
International Journal of Computer Vision (2020) 128:601–618
https://doi.org/10.1007/s11263-019-01209-w

EKLT: Asynchronous Photometric Feature Tracking Using Events and
Frames

Daniel Gehrig1,2 · Henri Rebecq1,2 · Guillermo Gallego1,2 · Davide Scaramuzza1,2

Received: 31 January 2019 / Accepted: 5 August 2019 / Published online: 22 August 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019, corrected publication 2019

Abstract
Wepresent EKLT, a feature trackingmethod that leverages the complementarity of event cameras and standard cameras to track
visual features with high temporal resolution. Event cameras are novel sensors that output pixel-level brightness changes,
called “events”. They offer significant advantages over standard cameras, namely a very high dynamic range, no motion
blur, and a latency in the order of microseconds. However, because the same scene pattern can produce different events
depending on the motion direction, establishing event correspondences across time is challenging. By contrast, standard
cameras provide intensity measurements (frames) that do not depend on motion direction. Our method extracts features on
frames and subsequently tracks them asynchronously using events, thereby exploiting the best of both types of data: the
frames provide a photometric representation that does not depend on motion direction and the events provide updates with
high temporal resolution. In contrast to previous works, which are based on heuristics, this is the first principled method
that uses intensity measurements directly, based on a generative event model within a maximum-likelihood framework. As a
result, our method produces feature tracks that are more accurate than the state of the art, across a wide variety of scenes.

Keywords Asynchronous · Low latency · High dynamic range · Dynamic vision sensor · Event camera · Feature tracking ·
Maximum likelihood · Generative model · Low-level vision

1 Introduction

Event cameras, such as the Dynamic Vision Sensor (DVS)
(Lichtsteiner et al. 2008), work very differently from tra-
ditional cameras (Fig. 1). They have independent pixels that
send information (called “events”) only in presence of bright-
ness changes in the scene at the time they occur. Thus, their
output is not an intensity image but a stream of asynchronous

Communicated by Vittorio Ferrari.

Multimedia Material: A supplemental video for this work is available
at https://youtu.be/ZyD1YPW1h4U.

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s11263-019-01209-w) contains
supplementary material, which is available to authorized users.

B Daniel Gehrig
daniel.gehrig18@gmail.com; dgehrig@ifi.uzh.ch

1 Robotics and Perception Group, Department of Informatics,
University of Zurich, Zurich, Switzerland

2 Department of Neuroinformatics, University of Zurich and
ETH Zurich, Zurich, Switzerland

events. Event cameras excel at sensingmotion, and they do so
with very low latency (1μs). However, they do not provide
absolute intensity measurements, rather they measure only
changes of intensity. Conversely, standard cameras provide
direct intensity measurements for every pixel, but with com-
paratively much higher latency (10–20ms). Event cameras
and standard cameras are, thus, complementary, which calls
for the development of novel algorithms capable of com-
bining the specific advantages of both cameras to perform
computer vision tasks with high temporal resolution. In fact,
theDynamic andActive-pixel Vision Sensor (DAVIS) (Bran-
dli et al. 2014) was recently introduced (2014) in that spirit.
It is a sensor comprising an asynchronous event-based sensor
and a standard frame-based camera in the same pixel array.
A survey on event cameras, algorithms, and applications can
be found in Gallego et al. (2019).

We tackle the problem of feature tracking using both
events and frames, such as those provided by theDAVIS. Our
goal is to combine both types of intensity measurements to
maximize tracking accuracy, and for this reason we develop
a maximum likelihood approach based on a generative event
model.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-019-01209-w&domain=pdf
http://orcid.org/0000-0001-9952-3335
http://orcid.org/0000-0002-6577-9735
http://orcid.org/0000-0002-2672-9241
http://orcid.org/0000-0002-3831-6778
https://youtu.be/ZyD1YPW1h4U
https://doi.org/10.1007/s11263-019-01209-w

602 International Journal of Computer Vision (2020) 128:601–618

Fig. 1 a Comparison of the output of a standard frame-based camera
and an event camera when facing a black dot on a rotating disk (figure
adapted from Mueggler et al. (2014), and animated here: https://youtu.
be/LauQ6LWTkxM?t=25). The standard camera outputs frames at a
fixed rate, thus sending redundant information when there is no motion
in the scene. Event cameras respond to pixel-level brightness changes
with microsecond latency. bA combined frame and event-based sensor
such as the DAVIS (Brandli et al. 2014) provides both standard frames
and the events that occurred in between. Events are colored according to
polarity: blue (brightness increase) and red (brightness decrease) (Color
figure online)

Feature tracking is an important research topic in com-
puter vision, and has been widely studied in the last decades.
It is a core building block of numerous applications, such as
object tracking (Zhou et al. 2009) or Simultaneous Localiza-
tion and Mapping (SLAM) (Klein and Murray 2009; Forster
et al. 2017; Mur-Artal et al. 2015; Vidal et al. 2018). While
feature detection and trackingmethods for frame-based cam-
eras are well established, they cannot track in the blind time
between consecutive frames, and are expensive because they
process information from all pixels, even in the absence
of motion in the scene. Conversely, event cameras acquire
only relevant information for tracking and respond asyn-
chronously, thus, filling the blind time between consecutive
frames.

1.1 Contribution

In this work we present EKLT, an event-based feature tracker
that extracts features on frames and subsequently tracks them
using only events. This allows us to take advantage of the
asynchronous, high dynamic range and low-latency nature of
the events to produce feature tracks with high temporal reso-
lution. However, associating individual events coming from
the same object is challenging due to the varying appearance
of the events with respect to the motion of the object on the
image plane, which is known as the data association prob-
lem. In contrast to previous works, which used heuristics to
solve for data association, we introduce a feature tracker that
combines events and frames in a way that (i) fully exploits
the strength of the brightness gradients causing the events,
(ii) circumvents the data association problem, and (iii) lever-
ages a generative model to explain, in a maximum likelihood
formulation, how events are related to brightness patterns
(i.e., features) on the frames. We thoroughly evaluate the
proposed tracker using sequences from publicly available
datasets (Mueggler et al. 2017; Zhu et al. 2018), and show

its performance both on man-made environments with large
contrast and on natural scenes.

This paper is based on our previous work (Gehrig et al.
2018), which we extend in several ways:

• We provide an interpretation of the method as an exten-
sion for event cameras of the popular Lucas–Kanade
tracker (KLT) originally designed for frame-based cam-
eras (Sect. 4.5).

• We provide additional experiments with sequences from
driving and flying scenarios (Sect. 5).

• Wecompareourmethodagainst four baselines (Sect. 5.2),
and show that our approach provides more accurate fea-
ture tracks.

• We carry out a quantitative analysis of the dependency
of the proposed method on grayscale frames, by compar-
ing against frames obtained by a state-of-the-art image
reconstruction method for event cameras (Sect. 6).

The paper is organized as follows: Sect. 2 reviews prior
work; Sect. 3 motivates why event-based feature tracking
is challenging; Sect. 4 presents our solution; Sects. 5 and 6
analyze the performance of the proposed method through
extensive evaluation. Finally, Sects. 7 and 8 briefly discuss
future work and conclude the paper, respectively.

2 RelatedWork

Feature detection and tracking with event cameras is a major
research topic (Kueng et al. 2016; Zhu et al. 2017; Ni et al.
2012, 2015; Lagorce et al. 2015; Clady et al. 2015; Tedaldi
et al. 2016; Clady et al. 2017; Vasco et al. 2016; Mueggler
et al. 2017; Alzugaray and Chli 2018), where the goal is
to unlock the capabilities of event cameras and use them to
solve these classical problems in computer vision in chal-
lenging scenarios inaccessible to standard cameras, such
as low-power, high-speed and high dynamic range (HDR)
scenarios. A good survey of algorithms for event cameras
can be found in Gallego et al. (2019). Recently, extensions
of popular image-based keypoint detectors, such as Harris
(Harris and Stephens 1988) and FAST (Rosten and Drum-
mond 2006), have been developed for event cameras (Vasco
et al. 2016; Mueggler et al. 2017; Alzugaray and Chli 2018).
Detectors based on the distribution of optical flow (Chaudhry
et al. 2009) for recognition applications have also been pro-
posed for event cameras (Clady et al. 2017). Finally, most
event-based trackers use binary feature templates, either pre-
defined (Ni et al. 2012, 2015; Lagorce et al. 2015) or built
from events (Zhu et al. 2017), to which they align new events
bymeans of iterative point-set—based methods, such as Iter-
ative Closest Point (ICP) (Besl and McKay 1992).

123

https://youtu.be/LauQ6LWTkxM?t=25
https://youtu.be/LauQ6LWTkxM?t=25

International Journal of Computer Vision (2020) 128:601–618 603

Our work is most related to Kueng et al. (2016), since it
also combines frames and events for feature tracking. The
approach in Kueng et al. (2016) detects patches of Canny
edges around Harris corners in the grayscale frames and then
tracks such local edge patterns using ICP on the event stream.
Thus, the patch of Canny edges acts as a template to which
the events are registered to yield tracking information. Under
the simplifying assumption that events are mostly generated
by strong edges, the Canny edgemap template is used as
a proxy for the underlying grayscale pattern that causes the
events. The method in Kueng et al. (2016) converts the track-
ing problem into a geometric, point-set alignment problem:
the event coordinates are compared against the point template
given by the pixel locations of theCanny edges.Hence, pixels
where no events are generated are, efficiently, not processed.
However, the method has two drawbacks: (i) the information
about the strength of the edges is lost (since the point tem-
plate used for tracking is obtained from a binary edgemap)
(ii) explicit correspondences (i.e., data association) between
the events and the template need to be established for ICP-
based registration. The method in Zhu et al. (2017) can be
interpreted as an extension of Kueng et al. (2016) with (i)
the Canny-edge patches replaced by motion-corrected event
point sets and (ii) the correspondences computed in a soft
manner using Expectation–Maximization (EM). The meth-
ods in Kueng et al. (2016) and Zhu et al. (2017), which
process events as points sets, are inspired by prior event-
based ICP trackers (Ni et al. 2012, 2015).

Like Kueng et al. (2016) and Zhu et al. (2017), our
method can be used to track generic features, as opposed
to constrained (i.e., predefined) edge patterns. However, our
method differs fromKueng et al. (2016) and Zhu et al. (2017)
in that (i) we take into account the strength of the edge pattern
causing the events and (ii) we do not need to establish corre-
spondences between the events and the edgemap template. In
contrast to Kueng et al. (2016) and Zhu et al. (2017), which
use a point-set template for event alignment, our method
uses the spatial gradient of the raw intensity image, directly,
as a template. Correspondences are implicitly established
as a consequence of the proposed image-based registration
approach (Sect. 4), but before that, let us motivate why estab-
lishing correspondences is challenging with event cameras.

3 The Challenge of Data Association for
Feature Tracking

The main challenge in tracking scene features (i.e., edge
patterns) with an event camera is that, because this sen-
sor responds to temporal changes of intensity (caused by
moving edges on the image plane), the appearance of the
feature varies depending on its motion, and thus, it may
continuously change in time (see Fig. 2). Feature tracking

(a) Frame (b) Left-right motion.

(c) Up-down motion. (d) Diagonal motion.

Fig. 2 Result ofmoving a checkerboard a in different directions in front
of an event camera. b–d Show brightness increment images [Eq. (2)]
obtained by accumulating events over a short time interval. Pixels that
do not change intensity are represented in gray, whereas pixels that
increased or decreased intensity are represented in bright and dark,
respectively. Clearly, b (only vertical edges), c (only horizontal edges),
and d cannot be related to each other without the prior knowledge of
the underlying photometric information provided by a

using events requires the establishment of correspondences
between events at different times (i.e., data association),
which is difficult due to the above-mentioned varying fea-
ture appearance (Fig. 2).

Instead, if additional information is available, such as
the absolute intensity of the pattern to be tracked (i.e., a
time-invariant representation or “map” of the feature), such
as in Fig. 2(a), then event correspondences may be estab-
lished indirectly, via establishing correspondences between
the events and the intensity pattern. This, however, addition-
ally requires to continuously estimate themotion (optic flow)
of the pattern since it determines the appearance of the events.
This is in fact an important component of our approach. As
we show in Sect. 4, our method is based on a model to gener-
ate a prediction of the time-varying event-feature appearance
using a given frame and an estimate of the optic flow. This
generative model has not been considered in previous fea-
ture tracking methods, such as Kueng et al. (2016), Zhu et al.
(2017) and Rebecq et al. (2017).

4 Methodology

An event camera has independent pixels that respond
to changes in the continuous brightness signal1 L(u, t).

1 Event cameras such as the DVS (Lichtsteiner et al. 2008) respond to
logarithmic brightness changes, i.e., L

.= log I , with brightness signal
I , so that (1) represents logarithmic changes.

123

604 International Journal of Computer Vision (2020) 128:601–618

(a) (b)

Fig. 3 Brightness increments given by the events (2) versus predicted
from the frame and the optic flow using the generative model (3). Pix-
els of L(u) that do not change intensity are represented in gray in �L ,

whereas pixels that increased or decreased intensity are represented in
bright and dark, respectively

Specifically, an event ek = (xk, yk, tk, pk) is triggered at
pixel uk = (xk, yk)� and at time tk as soon as the brightness
increment since the last event at the pixel reaches a threshold
±C (with C > 0):

�L(uk, tk)
.= L(uk, tk) − L(uk, tk − �tk) = pkC, (1)

where �tk is the time since the last event at the same pixel,
and pk ∈ {−1,+1} is the event polarity (i.e., the sign of
the brightness change). Equation (1) is the event generation
equation of an ideal sensor (Gallego et al. 2018, 2015).

4.1 Brightness-Increment Images from Events and
Frames

Pixel-wise accumulation of event polarities over a time
interval �τ produces an image �L(u) with the amount of
brightness change that occurred during the interval (Fig. 3a),

�L(u) =
∑

tk∈�τ

pkC δ(u − uk), (2)

where δ is the Kronecker delta due to its discrete argument
(pixels on a lattice).

For small�τ , such as in the example of Fig. 3a, the bright-
ness increments (2) are due to moving edges according to the
event generation model2:

�L(u) ≈ −∇L(u) · v(u)�τ, (3)

that is, increments are caused by brightness gradients
∇L(u) = (

∂L
∂x , ∂L

∂ y

)� moving with velocity v(u) over a dis-
placement�u .= v�τ (see Fig. 3b). As the dot product in (3)

2 Eq. (3) can be shown (Gallego et al. 2015) by substituting the bright-
ness constancy assumption (i.e., optical flow constraint) ∂L

∂t (u(t), t) +
∇L(u(t), t) · u̇(t) = 0, with image-point velocity v ≡ u̇, in Taylor’s
approximation �L(u, t)

.= L(u, t) − L(u, t − �τ) ≈ ∂L
∂t (u, t)�τ .

conveys, (i) if the motion is parallel to the edge (v ⊥ ∇L),
the increment vanishes, i.e., no events are generated; (ii) if
the motion is perpendicular to the edge (v ‖ ∇L) events are
generated at the highest rate. From now on (and in Fig. 3b)
we denote the modeled increment (3) using a hat, �L̂ , and
the frame by L̂ .

Remark Despite the fact that brightness increment images (2)
(Fig. 3a) have been used in the past for several tasks, such as
segmentation (Barranco et al. 2015) and stereo (Kogler et al.
2011) or optical flow (Benosman et al. 2012) computation,
our contribution consists of using them in combination with
a forward model (3) to solve for feature tracking. Specifi-
cally, as we show in Sect. 4.2, we use a generative model
of the events (4) to predict brightness increments (“observa-
tions”) from a few explanatory variables (feature brightness,
warp and optic flow) characterizing the scene under investi-
gation (Fig. 5). Then, we use an optimization framework to
compute the unknown explanatory variables from the error
between the observations and the predictions. This approach
can be applied to solve other problems, such as camera track-
ing (Bryner et al. 2019).

4.2 Optimization Framework

Following a maximum likelihood approach, we propose to
use the difference between the observed brightness changes
�L from the events (2) and the predicted ones �L̂ from the
brightness signal L̂ of the frames (3) to estimate the motion
parameters that best explain the events according to an opti-
mization score.

More specifically, we pose the feature tracking problem
using events and frames as that of image registration (Lucas
and Kanade 1981; Evangelidis and Psarakis 2008), between
images (2) and (3). Effectively, frames act as feature tem-
plates with respect to which events are registered. As is
standard, let us assume that (2) and (3) are compared over

123

International Journal of Computer Vision (2020) 128:601–618 605

Fig. 4 Illustration of tracking for two independent patches. Events in a
space–timewindow at time t > 0 are collected into a patch of brightness
increments �L(u) (in orange), which is compared, via a warp (i.e.,
geometric transformation)W against a predicted brightness-increment
image based on L̂ (given at t = 0) around the initial feature location
(in blue). Patches are computed as shown in Fig. 5, and are compared
in the objective function (7) (Color figure online)

small patches (P) containing distinctive patterns, and fur-
ther assume that the optic flow v is constant for all pixels
in the patch (same regularization as Lucas and Kanade
(1981)).

Letting L̂ be given by an intensity frame at time t = 0 and
letting �L be given by events in a space–time window at a
later time t (see Fig. 4), our goal is to find the registration
parameters p and the velocity v that maximize the similarity
between �L(u) and

�L̂(u;p, v) .= −∇ L̂(W(u;p)) · v�τ, (4)

where W is the warping map used for the registration.
We explicitly model optic flow v instead of approximat-
ing it by finite differences of past registration parameters
to avoid introducing approximation errors and to avoid
error propagation from past noisy feature positions. A block
diagram showing how both brightness increments are com-
puted, including the effect of the warp W, is given in
Fig. 5.

Assuming that the difference �L − �L̂ follows a zero-
mean additive Gaussian distribution with variance σ 2 (Licht-
steiner et al. 2008), we define the likelihood function of the
set of events E .= {ek}Ne

k=1 producing �L as

p(E |p, v, L̂) ∝ e− 1
2σ2

∫
P
(
�L(u)−�L̂(u;p,v)

)2
du

. (5)

Maximizing this likelihoodwith respect to themotion param-
eters p and v (since L̂ is known) yields the minimization of
the L2 norm of the photometric residual,

min
p,v

‖�L(u) − �L̂(u;p, v)‖2L2(P)
(6)

where ‖ f (u)‖2
L2(P)

.= ∫
P f 2(u)du.

However, the objective function (6) depends on the con-
trast sensitivity C (via (2)), which is typically unknown
in practice. Inspired by Evangelidis and Psarakis (2008),
we propose to minimize the difference between unit-norm
patches:

min
p,v

∥∥∥∥∥
�L(u)

‖�L(u)‖L2(P)

− �L̂(u;p, v)

‖�L̂(u;p, v)‖L2(P)

∥∥∥∥∥

2

L2(P)

, (7)

which cancels the terms inC and�τ , and only depends on the
direction of the feature velocityv. In this generic formulation,

Fig. 5 Block diagram showing how the brightness increments being
compared (�L,�L̂) are computed for one of the patches in Fig. 4. The
top of the diagram depicts the brightness increment obtained by event

integration (2), whereas the bottom of the diagram shows the generative
event model stemming from the frame (3)

123

606 International Journal of Computer Vision (2020) 128:601–618

the same typeof parametricwarpsW as for image registration
can be considered (projective, affine, etc.). For simplicity,
we consider warps given by rigid-body motions in the image
plane,

W(u;p) = R(p)u + t(p), (8)

where (R, t) ∈ SE(2). The objective function (7) is opti-
mized using the non-linear least squares framework provided
in the Ceres software (Agarwal et al. 2010–2019).

4.3 Discussion of the Approach

One of the most interesting characteristics of the proposed
method (7) is that it is based on a generative model for
the events (3). As shown in Fig. 5, the frame L̂ is used to
produce a registration template �L̂ that changes depend-
ing on v (weighted according to the dot product) in order
to best fit the motion-dependent event data �L , and so our
method not only estimates the warping parameters of the
event feature but also its optic flow. This optic flow depen-
dency was not explicitly modeled in previous works, such
as Kueng et al. (2016), Zhu et al. (2017) and Rebecq et al.
(2017). Moreover, for the template, we use the full gradi-
ent information of the frame ∇ L̂ , as opposed to its Canny
(i.e., binary-thresholded) version (Kueng et al. 2016), which
provides higher accuracy and the ability to track less salient
patterns.

Another characteristic of our method is that it does not
suffer from the problem of establishing event-to-feature cor-
respondences, as opposed to ICPmethods (Kueng et al. 2016;
Zhu et al. 2017). We borrow the implicit pixel-to-pixel data
association typical of image registration methods by creat-
ing, from events, a convenient image representation. Hence,
our method has smaller complexity (establishing data asso-
ciation in ICP (Kueng et al. 2016) has quadratic complexity)
and is more robust since it is less prone to be trapped in
local minima caused by data association (as it is shown in
Appendix 1). As optimization iterations progress, all event
correspondences evolve jointly as a single entity according
to the evolution of the warped pixel grid.

Additionally, monitoring the evolution of the minimum
cost values (7) provides a sound criterion to detect feature
track loss and, therefore, initialize new feature tracks (e.g.,
in the next frame or by acquiring a new frame on demand).

4.4 Algorithm

The steps of our asynchronous, low-latency feature tracker
are summarized in Algorithm 1, which consists of two
phases: (i) initialization of the feature patch and (ii) tracking
the pattern in the patch using events according to (7). Mul-
tiple patches are tracked independently from one another.

Algorithm 1 Photometric feature tracking using events and
frames
Feature initialization:
- Detect Harris corners (Harris and Stephens 1988) on the frame L̂(u),
extract intensity patches around corner points and compute ∇ L̂(u).
- Set patches�L(u) = 0, set initial registration parameters p to those
of the identity warp, and set the number of events Ne to integrate on
each patch.
Feature tracking:
for each incoming event do
- Update the patches containing the event
(i.e., accumulate polarity pixel-wise (2)).
for each patch �L(u) (once Ne events have been
collected (2)) do

- Minimize the objective function (7), to get parameters
p and optic flow v.
- Update the registration parameters p of the feature
patch (e.g., position).
- Reset the patch (�L(u) = 0) and recompute Ne.

To compute a patch �L(u), (2), we integrate over a given
number of events Ne (Gallego and Scaramuzza 2017; Gal-
lego et al. 2018; Rebecq et al. 2018, 2017) rather than over
a fixed time �τ (Maqueda et al. 2018; Bardow et al. 2016).
Hence, tracking is asynchronous, as soon as Ne events are
acquired on the patch (2), which typically happens at rates
higher than the frame rate of the standard camera (∼ 10 times
higher). Section 5.4 provides an analysis of the sensitivity of
the method with respect to Ne and a formula to compute a
sensible value, to be used in Algorithm 1.

4.5 Connection with the Lucas–KanadeMethod

The approach (6) can be interpreted as an extension of the
KLT tracker (Lucas and Kanade 1981; Baker and Matthews
2004) to the case of event-based cameras, where we estimate,
in addition to the feature’s warping parameters, its optical
flow.
Lucas–Kanade The goal of the Lucas–Kanade method
(Lucas and Kanade 1981; Baker and Matthews 2004) is to
minimize the photometric error, using the L2 norm criterion,
between an image I and another one T that are related via
a geometric distortion described by a warp W(u;p) with
parameters p ∈ R

M :

min
p

‖(I ◦ W)(u) − T (u)‖2L2(P)
. (9)

This is a non-linear least-squares (NLLS) problem, since it
can be written as the (squared) L2 norm of a residual:

min
p

‖r(p)‖2L2(P)
, r(p)

.= (I ◦ W)(u) − T (u), (10)

where the pixel-wise dependency was omitted for simplic-
ity of notation. Problem (10) is solved iteratively using

123

International Journal of Computer Vision (2020) 128:601–618 607

Gauss–Newton’s method, which consists of linearizing the
residual using Taylor’s expansion

r(p + �p) ≈ r(p) + ∇r(p) · �p, (11)

where ∇r(p)
.= (∂r

∂p (p))�, and finding the parameter update
�p that minimizes the norm of the linearized residual (a
quadratic expression in �p). This yields a linear system of
equations (the normal equations), A�p = b, with

A ≡ A(p)
.= ∫

P ∇r(p) (∇r(p))�du,

b ≡ b(p)
.= − ∫

P ∇r(p) r(p) du.
(12)

The parameters are iteratively updated, p ← p+�p, with
�p = A−1b, until convergence.
Ourproposal The approach (6) alsominimizes a photometric
error using the L2 norm criterion, as in the KLT method (9).
However, the goal of (6) is to register two brightness incre-
ment images (rather than “absolute” brightness ones), one
rendered by accumulating events and the other one com-
puted from the gradient of the brightness frame (Fig. 5). This
requires to optimize for both, the geometric transformation
W (as in original KLT) and the appearance of the feature,
which depends on themotion. Since themotion (optical flow)
is unknown, we simultaneously vary the warp parameters p
and the optic flow v of the feature to find the geometric dis-
tortion and appearance of the predicted image (4) that best
explain the image obtained by accumulating events.

Redefining the residual as �L − �L̂ , i.e.,

r(p̃)
.= �L(u) + ∇ L̂(W(u;p)) · v�τ (13)

with respect to the augmented parameter vector p̃ .=
(p�, v�)� ∈ R

M+2, allows us to apply the Gauss–Newton
method to minimize the photometric error (6). This yields
a linear system Ã�q = b̃, as in the Lucas–Kanade
method (12), but now with (M + 2) unknowns instead of
M (due to the two additional unknowns in v). The two com-
ponents of p̃, namely the warp parameters p and the optic
flow v of the feature, are thus jointly estimated. Alternatively,
defining r(p̃)

.= �L(W(u;p)) + ∇ L̂(u) · v�τ reduces the
interaction betweenp and v, yielding simpler derivatives than
with (13). Due to this connection we term our method EKLT,
event-based Lucas-Kanade tracking.

5 Experiments

To illustrate the high accuracy of our method, we first eval-
uate it on simulated data (Sect. 5.1), where we can control
scene depth, camera motion, and other model parameters.
Then we test our method against four baseline trackers on
real data consisting of high-contrast and natural scenes, with

challenging effects such as occlusions, parallax and illumina-
tion changes (Sect. 5.2).We also analyze the sensitivity of our
method with respect to the number of events used (Sect. 5.4)
and the spatial size of the feature (Sect. 5.5). The robustness
of the method to illumination changes and to low light con-
ditions is also shown (Sect. 5.6). Additionally, we show that
our tracker can operate using frames reconstructed from a set
of events (Kim et al. 2014; Rebecq et al. 2017; Scheerlinck
et al. 2018), which have higher dynamic range than those of
standard cameras, thus opening the door to feature tracking in
high dynamic range (HDR) scenarios (Sect. 6.1). Moreover,
we quantify the gap between using our method with regular
frames from a standard camera and using reconstructed HDR
frames from events (Sect. 6).

For all experiments we use patches �L(u) of 25 ×
25 pixel size (as justified in Sect. 5.5) and the correspond-
ing events falling within the patches as the features moved
on the image plane. On the synthetic datasets, we use the
3D scene model and camera poses to compute the ground
truth feature tracks. On the real datasets, we use KLT (Lucas
and Kanade 1981) as ground truth. Since our feature tracks
are produced at a higher temporal resolution than the ground
truth, interpolating ground truth feature positionsmay lead to
wrong error estimates if the feature trajectory is not linear in
between samples. Therefore, we evaluate the error by com-
paring each ground truth sample with the feature location
given by linear interpolation of the two closest feature loca-
tions in time and averaging the Euclidean distance between
ground truth and the estimated positions.

5.1 Simulated Data: Assessing Tracking Accuracy

By using simulated data we assess the accuracy limits of our
feature tracker. To this end, we used the event camera simu-
lator presented in Mueggler et al. (2017) and 3D scenes with
different types of texture, objects and occlusions (Fig. 6). The
tracker’s accuracy can be assessed by how the average fea-
ture tracking error evolves over time (Fig. 6c); the smaller
the error, the better. All features were initialized using the
first frame and then tracked until discarded, which happened
if they left the field of view or if the registration error (7)
exceeded a threshold of 1.6. We define a feature’s age as the
time elapsed between its initialization and its disposal. The
longer the features survive, the more robust the tracker.

The results for simulated datasets are given in Fig. 6
and Table 1. Our method tracks features with a very high
accuracy, of about 0.4pixel error on average, which can be
regarded as a lower bound for the tracking error (in noise-
free conditions). The remaining error is likely due to the
linearization approximation in (3). Note that feature age is
just reported for completeness, since simulation time cannot
be compared to the physical time of real data (Sect. 5.2).

123

608 International Journal of Computer Vision (2020) 128:601–618

Fig. 6 Feature tracking results on simulated data. a Example texture
used to generate synthetic events in the simulator (Mueggler et al. 2017).
bQualitative feature tracks represented as curves in space–time. cMean

tracking error (center line) and fraction of surviving features (width of
the band around the center line) as a function of time. Our features are
tracked with 0.4pixel accuracy on average

Table 1 Average pixel error and average feature age for simulated data

Datasets Error (px) Feature age (s)

sim_april_tags 0.20 1.52

sim_3planes 0.29 0.78

sim_rocks 0.42 1.00

sim_3wall 0.67 0.40

5.2 Real Data

5.2.1 Description of Baseline Methods

We compare the proposed feature tracker against four base-
lines, which we present next. In all cases, we use the same
initial feature locations to compare the tracking results across
methods on the same set of features. Thus, the methods
mainly differ in two aspects: the way features are represented
around the given location (i.e., the feature template), and the
way tracking is performed. In all methods, tracking is done
with respect to the feature template created at initial time (i.e.,
the time of the grayscale frame), as proposed in Algorithm 1,
rather than with respect to the last frame (i.e., frame-to-frame
tracking). Ground truth is provided by Lucas–Kanade track-
ing (KLT) on the DAVIS (Brandli et al. 2014) frames.

• Feature Tracking on Canny Point Sets (ICP) The method
in Kueng et al. (2016) represents features from the
grayscale frame using point sets extracted from Canny
edges. Tracking is performed by point set registration
(ICP) between the feature and the incoming events.

• Feature Tracking on Motion-compensated Point Sets
(EM-ICP) The method in Zhu et al. (2017) also rep-
resents features as point sets, but they are built from the
events by means of motion compensation. Thus, we take
the events around the given feature location to build a
motion-compensated feature template. Tracking is per-

formed by Expectation–Maximization (EM) and fuzzy
ICP between the feature and the incoming events.

• KLT Feature Tracking on Motion-compensated Event
Frames (KLT-MCEF) In Rebecq et al. (2017), motion-
compensated event images were built from the events,
the estimated scene depth and the rotational motion pro-
vided by an inertial measurement unit (IMU). Then, a
standard feature detector and tracker (FAST (Rosten and
Drummond 2006) and KLT (Lucas and Kanade 1981),
respectively) were used on these event images to track
the feature’s location. Inspired by Rebecq et al. (2017),
we build motion-compensated event images by fitting a
homography to a temporal window of events (Gallego
et al. 2018) (thus, effectively assuming a quasi-planar
scene), which avoids the need for an IMU and scene
depth estimation. The motion-compensated event image
provides the feature templates used for tracking with the
KLT method.

• KLT Feature Tracking on Reconstructed Images (KLT-
HF) This is an approach inspired by the combination of
recent developments in image reconstruction and classi-
cal feature tracking. In this approach, grayscale frames
are built at the timestamps of the DAVIS frames using
the image reconstruction method in Scheerlinck et al.
(2018). Frames are reconstructed from all past events,
by pixel-wise temporal integration and high-pass fil-
tering (HF), without requiring estimation of the scene
depth or the camera ego-motion. Additionally, we apply
the Contrast Limited Adaptive Histogram Equalization
(CLAHE) from OpenCV to improve the quality of the
frames. Tracking is done using the KLT tracker on the
reconstructed brightness frames (in the same way as
ground truth is obtained using the DAVIS frames).

5.2.2 Quantitative Comparison of Feature Trackers

The above-mentioned methods were evaluated on several
datasets. The sequences used are “shapes_6dof”, “checker-

123

International Journal of Computer Vision (2020) 128:601–618 609

(a) shapes 6dof (b) checkerboard

(c) boxes 6dof (d) poster 6dof

(e) pipe 2 (f) bicycles

(g) outdoor day1 (h) outdoor forward

Fig. 7 Feature tracking on all eight datasets reported in Table 2: simple
black and white scenes (a, b), highly textured scenes (c, d) and natural
scenes (e–h). Plots on the right of the image show the mean tracking
error (center line) and fraction of surviving features (band around the

center line) for our method and all four baselines in Table 2.We encour-
age the reader to watch the accompanying video for a visualization of
the feature tracks. Figure best viewed in color

board”, “boxes_6dof” and“poster_6dof” from the Event
Camera Dataset (Mueggler et al. 2017), “pipe_2” and “bicy-
cles” from (Gallego et al. 2018),3 “outdoor_day1” from the
Multi-Vehicle Stereo Event Camera Dataset (MVSEC) (Zhu
et al. 2018) and “outdoor_forward5” from the UZH-FPV
DroneRacingDataset (Delmerico et al. 2019). The results are
reported in Figs. 7, 8 and Tables 2, 3. Sample feature tracks
are visualized in Fig. 9. To take into account the tracking

3 The datasets are publicly available at: http://rpg.ifi.uzh.ch/
direct_event_camera_tracking/.

capabilities of KLT we normalize the feature age by the age
of corresponding KLT feature track. In addition, to remove
any bias from features that are discarded early we report
the track-normalized tracking error for each dataset. This
metric first computes the average tracking error over single
tracks and then averages them over all features. More details
about the evaluation can be found in our open source feature-
tracking evaluation package.4

4 Code can be found here: https://github.com/uzh-rpg/
rpg_feature_tracking_analysis.

123

http://rpg.ifi.uzh.ch/direct_event_camera_tracking/
http://rpg.ifi.uzh.ch/direct_event_camera_tracking/
https://github.com/uzh-rpg/rpg_feature_tracking_analysis
https://github.com/uzh-rpg/rpg_feature_tracking_analysis

610 International Journal of Computer Vision (2020) 128:601–618

0.0 0.2 0.4 0.6 0.8 1.0

Rel. Feature Age [-]

0.0

1.0

2.0

3.0

4.0

5.0

6.0
Tr
ac
k
N
or
m
.
Er
ro
r
[p
ix
el
s]

our method
KLT-HF
KLT-MCEF
EM-ICP
ICP

Fig. 8 Visualization of the values on Tables 2 and 3. Normalized Track-
ing Error and Relative Feature Age for five feature trackers on all eight
test sequences. The smaller the error and the longer the feature age, the
better

The plots in Fig. 7 show the mean tracking error as a
function of time (center line). The width of the colored band
indicates the proportion of features that survived up to that
point in time. The width of the band decreases with time as
feature tracks are gradually lost. Thewider the band, themore
robust the feature tracker. Table 2 reports the tracking error of
all compared methods, using the span of the features tracked

by ourmethod. This is so in order to compare accuracy before
drift in other methods occurs. Table 3 reports the average
feature age of the tracks.

Figure 8 visually summarizes the values on Tables 2 and 3.
Overall, our method outperforms all other methods in track-
ing accuracy. It also provides longer tracks than previous
works ICP and EM-ICP, and comparable feature age to the
newly desgined baselines KLT-MCEF and KLT-HF.

In simple, black and white scenes (Fig. 7a, b), such as
those in Kueng et al. (2016), our method is, on average, twice
as accurate and produces tracks that are twice longer than
ICP. Compared to EM-ICP our method is also more accurate
and robust. The method KLT-MCEF provides longer tracks,
albeit it is not as accurate as our method. For highly tex-
tured scenes (Figs. 7c, d), our tracker maintains the accuracy
even though many events are generated everywhere in the
patch, which leads to significantly high errors in ICP and
EM-ICP. Although our method and KLT-HF achieve similar
feature age, our method is more accurate. Similarly, on nat-
ural scenes, our method is more accurate than the baselines.
A more detailed comparison with Kueng et al. (2016) (ICP)
is further explored in Appendix 1, where we show that our
objective function is better behaved.

On average, high-contrast and high-texture scenes yield
longer tracks than natural scenes (width of the band around

Table 2 Comparison of five
different feature tracking
methods on eight test sequences
from real data. Average of the
tracking error, normalized by
the length of the tracks, for each
combination of method and
sequence

Scene Datasets Track-normalized error (px)

Ours ICP EM-ICP KLT-MCEF KLT-HF

Black and white shapes_6dof 0.80 1.49 2.31 0.94 2.43

checkerboard 1.21 1.92 2.30 2.30 1.75

High texture poster_6dof 0.64 2.48 3.10 0.97 1.18

boxes_6dof 0.72 4.59 1.60 0.80 1.24

Natural bicycles 0.76 4.22 1.50 1.26 1.21

pipe_2 0.78 4.90 1.63 1.04 1.06

outdoor_day1 0.71 2.96 2.30 2.00 2.52

outdoor_forward5 0.80 4.15 1.47 1.58 2.36

The best result per row is highlighted in bold

Table 3 Comparison of five
different feature tracking
methods on eight test sequences
from real data. Relative feature
age, normalized by the length of
KLT tracks, for each
combination of method and
sequence

Scene Datasets Relative feature age

Ours ICP EM-ICP KLT-MCEF KLT-HF

Black and white shapes_6dof 0.54 0.28 0.21 0.60 0.53

checkerboard 0.35 0.13 0.27 0.45 0.37

High texture poster_6dof 0.45 0.04 0.22 0.27 0.37

boxes_6dof 0.54 0.09 0.27 0.55 0.69

Natural bicycles 0.20 0.09 0.10 0.25 0.27

pipe_2 0.34 0.10 0.25 0.41 0.37

outdoor_day1 0.23 0.07 0.15 0.34 0.48

outdoor_forward5 0.25 0.13 0.16 0.16 0.30

The best result per row is highlighted in bold

123

International Journal of Computer Vision (2020) 128:601–618 611

Fig. 9 Visualization of feature tracks. The sequence “out-
door_day1” (Zhu et al. 2018) (left column) depicts the data acquired
with a DAVIS camera installed on the windshield of a car, driving
through streets in a city. The sequence “outdoor_forward5” (right

column) shows the data acquired by a camera mounted on a drone,
flying through a meadow and a forest. See also the accompanying
video

the center line). In many cases, the average error decreases
as time progresses since the features that survive longest are
typically those that are most accurately tracked.

The tracking error of our method on real data is larger
than that on synthetic data, which is likely due to modeling
errors concerning the events, including noise and dynamic
effects (such as unequal contrast thresholds for events of dif-
ferent polarity). Nevertheless, our tracker achieves subpixel
accuracy and outperforms the baselines in terms of accuracy.

5.3 Computational Performance

Our non-optimized C++ implementation of the proposed
approach is able to process about 17,000 events per second
(on an Intel i7 CPU, with 64 bits, 3.20GHz, single-threaded),
only counting events that fall within the domain of the
tracked features. On the considered dataset (shapes_6dof),

the real event rate reaches between 54,000–130,000 events
per second. Since features can be tracked independently from
one another, on the implementation side there is room for
improvement using amore distributed, i.e., parallelized, plat-
form.

5.4 Sensitivity with Respect to the Number of Events
in a Patch

As anticipated in Sect. 4.4 (Algorithm 1), we adaptively find
the optimal number of events Ne integrated in (2) to create a
patch �L(u). Let us show how. As shown in (3), it is clear
that �L(u) (thus Ne) depends on the scene texture as well
as the motion. First, the larger the amount of texture (i.e.,
brightness gradients), the more events will be generated by
the feature. Second, motion parallel to an edge prevents some
events from being generated (Fig. 2).

123

612 International Journal of Computer Vision (2020) 128:601–618

(a) Ne = 10 (b) 50 (c) 200 (d) 500 (e) 1000

Fig. 10 Effect of varying the number of events Ne accumulated in (2).
Top row: brightness increment patches �L(u), of size 25× 25 pixels.
For simplicity, the featuremoves horizontally. Bottom row: correspond-
ing profiles of the function (7), represented as heat maps, along the x, y
translation parameters (±5 pixels from the minimizer of the function,
indicated by a red cross (×)). The magenta plus sign (+) indicates the
ground truth warp parameters

10 30 72* 150 300

Number of Events

0.0

1.0

2.0

3.0

Fe
at
ur
e
A
ge

[s
]

*adaptive number
of events

0.0

0.2

0.5

0.8

1.0
Er
ro
r
[p
ix
el
s]

Fig. 11 Visualization of the values in Table 4. The best tracking results
are achieved when we adapt the number of events according to (15)
which yields an average of 72 events per update

Figure 10 shows how the number of accumulated events
Ne, which defines the appearance of the patch�L(u), affects
the shape of the objective function (7), and, therefore, affects
its minimizer. Using too few or too many events does not
provide a reliable registration with respect to the frame
template, either due to the fact that there is not enough
information about the patch appearance conveyed by the
events or because the information has been washed out by
an excessive integration time. These are the left- and right-
most plots in Fig. 10, respectively. Using an intermediate
Ne gives an event-brightness patch that captures the under-
lying scene texture and produces a nicely-shaped objective
function with the minimizer at the correct warp and flow
parameters.

We propose a simple formula to compute Ne based on the
the frame, L̂ , as follows. Stemming from (2), the amount of
brightness change over a patch P is

∫

P
|�L(u)|du = C Ne (14)

assuming that no events of opposite polarity are triggered at
the same pixel during the short integration time �τ . Then,
assuming that (3) is a good approximation for the event patch

Table 4 Tracking error and feature age depending on the number of
integrated events per patch evaluated on the shapes_6dof dataset

Number of events 10 30 72* 150 300

Error (px) 1.12 0.91 0.72 1.00 1.14

Feature age (s) 0.86 1.81 1.84 1.94 2.09

The best result per row is highlighted in bold
The best tracking results are achieved when we adapt the number of
events according to (15) which yields an average of 72 events per update

gives C Ne ≈ ∫
P |∇ L̂(u) · v�τ |du. Finally, considering an

integration time �τ ≈ 1/‖v‖ (so that the events correspond
to a displacement of the pattern of ‖v‖�τ ≈ 1 pixel) and a
threshold in the order of C ≈ 1 gives

Ne ≈
∫

P

∣∣∣∣∇ L̂(u) · v
‖v‖

∣∣∣∣ du. (15)

At each time step, the newly estimated unit vector v/‖v‖
is used to compute the optimal number of events to be pro-
cessed. For Fig. 10, this value is approximately the number of
events in the center plot. By adapting the number of events
our method gains considerable accuracy as is highlighted
in Fig. 11 and Table 4. In this experiment we compare the
tracking accuracy against using a fixed number of events
on “shapes_6dof”. Note that the adaptive method used an
average of 72 events per update step. We can clearly see
that the tracking error is optimal if we use an adaptive num-
ber, while the feature age stagnates with higher numbers of
events.

5.5 Influence of the Patch Size

As anticipated at the beginning of Sect. 5, we provide a jus-
tification of the choice of the patch size used in our method.
Tables 5, 6 and Fig. 12 report the dependency of the track-
ing error and the feature age with respect to the size of the
patches used, from 5 × 5 pixels to 35 × 35 pixels.

In Tables 5 and 6 we highlighted in bold the best result
per row. Better accuracy is achieved for larger patch sizes
whereas longer feature tracks are achieved towards medium
to smaller patch sizes.We chose a patch size of 25×25 pixels
as a compromise between accuracy and robustness (feature
age), and performed all other experiments in Sect. 5 with this
value.

5.6 Feature Tracking in Low Light and with Abrupt
Light Changes

To further illustrate the robustness of our tracker, we per-
formed additional experiments in low light and with abrupt
changes of illumination, achieved by switching the lights
on and off in the room. Results are displayed in Figs. 13,

123

International Journal of Computer Vision (2020) 128:601–618 613

Table 5 Tracking error for
different datasets and varying
patch size (p)

Sequences Error (px)

p = 5 p = 11 p = 15 p = 21 p = 25 p = 31 p = 35

sim_april_tags 3.04 0.48 0.32 0.23 0.20 0.17 0.16

sim_rocks 4.61 1.39 0.55 0.41 0.42 0.38 0.35

shapes_6dof 3.62 0.89 0.65 0.54 0.64 0.6 0.62

checkerboard 2.30 1.25 1.20 0.93 0.78 0.75 0.75

poster_6dof 11.59 1.21 0.73 0.71 0.67 0.62 0.67

boxes_6dof 7.24 1.36 1.05 0.96 0.89 0.90 0.98

pipe_2 2.69 1.39 1.18 0.87 0.80 0.81 0.77

bicycles 3.04 1.20 1.13 0.88 0.75 0.83 0.78

Table 6 Feature age for
different datasets and varying
patch size (p)

Sequences Feature age (s)

p = 5 p = 11 p = 15 p = 21 p = 25 p = 31 p = 35

sim_april_tags 0.23 0.98 2.33 1.93 1.52 1.44 1.20

sim_rocks 0.05 1.05 0.72 0.99 1.00 0.74 0.86

shapes_6dof 0.59 3.15 3.31 3.52 3.97 3.11 3.21

checkerboard 2.68 7.72 8.21 8.32 8.24 7.74 8.22

poster_6dof 0.46 1.88 2.34 2.09 2.65 1.73 1.62

boxes_6dof 0.50 1.77 1.76 1.95 1.56 1.71 1.81

pipe_2 0.72 1.05 0.77 1.45 0.78 1.62 1.04

bicycles 0.44 1.22 1.33 1.26 1.16 1.19 1.11

Fig. 12 Visualization of the values on Tables 5 and 6. a and b Show,
respectively, the evolution of the mean tracking error and feature age as
a function of the patch size used

14 and 15. In these experiments we show that our tracker
can extract features from a standard frame and track them
robustly through time, even when the light is off, thanks to
the very high dynamic range of the event camera. Ourmethod
is also able to track after the light has been switched on again.
By contrast,KLT (Lucas andKanade1981) loses track imme-
diately after switching the light off because the frames do
not have a dynamic range as high as the events. We encour-
age the reader to watch the accompanying video, which
shows the experiment in a better form than still images can
convey.

(a) Frame at t = 0 (b)

(c) Frame at t = 9 s (d)

Fig. 13 a, b Show the standard frames with the events superimposed,
respectively when the light in the room is on or off. b, d show the
evolution of the x and y coordinates of one feature tracked through time
(red: KLT (Lucas and Kanade 1981) on the frames, blue: our method).
In contrast to KLT, our tracker maintains stable feature tracks even in
the period when the light is off (marked in gray), and keeps tracking
them when the light is on again (Color figure online)

6 Are Standard Camera Frames Needed?

6.1 Tracking Using Frames Reconstructed from
Events

Recent research (Kim et al. 2014; Rebecq et al. 2017; Scheer-
linck et al. 2018; Reinbacher et al. 2016; Munda et al. 2018;
Rebecq et al 2019) has shown that events can be combined

123

614 International Journal of Computer Vision (2020) 128:601–618

(a) Frame at t = 0 (b)

(c) Frame at t = 2 s (d)

Fig. 14 Feature tracking in low light and with abrupt illumination
changes. Rocks scene. Same notation as in Fig. 13

(a) Frame at t = 0 (b)

(c) Frame at t = 3 s (d)

Fig. 15 Feature tracking in low light and with abrupt illumination
changes. Office scene. Same notation as in Fig. 13. See the multimedia
material

to reconstruct intensity frames that inherit the outstanding
properties of event cameras (high dynamic range (HDR) and
lack of motion blur). In the next experiment, we show that
our tracker can be used on such reconstructed images, thus
removing the limitations imposed by standard cameras.As an
illustration, we focus here on demonstrating feature tracking
in HDR scenes (Fig. 16). However, our method could also be

used to perform feature tracking during high-speed motions
by using motion-blur-free images reconstructed from events.

Standard cameras have a limited brightness dynamic range
(60dB), which often results in under- or over-exposed areas
of the sensor in scenes with a high dynamic range (Fig. 16b),
which in turn can lead to tracking loss. Event cameras, how-
ever, have a much larger dynamic range (140dB) (Fig. 16b),
thus providing valuable tracking information in those prob-
lematic areas. Figure 16c, d show qualitatively how our
method can exploitHDR intensity images reconstructed from
a set of events (Scheerlinck et al. 2018) to produce feature
tracks in such difficult conditions. For example, Fig. 16d
shows that some feature tracks were initialized in origi-
nally overexposed areas, such as the top right of the image
(Fig. 16). A quantitative analysis of the difference between
using DAVIS frames versus using intensity-reconstructed
frames is provided in Sect. 6.2.

6.2 Quantitative Evaluation

In the experiment on Fig. 16, we showed that the pro-
posed method is able to track even when the grayscale
frame used is not produced by a frame-based sensor, but
rather reconstructed from events. In this section, we analyze
the dependency of our method with respect to the type of
grayscale frame used. We compare the performance of our
method using frames from the DAVIS camera, and frames
reconstructed from the events using a state-of-the-art image
reconstruction method.

More specifically, we perform image reconstruction using
(Scheerlinck et al. 2018) at the time of a frame acquired by
the DAVIS camera. We detect features on the DAVIS frame
(e.g., Harris corners), and use them to initialize our feature
tracker on the DAVIS frame as well as on the reconstructed
frame, so that the comparison on these two different frames
is carried out using the same tracked features. Figure 17 and
Table 7 summarize the results of the experiments carried out
on eight test sequences (the same ones as in Sect. 5.2).

(d)(c)(b)(a)

Fig. 16 Our feature tracker is not limited to intensity frames from a
real camera. In this example, we use an intensity image reconstructed
from a stream of events (Scheerlinck et al. 2018) in a scene with high
dynamic range (a). The DAVIS frame, shown in b with events overlaid
on top, cannot capture the full dynamic range of the scene. By con-

trast, the reconstructed image in c captures the full dynamic range of
the scene. Our tracker d can successfully use this image to produce
accurate feature tracks everywhere, including the badly exposed areas
of b

123

International Journal of Computer Vision (2020) 128:601–618 615

Table 7 Performance of the
proposed feature tracker using
two different types of frames:
the DAVIS frames (Brandli et al.
2014), and frames reconstructed
using (Scheerlinck et al. 2018)

Scene Sequences Track-norm. error (px) Rel. feature age

DAVIS
(Brandli et al.
2014)

HF
(Scheerlinck
et al. 2018)

DAVIS
(Brandli et al.
2014)

HF
(Scheerlinck
et al. 2018)

Black and White shapes_6dof 0.80 1.51 0.54 0.51

checkerboard 1.21 1.10 0.35 0.21

High texture poster_6dof 0.64 0.67 0.45 0.23

boxes_6dof 0.72 0.74 0.54 0.41

bicycles 0.76 0.57 0.20 0.16

Natural pipe_2 0.78 0.55 0.34 0.14

outdoor_day_1 0.71 0.77 0.23 0.18

outdoor_forward_5 0.80 1.14 0.25 0.17

The best result per row is highlighted in bold
The average pixel error and average feature age are reported for all eight test sequences

0.0 0.2 0.4 0.6 0.8 1.0

Rel. Feature Age [-]

0.0

0.25

0.5

0.75

1.0

1.25

1.5

1.75

2.0

Tr
ac
k
N
or
m
.
Er
ro
r
[p
ix
el
s]

regular frames
HF

Fig. 17 Visualization of the values on Table 7. Accuracy and feature
age for all eight test sequences and two different types of frames used
in our method: regular frames from the DAVIS camera (Brandli et al.
2014) and reconstructed brightness frames using (Scheerlinck et al.
2018). The smaller the error and the longer the feature age, the better

In general, we observe that the tracking results are very
similar in terms of accuracy (about 1pixel error), and the
biggest differences occur in terms of feature age. In terms of
feature age, the best results are obtained when our method
uses the DAVIS frames. However, the tracking results on the
reconstructed frames are also good, and they are solely based
on events, that is, the proposed method (Algorithm 1) does
not require a frame-based sensor co-located with the event-
based sensor. Additionally, in challenging scenarios (HDR
or high-speed) the DAVIS frames are impaired, whereas the
reconstructed frames may be the only viable option since
they inherit the lack of motion blur and HDR characteristics
from the events.

Note that the proposed method (Algorithm 1) only
requires a limited number of frames since features can
be tracked for several seconds. This complements the

computationally-demanding task of image reconstruction.
Thus, it is sensible to reconstruct the frames at low rates
(∼1Hz) (or on demand) to initialize features and then track
asynchronously (i.e., at high rate) with the events, as shown
in the accompanying video.

7 Discussion

While our method advances event-based feature tracking in
natural scenes, there remain directions for future research.
For example, the generative model we use to predict events
is an approximation that does not account for severe dynamic
effects and noise. In addition, our method assumes uniform
optical flow in the vicinity of features. This assumption
breaks down at occlusions and at objects undergoing large
flow distortions, such as motion along the camera’s opti-
cal axis. Nevertheless, as shown in the experiments, many
features in a variety of scenes and motions do not suffer
from such effects, and are therefore tracked well (with sub-
pixel accuracy). Finally, we demonstrated themethod using a
Euclidean warp since it was more stable than more complex
warping models (e.g., affine). Future research includes ways
to make the method more robust to sensor noise and to use
more accurate warping models.

8 Conclusion

Wepresented amethod that leverages the complementarity of
event cameras and standard cameras to track visual features
with low-latency.Ourmethod extracts features on frames and
subsequently tracks them asynchronously using events. To
achieve this, we presented the first method that relates events
directly to pixel intensities in frames via a generative event
model. We thoroughly evaluated the method on a variety of

123

616 International Journal of Computer Vision (2020) 128:601–618

scenes and against four baselines, showing that it produces
feature tracks that aremore accurate (subpixel accuracy) than
the state-of-the-art. We also investigated the need for frames
from the standard camera and concluded that they can be
replaced with a similar signal: frames built from events by
means of state-of-the-art image reconstructionmethods. This
removes the need for having a standard camera co-located
with the event camera. We believe this work will open the
door to unlock the outstanding properties of event cameras
on various computer vision tasks that rely on accurate feature
tracking.

Acknowledgements This work was supported by the DARPA FLA
program, the Swiss National Center of Competence Research Robotics,
through the Swiss National Science Foundation, and the SNSF-ERC
starting grant.

A Appendix

A.1 Objective Function Comparison Against
ICP-BasedMethod (Kueng et al. 2016)

Asmentioned in Sect. 4, one of the advantages of our method
is that data association between events and the tracked feature
is implicitly established by the pixel-to-pixel correspondence
of the compared patches (2) and (3). This means that we
do not have to explicitly estimate it, as was done in Kueng
et al. (2016) and Zhu et al. (2017), which saves computa-
tional resources and prevents false associations that would
yield bad tracking behavior. To illustrate this advantage,
we compare the cost function profiles of our method and

Kueng et al. (2016) (ICP), which minimizes the alignment
error (Euclidean distance) between two 2D point sets: {pi }
from the events (data) and {m j } from the Canny edges
(model),

{R, t} = argmin
R,t

∑

(pi ,mi)∈Matches

bi ‖Rpi + t − mi‖2 . (16)

Here,R and t are the alignment parameters andbi areweights.
At each step, the association between events andmodel points
is done by assigning each pi to the closest point m j and
rejecting matches which are too far apart (> 3 pixel). By
varying the parameter t around the estimated value while
fixing R we obtain a slice of the cost function profile. The
resulting cost function profiles for our method (7) and (16)
are shown in Fig. 18.

For simple black andwhite scenes (first row of Fig. 18), all
events generated belong to strong edges. In contrast, formore
complex, highly-textured scenes (second row), events are
generated more uniformly in the patch. Our method clearly
shows a convex cost function in both situations. In contrast,
Kueng et al. (2016) exhibits several local minima and very
broad basins of attraction, making exact localization of the
optimal registration parameters challenging. The broadness
of the basin of attraction, together with the multitude of local
minima can be explained by the fact that data association
changes for each alignment parameter. This means that there
are several alignment parameters which may lead to par-
tial overlapping of the point-clouds resulting in a suboptimal
solution.

Patch on frame Events Cost (7) Cost (16) Track (position history)

Fig. 18 Our cost function (7) is better behaved (smoother and with
fewer local minima) than that in Kueng et al. (2016), yielding a better
tracking (last column). The first two columns show the datasets and
feature patches selected, with intensity (grayscale) and events (red and
blue). The third and fourth columns compare the cost profiles of (7)
and (16) for varying translation parameters in x and y directions (±5

pixel around the best estimate from the tracker). The point-set-based
cost used in Kueng et al. (2016) shows many local minima for more
textured scenes (second row) which is not the case of our method. The
last column shows the position history of the features (green is ground
truth, red is Kueng et al. (2016) (ICP) and blue is our method) (Color
figure online)

123

International Journal of Computer Vision (2020) 128:601–618 617

To show how non-smooth cost profiles affect tracking per-
formance, we show the feature tracks in the last column of
Fig. 18. The ground truth derived from KLT is marked in
green. Our tracker (in blue) is able to follow the ground truth
with high accuracy. On the other hand (Kueng et al. 2016) (in
red) exhibits jumping behavior leading to early divergence
from ground truth.

References

Agarwal, S., Mierle, K., et al. (2010–2019). Ceres solver. http://ceres-
solver.org.

Alzugaray, I., & Chli, M. (2018). Asynchronous corner detection
and tracking for event cameras in real time. IEEE Robotics and
Automation Letters, 3(4), 3177–3184.

Baker, S., &Matthews, I. (2004). Lucas-kanade 20 years on: A unifying
framework. International Journal of Computer Vision, 56(3), 221–
255.

Bardow, P., Davison, A. J., & Leutenegger, S. Simultaneous optical flow
and intensity estimation from an event camera. In IEEE conference
on computer vision andpattern recognition (CVPR) (pp. 884–892).

Barranco, F., Teo, CL., Fermuller, C., &Aloimonos, Y. (2015). Contour
detection and characterization for asynchronous event sensors. In
International conference on computer and vision (ICCV).

Benosman, R., Ieng, S.-H., Clercq, C., Bartolozzi, C., & Srinivasan, M.
(2012). Asynchronous frameless event-based optical flow. Neural
Networks, 27, 32–37.

Besl, P. J., & McKay, N. D. (1992). A method for registration of 3-D
shapes. IEEE Transactions on Pattern Analysis & Machine Intel-
ligence, 14(2), 239–256.

Brandli, C., Berner, R., Yang, M., Liu, S.-C., & Delbruck, T. (2014). A
240× 180 130 dB 3us latency global shutter spatiotemporal vision
sensor. IEEE Journal of Solid-State Circuits, 49(10), 2333–2341.

Bryner, S., Gallego, G., Rebecq, H., & Scaramuzza, D. (2019). Event-
based, direct camera tracking from a photometric 3D map using
nonlinear optimization. In IEEE international conference on
robotics and automation (ICRA).

Chaudhry, R., Ravichandran, A., Hager, G., & Vidal, R. Histograms
of oriented optical flow and Binet–Cauchy kernels on nonlinear
dynamical systems for the recognition of human actions. In IEEE
conference on computer vision and pattern recognition (CVPR)
(pp. 1932–1939).

Clady, X., Ieng, S.-H., & Benosman, R. (2015). Asynchronous event-
based corner detection and matching. Neural Networks, 66, 91–
106.

Clady, X.,Maro, J.-M., Barré, S., &Benosman, R. B. (2017). Amotion-
based feature for event-based pattern recognition. Frontiers in
Neuroscience, 10, 594.

Delmerico, J., Cieslewski, T., Rebecq, H., Faessler, M., & Scaramuzza,
D. (2019). Are we ready for autonomous drone racing?. In IEEE
international conference on robotics and automation (ICRA). The
UZH-FPV Drone Racing Dataset.

Evangelidis, G. D., & Psarakis, E. Z. (2008). Parametric image
alignment using enhanced correlation coefficient maximization.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
30(10), 1858–1865.

Forster, C., Zhang, Z., Gassner, M., Werlberger, M., & Scaramuzza,
D. (2017). SVO: Semidirect visual odometry for monocular and
multicamera systems. IEEE Transactions on Robotics, 33(2), 249–
265.

Gallego, G., Delbruck, T., Orchard, G., Bartolozzi, C., Taba, B., Censi,
A., et al. (2019). Event-based vision: A survey. arXiv:1904.08405.

Gallego, G., Forster, C., Mueggler, E., & Scaramuzza, D. (2015).
Event-based camera pose tracking using a generative event model.
arXiv:1510.01972.

Gallego, G., Lund, J. E. A., Mueggler, E., Rebecq, H., Delbruck, T., &
Scaramuzza,D. (2018). Event-based, 6-DOFcamera tracking from
photometric depth maps. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 40(10), 2402–2412.

Gallego, G., Rebecq, H., & Scaramuzza, D. (2018). A unifying contrast
maximization framework for event cameras, with applications to
motion, depth, and optical flow estimation. In IEEE conference on
computer vision and pattern recognition (CVPR) (pp. 3867–3876).

Gallego, G., & Scaramuzza, D. (2017). Accurate angular velocity esti-
mation with an event camera. IEEE Robotics and Automation
Letters, 2(2), 632–639.

Gehrig, D., Rebecq, H., Gallego, G., & Scaramuzza, D. (2018). Asyn-
chronous, photometric feature tracking using events and frames. In
European conference on computer vision (ECCV) (pp. 766–781).

Harris, C., & Stephens, M. (1988). A combined corner and edge detec-
tor. In Proceedings of the fourth alvey vision conference (Vol. 15,
pp. 147–151).

Kim,H.,Handa,A., Benosman,R., Ieng, S.-H.,&Davison,A. J. (2014).
Simultaneous mosaicing and tracking with an event camera. In
British machine vision conference (BMVC).

Klein, G., & Murray, D. (2009). Parallel tracking and mapping on a
camera phone. In IEEE ACM international symposium mixed and
augmented reality (ISMAR).

Kogler, J., Sulzbachner, C., Humenberger, M., & Eibensteiner, F.
Address-event based stereo vision with bio-inspired silicon retina
imagers. In Advances in theory and applications of stereo vision
(pp. 165–188). InTech.

Kueng, B., Mueggler, E., Gallego, G., & Scaramuzza, D. (2016). Low-
latency visual odometry using event-based feature tracks. In IEEE
international conference on intelligent robots and systems (IROS)
(pp. 16–23).

Lagorce, X., Meyer, C., Ieng, S.-H., Filliat, D., & Benosman, R. (2015).
Asynchronous event-based multikernel algorithm for high-speed
visual features tracking. IEEE Transactions on Neural Networks
and Learning Systems, 26(8), 1710–1720.

Lichtsteiner, P., Posch, C., & Delbruck, T. (2008). A 128×128 120 dB
15μs latency asynchronous temporal contrast vision sensor. IEEE
Journal of Solid-State Circuits, 43(2), 566–576.

Lucas, B. D., & Kanade, T. (1981). An iterative image registration tech-
nique with an application to stereo vision. In International joint
conference on artificial intelligence (IJCAI) (pp. 674–679).

Maqueda, A. I., Loquercio, A., Gallego, G., García, N., & Scaramuzza,
D. (2018). Event-based vision meets deep learning on steering
prediction for self-driving cars. In IEEE conference on computer
vision and pattern recognition (CVPR) (pp. 5419–5427).

Mueggler, E., Bartolozzi, C., & Scaramuzza, D. (2017). Fast event-
based corner detection. In British machine vision conference
(BMVC).

Mueggler, E., Huber, B., & Scaramuzza, D. (2014). Event-based,
6-DOF pose tracking for high-speed maneuvers. In IEEE inter-
national conference on intelligent robots and systems (IROS)
(pp. 2761–2768). Event camera animation: https://youtu.be/
LauQ6LWTkxM?t=25.

Mueggler, E., Rebecq, H., Gallego, G., Delbruck, T., & Scaramuzza,
D. (2017). The event-camera dataset and simulator: Event-based
data for pose estimation, visual odometry, and SLAM. The Inter-
national Journal of Robotics Research, 36(2), 142–149.

Munda, G., Reinbacher, C., & Pock, T. (2018). Real-time intensity-
image reconstruction for event cameras using manifold regu-
larisation. International Journal of Computer Vision, 126(12),
1381–1393.

123

http://ceres-solver.org
http://ceres-solver.org
http://arxiv.org/abs/1904.08405
http://arxiv.org/abs/1510.01972
https://youtu.be/LauQ6LWTkxM?t=25
https://youtu.be/LauQ6LWTkxM?t=25

618 International Journal of Computer Vision (2020) 128:601–618

Mur-Artal, R., Montiel, J. M. M., & Tardós, J. D. (2015). ORB-SLAM:
A versatile and accurate monocular SLAM system. IEEE Trans-
actions on Robotics, 31(5), 1147–1163.

Ni, Z., Bolopion, A., Agnus, J., Benosman, R., & Régnier, S. (2012).
Asynchronous event-based visual shape tracking for stable haptic
feedback in microrobotics. IEEE Transactions on Robotics, 28(5),
1081–1089.

Ni, Z., Ieng, S.-H., Posch, C., Régnier, S., & Benosman, R. (2015).
Visual tracking using neuromorphic asynchronous event-based
cameras. Neural Computation, 27(4), 925–953.

Rebecq, H., Gallego, G., Mueggler, E., & Scaramuzza, D. (2018).
EMVS: Event-based multi-view stereo—3D reconstruction with
an event camera in real-time. International Journal of Computer
Vision, 126(12), 1394–1414.

Rebecq, H., Horstschaefer, T., & Scaramuzza, D. (2017). Real-time
visual-inertial odometry for event cameras using keyframe-based
nonlinear optimization. In British machine vision conference
(BMVC).

Rebecq, H., Horstschäfer, T., Gallego, G., & Scaramuzza, D. (2017).
EVO: A geometric approach to event-based 6-DOF parallel track-
ing and mapping in real-time. IEEE Robotics and Automation
Letters, 2(2), 593–600.

Rebecq, H., Ranftl, R., Koltun, V., & Scaramuzza, S. (2019). Events-to-
video:Bringingmodern computer vision to event cameras. In IEEE
conference on computer vision and pattern recognition (CVPR)
(pp. 3857–3866).

Reinbacher, C., Graber, G., & Pock, T. (2016). Real-time intensity-
image reconstruction for event cameras using manifold regulari-
sation. In British machine vision conference (BMVC).

Rosten, E., & Drummond, T. (2006). Machine learning for high-speed
corner detection. In European conference on computer vision
(ECCV) (pp. 430–443).

Scheerlinck, C., Barnes, N., & Mahony, R. (2018). Continuous-time
intensity estimation using event cameras. In Asian conference on
computer vision (ACCV).

Tedaldi, D., Gallego, G., Mueggler, E., & Scaramuzza, D. (2016). Fea-
ture detection and tracking with the dynamic and active-pixel
vision sensor (DAVIS). In International conference on event-based
control, communication and signal processing (EBCCSP).

Vasco, V., Glover, A., & Bartolozzi, C. (2016). Fast event-based Harris
corner detection exploiting the advantages of event-driven cam-
eras. In IEEE international conference on intelligent robots and
systems (IROS).

Vidal, A. R., Rebecq, H., Horstschaefer, T., & Scaramuzza, D. (2018).
Ultimate SLAM? Combining events, images, and IMU for robust
visual SLAM in HDR and high speed scenarios. IEEE Robotics
and Automation Letters, 3(2), 994–1001.

Zhou, H., Yuan, Y., & Shi, C. (2009). Object tracking using SIFT fea-
tures and mean shift. Computer Vision and Image Understanding,
113(3), 345–352.

Zhu, A. Z., Atanasov, N., & Daniilidis, K. (2017) Event-based feature
tracking with probabilistic data association. In IEEE international
conference on robotics and automation (ICRA) (pp. 4465–4470).

Zhu, A. Z., Thakur, D., Ozaslan, T., Pfrommer, B., Kumar, V., & Dani-
ilidis, K. (2018). The multivehicle stereo event camera dataset:
An event camera dataset for 3D perception. IEEE Robotics and
Automation Letters, 3(3), 2032–2039.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	EKLT: Asynchronous Photometric Feature Tracking Using Events and Frames
	Abstract
	1 Introduction
	1.1 Contribution

	2 Related Work
	3 The Challenge of Data Association for Feature Tracking
	4 Methodology
	4.1 Brightness-Increment Images from Events and Frames
	4.2 Optimization Framework
	4.3 Discussion of the Approach
	4.4 Algorithm
	4.5 Connection with the Lucas–Kanade Method

	5 Experiments
	5.1 Simulated Data: Assessing Tracking Accuracy
	5.2 Real Data
	5.2.1 Description of Baseline Methods
	5.2.2 Quantitative Comparison of Feature Trackers

	5.3 Computational Performance
	5.4 Sensitivity with Respect to the Number of Events in a Patch
	5.5 Influence of the Patch Size
	5.6 Feature Tracking in Low Light and with Abrupt Light Changes

	6 Are Standard Camera Frames Needed?
	6.1 Tracking Using Frames Reconstructed from Events
	6.2 Quantitative Evaluation

	7 Discussion
	8 Conclusion
	Acknowledgements
	A Appendix
	A.1 Objective Function Comparison Against ICP-Based Method (Kueng16iros)

	References

