offline achieve better performance over generic feature rep-
resentation (e.g., AlexNet and HOG). Our video-specific
features trained with Siamese and triplet networks achieve
favorable performance than other alternatives, highlighting
the importance of learning video-specific features. For exam-
ple, in the Daring sequence, the proposed method with
TPI-SymTriplet-Contx feature achieves the weighted purity
of 0.76, significantly outperforming the off-the-shelf fea-
tures, i.e., VGG-Face: 0.20, VGG-Face2: 0.32, AlexNet:
0.18 and HOG: 0.19. Overall, the results with the proposed
features are more than twice as accurate as that using off-
the-shelf features in music videos. For the BBT dataset, the
proposed feature adaptation consistently outperforms that
with off-the-shelf features.

6.4.2 Measuring the Effectiveness of Features via Clustering

Here, we validate the effectiveness the proposed features
compared to the baselines. Figure 9 shows the results in terms
of clustering purity versus the number of clusters on 7 BBT
sequences, 3 BUFFY episodes, and 5music videos. The pink
dashed line means that all faces are correctly grouped with
weighted purity WC = 1. For more effective features, the
weighted purity measures approach 1 at a faster rate. For
each feature type, we show the weighted purity at the ideal
number cluster (i.e., number of people in a video) in the leg-
end.

Figure 10 shows 2D visualization of extracted features
from T- ara using the t-SNE algorithm (Van der Maaten
and Hinton 2008). The visualization illustrates the difficulty
in handling large appearance variations in unconstrained
videos. For HOG features, there exist no clear cluster struc-
tures, and faces of the same person are scattered around.
Although AlexNet and pre-trained features increase inter-
person distances, the clusters of the same person do not
appear in close proximity. In contrast, the proposed adap-

tive features form tighter clusters for the same person and
greater separation between different persons.

6.4.3 Nonlinear and Linear Metric Learning

Unlike several existing approaches (Cinbis et al. 2011; Wu
et al. 2013a, b; Tapaswi et al. 2014; Xiao et al. 2014) that
rely on hand-crafted features and linear metric learning, we
use a deep nonlinear metric learning by finetuning all layers
to learn discriminative face representations. To demonstrate
the contribution of the nonlinear metric learning, we com-
pare our adaptive features with VGG-Face-ULDML which
learns Mahalanobis distance on the VGG-Face features in
Table 2. We show that the proposed method achieves higher
clustering purity than VGG-Face-ULDML on all videos. For
example, on the T- ara sequence, the clustering purity by
TPI-SymTriplet-Contx and VGG-Face-ULDML is 0.84, and
0.26, respectively.

6.4.4 SymTriplet and Conventional Siamese/Triplet Loss

Weevaluate the effectiveness of the proposedSymTriplet loss
(TPI-SymTriplet) with comparisons to the contrastive loss
(TPI-Siamese) and the triplet loss (TPI-Triplet) on all videos
in Table 2. The proposed method with the SymTriplet loss
performs well against the other methods since positive sam-
ple pairs are pulled closer and negative samples are pushed
away from the positive pairs. For example, on the Bbt05

sequence, TPI-SymTriplet (0.85) achieves higher clustering
purity than TPI-Triplet (0.68) and TPI-Siamese (0.70);

Togainmore insight of the proposedSymTriplet loss func-
tion, we visualize the top layer (i.e. the embedded layer)
features obtained from theTPI-FullModel. The conventional
triplet loss from the TPI-FullModel-Triplet is selected as
the baseline. Figure11 shows the feature visualizations for
the two different losses respectively. It is clearly seen that,
the proposed SymTriplet loss can help making the learned
featureswith betterwithin-cluster compactness and between-
cluster separability as compared to the conventional triplet
loss.

6.4.5 Contextual and Spatio-Temporal Constraints

We demonstrate the effectiveness of contextual constraints.
Using the presented SymTriplet loss, we compare the fea-
tures learned from using only spatio-temporal constraints
(TPI-SymTriplet), and both contextual and spatio-temporal
constraints (TPI-SymTriplet-Contx). Table 2 shows that
TPI-SymTriplet-Contx achieves better performance when
compared with TPI-SymTriplet on all videos. We attribute
the performance improvement to the additional positive and
negative face pairs discovered through contextual cues and
the transitive constraint propagation.
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Table 2 Clustering results on 7 BBT videos and 3 BUFFY videos. The weighted purity of each video is measured on the ideal number of clusters

Methods BBT dataset BUFFY dataset

Bbt01 Bbt02 Bbt03 Bbt04 Bbt05 Bbt06 Bbt07 Buffy02 Buffy05 Buffy06

HOG (Dalal and Triggs 2005) 0.37 0.31 0.37 0.36 0.29 0.26 0.30 0.21 0.38 0.25

AlexNet (Krizhevsky et al. 2012) 0.47 0.31 0.45 0.36 0.29 0.26 0.39 0.33 0.37 0.26

Pre-trained 0.86 0.71 0.73 0.59 0.51 0.50 0.73 0.26 0.42 0.32

VGG-Face (Parkhi et al. 2015) 0.91 0.85 0.85 0.54 0.65 0.46 0.79 0.22 0.51 0.41

VGG-Face-ULDML 0.92 0.87 0.86 0.60 0.68 0.23 0.85 0.34 0.54 0.43

VGG-Face2 0.92 0.88 0.90 0.64 0.72 0.45 0.82 0.28 0.54 0.46

TPI-Siamese 0.94 0.95 0.87 0.74 0.70 0.70 0.89 0.44 0.67 0.61

TPI-Triplet 0.94 0.95 0.92 0.74 0.68 0.70 0.89 0.45 0.66 0.70

TPI-SymTriplet 0.94 0.95 0.92 0.78 0.85 0.75 0.91 0.46 0.68 0.73

TPI-SymTriplet-Contx 0.95 0.95 0.93 0.84 0.86 0.83 0.92 0.58 0.70 0.75

TPI-SymTriplet-BBT02 0.90 0.95 0.87 0.74 0.79 0.67 0.88 – – –

TPI-FullModel 0.95 0.98 0.95 0.92 0.93 0.81 0.96 0.83 0.83 0.84

Bold values indicate the best and italic values indicate the second-best performance

Table 3 Clustering results on 8 music videos. The weighted purity of each video is measured on the actual number of clusters

Methods Music dataset

T- ara Pussycat Dolls Bruno Mars Hello Bubble Darling Apink Westlife Girls Aloud

HOG (Dalal and Triggs 2005) 0.22 0.28 0.36 0.33 0.20 0.20 0.27 0.29

AlexNet (Krizhevsky et al. 2012) 0.24 0.32 0.35 0.31 0.19 0.21 0.37 0.30

Pre-trained 0.31 0.31 0.49 0.34 0.25 0.28 0.32 0.33

VGG-Face (Parkhi et al. 2015) 0.23 0.46 0.44 0.29 0.21 0.24 0.27 0.31

VGG-Face-ULDML 0.26 0.44 0.47 0.34 0.28 0.26 0.41 0.32

VGG-Face2 0.31 0.51 0.48 0.39 0.32 0.35 0.42 0.35

TPI-Siamese 0.69 0.77 0.88 0.54 0.46 0.48 0.54 0.67

TPI-Triplet 0.68 0.77 0.83 0.60 0.49 0.60 0.52 0.67

TPI-SymTriplet 0.69 0.78 0.90 0.64 0.50 0.57 0.56 0.69

TPI-SymTriplet-Contx 0.84 0.83 0.91 0.69 0.72 0.74 0.66 0.75

TPI-FullModel 0.95 0.93 0.91 0.81 0.73 0.86 0.91 0.97

Bold values indicate the best and italic values indicate the second-best performance

6.4.6 EM Clustering and HAC Algorithm

We evaluate the effectiveness of the presented EM clustering
algorithm. We compare TPI-FullModel (using EM cluster-
ing) with TPI-SymTriplet-Contx (using HAC) on all test
videos with the clustering weighted purity measured on the
actual number of clusters in Tables 2 and 3. The results show
that using EM clustering algorithm achieves the best clus-
tering performance on almost all videos due to the ability to
remove outliers from clusters. In Fig. 9we also compare TPI-
FullModel with TPI-SymTriplet-Contx in terms of clustering
purity versus the number of clusters. The figure illustrates
that the EM clustering algorithm achieves higher curve than
the HAC algorithm on most of videos, e.g., Darling, T-
ara, Hello Bubble, Apink, Buffy02 and Bbt04. Using

the EM clustering algorithm improves the performance by
a large margin, particularly for the Music Video dataset, in
which people in the video look very similar.

6.4.7 Comparisons with Other Face Clustering Algorithms

We compare our method with five recent state-of-the-art
face clustering algorithms (Wu et al. 2013a, b; Cinbis et al.
2011; Xiao et al. 2014; Zhang et al. 2016) on the Frontal,
Bbt01,Buffy02, and Notting Hill videos. Table 4 shows
the clustering accuracy over faces and tracklets [using the
same datasets and metrics as Wu et al. (2013a, b)].3 In con-

3 The code and data of some methods, e.g., Tapaswi et al. (2014) are
not available.
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(a) T-ARA (b) PUSSYCAT DOLLS (c)BRUNO MARS (d)HELLO BUBBLE (e)DARLING (f)APINK

(g) WESTLIFE (h) GIRLS ALOUD (i) BUFFY02 (j) BUFFY05 (k) BUFFY06 (l) BBT01
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Fig. 9 Clustering performance. Clustering purity versus number of
clusters with different features on YouTube music video, Big Bang
Theory and BUFFY datasets. The ideal line indicates that all faces are
correctly grouped into ideal clusters, and its corresponding weighted
purity is equal to 1. For the more effective feature, its purity approxi-

mates to 1 faster with the increase in the number of clusters. Red dotted
line: TPI-FullModel; red solid line: TPI-SymTriplet-Contx; green solid
line:VGG-Face; orange solid line: Pre-trained; blue solid line:AlexNet;
yellow solid line: HOG; Pink dashed line: Ideal Clusters (Color figure
online)
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Fig. 10 2D tSNE visualization. 2D tSNE visualization of all face fea-
tures from the proposed fine-tuned CNN for adapting video-specific
variations, compared with HOG, AlexNet, and pre-trained features. T-
ara has 6 main casts. The faces of different people are color coded
(Color figure online)

trast to the methods in Wu et al. (2013a, b), Cinbis et al.
(2011) and Xiao et al. (2014) which learn linear transforma-
tions over the extracted features, our work learns nonlinear
metrics by adapting all layers of theCNNand performs favor-
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Fig. 11 Feature visualization. Feature visualization by t-SNE, using a
the conventional triplet loss; b the presented SymTriplet loss. Apink
has 6 main casts. The faces of different people are color coded (Color
figure online)

ably on the Frontal,Bbt01, and Buffy02 sequences. Both
Zhang et al. (2016) and our method discover more infor-
mative face pairs to adapt the pre-trained models to learn
discriminative face representations and achieve similar clus-
tering performance on the Buffy02 and Notting Hill

videos.

6.4.8 Comparison with other Unsupervised Domain
Adaption Methods

We present additional comparisons to several unsupervised
domain adaptation algorithms, including Subspace Align-
ment (SA) (Fernando et al. 2013), Correlation Alignment
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Table 4 Clustering accuracy on the Frontal, Bbt01, Buffy02 and Notting Hill videos

Method Frontal Bbt01 Buffy02 Notting Hill

Faces Tracklets Faces Tracklets Faces Faces

HOG (Dalal and Triggs 2005) 0.411 0.402 0.495 0.472 0.304 0.451

AlexNet (Krizhevsky et al. 2012) 0.591 0.435 0.716 0.698 0.426 0.634

Pre-trained 0.777 0.381 0.747 0.775 0.516 0.791

Cinbis-ICCV-11 (Cinbis et al. 2011) 0.844 0.861 0.581 0.565 0.416 0.732

Wu-CVPR-13 (Wu et al. 2013b) 0.950 0.907 0.626 0.596 0.503 0.844

Wu-ICCV-13 (Wu et al. 2013a) 0.950 0.907 0.665 0.668 – –

Xiao-ECCV-14 (Xiao et al. 2014) 0.962 0.938 0.694 0.721 0.628 0.963

Zhang-ECCV-16 (Zhang et al. 2016) – – – 0.921 0.990

TPI-FullModel 0.998 0.998 0.946 0.982 0.926 0.980

We compare our results with three baseline features and five other state-of-the-art face clustering methods (Wu et al. 2013a, b; Cinbis et al. 2011;
Xiao et al. 2014; Zhang et al. 2016) based on the same face tracks input and metrics as in Wu et al. (2013a, b)
Bold values indicate the best and italic values indicate the second-best performance

Table 5 Clustering results on the music dataset. The weighted purity of each video is measured on the actual number of clusters

Methods T- ara Pussycat Dolls Bruno Mars Hello Bubble Darling Apink Westlife Girls Aloud

TPI-FullModel 0.95 0.93 0.91 0.81 0.73 0.86 0.91 0.97

SA (Fernando et al. 2013) 0.37 0.46 0.52 0.43 0.43 0.38 0.44 0.40

CORAL (Sun et al. 2016) 0.41 0.48 0.53 0.47 0.38 0.47 0.45 0.45

Deep CORAL (Sun and
Saenko 2016)

0.52 0.58 0.62 0.54 0.49 0.52 0.56 0.51

DIRT-T (Shu et al. 2018) 0.56 0.61 0.64 0.54 0.47 0.55 0.58 0.53

We compare our clustering results with several state-of-the-art unsupervised domain adaption methods (Fernando et al. 2013; Sun et al. 2016; Sun
and Saenko 2016; Shu et al. 2018)
Bold values indicate the best performance

(CORAL) (Sun et al. 2016), Deep CORAL (Sun and Saenko
2016) and DIRT-T (Shu et al. 2018), on the music dataset
for clustering performance analysis. Table 5 shows that the
existing unsupervised domain adaption techniques (e.g., SA
and CORAL) do not perform well on the music dataset
due to large domain differences. In contrast, our method
allows learning rich feature hierarchies via multiple layers of
nonlinear transformations with end-to-end training of deep
networks based on discovered training samples and contex-
tual constraints in videos. Table 5 shows that our method
performs favorably against the SA and CORAL methods in
music videos.

6.4.9 Comparisons with Different Number of Feature
Dimensions

We investigate the effect of the dimensionality of the embed-
ded features. Figure 12 shows the clustering purity versus
the number of clusters in comparison with a different num-
ber of feature dimensions on the sequence Bruno Mars.
In general, the clustering accuracy is not very sensitive to
the selection of feature dimension. However, we do observe
that using large feature dimension (e.g., 512 and 1024) does
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Fig. 12 Effect of feature dimensionality. The legend shows the
weighted purity at the ideal number of clusters for each feature on
Bruno Mars sequence (Color figure online)

not perform well compared to smaller ones. We attribute
this to the insufficient training samples. The evaluation on
feature dimension also validates the selection of using 64-
dimensional features for accuracy and efficiency.
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6.5 Multi-face Tracking

6.5.1 Comparisons with the State-of-the-Art Multi-target
Trackers

We compare the proposed algorithm with several state-
of-the-art MTT trackers including the modified version of
TLD (Kalal et al. 2012), ADMM (Ayazoglu et al. 2012),
IHTLS (Dicle et al. 2013), and methods by Wu et al.
(2013a, b).4 The TLD (Kalal et al. 2012) scheme is a long-
term single-target tracker which can re-detect targets of
interest when targets leave and re-enter a scene. We imple-
ment two extensions of TLD formulti-face tracking. The first
one is the mTLD scheme where in each sequence, we run
multiple TLD trackers for all targets and each TLD tracker
is initialized with the ground-truth bounding box in the first
frame. For the second extension of TLD, we integrate the
mTLD into our framework (referred to as TPI-mTLD). We
use the mTLD to generate shot-level trajectories within each
shot instead of using the two-threshold and Hungarian algo-
rithms. At the beginning of each shot, we initialize TLD
trackers with untracked detections and link the detections
in the following frames according to the overlap scores with
TLD outputs.

Table 6 shows quantitative results of the proposed algo-
rithm, themTLD (Kalal et al. 2012), ADMM(Ayazoglu et al.
2012), and IHTLS (Dicle et al. 2013) on the BBT, BUFFY
and music video datasets. We also show the tracking results
with the pre-trained features without adapting to a specific
video. Note that the results shown in Table 6 are based on the
overall evaluation. We leave the results from each individual
sequence in the supplementary material (https://sites.google.
com/site/shunzhang876/facetracking).

ThemTLDmethod does not performwell on both datasets
in terms of recall, precision, F1, and MOTA metrics. The
ADMM (Ayazoglu et al. 2012) and IHTLS (Dicle et al.
2013) schemes often generate numerous identity switches
and fragments as both methods do not re-identify persons
well when abrupt camera motions or shot changes occur.
The tracker with the pre-trained features is not effective to
re-identify faces in different shots and achieve low MOTA.
The TPI-mTLD scheme has more IDS and Frag than the
TPI-SymTriplet method. The shot-level trajectories deter-
mined by the mTLD method are short and noisy since TLD
trackers sometimes drift or do not perform well when large
appearance changes occur. In contrast, TPI-FullModel per-
forms well in terms of precision, F1, and MOTA metrics,
with significantly fewer identity switches and fragments.

4 The method in Du and Chellappa (2016) manually corrected some
annotation errors and added several missing face tracks. Both the code
and data are not publicly available.

6.5.2 Qualitative Results

Figure 13 shows sample tracking results of our algorithmwith
TPI-FullModel features on all eight music videos. Figure 14
shows the results on three BUFFY videos and three selected
BBT sequences. The numbers and the colors indicate the
inferred identities of the targets. The proposed algorithm is
able to track multiple faces well despite large appearance
variations in unconstrained videos. In Fig. 13, for example,
there are significant changes in scale and appearance (due to
makeup and hairstyle) in the Hello Bubble sequence (first
row). In the fourth row, the six singers have similar looks and
thusmakemulti-face trackingparticularly challengingwithin
and across shots. Nonetheless, our approach can distinguish
the faces and track them reliably with few id switches. The
results in other rows illustrate that our method is able to
generate correct identities and trajectories when the same
person appears in different shots or different scenes.

6.5.3 Time Analysis

We provide a complete time analysis of each component of
the proposed method in Table 7. The Buffy02 episode is
about 42min. Our total processing time is about 40 minutes.
The step of adaptive feature learning takes about 50% of the
time. There is a trade-off between performance and time.
Adapting the network with more iterations and training sam-
ples yields improved results, but at the cost of additional
time for processing the video. As a result, our technique is
less suitable for online streaming video processing where the
computational time is a critical concern.

6.6 Ablation Study

We conduct an ablation study to demonstrate the effective-
ness of individual modules in our approach by removing
modules.

(1) TPI-FullModel-noPT: without pre-training model.
(2) TPI-FullModel-noFT:without using the contextual con-

straints to fine-tune the pre-trained model.
(3) TPI-FullModel-noSL: without the SymTriplet loss

(Replaced with the conventional triplet loss).
(4) TPI-FullModel-noT: without linking tracklets within

each shot.
(5) TPI-FullModel-noC: without clustering the shot-level

tracklets across different shots.

All experiments are conducted on the BBT dataset using the
multi-target tracking metrics.
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Table 6 Quantitative comparison with other state-of-the-art multi-target tracking methods on the BBT and music video datasets. Among these
trackers, mTLD is an online tracking method while others are running offline

Method Recall↑ (%) Precision↑ (%) F1↑ (%) FAF↓ IDS↓ Frag↓ MOTA↑ (%) MOTP↑ (%)

BBT dataset

mTLD (Kalal et al. 2012) 1.1 8.1 1.9 0.18 8 83 −11.2 73.2

ADMM (Ayazoglu et al. 2012) 78.3 56.8 65.8 0.49 2709 4623 39.5 72.7

IHTLS (Dicle et al. 2013) 77.7 63.4 69.8 0.49 2648 4496 39.2 72.7

Pre-trained 45.0 76.8 56.8 0.19 908 2435 30.0 77.9

TPI-mTLD 63.7 78.8 70.5 0.24 1224 3487 44.6 77.6

TPI-Siamese 74.5 81.4 77.8 0.24 884 4051 56.1 77.4

TPI-Triplet 76.2 80.2 78.1 0.27 944 4223 55.8 77.3

TPI-SymTriplet 76.6 81.0 78.7 0.26 846 4261 57.2 77.2

TPI-SymTriplet-Contx 76.8 81.7 79.2 0.23 817 4073 59.6 77.6

TPI-FullModel 80.5 79.4 79.9 0.22 810 3806 60.1 77.3

BUFFY dataset

mTLD (Kalal et al. 2012) 4.6 21.5 7.6 0.32 192 453 −8.2 69.1

ADMM (Ayazoglu et al. 2012) 78.3 64.9 70.9 0.37 1420 2445 31.6 70.1

IHTLS (Dicle et al. 2013) 78.0 68.9 73.2 0.30 1558 2424 38.1 70.2

Pre-trained 52.3 72.1 60.6 0.12 405 2672 38.3 68.8

tpi-mTLD 65.4 73.5 69.2 0.27 413 2503 45.3 70.2

TPI-Siamese 66.1 74.3 70.0 0.19 389 2470 45.6 70.2

tpi-Triplet 67.3 74.6 70.8 0.20 388 2462 47.4 70.2

TPI-SymTriplet 68.1 74.7 71.2 0.19 363 2460 47.6 70.2

TPI-SymTriplet-Contx 70.9 77.5 74.0 0.18 293 2446 49.4 70.2

TPI-FullModel 71.2 77.5 74.2 0.18 363 2471 49.6 70.2

Music video dataset

mTLD (Kalal et al. 2012) 9.7 36.1 15.3 0.39 280 621 −7.7 68.4

ADMM (Ayazoglu et al. 2012) 75.5 61.8 68.0 0.50 2382 2959 51.7 63.7

IHTLS (Dicle et al. 2013) 75.5 68.0 71.6 0.41 2013 2880 56.2 63.7

Pre-trained 60.1 88.8 71.7 0.17 931 2140 51.5 79.5

TPI-mTLD 69.1 88.1 77.4 0.21 1914 2786 57.7 80.1

TPI-Siamese 71.5 89.4 79.5 0.19 986 2512 62.3 64.0

TPI-Triplet 71.8 88.8 79.4 0.20 902 2546 61.8 64.2

TPI-SymTriplet 71.8 89.7 79.8 0.19 699 2563 62.8 64.3

TPI-SymTriplet-Contx 73.2 90.5 80.9 0.19 625 2417 64.1 64.2

TPI-FullModel 73.4 90.4 81.0 0.19 789 2388 64.3 64.2

Bold values indicate the best and italic values indicate the second-best performance

6.6.1 Effect of Pre-training

Our feature adaption approach builds upon a pre-trained face
CNN model (pre-trained using an external face dataset to
learn identity-preserving features). To evaluate the effect of
model pre-training, we evaluate two models: TPI-FullModel
with and without pre-training while keeping all other fac-
tors are the same. In Table 8 we compare the TPI-FullModel
with TPI-FullModel-noPT methods. The model without
pre-training (TPI-FullModel-noPT) has significantly lower
performance in terms of Recall, F1 and MOTA. The results

show that pre-training identity-preserving features are impor-
tant for the success of our feature adaption method.

6.6.2 Effect of Fine-Tuning and SymTriplet Loss

We generate the TPI-FullModel with and without fine-tuning
and compare tracking results between the SymTriplet loss
and the conventional triplet loss. Table 8 shows that both TPI-
FullModel-noFT has lower performance in terms of Recall,
F1, IDS, Frag and MOTA metrics, highlighting the impor-
tance of learning video-specific features. We evaluate the
effectiveness of the proposed SymTriplet loss with compar-
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Fig. 13 Tracking results on YouTube Music video dataset. Shown from the top to bottom are Hello Bubble, Apink, Darling, T- ara, Bruno
Mars, Girls Aloud,Westlife and Pussycat Dolls. The faces of the different people are color coded (Color figure online)

isons to the conventional triplet loss (TPI-FullModel-noSL).
The TPI-FullModel with the SymTriplet loss performs well
against the TPI-FullModel-noSL method since in the pre-
sented SymTriplet loss positive sample pairs are pulled closer
andnegative samples are pushed away from thepositive pairs.

6.6.3 Effect of Tracking and Clustering

Table 8 shows that the performance of both TPI-FullModel-
noT and TPI-FullModel-noC methods decreases in terms of
Recall, F1, IDS, Frag and MOTA metrics. Without linking
tracklets within each shot, the TPI-FullModel-noT method
cannot recover several missed faces, and thus yields lower

performance on the Recall. Although some separated track-
lets in each shot can be grouped together by the clustering
algorithm, numerous tracklets may be grouped incorrectly
due to the lack of consideration of spatio-temporal coherence
within each shot. This explains the increase of IDS and Frag.
Without clustering tracklets across different shots, the TPI-
FullModel-noC method assigns each short tracklet in each
shot with different identities, which results in significantly
more identity switches and lower MOTA.
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Fig. 14 Tracking results on BUFFY and BBT dataset. The faces of the different people are color coded (Color figure online)

Table 7 Time analysis of each component on Buffy02 episode

Component Time

Pre-train face CNN ∼7 h

Buffy02 episode ∼42min

Detect faces ∼900s

Shot detects ∼20s

Generate constraints ∼200s

Adaptive feature learning ∼20min

Linking tracklets within shots ∼100s

Clustering tracklets across shots ∼15s

6.6.4 Effect of Backbone Network

We evaluate our algorithm using a ResNet-50 model as our
base feature extractor. We choose the ResNet-50 model pub-
licly available on the VGG-Face2 project (Cao et al. 2018) as
our pre-trained face model (pre-trained on the VGG-Face2
training dataset and the Ms-Celeb-1M dataset). Based on
this pre-trained ResNet model, we then replace the clas-
sification output layer with a 64-node feature embedding

layer (same as the setting in adapting a pre-trained AlexNet
model) to construct the triplet network for learning adaptive
discriminative features. We train the ResNet model using
the automatically discovered samples in the target videos.
We refer to the adapted model as TPI-FullModel-ResNet.
Table 9 presents the clustering and tracking results on the
music video dataset. With a stronger backbone network, the
TPI-FullModel-ResNet has moderate performance improve-
ment in the term of the weighted purities on the music video
dataset. In particular, on the videosHelloBubble,Darling
and Apink, the model with ResNet achieves higher cluster-
ing performance than that with AlexNet. For example, in
the Daring sequence, the TPI-FullModel-ResNet achieves
the weighted purity of 0.84, significantly outperforming the
TPI-FullModel with AlexNet: 0.73. For evaluation on track-
ing, the ResNet based model also outperforms the AlexNet
based model in term of IDs (drops 187), Frag (drops 82)
and MOTA (improves 0.8%). We attribute the performance
improvement to the larger training datasets and a network
with higher capacity.
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Table 8 Ablation study on the BBT dataset

Method Recall↑ (%) Precision↑ (%) F1↑ (%) FAF↓ IDS↓ Frag↓ MOTA↑(%) MOTP↑ (%)

BBT dataset

TPI-FullModel-noPT 58.4 80.7 67.8 0.20 976 2451 42.2 77.2

TPI-FullModel-noFT 56.0 80.2 66.0 0.19 925 2438 40.4 77.9

TPI-FullModel-noSL 76.6 81.0 78.7 0.26 846 4261 57.2 77.2

TPI-FullModel-noT 65.3 81.3 72.4 0.24 952 5109 43.1 77.4

TPI-FullModel-noC 68.7 81.2 74.4 0.25 1496 4082 46.2 77.2

TPI-FullModel 80.5 79.4 79.9 0.22 810 3806 60.1 77.3

Bold values indicate the best and italic values indicate the second-best performance

Table 9 Qualitative results with the replacement of the AlexNet model by the ResNet model. For the clustering results, the weighted purity of each
video is measured on the actual number of clusters

Methods Clustering results on Music dataset

T- ara Pussycat Dolls Bruno Mars Hello Bubble Darling Apink Westlife Girls Aloud

TPI-FullModel 0.95 0.93 0.91 0.81 0.73 0.86 0.91 0.97

TPI-FullModel-ResNet 0.98 0.95 0.96 0.84 0.84 0.90 0.93 0.97

Methods Multi-face tracking results on Music dataset

Recall↑ Precision↑ F1↑ FAF↓ IDS↓ Frag↓ MOTA↑ MOTP↑
TPI-FullModel 73.4% 90.4% 81.0% 0.19 789 2388 64.3% 64.2%

TPI-FullModel-ResNet 73.8% 90.6% 81.3% 0.19 602 2306 65.1% 64.2%

Bold values indicate the best performance

6.6.5 Effect of Shot Detector, Face Detector, and Tracker

We evaluate the effect of different shot detectors, face detec-
tors, and trackers used in our approach.

(1) TPI-FullModel-shot: applying the computed tomogra-
phy method (Varghese and Nair 2016) to generate shot
boundary detections in videos.

(2) TPI-FullModel-Yolo: applying the state-of-the-art
object detector, YOLOv3 (Redmon and Farhadi 2018),
to generate face detections for each frame.

(3) TPI-FullModel-DSort: applying theDeepSort Tracking
method inWojke et al. (2017) to generate shot-level face
tracks within each shot.

All experiments are conducted on themusic dataset using the
multi-target tracking metrics.

Table 10 shows the quantitative tracking results with dif-
ferent shot detectors, face detectors and trackers on themusic
dataset. The TPI-FullModel-shot method performs equally
well as the TPI-FullModel scheme as both shot detection
algorithms (either Varghese and Nair (2016) or the method
on the website5 used in our approach) detect almost all

5 http://sourceforge.net/projects/shot-change/.

of the shot boundaries detections correctly on the music
videos. The TPI-FullModel-Yolo method outperforms the
TPI-FullModel scheme in term of Recall, F1, IDS, Frag
and MOTA, since it uses the state-of-the-art object detector.
The TPI-FullModel-Yolo method can generate more accu-
rate face detectionswhich help linkmore and longer tracklets
within each shot. TheTPI-FullModel-DSort scheme also out-
performs the TPI-FullModel approach in term of IDS, Frag
and MOTA, since it uses a deep CNN method to link detec-
tions into shot-level tracklets.

6.7 Pedestrian Tracking Across Cameras

In this section,we show that the proposedmethod for learning
adaptive discriminative features from tracklets is also appli-
cable to other objects, e.g., pedestrians or cars in surveillance
videos. We validate our approach on the task of pedestrian
tracking from multiple non-overlapping cameras.

The problem of multiple target tracking across cam-
eras is challenging as we need to re-identify people from
different images acquired at different viewing angles and
imaging conditions. In unconstrained scenes, the appear-
ances of people also exhibit significant differences across
cameras. The motion cues of people are unreliable due to
the non-overlapping views without knowing camera config-
urations apriori. The re-identification problem becomes even
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Table 10 Qualitative tracking results with different shot detectors, face detectors and trackers on the music dataset

Methods Recall↑ (%) Precision↑ (%) F1↑ (%) FAF↓ IDS↓ Frag↓ MOTA↑ (%) MOTP↑ (%)

TPI-FullModel 73.4 90.4 81.0 0.19 789 2388 64.3 64.2

TPI-FullModel-shot 73.4 90.4 81.0 0.19 786 2382 64.3 64.2

TPI-FullModel-Yolo 77.1 90.1 83.1 0.20 714 2308 65.2 64.2

TPI-FullModel-DSort 74.1 90.2 81.4 0.19 762 2353 64.5 64.2

Table 11 Tracking results on the DukeMTMC datset

Method IDS↓ Frag↓ MOTA↑ (%) MOTP↑ (%) IDP↑ (%) IDR↑ (%) IDF1↑ (%)

Camera 2

Ristani et al. (2016) 866 1929 49.2 61.7 69.1 63.8 66.3

TPI-FullModel 835 2011 51.0 60.9 69.4 64.6 66.9

Camera 5

Ristani et al. (2016) 162 292 73.1 70.5 84.9 68.0 75.5

TPI-FullModel 154 307 75.7 68.5 85.9 69.2 76.7

more challenging when a large number of people needs to be
tracked across views.

Similar to pre-training a CNN using face recognition
dataset for learning identity-preserving features, we first train
a CNN for people re-identification using the Market1501
dataset (Zheng et al. 2015) containing 32,668 images of 1501
identities. We evaluate our method on the DukeMTMC (Ris-
tani et al. 2016) dataset which contains surveillance footage
from 8 cameraswith approximately 85min of videos for each
one.

We conduct the experiment using images from camera 2
and 5 because they are disjoint and have the most number of
people. The performance evaluation on the complete dataset
can be found in our project webpage.6 We use the pedes-
trian detections provided by the DukeMTMCT dataset as our
inputs and apply the two-threshold strategy to generate track-
lets on the videos from both cameras. Next, we collect train-
ing samples based on the tracklets using spatio-temporal and
contextual constraints. We exploit the contextual constraints
by locating the torso region to extract local clothing features
formeasuring similarity. Similar to the experiments onmulti-
face tracking, we fine-tune the pre-trained CNNwith the dis-
covered training samples using the SymTriplet loss function.

After extracting the learned features for each detection,we
first link the tracklets within one camera into camera-level
trajectories. We then group these camera-level trajectories
into tracking results across the two cameras. Following Ris-
tani et al. (2016), wemeasure the tracking performance using
identificationprecision (IDP), identification recall (IDR), and
the corresponding F1 score IDF1, as well as other metrics.
The identification precision (recall) is the fraction of com-
puted (ground-truth) detections that are correctly identified.

6 https://sites.google.com/site/shunzhang876/facetracking.
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Fig. 15 Sample pedestrian tracking results. Shown from the top to
bottom are Camera 2 and Camera 5 of the DukeMTMC dataset. The
different people are color coded (Color figure online)

The IDF1 metric is the ratio of correctly identified detec-
tions over the average number of ground-truth and computed
detections. Both ID precision and ID recall indicate tracking
trade-offs, while the IDF1 score allows ranking all meth-
ods on a single scale that balances identification precision
and recall through the harmonic mean. Table 11 shows the
tracking results on both cameras in the DukeMTMC dataset.
Overall, the proposed method performs favorably against
the other methods in Ristani et al. (2016) in term of IDS,
MOTA, IDP, and IDF1. We show sample visual results of the
DukeMTMC dataset in Fig. 15. Person 247 and person 283
both appear in Camera 2 and Camera 5, and are correctly
matched across cameras with our method.

6.8 Discussion

While the proposed algorithm performs favorably against
the state-of-the-art face tracking and clustering methods in
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Fig. 16 Failure cases. Our method incorrectly identifies different per-
sons as the same one across shots on theApink andDarling sequences.
Numbers and colors of rectangles indicate the ground-truth identities of
persons. The red rectangles show the predicted locations and are tracked
as one person by our method. On the Apink sequence on the top row,

Persons 1, 3, 4 and 6 are incorrectly assigned with the same identity.
On the Darling sequence on the bottom row, our method incorrectly
identifies Persons 1 and 4 as the same one across shots (Color figure
online)

handling challenging video sequences, there are four main
limitations.

First, as our algorithm takes face detections as inputs, the
tracking performance depends on whether faces can be reli-
ably detected. For example, in the fourth row of Fig. 13, the
leftmost person was not detected in frame 906 and next few
images due to occlusion. In addition, falsely detected faces
could be incorrectly linked as a trajectory, e.g., the Marilyn
Monroe image on the T-shirt in frame 5806 in the eighth row
of Fig. 13.

Second, the proposed algorithm may not perform well
on sequences where many shots contain only one single
person. We show in Fig. 16 two failure cases in the Dar-

ling and Apink sequences. In such cases, the proposed
method does not generate negative face pairs for training the
Siamese/triplet network for distinguishing similar faces. As
such, different persons are incorrectly identified as the same
one. One remedy is to exploit other weak supervision sig-
nals (e.g., scripts, voice, contextual information) to generate
visual constraints for different scenarios.

Third, the CNN fine-tuning process is time-consuming. It
takes around 1 hour on anNVIDIAGT980TiGPU for 10,000
back-propagation iterations. There are three approaches that
may alleviate this issue. First, we may use faster training
algorithms (Lin et al. 2015). Second, similar to the method
in Bertinetto et al. (2016), we may train a deep CNN model
offline instead of online fine-tuning to improve run-time per-
formance. Third, for TV Sitcom episodes we can use one or
a few videos for feature adaptation and apply the learned fea-
tures to all other episodes. Note that we only need to adapt
features once as the main characters are the same. In Table 2,
we train TPI-SymTriplet features on Bbt02 (referred to as
TPI-SymTriplet-BBT02) and evaluate on other episodes.
Although the weight purity of TPI-SymTriplet-BBT02 is
slightly inferior to that of TPI-SymTriplet, it still outperforms
the pre-trained and VGG-Face features.

7 Conclusions

In this paper, we tackle the multi-face tracking problem
in unconstrained videos by learning video-specific features.
We first pre-train a CNN on a large-scale face recogni-
tion dataset to learn identity-preserving face representation.
We then adapt the pre-trained CNN using training samples
extracted through the spatio-temporal and contextual con-
straints. To learn discriminative features for handling large
appearance variations of faces presented in a specific video,
we propose the SymTriplet loss function. Using the learned
features for modeling face tracklets, we apply an EM cluster-
ing algorithm to link face tracklets across multiple shots. In
addition to multi-face tracking, we demonstrate that the pro-
posed algorithm can also be applied to other domains such
as pedestrian tracking across multiple cameras. Experimen-
tal results show that the proposed algorithm outperforms the
state-of-the-art methods in terms of clustering accuracy and
tracking performance. As the performance of our approach
depends on the automatically discovered visual constraints in
the video, we believe that exploiting multi-modal informa-
tion (e.g., sound/script alignment) is a promising direction
for further improving the performance.
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