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Abstract
Recent advances in generative adversarial networks (GANs) have shown impressive results for the task of facial expression
synthesis. The most successful architecture is StarGAN (Choi et al. in CVPR, 2018), that conditions GANs’ generation
process with images of a specific domain, namely a set of images of people sharing the same expression. While effective, this
approach can only generate a discrete number of expressions, determined by the content and granularity of the dataset. To
address this limitation, in this paper, we introduce a novel GAN conditioning scheme based on action units (AU) annotations,
which describes in a continuous manifold the anatomical facial movements defining a human expression. Our approach
allows controlling the magnitude of activation of each AU and combining several of them. Additionally, we propose a
weakly supervised strategy to train the model, that only requires images annotated with their activated AUs, and exploit
a novel self-learned attention mechanism that makes our network robust to changing backgrounds, lighting conditions and
occlusions. Extensive evaluation shows that our approach goes beyond competing conditional generators both in the capability
to synthesize a much wider range of expressions ruled by anatomically feasible muscle movements, as in the capacity of
dealingwith images in thewild. The code of thiswork is publicly available at https://github.com/albertpumarola/GANimation.

Keywords GAN · Face animation · Action-unit condition

1 Introduction

Being able to automatically and smoothly change the facial
expression from a single image would open the door to many
new exciting applications in different areas, including the
movie industry, photography technologies, fashion and e-
commerce business, to name but a few. As generative and
adversarial networks have become more prevalent, this task
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has experienced significant advances, with architectures such
as StarGAN (Choi et al. 2018), which is able not only to syn-
thesize novel expressions, but also to change other attributes
of the face, such as age, hair color or gender. Despite its
generality, StarGAN can only change a particular aspect of
a face among a discrete number of attributes defined by the
annotation granularity of the dataset. For instance, for the
facial expression synthesis task, Choi et al. (2018) is trained
on the RaFD (Langner et al. 2010) dataset which has only
8 binary labels for facial expressions, namely sad, neutral,
angry, contemptuous, disgusted, surprised, fearful and happy,
respectively. The generation possibilities ofChoi et al. (2018)
are, in this case, limited by these eight expression categories.

Facial expressions, however, are the result of the combined
and coordinated action of facial muscles that cannot be cat-
egorized in a discrete and low number of classes. Ekman
and Friesen (1978) developed the Facial Action Coding Sys-
tem (FACS) for describing facial expressions in terms of the
so-called action units (AUs), which are anatomically related
to the contractions of specific facial muscles. Although the
number of action units is relatively small (30 AUs were
found to be anatomically related to the contraction of specific
facial muscles), more than 7000 different AU combinations
have been observed (Scherer 1982). For example, the facial
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expression for fear is generally produced with the following
activation state: InnerBrowRaiser (AU1),OuterBrowRaiser
(AU2), Brow Lowerer (AU4), Upper Lid Raiser (AU5),
Lid Tightener (AU7), Lip Stretcher (AU20) and Jaw Drop
(AU26) (Du et al. 2014). Depending on the magnitude of
each AU, the expression will transmit the emotion of fear to
a greater or lesser extent.

In this paper we aim at building a model for synthetic
facial animation with the level of expressiveness of FACS,
and being able to generate anatomically-aware expressions
in a continuous domain, without the need to pre-compute the
position of facial landmarks in the input images (Zafeiriou
et al. 2017). For this purpose we leverage on the recent Emo-
tioNet dataset (Benitez-Quiroz et al. 2016), which consists of
onemillion images (we use 200,000 of them) of facial expres-
sions of emotion in the wild annotated with discrete AUs’
activation.1 We build a GAN architecture which, instead of
being conditionedwith images of a specific domain as inChoi
et al. (2018), it is conditioned on a one-dimensional vector
indicating the presence/absence and the magnitude of each
action unit.We train this architecture in anweakly supervised
manner that only requires images with their activated AUs.
To circumvent the need for pairs of training images of the
same person under different expressions, we split the prob-
lem in twomain stages. First, we consider anAU-conditioned
bidirectional adversarial architecture which, given a single
trainingphoto, initially renders a new imageunder the desired
expression. This synthesized image is then rendered-back to
the original expression, hence being directly comparable to
the input image.We incorporate very recent losses to enforce
the photo-realism of the generated image. Additionally, our
system also goes beyond state of the art in that it can handle
images under changing backgrounds and illumination con-
ditions. We achieve this by means of a self-learned attention
layer that focuses the action of the network only in those
regions of the image that are relevant to convey the novel
expression.

As a result, we build an anatomically coherent facial
expression synthesis method, able to render images in a con-
tinuous domain, and which can handle images in the wild
with complex backgrounds and illumination conditions. As
we will show in the results section, it compares favorably to
other conditioned-GANs schemes, both in terms of the visual
quality of the results, and the possibilities of generation. Fig-
ure 1 shows some example of the results we obtain, in which
given one input image, we gradually change the magnitude
of activation of the AUs used to produce a smile.

This paper is an extended of Pumarola et al. (2018) includ-
ing a more exhaustive experimental evaluation and ablation
studies. We have particularly analyzed the role of the atten-

1 The dataset was re-annotated with Baltrušaitis et al. (2015) to obtain
continuous activation annotations.

tion mechanism we propose, which is a key ingredient of our
architecture, and brings robustness to several artifacts. In this
paper, we show that besides yielding robustness to cluttered
backgrounds it is also effective to handle partial occlusions
of the face. Finally, we also provide a user study to assess the
quality of the generated results.

2 RelatedWork

2.1 Generative adversarial networks

GANs are a powerful class of generative models based on
game theory. A typical GAN optimization scheme consists
in simultaneously training a generator network to produce
realistic fake samples and a discriminator network trained to
distinguish between real and fake data. This idea is embedded
by the so-called adversarial loss. Recent works (Arjovsky
et al. 2017; Gulrajani et al. 2017) have shown improved sta-
bility relying on the continuous EarthMover Distance metric
(EMD), which we shall use in this paper to train our model.
GANs have been shown to produce very realistic images
with a high level of detail and have been successfully used
for image translation (Isola et al. 2017; Kim et al. 2017;
Zhu et al. 2017a), face generation (Karras et al. 2018; Rad-
ford et al. 2016), super-resolution imaging (Ledig et al. 2017;
Wang et al. 2015), indoor scenemodeling (Karras et al. 2018;
Wang and Gupta 2016) and human pose editing (Pumarola
et al. 2018).

2.2 Conditional GANs

An active area of research consists in designing GANmodels
that incorporate conditions and constraints into the genera-
tion process. Prior studies have explored combining several
conditions, such as textual descriptions (Reed et al. 2016;
Zhang et al. 2017; Zhu et al. 2017b) and class infor-
mation (Mirza and Osindero 2014; Odena et al. 2017).
Particularly interesting for this work are those methods
exploring image-based conditioning as in image super-
resolution (Ledig et al. 2017), future frame prediction (Math-
ieu et al. 2016), image in-painting (Pathak et al. 2016),
image-to-image translation (Isola et al. 2017) and multi-
target domain transfer (Choi et al. 2018).

2.3 Unpaired image-to-image translation

Similar to our framework, several works have tackled the
problem of using unpaired training data. First attempts (Liu
et al. 2017) relied on Markov random field priors for
Bayesian based generation models, using images from
the marginal distributions in individual domains. Others
explored enhancing GANS with Variational Auto-Encoder
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Fig. 1 Facial animation from a single image. We propose GANima-
tion, an anatomically coherent approach that is not constrained to a
discrete number of expressions and can animate the face in a given
image and render novel expressions in a continuum. In these examples,
we are given solely the left-most input image Iyr (highlighted by a blue

square), and the parameter α shown on the top denotes the degree of
activation of the target action units involved in a smiling-like expression.
Additionally, our system can handle images with complex illumination
and non-human skin textures, such as the example in the bottom row
(Color figure online)

strategies (Kingma andWelling 2014; Liu et al. 2017). Later,
several works (Li and Wand 2016; Pathak et al. 2016) have
exploited the idea of driving the system to produce map-
pings transforming the style without altering the original
input image content. Our approach is more related to those
works exploiting cycle consistency to preserve key attributes
between the input and the mapped image, such as Cycle-
GAN (Zhu et al. 2017a), DiscoGAN (Kim et al. 2017) and
StarGAN (Choi et al. 2018).

2.4 Face imagemanipulation

Face generation and editing is a well-studied topic in com-
puter vision and generative models. Most works have tackled
the task of attribute editing (Larsen et al. 2016; Perarnau et al.
2016; Shen and Liu 2017) trying to modify attribute cate-
gories such as adding glasses, changing color hair, gender
swapping and aging. The works that are most related to ours
are those synthesizing facial expressions. Early approaches
addressed the problem using mass-and-spring models to
physically approximate skin andmuscle movement (Fischler
and Elschlager 1973). The problemwith this approach is that

it is difficult to generate natural looking facial expressions as
there aremany subtle skinmovements that are difficult to ren-
der with simple spring models. More related to current deep
learning basedmethods, Susskind et al. (2008) leveraged on a
deep belief network to generate new facial expression given
a personal identity and the desired facial action unit. The
results, however, revealed a lack of realism.

Other strategies constrain the set of possible expressions
to those that can be generated using low-rank 3DMorphable
Models (3DMMs). Early approaches along this line (Blanz
and Vetter 1999; Yu et al. 2012) generated novel expressions
by adjusting the initially estimated 3DMM parameters of a
registered face. While simple, this approach produced strong
image artifacts and could not convey shading and illumina-
tion effects. More recently, Nagano et al. (2018) and Thies
et al. (2016) achieved impressive facial reenactment of a
monocular video sequence but still required explicit esti-
mation of the 3D geometry of the face, which can be very
challenging for images and videos in the wild. Kim et al.
(2018) improved the photo-realismby extending these geom-
etry based on methods to pure data-driven deep learning
techniques.
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Fig. 2 Overview of our approach to generate photo-realistic condi-
tioned images. The architecture of GANimation consists of three main
blocks: a generator G to regress attention and color masks; a critic DI
to evaluate the quality of the generated image and its photo-realism;
and finally, an expression estimator Dy to penalize differences between

the desired conditioning expression yg and its fulfillment ŷg . It is worth
noting that our scheme does not require supervision, i.e. neither pairs
of images of the same person under different expressions, nor the target
image Iyg are assumed to be known

Suwajanakorn et al. (2017) designed a deep network to
synthesize novel and high quality expressions. Synthetic
results were almost non-distinguishable from real videos,
although the system was only suitable for a single actor for
which the system had been trained. Subsequent approaches
have focused on more generic alternatives, such as face edit-
ing for eyes inpainting (Dolhansky and Canton Ferrer 2018)
and speech face animation (Zhou et al. 2019; Song et al. 2018;
Vougioukas et al. 2018). These works, however, require large
amounts of audio–visual clips (recall that GANimation is
trained using sparse images).

Probably the works most closely related to ours are Choi
et al. (2018), Li et al. (2016) and Odena et al. (2017), in the
sense that they train highly complex convolutional networks
able to handle images in the wild. These approaches, how-
ever, have been conditioned on discrete emotion categories
(e.g. happy, neutral, and sad). Instead, our model resumes
the idea of modeling skin and muscles, but we integrate it
in modern deep learning machinery. More specifically, we
learn a GAN model conditioned on a continuous embedding
of muscle movements, allowing to generate a large range
of anatomically feasible face expressions as well as smooth
facial movement transitions in video sequences.

3 Problem Formulation

Let us define an input RGB image as Iyr ∈ R
H×W×3, which

represents the cropped face of a subject under an arbitrary
expression. Every gesture expression is encoded by means
of a set of N action units yr = (y1, . . . , yN )�, where each

yn denotes a normalized value between 0 and 1 to module
the magnitude of the nth action unit. This type of continuous
representation is a key ingredient of our design, as a natu-
ral interpolation can be done between different expressions,
allowing to render a wide range of realistic and smoothly
changing facial expressions.

Our aim is to learn a mapping M to translate Iyr into
an output image Iyg conditioned on an action-unit target yg ,
i.e. we seek to estimate the mapping M : (Iyr , yg) → Iyg .
To this end, we propose to train M in a weakly supervised
manner, using M training triplets {Imyr , ymr , ymg }Mm=1, where
the target vectors ymg are randomly generated. Importantly,
we neither require pairs of images of the same subject under
different expressions, nor the expected target image Iyg to be
known.

4 Our Approach

This section describes our novel approach to generate photo-
realistic conditioned images, which, as shown in Fig. 2,
consists of two main modules. On the one hand, a gener-
ator G(Iyr |yg) is trained to realistically transform the facial
expression in image Iyr to the desired yg . Note that G is
applied twice, first to map the input image Iyr → Iyg , and

then to render it back Iyg → Îyr . On the other hand, we use
a WGAN-GP (Gulrajani et al. 2017) based critic DI(Iyg ) to
evaluate the quality of the generated image and an expres-
sion estimator Dy(Iyg ) to penalize differences between the
desired and generated expression. We next describe in detail
each one of these blocks.
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Fig. 3 Attention-based
generator. Given an input image
and the target expression, the
generator regresses an attention
mask A and an RGB color
transformation C over the entire
image. The attention mask
defines a per pixel intensity
specifying to which extend each
pixel of the original image will
contribute in the final rendered
image

4.1 Network Architecture

4.1.1 Generator

Let G be the generator block. Since it will be applied bidi-
rectionally (i.e. to map input image to desired expression and
vice-versa) in the following discussion we use subscripts o
and f to indicate origin and final.

Given the image Iyo ∈ R
H×W×3 and the N -vector y f

encoding the desired expression, we form the input of the
generator as a concatenation (Iyo , yo) ∈ R

H×W×(N+3),
where yo has been represented as N arrays of size H × W .

One key ingredient of our system is to make G focus only
on those regions of the image that are responsible of synthe-
sizing the novel expression and keep the rest elements of the
image such as hair, glasses, hats or jewellery untouched. For
this purpose, we have embedded an attentionmechanism into
the generator. Concretely, instead of regressing a full image,
our generator outputs two masks, a color mask C and an
attention mask A. The final image can be obtained as:

Iy f = (1 − A) · C + A · Iyo , (1)

whereA = GA(Iyo |y f ) ∈ [0, 1]H×W andC = GC (Iyo |y f ) ∈
R

H×W×3. The mask A indicates to which extend each pixel
of C contributes to the output image Iy f . In this way, the
generator does not need to render static elements, and can
focus exclusively on the pixels defining the facial move-
ments, leading to sharper andmore realistic synthetic images.
This process is depicted in Fig. 3.

4.1.2 Conditional critic

This block is a network trained to evaluate the generated
images in terms of their photo-realism. The structure of
DI(I) resembles that of the PatchGan (Isola et al. 2017)
network mapping from the input image I to a matrix YI ∈
R

H/26×W/26 , where YI[i, j] is used as a partial function to
compute the EMD between the distributions of real image
patches and the overlapping patch i j of the generated image.

4.1.3 Expression estimator

Given an image I of a face, Dy(I) is an expression regres-
sion network responsible for estimating the AUs’ activation
ŷ = (ŷ1, . . . , ŷN )� in the image. Similar to the conditional
critic, its structure resembles that of PatchGan. To reduce the
number of parameters of the model, Dy(I) is implemented
on top of the conditional critic as an auxiliary head sharing
the weights of the first five layers.

4.2 Learning theModel

The parameters of the generator, conditional critic and
expression estimator are simultaneously estimated. For this
purposewe define a loss functionmade of four terms, namely
an image adversarial loss (Arjovsky et al. 2017) with the
modification proposed by Gulrajani et al. (2017) that pushes
the distribution of the generated images to the distribution of
the training images; the attention loss to drive the attention
masks to be smooth and prevent them from saturating; the
conditional expression loss that conditions the expression of
the generated images to be similar to the desired one; and
the identity loss that favors to preserve the person texture
identity. In the following we describe these losses.

4.2.1 Image adversarial loss

In order to learn the parameters of the generator G, we use
the modification of the standard GAN algorithm (Goodfel-
low et al. 2014) proposed by WGAN-GP (Gulrajani et al.
2017). Specifically, the original GAN formulation is based
on the Jensen–Shannon (JS) divergence loss function and
aims to maximize the probability of correctly classifying
real and rendered images while the generator tries to foul the
discriminator. This loss is potentially not continuous with
respect to the generator’s parameters and can locally satu-
rate leading to vanishing gradients in the discriminator. This
is addressed in WGAN (Arjovsky et al. 2017) by replacing
JS with the continuous EMD. To maintain a Lipschitz con-
straint, WGAN-GP (Gulrajani et al. 2017) proposes to add a
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gradient penalty for the critic network computed as the norm
of the gradients with respect to the critic input.

Formally, let Iyo be the input image with the initial condi-
tion yo, y f the desired final condition,Po the data distribution
of the input image, and P

˜I the random interpolation distri-
bution. Then, the critic loss we use is:

LI(G, DI, Iyo , y f ) = −EIyo∼Po [DI(G(Iyo |y f ))]
+ EIyo∼Po

[

DI(Iyo)
]

− λgpE˜I∼P
˜I

[

(‖∇
˜I DI(˜I )‖2 − 1)2

]

,

(2)

where λgp is a penalty coefficient.

4.2.2 Attention loss

When training the model we do not have ground-truth anno-
tation for the attention masks A. Similarly as for the color
masks C, they are learned from the resulting gradients of
the critic module and the rest of the losses. However, the
attention masks can easily saturate to 1 which makes that
Iyo = G(Iyo |y f ), that is, the generator has no effect. To
prevent this situation, we regularize the mask with a weight
penalty. Additionally, to enforce a smooth spatial color trans-
formationwhen combining the regions of the input image and
those of the color transformationC, we perform a Total Vari-
ation Regularization overA. The attention loss can therefore
be defined as:

LA(G, Iyo , y f ) = λTVLTV(A) + EIyo∼Po [‖A‖] , (3)

where A = GA(Iyo |y f ) and Ai, j represents the [i, j] entry
of A. λTV is a penalty coefficient for the mask smoothing,
being the corresponding loss defined as:

LTV(A) =
H ,W
∑

i, j

[

(Ai+1, j − Ai, j )
2 + (Ai, j+1 − Ai, j )

2
]

.

4.2.3 Conditional expression loss

While reducing the image adversarial loss, the generator
must also reduce the error produced by the AUs’ regres-
sion head on top of D. In this way, G not only learns to
render realistic samples but also learns to satisfy the target
facial expression encoded by y f . This loss is definedwith two
components: an AUs regression loss with fake images used
to optimize G, and an AUs regression loss of real images
used to learn the regression head on top of D. This loss is
computed as:

Ly(G, Dy, Iyo , yo, y f )

= EIyo∼Po

[

‖Dy(Iyo) − yo‖22
]

+ EIyo∼Po

[

‖Dy(G(Iyo |y f ))] − y f ‖22
]

. (4)

4.2.4 Identity loss

With the previously defined losses the generator is enforced
to generate photo-realistic face transformations. However,
without ground-truth supervision, there is no constraint to
guarantee that the face in both the input and output images
correspond to the same person. Using a cycle consistency
loss (Zhu et al. 2017a) we force the generator to maintain
the identity of each individual by penalizing the difference
between the original image Iyo and its reconstruction. The
identity loss Lidt(G, Iyo , yo, y f ) is defined as:

EIyo∼Po

[‖G(G(Iyo |y f )|yo) − Iyo‖1
]

. (5)

To produce realistic images it is critical for the genera-
tor to model both low and high frequencies. Our PatchGan
based critic DI already enforces high-frequency correctness
by restricting our attention to the structure in local image
patches. To also capture low-frequencies it is sufficient to use
l1-norm. In preliminary experiments, we also tried replacing
l1-norm with a more sophisticated Perceptual loss (Johnson
et al. 2016), although we did not observe improved perfor-
mance.

4.2.5 Full loss

To generate the target image Iyg , we build a loss function L
by linearly combining all previous partial losses:

L = LI(G, DI, Iyr , yg) + λyLy(G, Dy, Iyr , yr , yg) (6)

+ λA
(LA(G, Iyg , yr ) + LA(G, Iyr , yg)

)

+ λidtLidt(G, Iyr , yr , yg),

where λA, λy and λidt are the hyper-parameters that control
the relative importance of every loss term. Finally, we can
define the following minimax problem:

G� = argmin
G

max
D∈D

L, (7)

where G� draws samples from the data distribution. Addi-
tionally, we constrain our discriminator D to lie on D, that
represents the set of 1-Lipschitz functions.
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Fig. 4 Single and dual-AU
edition. Top: Single AUs are
activated at increasing levels of
intensity (from 0.33 to 1). The
first row corresponds to a zero
intensity application of the AU
which correctly produces the
original image in all cases.
Bottom: For every grid two
specific AUs are activated at
increasing levels of intensity
(from 0 to 1). Left: Case in
which the activation areas of the
AUs (#10 and #5) do not
overlap. Right: Both AUs
activate overlapping areas of the
face

5 Implementation Details

Our generator builds upon the variation of the network
from Johnson et al. (2016) proposed by Zhu et al. (2017a)
as it proved to achieve impressive results for image-to-image
mapping. We have slightly modified it by substituting the
last convolutional layer with two parallel convolutional lay-
ers, one to regress the color mask C and the other to define
the attention mask A. We also observed that changing batch
normalization in the generator by instance normalization
improved training stability. For the critic we have adopted
the PatchGan architecture of Isola et al. (2017), but remov-
ing feature normalization. Otherwise, when computing the
gradient penalty, the norm of the critic’s gradient would be
computedwith respect to the entire batch and notwith respect
to each input independently as is required by WGAN-GP.

The model is trained on the EmotioNet dataset (Benitez-
Quiroz et al. 2016).We use a subset of 200,000 samples (over
1million) to reduce training time. We use ADAM (Kingma
and Ba 2015) with learning rate of 0.0001, beta1 0.5, beta2
0.999 and batch size 25. We train for 30 epochs and linearly
decay the rate to zero over the last 10 epochs. Every five
optimization steps of the critic network we perform a single
optimization step of the generator. The weight coefficients

for the loss terms in Eq. (6) are set to λgp = 10, λA = 0.1,
λTV = 0.0001, λy = 4000, λidt = 10. To improve stabil-
ity we tried updating the critic using a buffer with generated
images in different updates of the generator, as proposed
in Shrivastava et al. (2017), but we did not observe perfor-
mance improvement.

Several design choices (e.g. sharing part of the weights
between the conditional critic and the expression estimator)
were done in order to fit themodel into a singleNvidia® GTX
1080 Ti GPU with 11GB of memory. The model is trained
in 2days on the 200,000 EmotioNet dataset samples. During
testing only the regressors are necessary, and hence the size
of the model is reduced to 813MB. Inference can be done at
66 fps with an Nvidia ® GTX 1080 Ti GPU.

6 Experimental Evaluation

In this section we provide a thorough evaluation of the pro-
posed architecture. Concretely, we evaluate GANimation’s
ability for single and multiple AUs editing, for discrete and
continuous emotion editing, and compare it with existing
techniques. We also provide a detailed analysis of the atten-
tion mechanism. Finally, we discuss the model’s ability to
deal with occlusions and its limitations and failure cases.

123



International Journal of Computer Vision (2020) 128:698–713 705

Fig. 5 Attention model. Details of the intermediate color mask C (first
row) and the attention mask A (second row). The images in the bottom
row are the synthesized expressions. Darker regions of the attention

mask A show those areas of the image more relevant for each specific
AU. Brighter areas are retained from the original image

It is worth pointing out that in some of the experiments
the input faces are not cropped. In these cases we first use an
off-the-shelf detector2 to localize and crop the face, apply the
expression transformation to that area with Eq. (1), and place
the generated face back into its original image position. The
attentionmechanism is very helpful to process relatively high
resolution images and a render smooth transitions between
the morphed cropped faces and the original image.

6.1 Single Action Units Edition

We first evaluate our model’s ability to activate AUs at
different intensities while preserving the person’s identity.
Figure 4-top shows a subset of 9 AUs individually trans-
formed with four levels of intensity (0, 0.33, 0.66, 1). For
the case of 0 intensity it is desired not to change the corre-
sponding AU. The model properly handles this situation and
generates an identical copy of the input image for every case.
The ability to apply an identity transformation is essential to
ensure that non-desired facialmovement is not be introduced.

For the cases with non-zero AU intensity, it can be
observed how each AU is progressively accentuated. Note
the difference between generated images at intensity 0 and
1. The model convincingly renders complex facial move-
ments which in most cases are difficult to distinguish from
real images. It is alsoworthmentioning that the independence
of facial muscle clusters is properly learned by the generator.
For instance, AUs relative to the eyes and the upper-half part
of the face (AUs 1, 2, 4, 5, 45) do not affect the muscles of
themouth. Equivalently,mouth related transformations (AUs
10, 12, 15, 25) do not affect eyes nor eyebrow muscles.

2 We use the face detector from https://github.com/ageitgey/
face_recognition.

Figure 5 shows, for the same experiment, the attention
A and color C masks that produced the final result Iyg . Note
how the model has learned to focus its attention (darker area)
onto the correspondingAU in aweakly supervisedmanner. In
this way, it relieves the color mask from having to accurately
regress each pixel value. Only the pixels relevant to convey
the expression change are carefully estimated, the rest are just
set to noise. For example, the attention is clearly obviating
background pixels allowing to directly copy them from the
original image. This is paramount to later being able to handle
images in thewild with complex backgrounds (see Sect. 6.9).

6.2 Two Action Units Edition

In this subsection we evaluate the ability of our model to
simultaneously activate two actions units. The model must
not only be able to activate the desired AUs but also combine
them in a realistic manner. The results of this experiment are
shown in Fig. 4-Bottom. The left grid of the figure shows
the case when the two AUs activate different areas of the
face (AUs 5 is related to the chicks and 10 to the eyelids).
In this case, since the muscles related to each AU are differ-
ent, their effects are independent from one another. A more
difficult case occurs when both AUs share facial muscles,
see Fig. 4-Bottom-Right. In this specific case, when only
activating AU12 (left column) the model draws a smile, but
when we also activate AU25, in charge of controlling the
distance between lips, the model produces a smile with the
mouth open. Note that the generator hallucinates the teeth
that would be visible when smiling with the lips apart.

6.3 Simultaneous Edition of Multiple AUs

We next push the limits of the GANimation model and eval-
uate it in the task of editing multiple AUs. Additionally,
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Fig. 6 Sampling the face expression distribution space. As a result of applying the AU-parametrization through the vector yg , we can synthesize,
from the same source image Iyr , a large variety of photo-realistic images

we also assess its ability to interpolate between two expres-
sions. The results of this experiment are shown in Fig. 1 of
Sect. 1. The first column is the original imagewith expression
yr , and the right-most column is a synthetically generated
image conditioned on a target expression yg . The rest of
columns result from evaluating the generator conditioned
with a linear interpolation of the original and target expres-
sions:αyg+(1−α)yr . The outcomes showa very remarkable
smooth and a consistent transformation across frames. We
have intentionally selected challenging samples to show the
robustness to complex lighting conditions and even, as in the
case of the avatar, to non-real data distributions which were
not previously seen by the model. These results are encour-
aging to further extend the model to video generation (Zhou
et al. 2019; Nam et al. 2019; Song et al. 2018; Vondrick et al.
2016; Vougioukas et al. 2018) in future works.

6.4 High Expressions Variability

Given a single image, we next use GANimation to produce
a wide range of anatomically feasible face expressions while
conserving the person’s identity. In Fig. 6 all faces are the
result of conditioning the input image in the top-left corner
with a desired face configuration defined by only 14 AUs.
Note the large variability of anatomically feasible expres-
sions that can be synthesized with only 14 AUs. Specially
remarkable are some of the results in which parts of the face

are not visible in the input image (e.g. teeth) need to be hal-
lucinated.

6.5 Comparison with the State-of-the-Art

We next compare our approach against several baselines,
namely DIAT (Li et al. 2016), CycleGAN (Radford et al.
2016), IcGAN (Perarnau et al. 2016) and StarGAN (Choi
et al. 2018). For a fair comparison, we consider the results
of these methods trained by the most recent work, Star-
GAN (Choi et al. 2018), on the task of rendering discrete
emotions categories (e.g. happy, sad and fearful) trained
and tested in the RaFD dataset (Langner et al. 2010). Face
images in this dataset are properly cropped and aligned. Since
DIAT (Li et al. 2016) andCycleGAN (Radford et al. 2016) do
not allow conditioning, they were independently trained for
every possible pair of source/target emotions. GANImation
was also fine-tuned with the RaFD dataset. We next briefly
discuss the main aspects of each approach:
DIAT (Li et al. 2016) Given an input image x ∈ X and a
reference image y ∈ Y , DIAT learns a GANmodel to render
the attributes of domain Y in the image x while conserving
the person’s identity. It is trained with the classic adversarial
loss and a cycle loss ‖x − GY→X (GX→Y (x))‖1 to preserve
the person’s identity.
CycleGAN (Radford et al. 2016) Similar to DIAT (Li et al.
2016), CycleGAN also learns the mapping between two

123



International Journal of Computer Vision (2020) 128:698–713 707

Fig. 7 Qualitative comparison with state-of-the-art. Facial expression
synthesis results for: DIAT (Li et al. 2016), CycleGAN (Radford et al.
2016), IcGAN (Perarnau et al. 2016) and StarGAN (Choi et al. 2018);
and our GANimation. In all cases, we represent the input image and
seven different facial expressions. As it can be seen, our solution pro-

duces the best trade-off between visual accuracy and spatial resolution.
Some of the results of StarGAN (Choi et al. 2018), the best current
approach, show certain level of blur. Images of previous models were
taken from Choi et al. (2018)

domains X → Y and Y → X . To train the domain transfer,
it uses a regularization term denoted cycle consistency loss
that combines two cycles: ‖x − GY→X (GX→Y (x))‖1 and
‖y − GX→Y (GY→X (y))‖1.
IcGAN (Perarnau et al. 2016) Given an input image, IcGAN
uses a pre-trained encoder–decoder to encode the image into
a latent representation in concatenation with an expression
vector y to then reconstruct the original image. It can modify
the expression by replacing y with the desired expression
before passing it through the decoder.
StarGAN (Choi et al. 2018) This approach is an extension
of the cycle loss for simultaneously training between mul-
tiple datasets with different data domains. It uses a mask
vector to ignore unspecified labels and to optimize only on
known ground-truth labels. It yields more realistic results
when training simultaneously with multiple datasets.

GANimation differs from these approaches in two main
aspects. First, we do not condition the model on discrete
emotions categories, but we learn a basis of anatomically
feasible warps that allows generating a continuum of expres-
sions. Secondly, the use of the attentionmask allows applying
the transformation only on the cropped face, and put it back

Table 1 Quantitative comparison with StarGAN (Choi et al. 2018)

Method ACD ↓ IS ↑ User preference ↑ (%)

GANimation 0.31 1.48 56

StarGaN 0.29 1.41 44

The table reports the results of threemetrics (described in the text):Face
Distance (ACD Tulyakov et al. 2018, the lower the better), Inception
Score (IS Salimans et al. 2016, the higher the better) and user preference
(the higher the better)
Best results are given in bold

onto the original imagewithout producing transition artifacts.
As shown in Fig. 7, besides estimating more visually com-
pelling images than other approaches, this results on images
with higher spatial resolution.

Table 1 presents a quantitative analysis (that includes a
user study) comparing GANimation and StarGAN (Choi
et al. 2018), as a representative of current the state-of-the-art.
We considered three metrics: the Average Content Distance
(ACD) (Tulyakov et al. 2018), the Inception Score (IS) (Sal-
imans et al. 2016) and the User Preference. ACD is the
L2-distance between feature vectors of the input and gen-
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Fig. 8 Attentionmask convergence (qualitative assessment). Evolution of the attentionmask during training. Left to Right: Source Iyr and generated
Iyg images, respectively; and the corresponding attention mask evolution (from 1 to 100%) of the total training epochs

erated images extracted by a face classifier2 (the lower the
better). IS is the metric used in previous approaches, that is
higher for images with a large semantic content (the higher
the better). For the study, we evaluated 100 randomly picked
images from the RaFD dataset test set, each transformed to
5 randomly selected expressions. To compute the User Pref-
erence score we asked 20 human subjects to pick the most
photo-realistic generated image among 20 randomly shuf-
fled image pairs, one generated by each method. As shown
in Table 1 both methods have a very similar performance in
terms of the quality of the generated images. ACD is slightly
favorable to StarGAN and GANimation is better in IS and
User Preference. But recall that GANimation allows generat-
ing expressions in a continuum, while StarGAN is only able
to render expressions from set of 8 emotion categories. We
can conclude that GANimation retains/slightly improves the
quality of StarGAN, while offering a much wider range of
animation possibilities.

6.6 Attention Convergence

Themost critical part when trainingGANimation is to ensure
the correct convergence of the attention mask. The fact that
we are not using ground-truth supervision can easily lead to
the saturation of this mask, i.e.,AH×W = (1)H×W , meaning
that Iyo −G(Iyo |y f ) = 0, an hence the generator simply per-
forms the identity mapping. Indeed, most terms in the loss
function [see Eq. (6)] favor this situation, i.e., if the input
image is not changed (identity generator) the photo-realism,
the identity preservation and the smoothness of the attention
mask aremaximized. To avoid this fromhappening, we intro-
duced the loss termLA that explicitly enforces regularization
over the attention mask and prevents it from saturating.

Figure 8 shows the convergence of the attention mask dur-
ing training. We noted that in the first epochs the generator
basically copies most parts of the original image (areas in
white) and only introduces the basic lines that convey the new
expression. After a while, the attention mask converges to a
face segmentation mask that allows editing the fine details of

Fig. 9 Attention mask convergence (quantitative assessment). Mean
value of the attention mask over training time

the face such as color and shadows while leaving the original
background unchanged. Figure 9 shows how the amount of
newly created pixels (size of the darker regions in the atten-
tion mask) increases over the training time.

6.7 Ablation Study

To further analyze the GANimation’s architecture and loss
components we conducted an ablation study. Performing
such ablation study, however, is not trivial, as most of the
model elements are crucial for convergence. DI and LI con-
strain the system to generate realistic images; Dy and Ly

ensure the proper expression conditioning when generating
a new sample; and Lidt enforces the model to preserve the
person’s identity. Removing any of these elements prevent
the model from converging.

The only module that can be realistically ablated without
catastrophically harming the network’s performance is the
attention mechanismA = GA(Iyo |y f ) and its corresponding
attention loss LA. Figure 10 and Table 2 present a qualita-
tive and quantitative ablation study of these two elements.
For the quantitative results we considered three metrics: the
Average Content Distance (ACD Tulyakov et al. 2018), the
Expression Distance (ED) and the User Preference. ACD
is the same metric as in Sect. 6.5 and ED is the l1-distance
between the generated and desired expressions (the lower
the better). For theUser Preferencewe have asked 20 human
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Fig. 10 Qualitative ablation study. Impact of the attentionmechanismand the attention loss in the generated images. First row:Reference expressions.
Second row: Results using the full GANimation pipeline. Third row: GANimation without the attention mechanism. Last row: GANimation without
the attention loss

Table 2 Quantitative ablation study

Method ACD ↓ ED ↓ User preference ↑ (%)

GANimation 0.4 0.4 87

w/o attention 0.4 0.4 13

w/o attention loss 0.0 4.8 0

Impact of the attention mechanism and the attention loss on the face
generation results. Three metrics are considered (described in the text):
FaceDistance (ACDTulyakov et al. 2018, the lower the better),Expres-
sion Distance (ED, the lower the better) and user preference (the higher
the better)
Best results are given in bold

subjects to pick themost photo-realistic generated image (the
higher the better). For the study, we evaluated 5000 randomly
picked images from theCelebA (Liu et al. 2015) dataset, each
transformed to 8 randomly selected expressions of the RaFD
dataset. The model was not fine-tuned on CelebA. For the
user study 20 randomly shuffled images were scored based
on their photo-realism.

The quantitative results show that although we do not
observe any gain on the face classification features nor on the
estimated expressions, the proposed generation mechanism

produces more photo-realistic images—better blended with
the original background and better adjusted to the scene illu-
mination. This is clearly reflected by the user study.When no
attention is used, the cropped face bounding boxes are visible
in the generated image and the illumination is not consistent
(see Fig. 10-w/o attention). By contrasts, when using the pro-
posed generator the background is perfectly blended and the
illumination of the background and the generated image are
consistent (see Fig. 10-GANimation).

The ablation study also demonstrates the necessity of
introducing the proposed attention loss LA for the proper
convergence of the model (see Table 2). When removing it
the obtained ACD metric is 0.0, meaning Iyr = Iyg , that is,
the output image is identical to the input image.

6.8 Dealing with Occlusions

We next explicitly evaluate the robustness of the proposed
approach to partial occlusions of the input face. The results
are shown in Fig. 11. Interestingly, the attentionmask tags the
occluded pixels in white, meaning that these pixels will not
be changed by the generator when creating the new expres-
sion. This is another interesting property of the attention
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Fig. 11 Dealingwith occlusions. Facial editingwhendealingwith input
images containing occlusions. In all cases, we represent (from left to
right) the source image Iyr ; the target image Iyg ; the attention mask A;

and the color mask C. Top: Occlusions created by external interfering
objects (had and french-fries). Bottom: Self-occlusions created by other
parts of the body (hands and hair)

Fig. 12 Qualitative evaluation on images in the wild. Top: We repre-
sent an image (left) from the film “Pirates of the Caribbean” and an its
generated image obtained by our approach (right). Bottom: In a similar

manner, we use an image frame (left) from the series “Game of Thrones”
to synthesize five new images with different expressions

mechanism, which besides learning a smooth foreground–
background blending function, it also learns to ignore the
static element of the image that do not participate in the gen-
eration of the facial expression, like hats, glasses, hands or
interfering objects. Recall that this is learned in a weakly
supervised manner.

6.9 Images in theWild

As previously seen, the attention mechanism not only learns
to focus on specific areas of the face but also allows smoothly
merging the original and the generated image background.
This allows our approach to be easily applied to images in
the wild while still maintaining the resolution of the orig-
inal images. For these images we follow the detection and
cropping scheme we described before. Figure 12 shows two

examples on these challenging images: the first example
illustrates our model’s performance on a multiple-face edit-
ing taskwith complex illumination; the second example deals
with a non-human-like facial skin texture distribution, which
is obviously not observed at training time.Note how the atten-
tion mask allows for a smooth and unnoticeable merging
between the entire frame and the generated faces.

6.10 Pushing the Limits of the Model

We next push the limits of our network and discuss the
model limitations when dealing with extreme situations such
as stone like skin, drawings and face sketch abstractions.
We have split success cases into six categories which we
summarize in Fig. 13-top. The first two examples (top-row)
correspond to human-like sculptures and non-realistic draw-
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Fig. 13 Success and failure cases. In all cases, we represent the source image Iyr , the target image Iyg , the attention mask A and the color mask C.
Top: Some success cases in extreme situations. Bottom: Several failure cases

ings. In both cases, the generator is able to maintain the
artistic effects of the original image.Also, note how the atten-
tion mask ignores artifacts such as the pixels occluded by the
glasses. The third example (second-row, left) shows robust-
ness to non-homogeneous textures over the face. Observe
that the model is not trying to homogenize the texture by
adding/removing the beard’s hair. The second-row, right
example, corresponds to an anthropomorphic face with non-
real texture. As for the Avatar image, the network is able
to warp the face without affecting its texture. The next
category (third-row, left) is related to non-standard illumi-
nations/colors for which the model has already been shown
robust in Fig. 1. The last and most surprising category is
face-sketches (third-row, right). Although the generated face
suffers from some artifacts, it is impressive how GANima-
tion is still capable of finding sufficient features on the face
to transform its expression from worried to excited.

The fourth and fifth rows of Fig. 13 show a number of
failure cases. The first case is related to errors in the atten-
tion mechanism when given extreme input expressions. The
attention does not weight sufficiently the color transforma-
tion causing transparencies. The second case (fifth row, right)

shows failures with non-previously seen occlusions such as
an eye patch causing artifacts in the missing face attributes.
The model also fails when dealing with non-human anthro-
pomorphic distributions as in the case of cyclopes. Also, in
this case, the face detection failed to detect the Cyclopes face
forcing the generator to directly modify the original image
without previously cropping the face. Lastly, we tested the
model behaviorwhen dealingwith animals and observed arti-
facts like human face features.

7 Conclusions

WehavepresentedGANimation, a novelGANmodel for face
animation in the wild that can be trained in a weakly super-
vised manner. It advances current works which, so far, had
only addressed the problem for discrete emotions category
editing and portrait images. Our model encodes anatomi-
cally consistent face deformations parameterized by means
of Action Unit (AUs). Conditioning the GANmodel on these
AUs allows the generator to render a wide range of expres-
sions by simple interpolation. Additionally, we embed an
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attention model within the network which allows focusing
only on those regions of the image relevant for every specific
expression.By doing this,we can easily process images in the
wild, with distracting backgrounds, illumination artifacts and
occlusions. We have thoroughly evaluated the model capa-
bilities and limits in the EmotioNet (Benitez-Quiroz et al.
2016) and RaFD (Langner et al. 2010) datasets; conducted a
quantitative and qualitative ablation study; studied the self-
learned attention behaviour and its convergence; and finally
demonstrated our model ability to deal with occlusions and
images in the wild. The results are very promising, and show
smooth transitions between different expressions. This opens
the possibility of applying our approach to video sequences,
which we plan to do in the future.
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