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Abstract
Batch Normalization (BN) is a milestone technique in the development of deep learning, enabling various networks to train.
However, normalizing along the batch dimension introduces problems—BN’s error increases rapidly when the batch size
becomes smaller, caused by inaccurate batch statistics estimation. This limits BN’s usage for training larger models and
transferring features to computer vision tasks including detection, segmentation, and video, which require small batches
constrained by memory consumption. In this paper, we present Group Normalization (GN) as a simple alternative to BN. GN
divides the channels into groups and computes within each group the mean and variance for normalization. GN’s computation
is independent of batch sizes, and its accuracy is stable in a wide range of batch sizes. On ResNet-50 trained in ImageNet, GN
has 10.6% lower error than its BN counterpart when using a batch size of 2; when using typical batch sizes, GN is comparably
good with BN and outperforms other normalization variants. Moreover, GN can be naturally transferred from pre-training to
fine-tuning. GN can outperform its BN-based counterparts for object detection and segmentation in COCO (https://github.
com/facebookresearch/Detectron/blob/master/projects/GN), and for video classification in Kinetics, showing that GN can
effectively replace the powerful BN in a variety of tasks. GN can be easily implemented by a few lines of code in modern
libraries.

Keywords Normalization · Image recognition · Object detection · Batch size

1 Introduction

Batch Normalization (Batch Norm or BN; Ioffe and Szegedy
2015) has been established as a very effective component in
deep learning, largely helping push the frontier in computer
vision (Szegedy et al. 2016b; He et al. 2016) and beyond
(Silver et al. 2017). BN normalizes the features by the mean
and variance computed within a (mini-)batch. This has been
shown by many practices to ease optimization and enable
very deep networks to converge. The stochastic uncertainty
of the batch statistics also acts as a regularizer that can benefit
generalization. BN has been a foundation of many state-of-
the-art computer vision algorithms.

Despite its great success, BN exhibits drawbacks that are
also caused by its distinct behavior of normalizing along the
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batch dimension. In particular, it is required for BN to work
with a sufficiently large batch size (e.g., 32 per worker1 Ioffe
and Szegedy 2015; Szegedy et al. 2016b; He et al. 2016).
A small batch leads to inaccurate estimation of the batch
statistics, and reducing BN’s batch size increases the model
error dramatically (Fig. 1). As a result, many recent models
(Szegedy et al. 2016b; He et al. 2016; Szegedy et al. 2016a;
Huang et al. 2017;Xie et al. 2017) are trainedwith non-trivial
batch sizes that are memory-consuming. The heavy reliance
on BN’s effectiveness to trainmodels in turn prohibits people
from exploring higher-capacity models that would be limited
by memory.

The restriction on batch sizes is more demanding in com-
puter vision tasks including detection (Girshick 2015; Ren
et al. 2015; He et al. 2017), segmentation (Long et al. 2015;
He et al. 2017), video recognition (Tran et al. 2015; Car-
reira and Zisserman 2017), and other high-level systems built
on them. For example, the Fast/er and Mask R-CNN frame-

1 In the context of this paper, we use “batch size” to refer to the num-
ber of samples per worker (e.g., GPU), unless noted. BN’s statistics
are computed for each worker, but not broadcast across workers, as is
standard in many libraries.
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Fig. 1 ImageNet classification error versus batch sizes. This is a
ResNet-50 model trained in the ImageNet training set using 8 work-
ers (GPUs), evaluated in the validation set

works (Girshick 2015; Ren et al. 2015; He et al. 2017) use
a batch size of 1 or 2 images because of higher resolution,
where BN is “frozen” by transforming to a linear layer (He
et al. 2016); in video classification with 3D convolutions
(Tran et al. 2015; Carreira and Zisserman 2017), the presence
of spatial-temporal features introduces a trade-off between
the temporal length and batch size. The usage of BN often
requires these systems to compromise between the model
design and batch sizes.

This paper presents Group Normalization (GN) as a sim-
ple alternative to BN. We notice that many classical features
like SIFT (Lowe 2004) andHOG (Dalal and Triggs 2005) are
group-wise features and involve group-wise normalization.
For example, a HOG vector is the outcome of several spatial
cells where each cell is represented by a normalized orien-
tation histogram. Analogously, we propose GN as a layer
that divides channels into groups and normalizes the fea-
tures within each group (Fig. 2). GN does not exploit the
batch dimension, and its computation is independent of batch
sizes.

GN behaves very stably over a wide range of batch sizes
(Fig. 1). With a batch size of 2 samples, GN has 10.6% lower
error than its BN counterpart for ResNet-50 (He et al. 2016)
in ImageNet (Russakovsky et al. 2015). With a regular batch
size, GN is comparably good as BN (with a gap of ∼0.5%)
and outperforms other normalization variants (Ba et al. 2016;
Ulyanov et al. 2016; Salimans and Kingma 2016). More-
over, although the batch size may change, GN can naturally
transfer frompre-training tofine-tuning.GNshows improved
results versus its BN counterpart onMask R-CNN for COCO
object detection and segmentation (Lin et al. 2014), and on
3D convolutional networks for Kinetics video classification
(Kay et al. 2017). The effectiveness of GN in ImageNet,

COCO, and Kinetics demonstrates that GN is a competitive
alternative to BN that has been dominant in these tasks.

There have been existing methods, such as Layer Nor-
malization (LN) (Ba et al. 2016) and Instance Normalization
(IN) (Ulyanov et al. 2016) (Fig. 2), that also avoid normaliz-
ing along the batch dimension. These methods are effective
for training sequential models (RNN/LSTMRumelhart et al.
1986; Hochreiter and Schmidhuber 1997) or generativemod-
els (GANs; Goodfellow et al. 2014; Isola et al. 2017). But as
we will show by experiments, both LN and IN have limited
success in visual recognition, for which GN presents better
results. Conversely, GN could be used in place of LN and IN
and thus is applicable for sequential or generative models.
This is beyond the focus of this paper, but it is suggestive for
future research.

A preliminary version of this manuscript has been pub-
lished inECCV(WuandHe2018).After that,GNhas created
new research opportunities that would be blocked by the lim-
itations of BN. For example, He et al. (2018) demonstrate
that with the help of GN one can train object detectors from
scratch without sacrificing accuracy, questioning the com-
mon wisdom on the role of ImageNet pre-training. GN also
facilitates training joint speech and video networks (Shilling-
ford et al. 2018) that are challenged by small batch sizes and
variable lengths. We believe that the introduction of GN will
provide more room for researchers to explore the uncharted
areas. This manuscript also provides additional results of
large-batch distributed training, showing one limitation of
GN.

2 RelatedWork

Normalization It is well-known that normalizing the input
data makes training faster (LeCun et al. 1998). To normalize
hidden features, initialization methods (LeCun et al. 1998;
Glorot and Bengio 2010; He et al. 2015) have been derived
based on strong assumptions of feature distributions, which
can become invalid when training evolves.

Normalization layers in deep networks had been widely
used before the development of BN. Local Response Nor-
malization (LRN) (Lyu and Simoncelli 2008; Jarrett et al.
2009; Krizhevsky et al. 2012) was a component in AlexNet
(Krizhevsky et al. 2012) and following models (Zeiler and
Fergus 2014; Sermanet et al. 2014; Szegedy et al. 2015).
Unlike recent methods (Ioffe and Szegedy 2015; Ba et al.
2016; Ulyanov et al. 2016), LRN computes the statistics in a
small neighborhood for each pixel.

Batch Normalization (Ioffe and Szegedy 2015) performs
more global normalization along the batch dimension (and
as importantly, it suggests to do this for all layers). But the
concept of “batch” is not always present, or it may change
from time to time. For example, batch-wise normalization is
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Fig. 2 Normalization methods. Each subplot shows a feature map tensor, with N as the batch axis, C as the channel axis, and (H ,W ) as the spatial
axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels

not legitimate at inference time, so the mean and variance are
pre-computed from the training set (Ioffe and Szegedy 2015),
often by running average; consequently, there is no normal-
ization performed when testing. The pre-computed statistics
may also change when the target data distribution changes
(Rebuffi et al. 2017). These issues lead to inconsistency at
training, transferring, and testing time. In addition, as afore-
mentioned, reducing the batch size can have dramatic impact
on the estimated batch statistics.

Several normalization methods (Ba et al. 2016; Ulyanov
et al. 2016; Salimans and Kingma 2016; Arpit et al. 2016;
Ren et al. 2017a) have been proposed to avoid exploiting
the batch dimension. Layer Normalization (LN) (Ba et al.
2016) operates along the channel dimension, and Instance
Normalization (IN) (Ulyanov et al. 2016) performs BN-like
computation but only for each sample (Fig. 2). Instead of
operating on features, Weight Normalization (WN) (Sali-
mans and Kingma 2016) proposes to normalize the filter
weights. These methods do not suffer from the issues caused
by the batch dimension, but they have not been able to
approach BN’s accuracy in many visual recognition tasks.
We provide comparisons with these methods in context of
the remaining sections.

Addressing Small Batches Ioffe (2017) proposes Batch
Renormalization (BR) that alleviates BN’s issue involving
small batches. BR introduces two extra parameters that con-
strain the estimatedmean and variance of BNwithin a certain
range, reducing their drift when the batch size is small.
BR has better accuracy than BN in the small-batch regime.
But BR is also batch-dependent, and when the batch size
decreases its accuracy still degrades (Ioffe 2017).

There are also attempts to avoid using small batches. The
object detector in Peng et al. (2018) performs synchronized
BN whose mean and variance are computed across multiple
GPUs. However, this method does not solve the problem of
small batches; instead, it migrates the algorithm problem to
engineering and hardware demands, using a number ofGPUs
proportional to BN’s requirements. Moreover, the synchro-
nized BN computation prevents using asynchronous solvers

(ASGD; Dean et al. 2012), a practical solution to large-scale
training widely used in industry. These issues can limit the
scope of using synchronized BN.

Instead of addressing the batch statistics computation
(e.g., Ioffe 2017; Peng et al. 2018), our normalizationmethod
inherently avoids this computation.

Group-Wise Computation Group convolutions have been
presented by AlexNet (Krizhevsky et al. 2012) for distribut-
ing a model into two GPUs. The concept of groups as a
dimension for model design has been more widely studied
recently. The work of ResNeXt (Xie et al. 2017) investi-
gates the trade-off between depth, width, and groups, and it
suggests that a larger number of groups can improve accu-
racy under similar computational cost. MobileNet (Howard
et al. 2017) andXception (Chollet 2017) exploit channel-wise
(also called “depth-wise”) convolutions, which are group
convolutions with a group number equal to the channel num-
ber. ShuffleNet (Zhang et al. 2018) proposes a channel shuffle
operation that permutes the axes of grouped features. These
methods all involve dividing the channel dimension into
groups. Despite the relation to these methods, GN does not
require group convolutions. GN is a generic layer, as we eval-
uate in standard ResNets (He et al. 2016).

3 Group Normalization

The channels of visual representations are not entirely inde-
pendent. Classical features of SIFT (Lowe 2004), HOG
(Dalal and Triggs 2005), andGIST (Oliva and Torralba 2001)
are group-wise representations by design, where each group
of channels is constructed by some kind of histogram. These
features are often processed by group-wise normalization
over each histogram or each orientation. Higher-level fea-
tures such as VLAD (Jegou et al. 2010) and Fisher Vectors
(FV) (Perronnin and Dance 2007) are also group-wise fea-
tures where a group can be thought of as the sub-vector
computed with respect to a cluster.
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Analogously, it is not necessary to think of deep neural
network features as unstructured vectors. For example, for
conv1 (the first convolutional layer) of a network, it is rea-
sonable to expect a filter and its horizontal flipping to exhibit
similar distributions of filter responses on natural images. If
conv1 happens to approximately learn this pair of filters, or
if the horizontal flipping (or other transformations) is made
into the architectures by design (Dieleman et al. 2016; Cohen
andWelling 2016), then the corresponding channels of these
filters can be normalized together.

The higher-level layers are more abstract and their behav-
iors are not as intuitive. However, in addition to orientations
(SIFT Lowe 2004, HOGDalal and Triggs 2005, or Dieleman
et al. 2016; Cohen andWelling 2016), there are many factors
that could lead to grouping, e.g., frequency, shapes, illumi-
nation, textures. Their coefficients can be interdependent.
In fact, a well-accepted computational model in neuro-
science is to normalize across the cell responses (Heeger
et al. 1992; Schwartz and Simoncelli 2001; Simoncelli and
Olshausen 2001; Carandini and Heeger 2012), “with various
receptive-field centers (covering the visual field) and with
various spatiotemporal frequency tunings” (p183, Heeger
et al. 1992); this can happen not only in the primary visual
cortex, but also “throughout the visual system” (Carandini
and Heeger 2012). Motivated by these works, we propose
new generic group-wise normalization for deep neural net-
works.

3.1 Formulation

We first describe a general formulation of feature normaliza-
tion, and then present GN in this formulation. A family of
feature normalization methods, including BN, LN, IN, and
GN, perform the following computation:

x̂i = 1

σi
(xi − μi ). (1)

Here x is the feature computed by a layer, and i is an index.
In the case of 2D images, i = (iN , iC , iH , iW ) is a 4D vector
indexing the features in (N ,C, H ,W ) order, where N is the
batch axis,C is the channel axis, and H andW are the spatial
height and width axes.

μ and σ in (1) are the mean and standard deviation (std)
computed by:

μi = 1

m

∑

k∈Si

xk, σi =
√√√√ 1

m

∑

k∈Si

(xk − μi )2 + ε, (2)

with ε as a small constant. Si is the set of pixels in which
the mean and std are computed, and m is the size of this set.
Many types of feature normalization methods mainly differ
in how the set Si is defined (Fig. 2), discussed as follows.

In Batch Norm (Ioffe and Szegedy 2015), the set Si is
defined as:

Si = {k | kC = iC }, (3)

where iC (and kC ) denotes the sub-index of i (and k) along the
C axis. This means that the pixels sharing the same channel
index are normalized together, i.e., for each channel, BN
computesμ and σ along the (N , H ,W ) axes. In Layer Norm
(Ba et al. 2016), the set is:

Si = {k | kN = iN }, (4)

meaning thatLNcomputesμ andσ along the (C, H ,W ) axes
for each sample. In Instance Norm (Ulyanov et al. 2016), the
set is:

Si = {k | kN = iN , kC = iC }. (5)

meaning that IN computes μ and σ along the (H ,W ) axes
for each sample and each channel. The relations among BN,
LN, and IN are in Fig. 2.

As in Ioffe and Szegedy (2015), all methods of BN, LN,
and IN learn a per-channel linear transform to compensate
for the possible lost of representational ability:

yi = γ x̂i + β, (6)

where γ and β are trainable scale and shift (indexed by iC in
all case, which we omit for simplifying notations).

GroupNorm Formally, a GroupNorm layer computesμ and
σ in a set Si defined as:

Si = {k | kN = iN , � kC
C/G

� = � iC
C/G

�}. (7)

Here G is the number of groups, which is a pre-defined
hyper-parameter (G = 32 by default). C/G is the num-
ber of channels per group. �·� is the floor operation, and
“� kC

C/G � = � iC
C/G �” means that the indexes i and k are in the

same group of channels, assuming each group of channels
are stored in a sequential order along the C axis. GN com-
putes μ and σ along the (H ,W ) axes and along a group of
C
G channels. The computation of GN is illustrated in Fig. 2
(rightmost), which is a simple case of 2 groups (G = 2) each
having 3 channels.

Given Si in Eq. (7), a GN layer is defined by Eqs. (1),
(2), and (6). Specifically, the pixels in the same group are
normalized together by the same μ and σ . GN also learns
the per-channel γ and β.
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Fig. 3 Python code of Group Norm based on TensorFlow. Here the
function tf.nn.moments computes themean and variance by aggre-
gating along the specified axes

Relation to Prior Work LN, IN, and GN all perform inde-
pendent computations along the batch axis. The two extreme
cases of GN are equivalent to LN and IN (Fig. 2).

Relation to Layer Normalization (Ba et al. 2016). GN
becomes LN if we set the group number as G = 1. LN
assumes all channels in a layer make “similar contributions”
(Ba et al. 2016). Unlike the case of fully-connected layers
studied in Ba et al. (2016), this assumption can be less valid
with the presence of convolutions, as discussed in Ba et al.
(2016). GN is less restricted than LN, because each group
of channels (instead of all of them) are assumed to subject
to the shared mean and variance; the model still has flexibil-
ity of learning a different distribution for each group. This
leads to improved representational power of GN over LN, as
shown by the lower training and validation error in experi-
ments (Fig. 5).

Relation to Instance Normalization (Ulyanov et al. 2016).
GN becomes IN if we set the group number as G = C (i.e.,
one channel per group). But IN can only rely on the spatial
dimension for computing themean and variance and itmisses
the opportunity of exploiting the channel dependence.

3.2 Implementation

GN can be easily implemented by a few lines of code in
PyTorch and TensorFlow (Abadi et al. 2016) where auto-
matic differentiation is supported. Figures 3 and 4 show the
code based on TensorFlow and PyTorch. In fact, we only
need to specify how the mean and variance (“moments”) are
computed, along the appropriate axes as defined by the nor-
malization method.

The implementation in Figs. 3 and 4 is convenient for
prototyping.Considering the frequent usage of normalization
layers, we recommend to implement GN as a stand-alone
backend operation (op)written inC andCUDA, similar to the
common practice of BN. This can reduce memory usage and

Fig. 4 Python codeofGroupNormbasedonPyTorch.Here the function
x.mean and x.std computes the mean and std by aggregating along
the specified axes

increase running speed. We have made our implementation
available online, for both Caffe22 and PyTorch.3

4 Experiments

4.1 Image Classification in ImageNet

We experiment in the ImageNet classification dataset (Rus-
sakovsky et al. 2015) with 1000 classes. We train on the
∼1.28 M training images and evaluate on the 50,000 valida-
tion images, using the ResNet models (He et al. 2016).

Implementation Details As standard practice (He et al.
2016; Gross and Wilber 2016), we use 8 GPUs to train all
models, and the batchmean and variance ofBNare computed
within each GPU. We use the method of He et al. (2015) to
initialize all convolutions for allmodels.We use 1 to initialize
all γ parameters, except for each residual block’s last nor-
malization layer where we initialize γ by 0 following Goyal
et al. (2017) (such that the initial state of a residual block is
identity). We use a weight decay of 0.0001 for all weight lay-
ers, including γ and β (following Gross andWilber 2016 but
unlike He et al. 2016; Goyal et al. 2017).We train 100 epochs
for all models, and decrease the learning rate by 10× at 30,
60, and 90 epochs. During training, we adopt the data aug-
mentation of Szegedy et al. (2015) as implemented by Gross
and Wilber (2016). We evaluate the top-1 classification error
on the center crops of 224×224 pixels in the validation set. To
reduce random variations, we report the median error rate of
the final 5 epochs (Goyal et al. 2017). Other implementation
details follow Gross and Wilber (2016).

2 https://github.com/pytorch/pytorch/blob/master/caffe2/operators/
group_norm_op.h.
3 https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/
native/Normalization.cpp.
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Fig. 5 Comparison of error curves with a batch size of 32 images/GPU. We show the ImageNet training error (left) and validation error (right)
versus numbers of training epochs. The model is ResNet-50

Table 1 Comparison of error rates (%) of ResNet-50 in the ImageNet
validation set, trained with a batch size of 32 images/GPU. The error
curves are in Fig. 5

BN LN IN GN

Val error 23.6 25.3 28.4 24.1

� (versus BN) – 1.7 4.8 0.5

Bold values indicate best results in each row

Our baseline is the ResNet trained with BN (He et al.
2016). To compare with LN, IN, and GN, we replace BN
with the specific variant. We use the same hyper-parameters
for all models. We set G = 32 for GN by default.

Comparison of Feature Normalization Methods We first
experiment with a regular batch size of 32 images (per GPU)
(Ioffe and Szegedy 2015; He et al. 2016). BNworks success-
fully in this regime, so this is a strong baseline to compare
with. Figure 5 shows the error curves, and Table 1 shows the
final results.

Figure 5 shows that all of these normalization methods
are able to converge. LN has a small degradation of 1.7%
comparing with BN. This is an encouraging result, as it sug-
gests that normalizing along all channels (as done by LN) of
a convolutional network is reasonably good. IN also makes
the model converge, but is 4.8% worse than BN.4

In this regime where BN works well, GN is able to
approach BN’s accuracy, with a decent degradation of 0.5%
in the validation set. Actually, Fig. 5 (left) shows that GN has
lower training error than BN, indicating that GN is effec-

4 For completeness, we have also trained ResNet-50 with WN (Sali-
mans and Kingma 2016), which is filter (instead of feature) normaliza-
tion. WN’s result is 28.2%.

tive for easing optimization. The slightly higher validation
error of GN implies that GN loses some regularization abil-
ity of BN. This is understandable, because BN’s mean and
variance computation introduces uncertainty caused by the
stochastic batch sampling, which helps regularization (Ioffe
and Szegedy 2015). This uncertainty is missing in GN (and
LN/IN). But it is possible that GN combined with a suitable
regularizer will improve results. This can be a future research
topic.

Small Batch Sizes AlthoughBNbenefits from the stochastic-
ity under some situations, its error increases when the batch
size becomes smaller and the uncertainty gets bigger. We
show this in Figs. 1, 6, and Table 2.

We evaluate batch sizes of 32, 16, 8, 4, 2 images per GPU.
In all cases, the BN mean and variance are computed within
each GPU and not synchronized. All models are trained in 8
GPUs. In this set of experiments, we adopt the linear learning
rate scaling rule (Krizhevsky et al. 2014; Bottou et al. 2016;
Goyal et al. 2017) to adapt to batch size changes—we use a
learning rate of 0.1 (He et al. 2016) for the batch size of 32,
and 0.1N/32 for a batch size of N . This linear scaling rule
workswell forBN if the total batch size changes (by changing
the number of GPUs) but the per-GPU batch size does not
change (Goyal et al. 2017). We keep the same number of
training epochs for all cases (Fig. 6, x-axis). All other hyper-
parameters are unchanged.

Figure 6 (left) shows that BN’s error becomes consider-
ably higher with small batch sizes. GN’s behavior is more
stable and insensitive to the small batch size. Actually, Fig. 6
(right) shows that GN has very similar curves (subject to ran-
dom variations) across a wide range of batch sizes from 32
to 2. In the case of a batch size of 2, GN has 10.6% lower
error rate than its BNcounterpart (24.1 vs 34.7%).We’ve also
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Fig. 6 Sensitivity to small batch sizes: ResNet-50’s validation error of BN (left) and GN (right) trained with 32, 16, 8, 4, and 2 images/GPU

Table 2 Sensitivity to small batch sizes

Batch size per GPU 32 16 8 4 2

BN 23.6 23.7 24.8 27.3 34.7

GN 24.1 24.2 24.0 24.2 24.1

� 0.5 0.5 − 0.8 − 3.1 − 10.6

We show ResNet-50’s validation error (%) in ImageNet. The last row
shows the differences between BN and GN. The error curves are in
Fig. 6. This table is visualized in Fig. 1
Bold values indicate best results for each batch size

observed that LN and IN have similar robustness to change
of batch size, since they are both batch-independent as well.

These results indicate that the batch mean and variance
estimation can be overly stochastic and inaccurate, especially
when they are computed over 4 or 2 images. However, this
stochasticity disappears if the statistics are computed from 1
image, in which case BN becomes similar to IN at training
time.We see that IN has a better result (28.4%) than BNwith
a batch size of 2 (34.7%).

The robust results of GN in Table 2 demonstrate GN’s
strength. It allows to remove the batch size constraint
imposed by BN, which can give considerably more mem-
ory (e.g., 16× or more). This will make it possible to train
higher-capacitymodels thatwould be otherwise bottlenecked
by memory limitation.

Comparison with Batch Renorm (BR) BR (Ioffe 2017)
introduces two extra parameters [r and d in Ioffe (2017)]
that constrain the estimated mean and variance of BN.
Their values are controlled by rmax and dmax. To apply
BR to ResNet-50, we have carefully chosen these hyper-
parameters, and found that rmax = 1.5 and dmax = 0.5 work
best for ResNet-50.With a batch size of 4, ResNet-50 trained
with BR has an error rate of 26.3%. This is better than BN’s
27.3%, but still 2.1% higher than GN’s 24.2%.

Table 3 Group division

# Groups (G)

64 32 16 8 4 2 1 (=LN)

24.6 24.1 24.6 24.4 24.6 24.7 25.3

0.5 – 0.5 0.3 0.5 0.6 1.2

# Channels per group

64 32 16 8 4 2 1 (=IN)

24.4 24.5 24.2 24.3 24.8 25.6 28.4

0.2 0.3 – 0.1 0.6 1.4 4.2

We show ResNet-50’s validation error (%) in ImageNet, trained with
32 images/GPU. (Top): a given number of groups. (Bottom): a given
number of channels per group. The last rows show the differences with
the best
Bold values indicate best results

GroupDivision Thus far all presentedGNmodels are trained
with a group number of G = 32. Next we evaluate differ-
ent ways of dividing into groups. With a given fixed group
number, GN performs reasonably well for all values of G we
studied (Table 3, top panel). In the extreme case of G = 1,
GN is equivalent to LN, and its error rate is higher than all
cases of G > 1 studied.

We also evaluate fixing the number of channels per group
(Table 3, bottompanel). Note that because the layers can have
different channel numbers, the group number G can change
across layers in this setting. In the extreme case of 1 channel
per group, GN is equivalent to IN. Even if using as few as
2 channels per group, GN has substantially lower error than
IN (25.6 vs 28.4%). This result shows the effect of grouping
channels when performing normalization.

Deeper Models We have also compared GN with BN on
ResNet-101 (He et al. 2016). With a batch size of 32, our BN
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of responses. The table on the right shows the ImageNet validation error (%). Models are trained with 32 images/GPU

baseline of ResNet-101 has 22.0% validation error, and the
GN counterpart has 22.4%, slightly worse by 0.4%. With a
batch size of 2, GN ResNet-101’s error is 23.0%. This is still
a decently stable result considering the very small batch size,
and it is 8.9% better than the BN counterpart’s 31.9%.

Results and Analysis of VGGModels To study GN/BN com-
pared to no normalization, we consider VGG-16 (Simonyan
and Zisserman 2015) that can be healthily trained with-
out normalization layers. We apply BN or GN right after
each convolutional layer. Figure 7 shows the evolution of
the feature distributions of conv5_3 (the last convolutional
layer). GN and BN behave qualitatively similar, while being
substantially different with the variant that uses no nor-
malization; this phenomenon is also observed for all other
convolutional layers. This comparison suggests that perform-
ing normalization is essential for controlling the distribution
of features.

ForVGG-16, GN is better thanBNby 0.4% (Fig. 7, right).
This possibly implies that VGG-16 benefits less from BN’s
regularization effect, and GN (that leads to lower training
error) is superior to BN in this case.

4.2 Object Detection and Segmentation in COCO

Next we evaluate fine-tuning the models for transferring to
object detection and segmentation. These computer vision
tasks in general benefit from higher-resolution input, so the
batch size tends to be small in common practice (1 or 2
images/GPU Girshick 2015; Ren et al. 2015; He et al. 2017;
Lin et al. 2017b). As a result, BN is turned into a linear layer
y = γ

σ
(x − μ) + β where μ and σ are pre-computed from

the pre-trained model and frozen (He et al. 2016). We denote
this as BN*, which in fact performs no normalization dur-
ing fine-tuning. We have also tried a variant that fine-tunes
BN (normalization is performed and not frozen) and found
it works poorly (reducing ∼6 AP with a batch size of 2), so
we ignore this variant.

We experiment on the Mask R-CNN baselines (He et al.
2017), implemented in the publicly available codebase of
Detectron (Girshick et al. 2018). We use the end-to-end vari-
ant with the same hyper-parameters as in Girshick et al.
(2018). We replace BN* with GN during fine-tuning, using
the corresponding models pre-trained from ImageNet.5 Dur-
ing fine-tuning, we use a weight decay of 0 for the γ and
β parameters, which is important for good detection results
when γ and β are being tuned.We fine-tune with a batch size
of 1 image/GPU and 8 GPUs.

The models are trained in the COCO train2017 set
and evaluated in the COCO val2017 set (a.k.a minival).
We report the standard COCO metrics of Average Precision
(AP), AP50, and AP75, for bounding box detection (APbbox)
and instance segmentation (APmask).

Results of C4 Backbone Table 4 shows the comparison of
GN versus BN* on Mask R-CNN using a conv4 backbone
(“C4”He et al. 2017). This C4 variant uses ResNet’s layers of
up to conv4 to extract feature maps, and ResNet’s conv5 lay-
ers as the Region-of-Interest (RoI) heads for classification
and regression. As they are inherited from the pre-trained
model, the backbone and head both involve normalization
layers.

On this baseline, GN improves over BN* by 1.1 box AP
and 0.8 mask AP. We note that the pre-trained GN model is
slightly worse than BN in ImageNet (24.1 vs 23.6%), but GN
still outperforms BN* for fine-tuning. BN* creates inconsis-
tency between pre-training and fine-tuning (frozen), which
may explain the degradation.

We have also experimentedwith the LNvariant, and found
it is 1.9 box AP worse than GN and 0.8 worse than BN*.
Although LN is also independent of batch sizes, its represen-
tational power is weaker than GN.

5 Detectron Girshick et al. (2018) uses pre-trained models provided by
the authors of He et al. (2016). For fair comparisons, we instead use the
models pre-trained in this paper. The object detection and segmentation
accuracy is statistically similar between these pre-trained models.
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Table 4 Detection and
segmentation ablation results in
COCO, using Mask R-CNN
with ResNet-50 C4

Backbone APbbox APbbox50 APbbox75 APmask APmask
50 APmask

75

BN* 37.7 57.9 40.9 32.8 54.3 34.7

GN 38.8 59.2 42.2 33.6 55.9 35.4

Bold values indicate best results
BN* means BN is frozen

Table 5 Detection and
segmentation ablation results in
COCO, using Mask R-CNN
with ResNet-50 FPN and a
4conv1fc bounding box head

Backbone Box head APbbox APbbox50 APbbox75 APmask APmask
50 APmask

75

BN* – 38.6 59.5 41.9 34.2 56.2 36.1

BN* GN 39.5 60.0 43.2 34.4 56.4 36.3

GN GN 40.0 61.0 43.3 34.8 57.3 36.3

Bold values indicate best results
BN* means BN is frozen

Table 6 Detection and
segmentation results in COCO
using Mask R-CNN and FPN

APbbox APbbox50 APbbox75 APmask APmask
50 APmask

75

R50 BN* 38.6 59.8 42.1 34.5 56.4 36.3

R50 GN 40.3 61.0 44.0 35.7 57.9 37.7

R50 GN, longer 40.8 61.6 44.4 36.1 58.5 38.2

R101 BN* 40.9 61.9 44.8 36.4 58.5 38.7

R101 GN 41.8 62.5 45.4 36.8 59.2 39.0

R101 GN, longer 42.3 62.8 46.2 37.2 59.7 39.5

Here BN* is the default Detectron baseline (Girshick et al. 2018), and GN is applied to the backbone, box
head, and mask head. “longer” means training with more iterations. Code of these results are in https://github.
com/facebookresearch/Detectron/blob/master/projects/GN
Bold values indicate best results

Results of FPN Backbone Next we compare GN and BN*
on Mask R-CNN using a Feature Pyramid Network (FPN)
backbone (Lin et al. 2017a), the currently state-of-the-art
framework in COCO. Unlike the C4 variant, FPN exploits
all pre-trained layers to construct a pyramid, and appends
randomly initialized layers as the head. In Lin et al. (2017a),
the box head consists of two hidden fully-connected layers
(2fc). We find that replacing the 2fc box head with 4conv1fc
[similar to Ren et al. (2017b)] can better leverage GN. The
resulting comparisons are in Table 5.

As a baseline, BN* has 38.6 box AP using the 4conv1fc
head, on par with its 2fc counterpart using the same pre-
trained model (38.5 AP). By adding GN to all convolutional
layers of the box head (but still using the BN* backbone),
we increase the box AP by 0.9–39.5 (2nd row, Table 5). This
ablation shows that a substantial portion of GN’s improve-
ment for detection is from normalization in the head (which
is also done by the C4 variant). On the contrary, applying BN
to the box head (that has 512 RoIs per image) does not pro-
vide satisfactory result and is ∼9 AP worse—in detection,
the batch of RoIs are sampled from the same image and their
distribution is not i.i.d., and the non-i.i.d. distribution is also
an issue that degrades BN’s batch statistics estimation (Ioffe
2017). GN does not suffer from this problem.

Next we replace the FPN backbone with the GN-based
counterpart, i.e., the GN pre-trained model is used during
fine-tuning (3rd row, Table 5). Applying GN to the back-
bone alone contributes a 0.5 AP gain (from 39.5 to 40.0),
suggesting that GN helps when transferring features.

Table 6 shows the full results of GN (applied to the back-
bone, box head, and mask head), compared with the standard
Detectron baseline (Girshick et al. 2018) based on BN*.
Using the same hyper-parameters as Girshick et al. (2018),
GN increases over BN* by a healthy margin. Moreover, we
found that GN is not fully trained with the default schedule
in Girshick et al. (2018), so we also tried increasing the iter-
ations from 180k to 270k (BN* does not benefit from longer
training). Our final ResNet-50 GN model (“long”, Table 6)
is 2.2 points box AP and 1.6 points mask AP better than its
BN* variant.

Training Mask R-CNN from Scratch GN allows us to easily
investigate training object detectors from scratch (without
any pre-training). We show the results in Table 7, where the
GN models are trained for 270 k iterations.6 At the time
of our preliminary publication Wu and He (2018), to our

6 For models trained from scratch, we turn off the default StopGrad in
Detectron that freezes the first few layers.
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Table 7 Detection and
segmentation results trained
from scratch in COCO using
Mask R-CNN and FPN

From scratch APbbox APbbox50 APbbox75 APmask APmask
50 APmask

75

R50 BN (Li et al. 2018) 34.5 55.2 37.7 – – –

R50 GN 39.5 59.8 43.6 35.2 56.9 37.6

R101 GN 41.0 61.1 44.9 36.4 58.2 38.7

Here the BN results are from Li et al. (2018), and BN is synced across GPUs (Peng et al. 2018) and is not
frozen. Code of these results are in https://github.com/facebookresearch/Detectron/blob/master/projects/GN

knowledge, these numbers (41.0 box AP and 36.4 mask AP)
are the best from-scratch results in COCO reported to date;
they can even compete with the ImageNet-pretrained results
in Table 6. As a reference, with synchronous BN (Peng et al.
2018), a concurrent work (Li et al. 2018) achieves a from-
scratch result of 34.5 box AP using R50 (Table 7), and 36.3
using a specialized backbone.

In fact, the results in Table 7 provide encouraging sig-
nals, suggesting that there might be no fundamental problem
preventing training object detectors from scratch, if an appro-
priate normalization is adopted. He et al. He et al. (2018)
find that the models in Table 7 can match the accuracy of
ImageNet-pretrained counterparts if trained sufficiently long
till convergence. The newdiscovery, enabled by our introduc-
tion of GN, demonstrates the scientific values of GN as an
alternative of the formerly dominant BN in computer vision.

4.3 Video Classification in Kinetics

Lastly we evaluate video classification in the Kinetics dataset
(Kay et al. 2017). Many video classification models (Tran
et al. 2015; Carreira and Zisserman 2017) extend the fea-
tures to 3D spatial-temporal dimensions. This is memory-
demanding and imposes constraints on the batch sizes and
model designs.

We experiment with Inflated 3D (I3D) convolutional net-
works (Carreira and Zisserman 2017). We use the ResNet-50
I3D baseline as described in Wang et al. (2018). The mod-
els are pre-trained from ImageNet. For both BN and GN,
we extend the normalization from over (H ,W ) to over
(T , H ,W ), where T is the temporal axis. We train in the
400-class Kinetics training set and evaluate in the validation
set. We report the top-1 and top-5 classification accuracy,
using standard 10-clip testing that averages softmax scores
from 10 clips regularly sampled.

We study twodifferent temporal lengths: 32-frame and 64-
frame input clips. The32-frameclip is regularly sampledwith
a frame interval of 2 from the rawvideo, and the 64-frame clip
is sampled continuously. The model is fully convolutional in
spacetime, so the 64-frame variant consumes about 2×more
memory. We study a batch size of 8 or 4 clips/GPU for the
32-frame variant, and 4 clips/GPU for the 64-frame variant
due to memory limitation.

Table 8 Video classification results in Kinetics: ResNet-50 I3D base-
line’s top-1/top-5 accuracy (%)

Clip length 32 32 64
Batch size 8 4 4

BN 73.3/90.7 72.1/90.0 73.3/90.8

GN 73.0/90.6 72.8/90.6 74.5/91.7

Bold values indicate best results for each setting

Results of 32-Frame Inputs Table 8 (col. 1, 2) shows the
video classification accuracy in Kinetics using 32-frame
clips. For the batch size of 8, GN is slightly worse than BN
by 0.3% top-1 accuracy and 0.1% top-5. This shows that GN
is competitive with BNwhen BNworks well. For the smaller
batch size of 4, GN’s accuracy is kept similar (72.8/90.6 vs
73.0/90.6), but is better than BN’s 72.1/90.0. BN’s accuracy
is decreased by 1.2% when the batch size decreases from 8
to 4.

Figure 8 shows the error curves. BN’s error curves (left)
have a noticeable gap when the batch size decreases from 8
to 4, while GN’s error curves (right) are very similar.

Results of 64-Frame Inputs Table 8 (col. 3) shows the
results of using 64-frame clips. In this case, BN has a result
of 73.3/90.8. These appear to be acceptable numbers (vs
73.3/90.7 of 32-frame, batch size 8), but the trade-off between
the temporal length (64 vs 32) and batch size (4 vs 8) could
have been overlooked. Comparing col. 3 and col. 2 in Table 8,
we find that the temporal length actually has positive impact
(+1.2%), but it is veiled byBN’s negative effect of the smaller
batch size.

GN does not suffer from this trade-off. The 64-frame vari-
ant ofGNhas 74.5/91.7 accuracy, showing healthy gains over
its BN counterpart and all BN variants. GN helps the model
benefit from temporal length, and the longer clip boosts the
top-1 accuracy by 1.7% (top-5 1.1%) with the same batch
size.

The improvement of GN on detection, segmentation, and
video classification demonstrates that GN is a strong alter-
native to the powerful and currently dominant BN technique
in these tasks.
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Fig. 8 Error curves in Kinetics with an input length of 32 frames. We
showResNet-50 I3D’s validation error of BN (left) andGN (right) using
a batch size of 8 and 4 clips/GPU. The monitored validation error is the

1-clip error under the same data augmentation as the training set, while
the final validation accuracy in Table 8 is 10-clip testing without data
augmentation

5 Limitation and Discussion

GN, as an alternative to BN, also enables us to expand the
research horizon on those topics involving batch sizes. By
comparing the behaviors between BN and GN, we may have
new evidence on the underlying factors that are hard to iden-
tify if BN is the only usable tool. Next we present our results
on large-batch distributed training—it shows one limitation
of GN, which however provides more hints about distributed
training and BN.

Thus far we have focused on the per-GPU batch size that
impacts batch statistics computation in the presence ofBN. In
this sectionwe investigate another scenario called distributed
training7—the total batch size varies, while the per-GPU
batch size is kept fixed.

Experiment Setup We follow the distributed training recipe
of Goyal et al. (2017). Specially, we fix the per-GPU batch
size to 32, such that the BN statistics are computed in the
reliable regime. The total batch size is scaled proportionally
with the number of GPUs. We use the linear learning rate
scaling (Goyal et al. 2017) to adapt to changes in total batch
size—we use a learning rate of 0.1 for 8GPUs (baseline), and
0.1K/8 for K GPUs. We use learning rate warm-up (Goyal
et al. 2017) in the first 5 epochs. Other implementation details
are the same as above.

7 We refer to “distributed training” as training with multiple workers
(GPUs), which are often hosted in multiple machines. In our infrastruc-
ture, typical settings are 8 GPUs per machine.

Results Figure 9 and Table 9 shows the ImageNet valida-
tion error of BN versus GN when using a total batch size
of 256, 512, 1024, and 2048. The BN-based model (Fig. 9,
left) behaves elegantly when the total batch size increases,
as demonstrated by the nicely matching curves across differ-
ent numbers of GPUs. This shows the effectiveness of the
large-batch training recipe in Goyal et al. (2017) (i.e., lin-
ear learning rate scaling with warm up). The nice property
breaks when the total batch size increases, e.g., to 32768, see
Fig. 9 (left); more details are in Goyal et al. (2017).

On the other hand, GN (Fig. 9, right) exhibits degradation
when the total batch size is 1024 or more (i.e., 32 GPUs
or more). The large-batch training recipe still works well
when the total batch size is 512, which is consistent with
our observation on GN in the small-batch regime (see Fig. 6,
right).

Discussions Figure 9 suggests that GN is more sensitive
than BN to a larger total batch size. Both methods show
degradation when the total batch size is too large, but the
breaking-down size for GN is smaller (between 512 and
1024). Interestingly, we have found LN and IN have a similar
breaking-down size as GN.

This limitation of GN in turn provides new perspectives
for understanding large-batch training. The presence of BN
results in a unique property of batching—a batch is hier-
archical when the batch statistics is computed within each
GPU while the gradients are accumulated across all samples
in all GPUs. When this happens, the gradient of one sam-
ple is dependent of all other samples in the same GPU, but
independent of those in other GPUs.
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Fig. 9 Distributed training with larger total batch sizes: ResNet-50’s
error on ImageNet validation set of BN (left) and GN (right), trained
with 32 images/GPU in 8, 16, 32, or 64 GPUs, resulting in a total batch

size of 256, 512, 1024, or 2048. BN is also shown with 1024 GPUs (a
total batch size of 32768), when it starts to show degradation (Goyal
et al. 2017)

Table 9 Distributed training with larger total batch sizes

Total batch size 256 512 1024 2048 32768

BN 23.6 23.5 23.5 23.5 27.3

GN 24.1 24.4 26.8 31.5 –

We show ResNet-50’s validation error (%) in ImageNet, corresponding
to Fig. 9. The batch size per GPU is 32

The GN/LN/IN and other standard SGD counterparts do
not have this property, as the gradient of one sample is always
independent of all other samples regardless where they are
computed.We suspect that the hierarchical batching property
may be an essential factor underlying the recently prevalent
large-batch distributed training (Goyal et al. 2017; Gitman
and Ginsburg 2017). We hope future research will delve
deeper into this topic.

Although GN shows its limitation under the large-batch
distributed training scenario, introducing an alternative toBN
for various scenarios is beneficial for explorative research.

6 Conclusion

We have presented GN as an effective normalization layer
without exploiting the batch dimension. We have evaluated
GN’s behaviors in a variety of applications. We note, how-
ever, thatBNhas been so influential thatmany state-of-the-art
systems and their hyper-parameters have been designed for
it, which may not be optimal for GN-based models. It is
possible that re-designing the systems or searching new
hyper-parameters for GN will give better results.

In addition, we have shown that GN is related to LN and
IN, two normalization methods that are particularly success-
ful in training recurrent or generative models. This suggests
us to study GN in those areas in the future. We will also
investigateGN’s performance on learning representations for
reinforcement learning (RL) tasks, e.g., (Silver et al. 2017),
where BN is playing an important role for training very deep
models (He et al. 2016).
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