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Abstract
In this paper, we explore neural networkmodels that learn to associate segments of spoken audio captionswith the semantically
relevant portions of natural images that they refer to. We demonstrate that these audio-visual associative localizations emerge
from network-internal representations learned as a by-product of training to perform an image-audio retrieval task. Ourmodels
operate directly on the image pixels and speech waveform, and do not rely on any conventional supervision in the form of
labels, segmentations, or alignments between the modalities during training. We perform analysis using the Places 205 and
ADE20k datasets demonstrating that our models implicitly learn semantically coupled object and word detectors.

Keywords Vision and language · Sound · Speech · Multimodal learning · Language acquisition · Visual object discovery ·
Unsupervised learning · Self-supervised learning

1 Introduction

Babies face an impressive learning challenge: theymust learn
to visually perceive the world around them, and to use lan-
guage to communicate. They must discover the objects in the
world and the words that refer to them. They must solve this
problem when both inputs come in raw form: unsegmented,
unaligned, and with enormous appearance variability both
in the visual domain (due to pose, occlusion, illumination,
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etc.) and in the acoustic domain (due to the unique voice
of every person, speaking rate, emotional state, background
noise, accent, pronunciation, etc.). Babies learn to under-
stand speech and recognize objects in an extremely weakly
supervised fashion, aided not by ground-truth annotations,
but by observation, repetition, multimodal context, and envi-
ronmental interaction (Dupoux 2018; Spelke 1990). In this
paper, we do not attempt to model the cognitive develop-
ment of humans, but instead ask whether a machine can
jointly learn spoken language and visual perception when
faced with similar constraints; that is, with inputs in the
form of unaligned, unannotated raw speech audio and images
(Fig. 1). To that end,we presentmodels capable of jointly dis-
covering words in raw speech audio, objects in raw images,
and associating them with one another.

There has recently been a surge of interest in bridging the
vision and natural language processing (NLP) communities,
in large part thanks to the ability of deep neural networks to
effectively model complex relationships within multimodal
data. These visual-linguistic models have immense potential
to address challenging problems within both communities.
Language offers a far more flexible and naturalistic way of
annotating visual data that goes beyond rigidly defined class
labels. It also opens the door for completely new problems,
such as caption generation and visual question answering
(VQA). Because human language is grounded in the real
world, the linguistic representations that can be learned with
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Fig. 1 The input to our models: images paired with waveforms of
speech audio

the benefit of visual context have the potential to be far more
semantically rich than text-only models.

Current work bringing together vision and language
(Antol et al. 2015; Fang et al. 2015; Gao et al. 2015; John-
son et al. 2016; Karpathy and Fei-Fei 2015; Malinowski and
Fritz 2014; Malinowski et al. 2015; Reed et al. 2016; Ren
et al. 2015; Vinyals et al. 2015; de Vries et al. 2017; Xu et al.
2015) relies on written text. In this situation, the linguistic
information is presented in a pre-processed form in which
words have been segmented and clustered. The text word car
has no variability between sentences (other than synonyms,
capitalization, etc.), and it is already segmented apart from
other words. This is dramatically different from how chil-
dren learn language. The speech signal is continuous, noisy,
unsegmented, and exhibits awide number of non-lexical vari-
abilities. The problem of segmenting and clustering the raw
speech signal into discrete words is analogous to the problem
of visual object discovery in images—the goal of this paper
is to address both problems jointly.

Recent work has focused on crossmodal learning between
vision and sounds (Arandjelovic and Zisserman 2017; Aytar
et al. 2016; Owens et al. 2016a, b). This work has focused on
using ambient sounds and video to discover sound generating
objects in the world. In our work we will also use both vision
and audio modalities except that the audio corresponds to
speech. In this case, the problem is more challenging as the
portions of the speech signal that refer to objects are shorter,
creating amore challenging temporal segmentation problem,
and the number of categories is much larger. Using vision
and speech was first studied in Harwath et al. (2016), but
it was only used to relate full speech signals and images
using a global embedding. Therefore the results focused on
image and speech retrieval.Herewe introduce amodel able to
segment both words in speech and objects in images without
supervision.

The premise of this paper is as follows: given an image and
a raw speech audio recording describing that image, we pro-
pose a neural model which can highlight the relevant regions
of the image as they are being described in the speech. What

makes our approach unique is the fact that we do not use
any form of conventional speech recognition or transcrip-
tion, nor do we use any conventional object detection or
recognition models. In fact, both the speech and images are
completely unsegmented, unaligned, and unannotated dur-
ing training, aside from the assumption that we know which
images and spoken captions belong together as illustrated in
Fig. 1. We train our models to perform semantic retrieval at
the whole-image and whole-caption level, and demonstrate
that detection and localization of both visual objects and spo-
ken words emerges as a by-product of this training.

2 Prior Work

2.1 Visual Object Recognition and Discovery

Classification of visual objects (or other patterns) is a long-
standing problem within the computer vision community,
with the MNIST (LeCun et al. 1998) handwritten digit task
being a classic and widely known example. Recent progress
in the field has been driven in part by recurring challenge
competitions such as ISLVRC (Russakovsky et al. 2015).
Since 2012, the task has been dominated by deep convolu-
tional neural networks (CNNs), popularized by Krizhevsky
et al. (2012). Since that time, improved variants of the basic
CNN architecture have continued to push the state of the art
(He et al. 2015; Simonyan and Zisserman 2014). While clas-
sification asks the question of “what”, object detection and
localization (also part of the ISLVRC suite of tasks) address
the problem of “where”. State of the art systems are trained
using bounding box annotations for the training data (Gir-
shick et al. 2013; Redmon et al. 2016), however other works
investigate weakly-supervised or unsupervised object local-
ization (Bergamo et al. 2014; Cho et al. 2015; Cinbis et al.
2016; Zhou et al. 2015). A large body of research has also
focused on unsupervised visual object discovery, in which
case there is no labeled training dataset available. One of the
first works within this realm is Weber et al. (2010), which
utilized an iterative clustering and classification algorithm
to discover object categories. Further works borrowed ideas
from textual topicmodels (Russell et al. 2006), assuming that
certain sets of objects generally appear together in the same
image scene. More recently, CNNs have been adapted to this
task (Doersch et al. 2015; Guérin et al. 2017), for example by
learning to associate image patches which commonly appear
adjacent to one another.

2.2 Unsupervised Speech Processing

Automatic speech recognition (ASR) systems have recently
made great strides thanks to the revival of deep neural
networks. Training a state-of-the-art ASR system requires
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thousands of hours of transcribed speech audio, along with
expert-crafted pronunciation lexicons and text corpora cover-
ingmillions, if not billions ofwords for languagemodel train-
ing. The reliance on expensive, highly supervised training
paradigms has restricted the application of ASR to the major
languages of the world, accounting for a small fraction of the
more than 7000 human languages spoken worldwide (Lewis
et al. 2016). Within the speech community, there is a contin-
uing effort to develop algorithms less reliant on transcription
and other forms of supervision.Generally, these take the form
of segmentation and clustering algorithms whose goal is to
divide a collection of spoken utterances at the boundaries of
phones or words, and then group together segments which
capture the same underlying unit. Popular approaches are
based on dynamic time warping (Jansen et al. 2010; Jansen
and Van Durme 2011; Park and Glass 2008), or Bayesian
generative models of the speech signal (Kamper et al. 2016;
Lee and Glass 2012; Ondel et al. 2016). Neural networks
have thus far been mostly utilized in this realm for learning
frame-level acoustic features (Kamper et al. 2015; Renshaw
et al. 2015; Thiolliere et al. 2015; Zhang et al. 2012).

2.3 Fusion of Vision with Language and Sound

Joint modeling of images and natural language text has
gained rapidly in popularity, encompassing tasks such as
image captioning (Fang et al. 2015; Karpathy and Fei-Fei
2015; Johnson et al. 2016; Vinyals et al. 2015; Xu et al.
2015), visual question answering (VQA) (Antol et al. 2015;
Gao et al. 2015; Malinowski and Fritz 2014; Malinowski
et al. 2015; Ren et al. 2015, multimodal dialog (de Vries et al.
2017), and text-to-image generation (Reed et al. 2016).While
most work has focused on representing natural languagewith
text, there are a growing number of papers attempting to
learn directly from the speech signal. A major early effort
in this vein was the work of Roy (Roy and Pentland 2002;
Roy 2003), who learned correspondences between images of
objects and the outputs of a supervised phoneme recognizer.
Recently, it was demonstrated by Harwath et al. (2016) that
semantic correspondences could be learned between images
and speech waveforms at the signal level, with subsequent
works providing evidence that linguistic units approximating
phonemes and words are implicitly learned by these models
(Alishahi et al. 2017; Chrupala et al. 2017; Drexler and Glass
2017; Harwath and Glass 2017; Kamper et al. 2017). This
paper follows in the same line of research, introducing the
idea of “matchmap” networks which are capable of directly
inferring semantic alignments between acoustic frames and
image pixels.

A number of recent models have focused on integrating
other acoustic signals to perform unsupervised discovery of
objects and ambient sounds (Arandjelovic and Zisserman
2017; Aytar et al. 2016; Owens et al. 2016a, b). Our work

concentrates on speech and word discovery. But combining
both types of signals (speech and ambient sounds) opens a
number of opportunities for future research beyond the scope
of this paper.

3 Spoken Captions Dataset

For training our models, we use the Places Audio Caption
dataset (Harwath et al. 2016; Harwath and Glass 2017). This
dataset contains approximately 200,000 recordings collected
via Amazon Mechanical Turk of people verbally describing
the content of images from the Places 205 (Zhou et al. 2014)
image dataset.We augment this dataset by collecting an addi-
tional 200,000 captions, resulting in a grand total of 402,385
image/caption pairs for training and a held-out set of 1,000
additional pairs for validation.

In order to perform a fine-grained analysis of our models
ability to localize objects and words, we collected an addi-
tional set of captions for 9895 images from the ADE20k
dataset (Zhou et al. 2017) whose underlying scene cate-
gory was found in the Places 205 label set. The ADE20k
data contains pixel-level object labels, and when combined
with acoustic frame-level ASR hypotheses, we are able to
determine which underlying words match which underly-
ing objects. In all cases, we follow the original Places audio
caption dataset and collect 1 caption per image. Aggregate
statistics over the data are shown in Fig. 2.

Fig. 2 Statistics of the 400k spoken captions. From left to right, the
plots represent a the histogram over caption durations in seconds, b the
histogram over caption lengths in words, c the estimated word frequen-
cies across the captions, and d the number of captions per speaker. Note
that the rapid dropoff in the tail of (d) is assocated with the speakers
who only provided a single caption
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Fig. 3 The ResNet-ResDavenet variant of our model architecture
(upper left), along with an example matchmap output (upper right), dis-
playing a 3-D density of spatio-temporal similarity. The image branch
is based on the ResNet network architecture, while the audio branch
depicted is theResDAVENetmodel. Red blocks represent convolutional
layers, gray blocks indicate BatchNorm layers, yellow block MaxPool-

ing layers, and purple blocks ReLU activations. The four blue blocks
in the image branch represent the four bottleneck residual blocks in
the ResNet50 model, while the four green blocks in the speech branch
represent ResDAVEnet blocks. A schematic diagram of a single Res-
DAVEnet block is shown in the bottom half of the figure

While we do not have exact ground truth transcriptions
for the spoken captions, we use the Google ASR engine to
derive hypotheses which we use for experimental analysis
(but not training, except in the case of the text-based mod-
els). A vocabulary of 44,342 unique words were recognized
within all 400k captions, which were spoken by 2683 unique
speakers. The distributions over both words and speakers fol-
low a power law with a long tail (Fig. 2). We also note that
the free-form nature of the spoken captions generally results
in longer, more descriptive captions than exist in text cap-
tioning datasets. While MSCOCO (Lin et al. 2015) contains
an average of just over 10 words per caption, the places audio
captions are on average 20 words long, with an average dura-
tion of 10 s. The extended Places 205 audio caption corpus,

the ADE20k caption data, and a PyTorch implementation of
the model training code are available at http://groups.csail.
mit.edu/sls/downloads/placesaudio/.

4 Models

Our model (Fig. 3) is similar to that of Harwath et al. (2016),
in which a pair of convolutional neural networks (CNN)
(LeCun et al. 1998) are used to independently encode a visual
image and a spoken audio caption into a shared embedding
space. What differentiates our models from prior work is
the fact that instead of mapping entire images and spoken
utterances to fixed points in an embedding space, we learn
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representations that are distributed both spatially and tempo-
rally, enabling our models to directly co-localize within both
modalities.

In this section, we begin by describing the model archi-
tectures used for the vision and audio branches of our model
(Sects. 4.1, 4.2). Next, we describe the various ways we can
compute a similarity score between an image and an audio
caption from the outputs of both branches (Sect. 4.3). Finally,
wedescribe the loss functions andoptimizationmethods used
to train the models (Sect. 4.4).

4.1 ImageModeling

For the purpose of modeling images, we make use of two
different CNNarchitectures: theVGG16 network (Simonyan
and Zisserman 2014) as well as the ResNet50 (He et al. 2015)
network. In the majority of prior work on two-branched neu-
ral models of visually grounded speech, the image branch
utilized theVGG16network (Simonyan andZisserman2014;
Harwath et al. 2016;Harwath andGlass 2017;Gelderloos and
Chrupala 2016; Chrupala et al. 2017; Alishahi et al. 2017;
Kamper et al. 2017). In all of these cases, the weights of the
image network were pre-trained on ImageNet, and thus had
a significant amount of visual discriminative ability built-
in from the start. In this work, we demonstrate how both
branches could be trained end-to-end in a completely unsu-
pervised fashion,without the need for ImageNet pre-training.
Additionally in these prior works, the entire network below
the classification layer was utilized to derive a single, global
image embedding. One problem with this approach is that
coupling the output of the final convolutional layer to a fully
connected involves a flattening operation, whichmakes it dif-
ficult to recover associations between any neuron above the
final convolution and the spatially localized stimulus which
was responsible for its output. We address this issue here
by retaining only the convolutional banks of the networks.
For VGG16, we keep all layers up through conv5, discard-
ing pool5 and everything above it. For ResNet50, we keep
all layers up through the final residual block, discarding the
global average pooling and fully connected layer.

For a 224 by 224 pixel input image, the output of the net-
work would be a 14 by 14 feature map across 512 channels
(for VGG16), or a 7 by 7 feature map across 2048 channels
(for ResNet50). In either case, each location within the map
possesses a receptive field that can be related directly back to
the input. In order to map an image into an embedding space
of the same dimension as the output of the audio branch, we
apply a final 1024-channel linear convolution with no non-
linearity. In the case of ResNet50, we use a 1x1 convolution,
while for VGG16 we use a 3x3 convolution due to the its
output feature map is of higher resolution than ResNet50.

For both network architectures, image pre-processing for
training and retrieval evaluation consists of resizing the

smallest dimension to 256 pixels, taking a random224 by 224
crop (the center crop is taken for validation), and normaliz-
ing the pixels according to a global pixel mean and variance.
When producing the matchmap visualizations, such as those
depicted in Figs. 14 and 15, we resize the smallest image
dimension to 256, but do not perform any cropping.

4.2 Audio Modeling

To model the spoken audio captions, we use two model
architectures: the DAVEnet (Deep Audio-Visual Embedding
network) 5-layer model (detailed in Harwath et al. 2018),
and a residual version, ResDAVEnet, which is inspired by the
ResNet (He et al. 2015) architecture. The 5 layer DAVEnet is
similar to that of Harwath and Glass (2017), but modified to
output a feature map across the audio during training, rather
than a single embedding vector. The audio waveforms are
represented as log Mel filter bank spectrograms. Comput-
ing these involves first removing the DC component of each
recording via mean subtraction, followed by pre-emphasis
filtering. The short-time Fourier transform is then computed
using a 25 ms Hamming window with a 10 ms shift. We take
the squared magnitude spectrum of each frame and com-
pute the log energies within each of 40 Mel filter bands. We
treat thesefinal spectrograms as 1-channel images, andmodel
themwith the CNN displayed in Fig. 3. Harwath et al. (2016)
utilized truncation and zero-padding of each spectrogram to
a fixed length of 2048 frames, or approximately 20 s. We
then truncate the output feature map of each caption on an
individual basis to remove the frames corresponding to zero-
padding—although surprisingly, we found that doing this
padding compensation made very little difference in terms
of the retrieval recall scores compared to a model which did
not truncate the output at the beginning of the padding.Rather
than manually normalizing the spectrograms, we employ a
BatchNorm (Ioffe and Szegedy 2015) layer at the front of the
network.

The ResDAVEnet model features a cascade of four
ResNet-style residual blocks, but which in our case are
designed to model 1-dimensional inputs (i.e. a temporal
sequence of features). Because each of the four ResDAVEnet
residual blocks involves an overall downsampling factor of
two, the final temporal resolution of theResDAVEnet outputs
is half that of the DAVEnet-5 model.

Next, we discuss methods for relating the visual and audi-
tory feature maps to one another.

4.3 Computing Image-Speech Similarity

Many cross-modal grounding models operate by indepen-
dently encoding each of their inputs into an embedding vector
representation (Faghri et al. 2018; Fang et al. 2015; Karpa-
thy and Fei-Fei 2015). These vectors are constrained to live
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within the same space, enabling arithmetic operations to be
applied between the representations, despite the fact that the
inputs may have originated in very different modalities (such
as visual images and written text—or in our case, speech
audio). Semantic similarity between cross-modal inputs is
typically assumed to correlate with vector space similari-
ties, such as cosine similarity, dot product similarity, inverse
Euclidean distance, etc. Under this formulation, semantic
nearest neighbors can be efficiently computed across modal-
ities, enabling applications such as semantic image search
based on natural language queries. In our case, we are only
tangentially interested in semantic cross-modal retrieval;
our ultimate goal is to co-segment visual and audio inputs
into object-like and word-like patterns. In this section, we
describe how we can adapt retrieval-inspired cross modal
fusion techniques for this purpose. We observe that there is
a an interesting similarity between inferring latent semantic
alignments in our case and other vision-and-language tasks
such as captioning and VQA (which is often accomplished
through an attention mechanism (Shih et al. 2015; Xu et al.
2015))

Zhou et al. (2016) demonstrate that global average pool-
ing applied to the conv5 layer of several popular CNN
architectures not only provides good accuracy for image
classification tasks, but also enables the recovery of spatial
activation maps for a given target class at the conv5 layer,
which can then be used for object localization. The idea that
a pooled representation over an entire input used for train-
ing can then be unpooled for localized analysis is powerful
because it does not require localized annotation of the train-
ing data, or even any explicit mechanism for localization in
the objective function or network itself, beyond what already
exists in the form of convolutional receptive fields. Although
our models perform a ranking task and not classification, we
can apply similar ideas to both the image and speech feature
maps in order to compute their pairwise similarity, in the
hopes to recover localizations of objects and words.

Let I represent the output feature map output of the image
network branch, A be the output feature map of the audio
network branch, and Ī and Ā be their globally average-pooled
counterparts:

Ī = 1

Nr Nc

Nr∑

r=1

Nc∑

c=1

Ir ,c,: (1)

Ā = 1

Nt

Nt∑

t=1

At,: (2)

Here we use the colon (:) to indicate selection of all elements
across an indexing plane; in other words, Ir ,c,: is a 1024-
dimensional vector representing the (r , c) coordinate of the
image feature map, and At,: is a 1024-dimensional vector

representing the t th frame of the audio feature map. One
straightforward choice of similarity function between and
image and audio caption is the dot product between the global
average pooled embeddings,

S(I , A) = Ī T Ā (3)

Substituting Eqs. 1 and 2 into Eq. 3, we have that

S(I , A) =
(

1

Nr Nc

Nr∑

r=1

Nc∑

c=1

Ir ,c,:

)T (
1

Nt

Nt∑

t=1

At,:

)
(4)

By distributing between the summations and collecting the
coefficients, we can write the similarity as

S(I , A) = 1

Nr NcNt

Nr∑

r=1

Nc∑

c=1

Nt∑

t=1

I Tr ,c,:At,: (5)

We can see fromEq. 5 that the combination of global average
pooling and the dot product results in the similarity score tak-
ing on large valueswhen all local regions of the image feature
map exhibit a large dot product with all local regions of the
audio feature map. We also notice that implicit in this com-
putation is a 3rd order tensor M , where Mr ,c,t = I Tr ,c,:At,:.
Because M reflects the localized similarity between a small
image region (possibly containing an object, or part of an
object) and a segment of speech audio (possibly contain-
ing a word or short phrase), we dub M the “matchmap”
tensor between and image and an audio caption. Explicitly
computing M ideally enables us to learn a latent semantic
alignment between matching objects and words. Under this
view, the similarity between the global average pooled image
and audio representations can be found by averaging the sim-
ilarity between all audio frames and all image regions. We
call this similarity scoring function SISA (sum image, sum
audio):

SISA(M) = 1

Nr NcNt

Nr∑

r=1

Nc∑

c=1

Nt∑

t=1

Mr ,c,t (6)

For the sake of computational efficiency, at training time we
compute the SISA scoring function by using global aver-
age pooling and a dot product. In our experiments exploring
object and word discovery (detailed in Sect. 5.1), we explic-
itly utilize the matchmap M . If we are willing to incur the
extra computational cost of computing M at train time, there
are a multitude of ways in which we can reduce a matchmap
to a single scalar-valued score, two of which we describe
here.

Because it is not completely realistic to expect all words
within a caption to simultaneously match all objects within
an image, we consider computing the similarity between an
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image and an audio caption using several alternative func-
tions of the matchmap density. By replacing the averaging
summation over image patches with a simple maximum,
MISA (max image, sum audio) effectively matches each
frame of the caption with the most similar image patch, and
then averages over the caption frames:

MISA(M) = 1

Nt

Nt∑

t=1

max
r ,c

(Mr ,c,t ) (7)

By preserving the sum over image regions but taking the
maximum across the audio caption, SIMA (sum image, max
audio) matches each image region with only the audio frame
with the highest similarity to that region:

SIMA(M) = 1

Nr Nc

Nr∑

r=1

Nc∑

c=1

max
t

(Mr ,c,t ) (8)

Next, we describe the how these similarities are integrated
into the loss functions used to train our models.

4.4 Training

Our models are trained to optimize a ranking-based criterion
(Bromley et al. 1994), such that images and captions that
belong together aremore similar in the embedding space than
mismatched image/caption pairs. Specifically, across a batch
of B image/caption pairs (I j , A j ) (where I j represents the
output of the image branch of the network for the j th image,
and A j the output of the audio branch for the j th caption)
we first randomly select impostor samples according to

Â j ∼ UniformCategorical({A1, . . . , AB} \ A j ) (9)

Î j ∼ UniformCategorical({I1, . . . , IB} \ I j ) (10)

We then compute the sampling-based triplet loss as:

Ls =
B∑

j=1

(
max(0, S(I j , Â j ) − S(I j , A j ) + η)

+max(0, S( Î j , A j ) − S(I j , A j ) + η)
)
, (11)

where S(I , A) represents the similarity score between an
image I and audio caption A and η is a margin hyperparam-
eter.

Hard negative mining has been shown to offer substantial
improvements over the standard triplet loss formulation in the
context of cross-modal retrieval (Faghri et al. 2018). Rather
than randomly sampling impostors (or summing over all pos-
sible impostors within a batch), only the impostor sample
with the largest similarity with respect to the anchor is con-
sidered when computing the loss. Semi-hard negative mining

Fig. 4 We utilize a training scheme inspired by Jansen et al. (2018),
where the negative sample is selected as the hardest sample in the batch
which is, at most, as similar to the positive sample than the ground truth.
This strategy avoids training instabilities due to noise in the training data

(Jansen et al. 2018) is a variant of hard negative mining in
which the impostors are constrained to be less similar to
the anchor than its paired sample (Fig. 4). Semi-hard neg-
ative mining can help to mitigate the detrimental effect of
label noise on regular hard negative mining. We chose to use
semi-hard negative mining because in our experience, we
found standard negative mining to be highly unstable during
training.

Mathematically, we first select the candidate image nega-
tives Īj and candidate audio negatives Āj to be the set of all
images (or audio captions) less similar to the anchor image
(or caption) than the anchor’s paired caption (or image):

Āj = {A ∈ {A1, . . . , AN }|S(I j , A) < S(I j , A j )}, (12)

Īj = {I ∈ {I1, . . . , IN }|S(I , A j ) < S(I j , A j )}. (13)

Then, we construct the semi-hard negative triplet loss by
maximizing over all candidate negatives:

Lh =
B∑

j=1

(
max(0, max

A∈Āj

(S(I j , A)) − S(I j , A j ) + η)

+max(0,max
I∈Īj

(S(I , A j )) − S(I j , A j ) + η)
)
, (14)

In the case that there are no potential semi-hard negatives
that satisfy Eqs. 12 or 13, we default to randomly sampling
the negatives. Empirically, we found that semi-hard negative
training on its own was unstable to train, and worked much
better when combined with the sampling-based triplet loss
Ls . For ourmodels which utilize semi-hard negative training,
the loss function becomes:

L = Ls + Lh (15)

Although in theory the two losses could be assigned different
weights, in our experiments we weight them equally with
good results.

For both the randomly sampled and semi-hard negative
mined loss functions, the imposter images and captions for
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each image/caption pair are selected from the same mini-
batch.We also fix η to 1 in all of our experiments. The choice
of similarity function S(I , A) is flexible, whichwe explore in
Sect. 4.3. This criterion directly enables semantic retrieval of
images from captions and vice versa, but in this paper much
of our focus is to explore howobject andword co-localization
naturally emerges as a by-product of this training scheme.

An important issue to consider with hard negative mining
in the context of our models is computational complexity.
Several of our matchmap similarity functions (MISA and
SIMA) require explicit computation of the full matchmap
between an image-caption pair, which requires O(T ∗ H ∗
W∗D)multiply-adds,where T is the caption duration, H and
W are the image height and width, and D is the embedding
dimension. Semi-hard negative mining using full matchmap-
based similarity scores increases this complexity by a factor
of B2; in practice, we found that even with parallel training
across multiple GPUs, this was computationally impractical.
The exception to this is the SISA loss computed via global
average pooling, for which thewithin-batch similaritymatrix
can be computed in O(D ∗ B2) time. For this reason, all of
our models which rely on semi-hard negative mining utilize
the SISA matchmap similarity function.

4.5 Pre-training Methods

A core issue which we investigate is the manner in which
various forms of pre-training influence our model’s abil-
ity to learn. Many previously published works on visually
grounded speech utilized an audio networkwhichwas trained
from a random initialization, but used a vision model which
underwent supervised pre-training e.g. on ImageNet (Har-
wath et al. 2016; Harwath and Glass 2017; Gelderloos and
Chrupala 2016; Chrupala et al. 2017; Alishahi et al. 2017;
Kamper et al. 2017). This leads to the question of whether
the model able to learn new concepts by grounding speech
to images, or if the audio network is simply learning to pre-
dict the image features that were originally derived from a
supervised classification task. To that end, we consider three
methods for initializing our models:

1. Fully random initialization Under this condition, the
weights of both the image and audio branches of the
model are randomly initialized at the start of training.

2. Unsupervised pre-training on Flickr Natural Sounds
Under this condition, the models are pre-trainied with-
out labels using a database of videos containing natural
sounds (Thomee et al. 2015). Similar to Aytar et al.
(2016), we use videos from Flickr selected by query-
ing popular words and tags. We take the audio track and
sample image frames from these videos and then use
the semi-hard negative triplet loss (Sect. 4.4) to train our
model to recognize pairs of audio-image from the same

video (positive examples) and audio-image pairs from
different videos (negative examples). We use 2,146,055
Flickr videos for pre-training, and achieve an average
Recall@10 score of 0.441 on this task, using 500 valida-
tion samples.

3. Fully supervised pre-training on ImageNet and AudioSet
In this case, both the image and audio branches of the
network are pre-trained in a supervised fashion. We use
ImageNet classification to pre-train the image branch,
andAudioSet sound classification (Gemmeke et al. 2017)
to pre-train the audio branch. For the AudioSet classifi-
cation, we subsample a class-balanced subset of the total
training set. We take the global maxed pooled outputs of
the audio branch and add one final fully connected layer
with a softmax activation on top of it. We use a Cross-
Entropy loss for training randomly sampling the training
class at every iteration; average per class AUCwas found
to be 0.891 on the validation set.

4.6 Training Details

All models were trained using stochastic gradient descent
with a batch size of 80, a fixed momentum of 0.9. We use
learning of 0.001 for the randomly initialized ResNet50 +
ResDAVEnet models and all VGG16 + DAVENet models,
0.01 for theResNet50+ResDAVEnetmodelswithAudioSet
+ ImageNet initialization and 0.03 for the ResNet50 +
ResDAVEnet models initialized with Natural Sounds. Anec-
dotally, we found that the higher learning rates could lead
to instability for randomly initialized models, but not for
the models which had already undergone pre-training. We
decayed the learning rate by a factor of 10 every 30 epochs
and initially trained for a minimum of 90 epochs; however,
we found that some of the models (especially the randomly
initialized models) began to overfit the training data in later
epochs. For this reason, all of the results presented in this
paper were computed with models that were subject to early
stopping at 40 epochs. In the models trained using a blend of
the sampled and semi-hard negative triplet losses, we simply
weighted the loss terms equally.

5 Experiments

5.1 Image and Caption Retrieval

Wefirst present experiments detailing the performance of our
models for an image/caption retrieval task. We use a held-
out set of 1,000 image/caption pairs from the Places audio
caption dataset to validate the models on the image/caption
retrieval task, similar to the one described in Harwath et al.
(2016), Harwath and Glass (2017), Chrupala et al. (2017)
and Alishahi et al. (2017). This task serves to provide a sin-
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Table 1 Ablation study for
unsupervised models: recall
scores on the held out set of
1000 images/captions for our
various ablations of the
speech-image grounding model

Model Loss Pretrained Speech to Image Image to Speech

R@1 R@5 R@10 R@1 R@5 R@10

VGG SISA-SHN Natural Sounds .145 .382 .503 .115 .352 .471

RN SIMA Natural Sounds .118 .331 .463 .126 .347 .461

RN SISA Natural Sounds .132 .376 .490 .112 .318 .445

RN MISA Natural Sounds .143 .364 .514 .096 .311 .458

RN SISA-SHN No .147 .375 .512 .099 .328 .452

RN SISA-SHN Natural Sounds .268 .545 .684 .211 .528 .660

SHN stands for semi-hard negative training, while the RN prefix indicates the use of a ResNet50 image branch
and a ResDAVEnet audio branch. VGG refers to the model using the VGG16 architecture in the image branch,
and the audio branch on the DAVEnet-5 architecture

Table 2 Supervised baseline
comparison: recall scores on the
held out set of 1000
images/captions comparing the
unsupervised pre-training
approaches (top two rows)
against supervised models
(bottom three rows)

Method Speech to Image Image to Speech

R@1 R@5 R@10 R@1 R@5 R@10

Random .147 .375 .512 .099 .328 .452

Natural Sounds .268 .545 .684 .211 .528 .660

ImageNet/AudioSet .276 .584 .716 .218 .551 .690

(Harwath et al. 2016) .148 .403 .548 .121 .335 .463

(Harwath and Glass 2017) .161 .404 .564 .130 .378 .542

The top three rows in this table use the ResNet50/ResDAVEnet architecture

Table 3 Text-based models:
recall scores on the held out set
of 1000 images/captions for our
various text-image grounding
models. SHN stands for
semi-hard negative training

Loss Pretrained Text to Image Image to Text

R@1 R@5 R@10 R@1 R@5 R@10

SIMA No .018 .135 .294 .071 .217 .325

SISA No .105 .309 .419 .064 .220 .332

MISA No .100 .283 .395 .048 .185 .308

SISA-SHN No .206 .481 .632 .138 .398 .558

SISA-SHN ImageNet .322 .659 .782 .235 .551 .719

All models use a ResNet50 image branch and a 2-layer text branch with 1-D convolutional layers that operate
on input sequences of word embeddings

gle, high-level metric which captures howwell themodel has
learned to semantically bridge the audio and visual modali-
ties. While providing a good indication of a model’s overall
ability, it does not directly examine which specific aspects
of language and visual perception are being captured, which
we later investigate in Sects. 5.3, 5.4, 5.5, and 5.6.

The core retrieval results for our unsupervised models are
summarized in Table 1. A comparison against previously
published baselines, as well as our supervised pre-training
results, are shown in Table 2. Finally, we show retreival
results for text-based models which operate on the text tran-
scripts of the spoken captions (estimated using the Google
public speech recognition API) rather than the speech audio
in Table 3.

In Table 1, we anchor our analysis to our best-performing
unsupervised model (last row, bold) and ablate the model in
a variety of ways. The main takeaways from these results are
detailed below:

1. Pre-trainingonnatural soundsdramatically helps retrieval
performance. In the second-to-last row of Table 1, we
compare a randomly initialized version of the ResNet50
+ ResDAVEnet model trained using the SISA objective
with semi-hard negative mining to a version of the same
model pre-trained on the Flickr natural sound videos. We
see that the average Recall@10 score increases from .482
to .672 when pre-training with natural sounds, represent-
ing a 39.4% relative improvement over the exact same
model with a random initialization.

2. Semi-hard negative mining is also immensely beneficial
for the model. Even when retaining the residual archi-
tecture and natural sound pre-training, a model trained
without semi-hard negative mining (third row) achieves
an average Recall@10 of .468.

3. The residual architecture (ResNet50 + ResDAVEnet)
significantly outperformsVGG16+DAVEnet.We trained
a VGG16 + DAVEnet model with the SISA semi-hard
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negative loss and natural sound pre-training (first row),
which resulted in an average Recall@10 of .487.

4. For models trained without semi-hard negative mining,
MISAoutperformsSISAwhich outperformsSIMA—but
the differences between thesemodels are small compared
to the impact of natural sound pre-training, semi-hard
negative mining, and the residual model architecture.

In Table 2, we examine the ResNet50 + ResDAVEnet
model trained with the SISA-SHN loss under random ini-
tialization, natural sound pre-training, and supervised clas-
sification pre-training. We see a clear ranking between the
methods, with natural sound pre-training outperforming ran-
dom initialization but supervised pre-training coming out on
top. What is interesting to note, however, is the fact that
the gap between the average Recall@10 score for the nat-
ural sound pre-trained model and the supervised pre-trained
model is much smaller than between the random model and
the natural sound model. While natural sound pre-training
offers a nearly 40% relative improvement, supervised pre-
training offers only an additional 4.6% relative improvement.
This suggests that the performance gap between our pre-
trained and non-pre-trained models is not solely due to
supervised labeling information leaking into the network
weights, but instead is more likely a function of the total
amount of training data seen by the model. This is an
extremely encouraging result not only because it implies
that we have not yet exhausted the learning capacity of our
models, but also because it indicates that synergies between
different domains within the same modality (natural sounds
vs. speech audio) can be exploited to our benefit.

We also compare our models against reimplementations
of two previously published speech-to-image models (both
of which utilized ImageNet pre-trained image branches) in
Table 2. Both previously published baselines we compare to
used the full VGG16 network, deriving an embedding for the
entire image from the fc2 outputs. By contrast, all of our
models output spatial and temporal feature maps. The fact
that all of our models either outperform or perform compa-
rably to these baselines suggests that there is not much to be
lost when doing away with the fully connected layers that
hamper localization.

In Table 3, we compare against baselines that operate on
automatic speech recognition (ASR) derived text transcrip-
tions of the spoken captions. The text-based model we used
is based on the two-branch topology of the speech and image
model, but replaces the speech audio branch with a CNN
that operates on word sequences. The ASR text network
uses a 200-dimensional word embedding layer, followed by
a 512 channel, 1-dimensional convolution across windows of
3 words with a ReLU nonlinearity. A final convolution with
a window size of 3 and no nonlinearity maps these activa-
tions into the 1024 multimodal embedding space. Because

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Epoch

Lo
ss

Sampled Triplet Loss
Semi-Hard Negative Triplet Loss
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Fig. 6 Performance as a function of training data amount for 3 dif-
ferent pre-training scenarios. The same ResNet50-ResDaveNet model
architecture is used throughout. We evaluate three different methods
of model initialization: random, an image branch pretrained on Ima-
geNet and the audio branch in AudioSet, and both the image and audio
branches pretrained on videos with natural sounds

the use of text as an input effectively solves half the problem
faced by our models (recognizing words in raw speech sig-
nals), the retrieval scores are unsurprisingly higher relative to
the speech-basedmodels, representing an approximate upper
bound on the performance we can expect from the speech
audio-based models.

In Fig. 5, we plot the values of the randomly sampled
and semi-hard negative triplet losses as a function of training
epoch. It is reasonable to hypothesize that at some point dur-
ing training, the model would become powerful enough that
the sampled loss would vanish (or plateau at a very small

123



630 International Journal of Computer Vision (2020) 128:620–641

Table 4 Speech-prompted
object detection and localization
scores on ADE20K for the 100
handcrafted word-object pairs
and various models. For the
model type, VGG indicates a
model based on the VGG16 +
DAVEnet architecture, while
RN indicates a model based on
the ResNet50 + ResDAVEnet
architecture

Model Loss Pre-trained mAP mIoU mIoD mIoT

Full Frame N/A N/A .129 .11 .11 1.0

VGG SISA-SHN NS .329 .12 .16 .69

RN MISA NS .224 .11 .12 .68

RN SIMA NS .158 .11 .12 .88

RN SISA NS .283 .12 .15 .61

RN SISA-SHN None .297 .13 .15 .64

RN SISA-SHN NS .368 .15 .21 .62

RN SISA-SHN IN+AS .440 .16 .23 .63

For pre-training, NS indicates unsupervised pre-training on natural sounds, while IN+AS indicates supervised
pre-training on ImageNet andAudioSet. To evaluate object detection,we reportmean average precision (mAP)
for predicting whether or not a particular object exists anywhere in an image. We evaluate segmentation
performance using mean intersection over union (mIoU), mean intersection over detection (mIoD), and mean
intersection over target (mIoT). Segmentation scores are computed for each word-object pair only on the
subset of the ADE20k images that contain the target object. In all cases, the threshold was set at 0.5, which
we found produced near-optimal results for IoU for all models

value) and the gradient would become dominated by the
semi-hard negative loss; however, we did not observe this
during the first 40 epochs of training (where we perform
early stopping).

5.2 Varying the Amount of Training Data

Here, we examine varying the amount of training data
influences the performance of our model under the various
pre-training regimes. In Fig. 6, we display the learning curves
of 3 different models in terms of the average of the caption to
image and image to caption Recall@10 on the Places audio
validation set. Themodels were trained on subsets comprised
of 10%, 20%, and 50% of the full 400k training set. We note
that the trends observed in Table 2 are reflected in Fig. 6 for
all training set sizes. Namely, both supervised and unsuper-
vised pre-training consistently improves the performance of
the model regardless of how much training data is available.
Without any pre-training, the model struggles to reach 0.1
R@10with 20%of the trainingdata (corresponding to 80,000
examples), even with semi-hard negative training. The fact
that none of the curves have levelled off suggests that even
larger training datasetswould be helpful for achieving further
performance improvements.

5.3 Speech-Prompted Object Detection and
Localization

To evaluate our models’ ability to detect and segment visual
objects given a spoken prompt, we use the spoken captions
for the ADE20k (Zhou et al. 2017) dataset. The ADE20k
images contain pixel-level object masks and labels—in con-
junction with a time-aligned transcription produced via ASR
(we use the public Google Speech Recognition API for this
purpose),we can associate eachmatchmapcellwith a specific

visual object label aswell as aword label. These labels enable
us to analyze which words are being associated with which
objects. We do this by performing speech-prompted object
detection and localization, which we evaluate separately.

Because there are a very large number of different words
appearing in the speech, and no one-to-onemapping between
words and ADE20k objects exists, we manually define a set
of 100word-object pairings.We choose commonly occurring
(at least 9 occurrences) pairs that are unambiguous, such as
the word “building” and object “building,” the word “man”
and the “person” object, etc. For each word type, we isolate
all occurrences of that word in the ADE20k spoken captions
and compute an embedding vector for each one by feeding
the isolated words into the audio branch of our model and
averaging the output across the time dimension. We then
compute a single embedding representing the word category
by averaging the individual embeddings for all instances of
the word.

To perform word-prompted object detection for a given
word-object pair, we compute a score for every ADE20k
imageby taking the dot product of the aggregateword embed-
ding with each spatial position of the image branch’s output
feature map. We then apply a global max pooling operation
to this score map to derive a single score for each image.
Using these scores, we compute the average precision for
each word-object pairing, and take the mean average preci-
sion (mAP) across the 100 word-object pairs.

To evaluate object localization separately from object
detection, we select only the subset of the ADE20k images
which contain the target object for a given word-object pair-
ing. Next, we compute a heatmap over each image by taking
the dot product of the word embedding with each spatial out-
put of the image branch. We normalize this heatmap to sit
within the interval [0, 1], upsample it to the same size as the
ADE20k pixel-level segmentation, apply a threshold (0.5 in
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Fig. 7 Comparison of speech-prompted object localization heatmaps for 8 differentword/object pairs and the three pre-training conditions (Random,
Natural Sounds, ImageNet + AudioSet), using the ResNet50 + ResDAVEnet model and the SISA-SHN loss function

all of our experiments), and then compute intersection over
union (IoU), intersection over detection (IoD), and intersec-
tion over target (IoT) with respect to the target object label.

The results for both object detection and localization are
summarized in Table 4. We evaluate all of the unsupervised

models from Table 1, as well as the highest performing
overall model which underwent supervised pre-training on
ImageNet and AudioSet from Table 2. We also compare to
a full-frame baseline, which assumes that the target object is
always present in every image, and hypothesizes the entire
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Fig. 8 Example speech-prompted object localization heatmaps for several word/object pairs using the natural sounds pre-trained ResNet50 +
ResDAVEnet model, using the SISA-SHN loss function
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Fig. 9 Some clusters (speech and visual) found by our approach. Each
cluster is jointly labeled with the most common word (capital letters)
and object (lowercase letters). For each cluster we show the precision

for both theword (blue) and object (red) labels, aswell as their harmonic
mean (magenta). The average cluster size across the top 100 clusters
was 81

image frame for the segmentation. We found that generally
speaking, all of our models perform much better at detecting
the presence of objects than segmenting them, as indicated
by the fact that the mAP scores are several times higher than
the full-frame baseline, but the mIoU scores are only 45%
higher than the full-frame baseline in the best case. We note
that the relative performance differences between the models
in terms of object detection mAP closely mirror the retrieval
results shown in Tables 1 and 2.

While the same rankings between themodels hold in terms
of object segmentation, e.g. with supervised pre-training out-
performing natural sound pre-training which outperforms
random initialization, the differences in themIoU scores here
aremuch smaller.We provide a visual comparison of the seg-
mentation performance between these models in Fig. 7. Gen-
erally speaking, the three models appear to focus on the same
regions of each image, although all of them suffer from sim-
ilar problems. In the case of smaller objects, like chandeliers
and laptops, all of the models tend to under-segment, cap-
turing a significant amount of background pixels around the
target object. In the case of larger objects, like fields, moun-
tains, and bridges, themodels tend to over-segment, focusing
on a few small regions of the target object. Although the pre-
trained models subjectively appear to do a better job of cap-
turing a fuller extent of these large objects, it is interesting to
note that the highest scoring regions of each image tend to be
consistent across themodels. In Fig. 8,we presentmanymore
segmentation examples for our best unsupervised model.

5.4 Clustering of Audio-Visual Patterns

The next experiment we consider is automatic discovery of
audio-visual clusters from theADE20kmatchmaps using our
best unsupervised model (ResNet50 + ResDAVEnet, SISA-
SHN, natural sounds pre-training). Once a matchmap has
been computed for an image and caption pair, we binarize
it according to an absolute score threshold. While we use a
threshold of 400 here, we achieved good results in the range
of 200 to 450. Next, we extract volumetric connected com-
ponents and their associatedmasks over the image and audio.
We average pool the image and audio feature maps within
these masks, producing a pair of vectors for each component.
Because we found the image and speech representations to
exhibit different dynamic ranges, we first rescale them by
the average L2 norms across all derived image vectors and
speech vectors, respectively. We concatenate the image and
speech vectors for each component, and finally perform hier-
archical clustering using the Birch algorithm (Zhang et al.
1996) which resulted in 423 final clusters. To derive labels
for each cluster, we take the most frequent word label as
overlapped by the components belonging to a cluster. To
generate the object labels, we compute the number of pix-
els belonging to each ADE20k class assigned to a particular
cluster, and take the most common label. We display the
labels and their purities for the top 100 most pure clusters in
Fig. 9.
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Fig. 10 Matching themost activated images in the image network and the activatedwords in the audio networkwe can establish pairs of image-word,
as shown in the figure. We also define a concept value, which captures the agreement between both networks and ranges from 0 (no agreement) to
1 (full agreement)
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Fig. 11 The number of neurons whose concept value exceeds 0.7 as a
function of training epoch for the ResNet50 + ResDAVEnet + SISA-
SHN model using three different initializations

5.5 Concept Discovery: Building an Image-Word
Dictionary

The clustering results displayed in Fig. 9 indicate that the
audio and image networks are able to agree to a common
representation of knowledge, clustering similar concepts
together. An interesting property of our models is the fact
that because the dot product between embeddings is used to
compute similarity scores, both the image and speech net-
works must learn to agree on the meaning of the different
dimensions of the embedding space. To further explore this
phenomenon, we decided to visualize the concepts associ-
ated with each of these dimensions for both image and audio

Table 5 The number of concepts learned by the different networks with
different losses

Model Loss Pre-trained Concepts

VGG SISA-SHN Natural Sounds 91

RN MISA Natural Sounds 99

RN SIMA Natural Sounds 96

RN SISA Natural Sounds 74

RN SISA-SHN No 58

RN SISA-SH Natural Sounds 109

RN SISA-SH ImageNet/Audioset 126

We find it is consistently highest when using semi-hard negative mining
and various forms of pre-training

networks separately and then find a quantitative strategy to
evaluate the agreement.

To visualize the visual concepts associated with each of
the dimensions in the image output, we use the unit visu-
alization technique introduced in Zhou et al. (2015). A set
of images is run through the image network and the ones
that most activate a particular dimension are selected. We
then visualize the spatial activations in these top images. The
same procedure can be done for the audio network, where we
search for the set of audio captions that maximally activate
the same neuron. Finally, we extract the segment of the audio
caption that maximally activated the neuron in question. For
both modalities, we perform segmentation by first normaliz-
ing the activations for each dimension to have zero mean and
unit variance across the entire dataset. Then, we threshold the
activations within each image at 1.2 and activations within
the caption at 1.3.

We then treat the set of neurons in the embedding layer
as a “picture dictionary,” in which each dimension has the

Fig. 12 We show the top 20 concepts (by concept score) at various
epochs during a single training run of the ResNet50 + ResDAVEnet
SISA-SHN model with natural sound pre-training. The concepts con-

taining words separated by a slash represent multi-word concepts. We
subjectively observe that the concepts learned at earlier epochs tend to
be simpler and larger objects (e.g. building, sky, water)
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Fig. 13 Co-segmentation of the example image-caption pair shown in Fig. 3

potential to capture a single concept. A dimension in this
embedding space which has properly learned a concept
should satisfy three requirements. First, it should strongly and
reliably activate on image regions containing a specific object
type. Second, it should strongly and reliably activate on spo-
ken caption regions containing a specific word or phrase.
Third, there should exist a semantic agreement between the
word and object which activate this dimension. We cannot
expect every dimension in the embedding space to perfectly
capture a concept, but we would like to be able to find those
that do. To that end, we devise an automatic selectionmethod
for finding the neurons which have captured a concept.

To quantify the quality each dimension in the picture dic-
tionary, we rely on the object segmentation labels as well
as the ASR-derived text transcripts for the spoken captions
from the ADE20k dataset (Zhou et al. 2017). Using these, we
can rank the most strongly detected objects for each neuron.
We pass through the image branch of the network approxi-
mately 10,000 images from the ADE20k dataset and check
for each neuron which classes are most activated for that par-
ticular dimension. As a result, we have a set of object labels
associated with the image neuron (coming from the segmen-
tation classes). We do the same with the time-aligned text
transcripts of the spoken captions to derive a set of words
associated with each neuron in the audio branch’s output
layer. To estimate the semantic agreement between words
from the caption transcript and ADE20k object labels, we
use the shortest path distance along the WordNet (Fellbaum

1998) hyponym-hypernym tree.We then define the following
concept score metric:

c j =
|O im|∑

i=1

wi Simwup(o
im
i , oauj ), (16)

with oimi ∈ O im, where O im is the set of classes present in the
TOP5 segmented images, Simwup(., .) is the Wu and Palmer
WordNet-based similarity, with range [0,1] (higher is more
similar), and oauj is a word from the top audio activations. We
weight the similarity with wi , which is proportional to inter-
section over union of the pixels for that class into the masked
region of the image.Using thismetric, we can then assign one
value per pair of word and image activation. To assign one
single value to the whole dimension, we take the maximum
among all the concept values c j for the different audiowords.
In our experiments, we take at most 2 words from the audio,
only considering words that at least repeat in the 5 audio
pieceswe consider. Thefinal concept value c = max j c j mea-
sures howwell both the audio network and the image network
agree on that particular concept. Interestingly, the concepts
are represented by two words (if two words are more than
one time in themost activated region) or by one single words.
Examples for many concepts are shown in Fig. 10. Anecdo-
tally, we found c > 0.7 to be a good indicator that a concept
has been learned, and it is the threshold we use to count the
number of concepts learned by the models, shown in Fig. 11
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Fig. 14 Co-segmentation of images and their spoken captions using thresholded matchmaps produced by the ResNet50 + ResDAVEnet model,
using the SISA-SHN loss. We compare three versions of this model with various pre-training conditions

as a function of the training epoch. We display some of the
concepts learned at various stages during training in Fig. 12.

The pairs image-word allow us to explore multiple ques-
tions. First, can we build an image-word dictionary by only
listening to descriptions of images? As we show in Fig. 10,
we do. It is important to remember that these pairs are learned
in a completely unsupervised fashion, without any concept

previously learned by the network. Furthermore, in the sce-
nario of a language without written representation, we could
just have an image-audio dictionary using exactly the same
technique.

Another important question is whether a better audio-
visual dictionary is indicative of a better model architecture.
We would expect that a better model should learn more total
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Fig. 15 Additional co-segmentation examples using the SISA-SHN ResNet50 + ResDAVEnet model, pre-trained on the natural sound Flickr
videos

concepts. In this section we propose a metric to quantify
this dictionary quality. This metric will help us to compute
the quality of each individual neuron and of each particular
model.

Finally, we analyze the relation between the concepts
learned and the architecture used in Table 5. Interestingly,
the four maintain the same order in the three different cases,
indicating that the architecture does influence the number of
concepts learned.

5.6 MatchmapVisualizations andVideos

We can visualize the matchmaps produced by our models
in several ways. The 3-dimensional density shown in Fig. 3
is perhaps the simplest, although it can be difficult to read
as a still image. Instead, we can treat it as a stack of masks
overlayed on top of the image and played back as a video.We
use the matchmap score to modulate the alpha channel of the
image synchronously with the speech audio. The resulting
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video is able to highlight the salient regions of the images as
the speaker is describing them (Fig. 13).

We can also apply a threshold to the matchmaps and then
extract volumetric connected components from the density.
We then project them down onto the image and spectrogram
axes, shown in Fig. 13. More visualizations of this are shown
inFigs. 14 and 15. In practice,we found that an absolute score
threshold between 100 and 400 generally produced attractive
results, although the threshold required some hand-tuning
between models. Future work should investigate better ways
to normalize and segment thematchmaps. InFig. 14,we com-
pare the segmented matchmaps computed with ResNet50 +
ResDAVEnet SISA-SHNmodels under the three pre-training
regimes.Wefind that they all do a good job co-segmenting the
speech and image, although arguably the pre-trained models
tend to be more precise than the random model. In Fig. 15,
we showmany more example visualizations produced by the
natural sound pre-trained model.

6 Conclusions

In this paper, we introduced audio-visual “matchmap” neural
networks which are capable of directly learning the semantic
correspondences between speech frames and image pixels
without the need for annotated training data in either modal-
ity. We applied these networks for semantic image/spoken
caption search, speech-prompted object localization, audio-
visual clustering and concept discovery, and real-time,
speech-driven, semantic highlighting. We examined the var-
ious ways in which factors such as the specific model
architecture, training algorithm, andmodel pre-training influ-
ence the ability of our matchmap networks to learn spoken
words, visual objects, and the semantics that link them. We
also introduced an extended version of the Places audio cap-
tion dataset (Harwath et al. 2016), doubling the total number
of captions. Additionally, we introduced nearly 10,000 cap-
tions for the ADE20k dataset.

There are numerous avenues for future work, including
expansion of the models to handle videos, additional lan-
guages, richer modeling of environmental sounds, etc. It may
possible to directly generate images given a spoken descrip-
tion, or generate artificial speech describing a visual scene.
More focused datasets that go beyond simple spoken descrip-
tions and explicitly address relations between objects within
the scene could be leveraged to learn richer linguistic repre-
sentations. We are also excited by the potential that this line
of work offers for embodied learning agents. One of the cen-
tral difficulties faced by embodied agents in the real world is
learning where their attention should be directed in the first
place. Speech and language offer a way for agents to share
social cues with one another to direct this attention. Finally,
and related to this, a crucial element of human language

learning is the dialog feedback loop, and future work should
investigate the addition of that mechanism to the models.
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