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Abstract
This work addresses the problem of semantic scene understanding under fog. Although marked progress has been made in
semantic scene understanding, it is mainly concentrated on clear-weather scenes. Extending semantic segmentation methods
to adverse weather conditions such as fog is crucial for outdoor applications. In this paper, we propose a novel method, named
Curriculum Model Adaptation (CMAda), which gradually adapts a semantic segmentation model from light synthetic fog to
dense real fog in multiple steps, using both labeled synthetic foggy data and unlabeled real foggy data. The method is based
on the fact that the results of semantic segmentation in moderately adverse conditions (light fog) can be bootstrapped to solve
the same problem in highly adverse conditions (dense fog). CMAda is extensible to other adverse conditions and provides a
new paradigm for learning with synthetic data and unlabeled real data. In addition, we present four other main stand-alone
contributions: (1) a novel method to add synthetic fog to real, clear-weather scenes using semantic input; (2) a new fog density
estimator; (3) a novel fog densification method for real foggy scenes without known depth; and (4) the Foggy Zurich dataset
comprising 3808 real foggy images, with pixel-level semantic annotations for 40 images with dense fog. Our experiments
show that (1) our fog simulation and fog density estimator outperform their state-of-the-art counterparts with respect to the
task of semantic foggy scene understanding (SFSU); (2) CMAda improves the performance of state-of-the-art models for
SFSU significantly, benefiting both from our synthetic and real foggy data. The foggy datasets and code are publicly available.

Keywords Semantic foggy scene understanding · Fog simulation · Learning with synthetic and real data · Curriculum model
adaptation · Network distillation · Adverse weather conditions

1 Introduction

Adverse weather or illumination conditions create visibil-
ity problems for both people and the sensors that power
automated systems (Narasimhan and Nayar 2002; Garg and
Nayar 2007; Sakaridis et al. 2018; Dai and Van Gool 2018).
While sensors and the downstream vision algorithms are
constantly getting better, their performance is mainly bench-
marked on clear-weather images (Cordts 2016; Hecker et al.
2018). Many outdoor applications, however, cannot escape
from “bad” weather (Narasimhan and Nayar 2002). One typ-
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ical example of adverse weather conditions is fog, which
degrades the visibility of a scene significantly (Narasimhan
and Nayar 2003; Tan 2008). The denser the fog is, the more
severe this problem becomes.

During the past years, the community has made a tremen-
dous progress in image dehazing (defogging) to increase the
visibility in foggy images (Nishino et al. 2012;He et al. 2011;
Wang and Fan 2014). The last few years have also witnessed
a leap in object recognition. A great deal of effort is made
specifically in semantic road scene understanding (Alvarez
et al. 2012; Cordts 2016; Dhall et al. 2019). However, the
extension of these techniques to other weather/illumination
conditions has not received due attention, despite its impor-
tance in outdoor applications. For example, an automated
car still needs to detect other traffic agents and traffic control
devices in the presence of fog or rain. This work investigates
the problem of semantic foggy scene understanding (SFSU).

The current “standard” policy for addressing seman-
tic scene understanding is to train a neural network with
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Fig. 1 The illustrative pipeline of a two-stage instantation of CMAda for semantic scene understanding under dense fog

numerous annotated real images (Everingham et al. 2010;
Russakovsky et al. 2015; Cordts 2016). While this trend of
creating and using more human annotations may still con-
tinue, extending the same protocol to all conditions seems
to be problematic, as the manual annotation part is hard to
scale. The problem is more pronounced for adverse weather
conditions, as the difficulty of data collection and annota-
tion increases significantly. To overcome this problem, a few
streams of research have gained extensive attention: learn-
ing with limited, weak supervision (Dai and Van Gool 2013;
Misra et al. 2015), transfer learning (Hoffman 2014; Chen
et al. 2018), and learning with synthetic data (Ros et al. 2016;
Sakaridis et al. 2018).

Our method falls into the middle ground, and aims to
combine the strength of these two kinds of methods. In par-
ticular, our method is developed to learn from (1) a dataset
with high-quality synthetic fog and the corresponding human
annotations, and (2) a dataset with a large number of unla-
beled images with real fog. The goal of our method is to
improve the performance of SFSU without requiring extra
human annotations for foggy images.

To this end, this work proposes a novel fog simulator
to add high-quality synthetic fog to real images of clear-
weather outdoor scenes, and then leverage these partially
synthetic foggy images for SFSU. Our fog simulator builds
on the recent work of Sakaridis et al. (2018), by introduc-
ing a semantic-aware filter to exploit the structures of object
instances. We show that learning with our synthetic foggy
data improves the performance for SFSU. Furthermore, we
learn a fog density estimator from synthetic images of vary-

ing fog density, and order unlabeled real images by increasing
fog density. This ordering forms the foundation of our novel
learning method CurriculumModel Adaptation (CMAda) to
gradually adapt a semantic segmentation model from clear
weather to dense fog, through light fog. CMAda is based on
the fact that recognition in moderately adverse conditions
(light fog) is easier and its results can be re-used via knowl-
edge distillation to solve a harder problem, i.e. recognition
in highly adverse conditions (dense fog).

CMAda is iterative by nature and can be implemented for
different numbers of steps. The pipeline of a two-step imple-
mentation of CMAda is shown in Fig. 1. CMAda has the
potential to be used for other adverse weather conditions,
and opens a new avenue for learning with synthetic data
and unlabeled real data in general. Experiments show that
CMAda yields the best results on two datasets with dense
real fog as well as a dataset with real fog of varying density.

A shorter version of this work has been published to Euro-
pean Conference on Computer Vision (Sakaridis et al. 2018).
Compared to the conference version, this paper makes the
following six additional contributions:

1. An extension of the formulation of CMAda to accommo-
date multiple adaptation steps instead of only two steps,
leading to improved performance over the conference
paper as well.

2. A novel fog densification method for real foggy scenes.
The fog densification method can close the domain
gap between light real fog and dense real fog; using it
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in CMAda significantly increases the performance for
SFSU.

3. A method named Model Selection for the task of seman-
tic scene understanding in multiple weather conditions
where test images are a mixture of clear-weather images
and foggy images. This extension is important for real
world applications, as weather conditions change con-
stantly. Semantic scene understanding methods need to
be robust to such changes.

4. An enlarged annotated dense foggy set for our Foggy
Zurich dataset, increasing its size from 16 to 40 images.1

5. More extensive experiments to diagnose the contribution
of each component of the CMAda pipeline, to compare
with more competing methods, and to comprehensively
study the usefulness of image dehazing for SFSU.

6. Other sections are also enhanced, including related work
as well as dataset collection and annotation.

The paper is structured as follows. Section 2 presents the
related work. Section 3 is devoted to our method for simulat-
ing synthetic fog, which is followed by Sect. 4 for our learn-
ing approach. Section 5 summarizes our data collection and
annotation. Finally, Sect. 6 presents our experimental results
and Sect. 7 concludes this paper. Our foggy datasets and fog
simulation code are publicly available at https://www.vision.
ee.ethz.ch/~csakarid/Model_adaptation_SFSU_dense/.

2 RelatedWork

Our work is relevant to image defogging, joint image filter-
ing, foggy scene understanding, and domain adaptation.

2.1 Image Defogging/Dehazing

Fog fades the color of observed objects and reduces their
contrast. Extensive research has been conducted on image
defogging (dehazing) to increase the visibility of foggy
scenes (Narasimhan and Nayar 2003; Tan 2008; Nishino
et al. 2012; Fattal 2008; Berman et al. 2016; Fattal 2014;
He et al. 2011). Certain works focus particularly on enhanc-
ing foggy road scenes (Tarel et al. 2012; Negru et al. 2015).
Recent approaches also rely on trainable architectures (Tang
et al. 2014),which have evolved to end-to-endmodels (Zhang
et al. 2017; Ling et al. 2016). For a comprehensive overview
of defogging/dehazing algorithms, we point the reader to Xu
et al. (2016), Li et al. (2016). Our work is complementary
and mainly focuses on SFSU, while it also investigates the
usefulness of image dehazing in the context of SFSU.

1 Creating fine pixel-level annotations for dense foggy scenes is very
difficult.

2.2 Joint Image Filtering

Using additional images as input for filtering a target image
has been originally studied in settings where the target
image has low photometric quality (Eisemann and Durand
2004; Petschnigg et al. 2004) or low resolution (Kopf et al.
2007). Compared to the bilateral filtering formulation of
these approaches, subsequent works propose alternative for-
mulations, such as the guided filter (He et al. 2013) and
mutual structure filtering (Shen et al. 2015), for better incor-
porating the reference image into the filtering process. In
comparison, we extend the classical cross-bilateral filter to
a dual-reference cross-bilateral filter by accepting two refer-
ence images, one of which is a discrete label image that helps
our filter adhere to the semantics of the scene.

2.3 Foggy Scene Understanding

Typical examples in this line include road and lane detec-
tion (Bar Hillel et al. 2014), traffic light detection (Jensen
et al. 2016), car and pedestrian detection (Geiger et al. 2012),
and a dense, pixel-level segmentation of road scenes into
most of the relevant semantic classes (Brostow et al. 2008;
Cordts 2016). While deep recognition networks have been
developed (Yu and Koltun 2016; Lin et al. 2017; Zhao et al.
2017;Girshick 2015;Ren et al. 2015) and large-scale datasets
have been presented (Geiger et al. 2012; Cordts 2016), that
research mainly focused on clear weather. There is also a
large body of work on fog detection (Bronte et al. 2009;
Pavlić et al. 2012; Gallen et al. 2011; Spinneker et al. 2014).
Classification of scenes into foggy and fog-free has been
tackled as well (Pavlić et al. 2013). In addition, visibility esti-
mation has been extensively studied for both daytime (Tarel
et al. 2010; Miclea and Silea 2015; Hautière et al. 2006) and
nighttime (Gallen et al. 2015), in the context of assisted and
autonomous driving. The closest of these works to ours is
Tarel et al. (2010), in which synthetic fog is generated and
foggy images are segmented to free-space area and vertical
objects. Our work differs in that our semantic scene under-
standing task is more complex and we tackle the problem
from a different route by learning jointly from synthetic fog
and real fog.

2.4 Domain Adaptation

Our work bears resemblance to transfer learning and model
adaptation. Model adaptation across weather conditions
to semantically segment simple road scenes is studied in
Levinkov and Fritz (2013). More recently, domain adver-
sarial based approaches were proposed to adapt semantic
segmentation models both at pixel level and feature level
from simulated to real environments (Shrivastava et al.
2017; Sankaranarayanan et al. 2018; Hoffman et al. 2018;
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Fig. 2 The pipeline of our fog simulation using semantics

Wulfmeier et al. 2018). Most of these works are based on
adversarial domain adaptation. Our work is complementary
to methods in this vein; we adapt the model parameters
with carefully generated data, leading to an algorithm whose
behavior is easy to understand and whose performance is
more predictable. Combining our method and adversarial
domain adaptation is a promising direction. Our work also
shares similarity to Zhang et al. (2017) in applying the gen-
eral idea of curriculum learning to domain adaptation.

The concurrent work in Dai and Van Gool (2018) on
adaptation of semantic segmentation models from daytime
to nighttime using solely real data, which was preceded by
the conference version of this paper, shows that real images
captured at twilight are helpful for supervision transfer from
daytime to nighttime. CMAda constitutes a more complex
framework, since it leverages both synthetic foggy data and
real foggy data jointly for adapting semantic segmentation
models to fog, whereas the method in Dai and Van Gool
(2018) uses solely real data for the adaptation. Moreover, the
assignment of real foggy images to the correct target foggy
domain through fog density estimation is another crucial and
nontrivial component of CMAda and it is a prerequisite for
using these real images as training data in the method. By
contrast, the partition of the real dataset in Dai and Van Gool
(2018) into subsets that correspond to different times of day
from daytime to nighttime is trivially performed by using the
time of capture of the images.

3 Fog Simulation on Real Scenes Using
Semantics

3.1 Motivation

We drive our motivation for fog simulation on real scenes
using semantic input from the pipeline that was used in
Sakaridis et al. (2018) to generate the Foggy Cityscapes
dataset, which primarily focuses on depth denoising and
completion. This pipeline is denoted in Fig. 2 with thin gray
arrows and consists of three main steps: depth outlier detec-
tion, robust depth planefitting at the level of SLIC superpixels
(Achanta et al. 2012) using RANSAC, and postprocessing
of the completed depth map with guided image filtering (He
et al. 2013). Our approach adopts the general configuration
of this pipeline, but aims to improve its postprocessing step
by leveraging the semantic annotation of the scene as addi-
tional reference for filtering, which is indicated in Fig. 2 with
the thick blue arrow.

The guided filtering step in Sakaridis et al. (2018) uses the
clear-weather color image as guidance to filter the depthmap.
However, as previous works on image filtering (Shen et al.
2015) have shown, guided filtering and similar joint filter-
ing methods such as cross-bilateral filtering (Eisemann and
Durand 2004; Petschnigg et al. 2004) transfer every structure
that is present in the guidance/reference image to the output
target image. Thus, any structure that is specific to the refer-
ence image but irrelevant for the target image is transferred
to the latter erroneously.
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Whereas previous approaches such asmutual-structure fil-
tering (Shen et al. 2015) attempt to estimate the common
structure between reference and target images, we identify
this common structure with the structure that is present in the
ground-truth semantic labeling of the image. In other words,
we assume that edges which are shared by the color image
and the depth map generally coincide with semantic edges,
i.e. locations in the imagewhere the semantic classes of adja-
cent pixels are different. Under this assumption, the semantic
labeling can be used directly as the reference image in a clas-
sical cross-bilateral filtering setting, since it contains exactly
the mutual structure between the color image and the depth
map. In practice, however, the boundaries drawn by humans
when creating semantic annotations are not pixel-accurate,
and using the color image as additional reference helps to
capture the precise location and orientation of edges better.
As a result, we formulate the postprocessing step of the com-
pleted depth map in our fog simulation as a dual-reference
cross-bilateral filter, with color and semantic reference.

Before delving into the formulation of our filter, we briefly
argue against alternative usage cases of semantic annotations
in our fog simulation pipeline which might seem attrac-
tive at first sight. First, replacing SLIC superpixels with
superpixels induced by the semantic labeling for the depth
plane fitting step is not viable, because it induces very large
superpixels, for which the planarity assumption breaks com-
pletely. Second, we have experimented with omitting the
robust depth plane fitting step altogether and applying our
dual-reference cross-bilateral filter directly on the incom-
plete depth map which is output from the outlier detection
step. This approach, however, is highly sensitive to outliers
that have not been detected and invalidated in the preced-
ing step. By contrast, these remaining outliers are handled
successfully by robust RANSAC-based depth plane fitting.

3.2 Dual-reference Cross-bilateral Filter Using Color
and Semantics

Let us denote the RGB image of the clear-weather scene by
R and its CIELAB counterpart by J. We consider CIELAB,
as it has been designed to increase perceptual uniformity
and gives better results for bilateral filtering of color images
(Paris and Durand 2009). The input image to be filtered in
the postprocessing step of our pipeline constitutes a scalar-
valued transmittance map t̂ . We provide more details on this
transmittance map in Sect. 3.3. Last, we are given a labeling
function

h : P → {1, . . . , C} (1)

which maps pixels to semantic labels, where P is the dis-
crete domain of pixel positions and C is the total number of

semantic classes in the scene. We define our dual-reference
cross-bilateral filter with color and semantic reference as

t(p) =
⎧
⎨

⎩

∑

q∈N (p)

Gσs (‖q − p‖) [
δ(h(q) − h(p))

+ μGσc (‖J(q) − J(p)‖)] t̂(q)

⎫
⎬

⎭

/ ⎧
⎨

⎩

∑

q∈N (p)

Gσs (‖q − p‖) [
δ(h(q) − h(p))

+ μGσc (‖J(q) − J(p)‖)]
⎫
⎬

⎭
, (2)

where p and q denote pixel positions, N (p) is the neigh-
borhood of p, δ denotes the Kronecker delta, Gσs is the
spatial Gaussian kernel, Gσc is the color-domain Gaussian
kernel and μ is a positive constant. The novel dual reference
is demonstrated in the second factor of the filter weights,
which constitutes a sum of the terms δ(h(q) − h(p)) for
semantic reference and Gσc (‖J(q) − J(p)‖) for color refer-
ence, weighted by μ. The formulation of the semantic term
implies that only pixels q with the same semantic label as
the examined pixel p contribute to the output at p through
this term, which prevents blurring of semantic edges. At the
same time, the color term helps to better preserve true depth
edges that do not coincide with any semantic boundary but
are present in J, e.g. due to self-occlusion of an object.

The formulation of (2) enables an efficient implementa-
tion of our filter based on the bilateral grid (Paris and Durand
2009). More specifically, we construct two separate bilat-
eral grids that correspond to the semantic and color domains
respectively and operate separately on each grid to perform
filtering, combining the results in the end. In this way, we
handle a 3D bilateral grid for the semantic domain and a
5D grid for the color domain instead of a single joint 6D grid
thatwould dramatically increase computation time (Paris and
Durand 2009).

In our experiments, we set μ = 5, σs = 20, and σc = 10.

3.3 Remaining Steps

Hereweoutline the rest parts of our fog simulation pipeline of
Fig. 2. For more details, we refer the reader to Sakaridis et al.
(2018), with which most parts of the pipeline are common.
The standard optical model for fog that forms the basis of our
fog simulation was introduced in Koschmieder (1924) and is
expressed as

I(x) = R(x)t(x) + L(1 − t(x)), (3)
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Fig. 3 Comparison of our synthetic foggy images against Foggy Cityscapes (Sakaridis et al. 2018). This figure is better seen on a screen and
zoomed in

where I(x) is the observed foggy image at pixel x,R(x) is the
clear scene radiance and L is the atmospheric light, which
is assumed to be globally constant. The transmittance t(x)
determines the amount of scene radiance that reaches the
camera. For homogeneous fog, transmittance depends on the
distance �(x) of the scene from the camera through

t(x) = exp (−β�(x)) . (4)

The attenuation coefficient β controls the density of the fog:
larger values of β mean denser fog. Fog decreases the mete-
orological optical range (MOR), also known as visibility, to
less than 1 km by definition (Federal Meteorological Hand-
book 2005). For homogeneous fog MOR = 2.996/β, which
implies

β ≥ 2.996 × 10−3 m−1, (5)

where the lower bound corresponds to the lightest fog con-
figuration. In our fog simulation, the value that is used for β

always obeys (5).
The required inputs for fog simulation with (3) are the

imageR of the original clear scene, atmospheric lightL and a
complete transmittance map t . We use the same approach for
atmospheric light estimation as that in Sakaridis et al. (2018).
Moreover, we adopt the stereoscopic inpainting method of
Sakaridis et al. (2018) for depth denoising and completion

to obtain an initial complete transmittance map t̂ from a
noisy and incomplete input disparity map D, using the rec-
ommended parameters. We filter t̂ with our dual-reference
cross-bilateral filter (2) to compute the final transmittance
map t , which is used in (3) to synthesize the foggy image I.

Results of the presented pipeline for fog simulation on
example images fromCityscapes (Cordts 2016) are provided
in Fig. 3 for β = 0.02, which corresponds to visibility of ca.
150m. We specifically leverage the instance-level semantic
annotations that are provided in Cityscapes and set the label-
ing h of (1) to a different value for each distinct instance
of the same semantic class in order to distinguish adjacent
instances. We compare our synthetic foggy images against
the respective images of Foggy Cityscapes that were gen-
erated with the approach of Sakaridis et al. (2018). Our
synthetic foggy images generally preserve the edges between
adjacent objects with large discrepancy in depth better than
the images in Foggy Cityscapes, because our approach uti-
lizes semantic boundaries, which usually encompass these
edges. The incorrect structure transfer of color textures to the
transmittance map, which deteriorates the quality of Foggy
Cityscapes, is also reduced with our method.

We have applied our fog simulation using semantics to
the entire Cityscapes dataset. The resulting foggy dataset
is named Foggy Cityscapes-DBF (Dual-reference cross-
BilateralFilter).Foggy Cityscapes-DBF is publicly available
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at the Cityscapes website https://www.cityscapes-dataset.
com.

4 Semantic Foggy Scene Understanding

In this section, we first present a standard supervised learning
approach for semantic segmentation under dense fog using
our synthetic foggy data with the novel fog simulation of
Sect. 3, and then elaborate on our novel CMAda approach
which uses both synthetic and real foggy data.

4.1 Learning with Synthetic Fog

Generating synthetic fog from real clear-weather scenes
grants the potential of inheriting the existing human anno-
tations of these scenes, such as those from the Cityscapes
dataset (Cordts 2016). This is a significant asset that enables
training of standard segmentation models. Therefore, an
effective way of evaluating the merit of a fog simulator is
to adapt a segmentation model originally trained on clear
weather to the synthesized foggy images and then evaluate
the adapted model against the original one on real foggy
images. The primary goal is to verify that the standard learn-
ing methods for semantic segmentation can benefit from
our simulated fog in the challenging scenario of real fog.
This evaluation policy has been proposed in Sakaridis et al.
(2018). We adopt this policy and fine-tune the RefineNet
model (Lin et al. 2017) on synthetic foggy images from
our Foggy Cityscapes-DBF dataset. The performance of our
adapted models on real fog is compared to that of the original
clear-weathermodel aswell as themodels that are adapted on
FoggyCityscapes (Sakaridis et al. 2018), providing an objec-
tive comparison of our simulation method against (Sakaridis
et al. 2018).

The learned model can be used as a standalone approach
for semantic foggy sceneunderstanding as shown inSakaridis
et al. (2018), or it can be used as an initialization step for our
CMAda method, which is described next and learns both
from synthetic and real data.

4.2 CurriculumModel Adaptation (CMAda)

In the previous section, the proposed method learns to adapt
semantic segmentation models from the domain of clear
weather to the domain of foggy weather in a single step.
While considerable improvement can be achieved (as shown
in Sect. 6.1.1), the method falls short when it is presented
with dense fog.This is because domain discrepancies become
more accentuated for denser fog: (1) the domain discrep-
ancy between synthetic foggy images and real foggy images
increases with fog density; and (2) the domain discrepancy
between real clear-weather images and real foggy images

increases with fog density. This section presents a method to
gradually adapt the semantic segmentation model which was
originally trained with clear-weather images to images with
dense fog by using both labeled synthetic foggy images and
unlabeled real foggy images. The method, which we term
Curriculum Model Adaptation (CMAda), uses synthetic fog
with a range of varying fog density—from light fog to dense
fog—and a large dataset of unlabeled real foggy scenes with
variable, unknown fog density. The goal is to improve the per-
formance of state-of-the-art semantic segmentation models
on dense foggy scenes without using any human annotations
of foggy scenes. Below, we first present our fog density esti-
mator and our method for densification of fog in real foggy
images without depth information, and then proceed to the
complete learning approach.

4.2.1 Fog Density Estimation

Fog density is usually determined by the visibility of the
foggy scene. An accurate estimate of fog density can bene-
fit many applications, such as image defogging (Choi et al.
2015). Since annotating images in a fine-grained manner
regarding fog density is very challenging, previous meth-
ods are trained on a few hundreds of images divided into
only two classes: foggy and fog-free (Choi et al. 2015). The
performance of the system, however, is affected by the small
amount of training data and the coarse class granularity.

In this paper, we leverage our fog simulation applied
to Cityscapes (Cordts 2016) for fog density estimation.
Since simulated fog density is directly controlled through
β, we generate several versions of Foggy Cityscapes-DBF
with varying β ∈ {0, 0.005, 0.01, 0.02} and train AlexNet
(Krizhevsky et al. 2012) to regress the value of β for each
image, lifting the need to handcraft features relevant to
fog and to collect human annotations as Choi et al. (2015)
did. The predicted fog density with our method on real
images correlates well with human judgments of fog den-
sity, based on a user study conducted on our large real
Foggy Zurich dataset via Amazon Mechanical Turk (cf.
Sect. 6.1.2 for results). The fog density estimator is used
to order images in Foggy Zurich according to fog den-
sity, paving the way for our curriculum adaptation which
learns from images with progressively denser fog. We
denote the estimator by f : x → R

+, where x is an
image.

4.2.2 CMAda with Synthetic and Real Fog

The CMAda algorithm has a source domain denoted by S,
an ultimate target domain denoted by T , and an ordered
sequence of intermediate target domains indicated by
(Ṫ1, . . . , ṪK ) with K being the number of intermediate
domains. In this work, S is clear weather, T is dense fog,

123

https://www.cityscapes-dataset.com
https://www.cityscapes-dataset.com


International Journal of Computer Vision (2020) 128:1182–1204 1189

and Ṫk’s correspond to fog density that increases with k,
ranging between the density of S (zero) and T . Our method
adapts semantic segmentation models through the sequence
of domains (S, Ṫ1, Ṫ2, . . . , ṪK , T ). The intermediate tar-
get domains Ṫk’s are optional; when K = 0, the method
reduces to a single-stage adaptation as presented in Sect. 4.1.
Similarly, K = 1 leads to a two-stage adaptation approach as
presented in the conference version of this paper (Sakaridis
et al. 2018), K = 2 to a three-stage adaptation approach,
and so on. We abbreviate these instantiations of CMAda as
CMAda1 (K = 0), CMAda2 (K = 1), CMAda3 (K = 2),
and so on.

Let us denote by z ∈ {1, . . . , Z} the domain index in
the above ordered sequence (S, Ṫ1, Ṫ2, . . . , ṪK , T ), with
Z = K + 2. In this work, the sequence of domains is
sorted in ascending order with respect to fog density. For
instance, it could be (clear weather, light fog, dense fog),
with clear weather being the source domain, dense fog the
ultimate target domain and light fog the intermediate tar-
get domain. The approach proceeds progressively and adapts
the semantic segmentation model from the current domain
(fog density) to the subsequent one by learning from the
corresponding synthetic foggy dataset and the correspond-
ing real foggy dataset. Once the model for the subsequent
domain has been trained, its knowledge is distilled on unla-
beled real foggy images from that domain, and then used
along with a denser version of synthetic foggy data to adapt
this model to the next domain (i.e. the immediately higher
fog density).

Since the method proceeds in an iterative manner, we only
present the algorithmic details for model adaptation from
z−1 to z. Let us use βz to indicate the fog density for domain
z, represented as the attenuation coefficient. In order to adapt
the semantic segmentation model φz−1 from the previous
domain z − 1 to the current domain z, we generate synthetic
fog of the exact fog density βz and inherit the human annota-
tions of the original clear-weather images. Thus, the synthetic
foggy dataset for adapting to z is

Dz
syn = {(x̄βz

m , y1m)}Mm=1, (6)

where M is the total number of synthetic foggy images,
y1m(i, j) ∈ {1, . . . ,C} is the label of pixel (i, j) of the clear-
weather image xβ1

m (β1 = 0), and C is the total number of
classes.

For real foggy images, since no human annotations are
available, we rely on a strategy of self-learning or curriculum
learning. Objects in lighter fog are easier to recognize than
in denser fog, hence models trained for lighter fog are more
generalizable to real data. The model φz−1 for the previous
domain z − 1 can be applied to all real foggy images with
fog density less than βz−1 in order to generate supervisory

labels for training model φz for domain z. Specifically, the
real foggy dataset for adapting to z is

Dz
real = {(xn, ŷz−1

n ) | f (xn) ≤ βz−1}Nn=1, (7)

where ŷz−1
n = φz−1(xn) denotes the predicted labels of

image xn using the model φz−1.
Once the two training sets are formed, the aim is to learn

φz from Dz
syn and Dz

real. The proposed scheme balances the
contributions of both the synthetic foggy dataset Dz

syn from
domain z with human annotations and the real foggy dataset
Dz

real from domain z − 1 with labels inferred using model
φz−1:

min
φz

( ∑

(x′,y′)
∈Dz

syn

L(φz(x′), y′) + λ
∑

(x′′,y′′)
∈Dz

real

L(φz(x′′), y′′)
)

, (8)

where L(., .) is the cross entropy loss function and λ =
w R

M is a hyper-parameter balancing the weights of the two
datasets, with w serving as the relative weight of each real
noisily labeled image compared to each synthetic labeled one
and R being the number of images in Dz

real. We empirically
set w = 1 in our experiments, but an optimal value can be
obtained via cross-validation if needed. The optimization of
(8) is implemented by generating a hybrid data stream and
feeding it to a CNN for standard supervised training. More
specifically, during training, training images are fetched from
the randomly shuffled Dz

syn and Dz
real with a ratio of 1 : w.

We now describe the initialization stage of our method,
which is also a variant of our method when no intermedi-
ate target domains are used. When z = 1, we are in the
clear-weather domain and the model φ1 is directly trained
on a labeled real dataset, so no adaptation is required. For
the case z = 2, there are no real foggy images falling into
the domain z − 1 = 1 which is the clear-weather domain.
In this case, the model φ2 is trained with the synthetic
datasetD2

syn only, as specified in Sect. 4.1. For the remaining
steps from z = 3 on, we iteratively apply the adaptation
approach introduced above to adapt to domain Z , which
constitutes the ultimate target domain T . In this work, we
have experimented with three instantiations of our method
for Z = {2, 3, 4}, which we name CMAda1, CMAda2 and
CMAda3 respectively. The sequences of attenuation coef-
ficients (fog densities) for the three versions are (0, 0.01),
(0, 0.005, 0.01) and (0, 0.0025, 0.005, 0.01) respectively.

Figure 1 provides an overview of CMAda2. Below, we
summarize the complete operations of CMAda2 to further
help understand the method. With the chosen sequence of
attenuation coefficients (0, 0.005, 0.01), the whole pipeline
of CMAda2 is as follows:
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1. generate a synthetic foggy dataset with multiple versions
of varying fog density;

2. train a model for fog density estimation on the dataset of
step 1;

3. rank the images in the real foggy dataset with the model
of step 2 according to fog density;

4. generate a dataset with light synthetic fog (β = 0.005),
and train a segmentation model on it;

5. apply the segmentation model from step 4 to the light-
fog images of the real dataset (ranked lower in step 2) to
obtain noisy semantic labels;

6. generate a dataset with dense synthetic fog (β = 0.01);
7. adapt the segmentation model from step 4 to the union

of the dense synthetic foggy dataset from step 6 and the
light real foggy one from step 5 according to (8).

4.2.3 Discussion

CMAda adapts segmentation models from clear weather to
dense fog and is inspired by curriculum learning (Bengio
et al. 2009), in the sense that we first solve easier tasks with
our synthetic data, i.e. fog density estimation and semantic
scene understanding under light fog, and then acquire new
knowledge from the already “solved” tasks in order to bet-
ter tackle the harder task, i.e. semantic scene understanding
under dense real fog. CMAda also exploits the direct control
of fog density for synthetic foggy images.

This learning approach also bears resemblance to model
distillation (Hinton et al. 2015; Gupta 2016) or imitation
(Buciluǎ et al. 2006; Dai et al. 2015). The underpinnings
of our proposed approach are the following: (1) in light fog
objects are easier to recognize than in dense fog, hence mod-
els trained on synthetic data are more generalizable to real
data in case both data sources contain light rather than dense
fog; and (2) models trained on the source domain can be suc-
cessfully applied to the target domain when the domain gap
is small, hence incremental (curriculum) domain adaptation
can better propagate semantic knowledge from the source
domain to the ultimate target domain than single-step domain
adaptation approaches.

The goal of CMAda is to train a semantic segmentation
model for the ultimate target domain z. The standard recipe
is to record foggy images xβz ’s and then to manually cre-
ate semantic labels yβz ’s for those foggy images so that the
standard supervised learning can be applied. As discussed in
Sect. 1, there is difficulty to apply this recipe to all adverse
weather conditions because manual creation of yβz ’s is very
time-consuming and expensive. To address this problem, this
work develops methods to automatically create two proxy
datasets for (xβz , yβz ). The two proxies are defined in (6)
and in (7). These two proxies reflect different and comple-
mentary characteristics of (xβz , yβz ). On the one hand, dense
synthetic fog features a similar overall visibility obstruction

to dense real fog, but includes artifacts. On the other hand,
light real fog captures the true nonuniform and spatially vary-
ing structure of fog, but at a different density than dense fog.
Learning jointly from both proxy datasets in CMAda reduces
the influence of their individual drawbacks.

The CMAda pipeline presented in Sect. 4.2.2 is an exten-
sion of the original method proposed in the conference
version (Sakaridis et al. 2018) of this paper from a two-stage
approach to a general multiple-stage approach. CMAda is
a stand-alone approach and already outperforms competing
methods for SFSU, as discussed in Sect. 6. In the next section,
we present an extension of CMAda, CMAda+, that further
boosts performance.

4.3 CMAda+with Synthetic and Densified Real Fog

As defined in (6), images in the synthetic training set Dz
syn

have exactly the same fog density βz as images in the target
domain z. Images in the real dataset Dz

real, however, have
lower fog density than the target fog density βz , as defined in
(7). While the lower fog density of the real training images
facilitates the self-learning stream of CMAdawith real foggy
images, the remaining domain gap due to the disparity in
fog density hampers finding a better solution. In Sect. 4.3.1,
we present a method to densify fog in real foggy images so
that it matches the desired fog density. The fog densification
method is general and can be applied beyond CMAda. In
Sect. 4.3.2, we use our fog densification method to upgrade
the dataset defined in (7) to a densified foggy dataset, which
is used in CMAda+ along with the synthetic dataset to train
the model φz .

4.3.1 Fog Densification of a Real Foggy Scene

We aim at synthesizing images with increased fog density
compared to already foggy real input images for which no
depth information is available. In this way, we can generate
multiple synthetic versions of each split of our real Foggy
Zurich dataset, where each synthetic version is characterized
by a different, controlled range of fog densities, so that these
densified foggy images can be leveraged in our curriculum
adaptation. To this end, we utilize our fog density estimator
and propose a simple yet effective approach for increasing
fog density when no depth information is available for the
input foggy image, by using the assumption of constant trans-
mittance in the scene.

More formally, we denote the input real foggy image with
Il and assume that it can be expressed through the optical
model (3). Contrary to our fog simulation on clear-weather
scenes in Sect. 3, the clear scene radiance R is unknown and
the input foggy image Il cannot be directly used as its sub-
stitute for synthesizing a foggy image Id with increased fog
density, as Il does not correspond to clear weather. Since the
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scene distance �which determines the transmittance through
(4) is also unknown, we make the simplifying assumption
that the transmittance map for Il is globally constant, i.e.

t(x) = tl , (9)

and use the statistics for scene distance � computed on
Cityscapes, which features depth maps, to estimate tl . By
using the distance statistics from Cityscapes, we implic-
itly assume that the distribution of distances of Cityscapes
roughly matches that of our Foggy Zurich dataset, which is
supported by the fact that both datasets contain similar, road
scenes. In particular, we apply our fog density estimator on
Il to get an estimate βl of the input attenuation coefficient.
The values for scene distance � of all pixels in Cityscapes are
collected into a histogram H = {(�i , pi ) : i = 1, . . . , N }
with N distance bins, where �i are the bin centers and pi are
the relative frequencies of the bins. We use each bin center
as representative of all samples in the bin and compute tl as a
weighted average of the transmittance values that correspond
to the different bins through (4):

tl =
N∑

i=1

pi exp (−βl�i ) . (10)

The calculation of tl via (10) enables the estimation of the
clear scene radiance R by re-expressing (3) for Il when (9)
holds as

R(x) = Il(x) − L
tl

+ L. (11)

The globally constant atmospheric light L which is involved
in (11) is estimated in the same way as in Sect. 3.3.

For the output densified foggy image Id , we select a target
attenuation coefficient βd > βl and again estimate the corre-
sponding global transmittance value td similarly to (10), this
time plugging βd into the formula. The output image Id is
finally computed via (3) as

Id(x) = R(x)td + L (1 − td) . (12)

If we substitute R in (12) using (11), the output image is
expressed only through tl , td , the input image Il and atmo-
spheric light L as

Id(x)= Il(x) + td − tl
tl

(Il(x) − L)

= td
tl
Il(x) +

(

1 − td
tl

)

L. (13)

Equation (13) implies that our fog densification method can
bypass the explicit calculation of the clear scene radiance R

in (11), as the output image does not depend on R. In this
way, we completely avoid dehazing our input foggy image as
an intermediate step, which would pose challenges as it con-
stitutes an inverse problem, and reduce the inference problem
just to the estimation of the attenuation coefficient by assum-
ing a globally constant transmittance.Moreover, (13) implies
that the change in the value of a pixel Id(x) with respect to
Il(x) is linear in the difference Il(x) − L. This means that
distant parts of the scene, where Il(x) ≈ L, are not modified
significantly in the output, i.e. Id(x) ≈ Il(x). On the con-
trary, our fog densification modifies the appearance of those
parts of the scene which are closer to the camera and shifts
their color closer to that of the estimated atmospheric light
irrespective of their exact distance from the camera. This
can be observed in the example of Fig. 4, where the closer
parts of the input scene such as the red car on the left and
the vegetation on the right have brighter colors in the synthe-
sized output. The overall shift to brighter colors is verified by
the accompanying RGB histograms of the input and output
images in Fig. 4.

4.3.2 Fog Densification of a Real Foggy Dataset

When applying our fog densification to an entire dataset in
the context of CMAda+, a simple choice is to specify the
same target fog density βz for all images in the dataset. This
may completely close the domain gap due to different fog
density, but it ignores the variability of the true fog density
across different images in the dataset and introduces other
domain discrepancies, as our fog densification makes sim-
plifying assumptions. Thus, we propose to define the target
fog density independently for each input image.

Given the dataset Dz
real defined in (7), instead of map-

ping all βl ∈ [0, βz−1] to βd = βz , we choose to perform
a linear mapping from [0, βz−1] to [βz−1, βz]. In particular,
given a real foggy image with its estimated attenuation coef-
ficient βl ∈ [0, βz−1], the target attenuation coefficient is
determined as

βd = βz−1 + βl(βz − βz−1)

βz−1
. (14)

Using ψβl→βd (xn) to indicate the densified image for xn ,
the densified real foggy dataset for CMAda+ at step z is

Dz
real = {(ψβl→βd (xn), ŷ

z−1
n ) | f (xn) ≤ βz−1}Nn=1. (15)

This densified dataset is then used in CMAda+ for training,
along with the synthetic dataset defined in (6), based on the
same formulation (8) as CMAda.

123



1192 International Journal of Computer Vision (2020) 128:1182–1204

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 4 Top row, left to right: example input image from Foggy Zurich and synthesized output image with our fog densification. Bottom row, left to
right: R, G, and B histogram of the input image, R, G, and B histogram of the output image

4.4 Semantic Scene Understanding in Multiple
Weather Conditions

In Sects. 4.2.2 and 4.3, specialized approaches have been
developed for semantic scene understanding under fog.How-
ever, in real world applications weather conditions change
constantly, e.g. the weather can change from foggy to sunny
or vice versa at any time. We argue that semantic scene
understanding methods need to be robust and adaptive to
these changes. With this aim, we propose Model Selection,
a method for selecting the appropriate model depending on
the encountered weather condition.

4.4.1 Model Selection

Our method uses two expert models, one specialized for
clear weather and the other for fog. In particular, a two-class
classifier is trained to distinguish clear weather from fog,
with images from the Cityscapes dataset used as samples
of the former class and images from three versions of our
Foggy Cityscapes-DBF dataset with attenuation coefficients
0.005, 0.01, and 0.02 as samples of the latter class. We select
AlexNet (Krizhevsky et al. 2012) as the architecture of this
classifier.

Denoting the semantic segmentation model specialized
for fog by φZ , the respective model for clear weather by φ1,
and the aforementioned classifier by g, the semantic labels
of a test image x are obtained through

ŷ =
{

φ1(x), if g(x) = 1,

φZ (x) otherwise,
(16)

where label 1 indicates the clear weather class and label 0
indicates fog.

The method is not limited to these two conditions and can
be directly generalized to handlemultiple adverse conditions,
such as rain or snow.

5 The Foggy Zurich Dataset

We present the Foggy Zurich dataset, which comprises 3808
images depicting foggy road scenes in the city of Zurich and
its suburbs. We provide annotations for semantic segmenta-
tion for 40 of these scenes that contain dense fog.

5.1 Data Collection

Foggy Zurich was collected during multiple rides with a car
inside the city of Zurich and its suburbs using aGoProHero 5
camera. We recorded four large video sequences, and
extracted video frames corresponding to those parts of the
sequences where fog is (almost) ubiquitous in the scene at a
rate of one frame per second. The extracted images are man-
ually cleaned by removing the duplicates (if any), resulting
in 3808 foggy images in total. The resolution of the frames
is 1920 × 1080 pixels. We mounted the camera inside the
front windshield, since we found that mounting it outside the
vehicle resulted in significant deterioration in image quality
due to blurring artifacts caused by dew.

In particular, the small water droplets that compose fog
condense and form dew on the surface of the lens very shortly
after the vehicle starts moving, which causes severe blurring
artifacts and contrast degradation in the image, as shown
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Fig. 5 Comparison of images taken in fog with the camera mounted a
inside and b outside the front windshield of the vehicle. We opt for the
former configuration for collecting Foggy Zurich

in Fig. 5b. On the contrary, mounting the camera inside the
windshield, aswedidwhen collectingFoggyZurich, prevents
these blurring artifacts and affords much sharper images, to
which the windshield surface incurs minimal artifacts, as
shown in Fig. 5a.

5.2 Annotation of Images with Dense Fog

We use our fog density estimator presented in Sect. 4.2.1 to
order all images in Foggy Zurich according to fog density.

Based on this ordering, we manually select 40 images with
dense fog and diverse visual scenes, and construct the test
set of Foggy Zurich therefrom, which we term Foggy Zurich-
test. The aforementioned selection is performed manually in
order to guarantee that the test set has high diversity, which
compensates for its relatively small size in terms of statis-
tical significance of evaluation results. We annotate these
images with fine pixel-level semantic annotations using the
19 evaluation classes of theCityscapes dataset (Cordts 2016):
road, sidewalk, building,wall, fence, pole, traffic light, traffic
sign, vegetation, terrain, sky, person, rider, car, truck, bus,
train,motorcycle and bicycle. In addition, we assign the void
label to pixels which do not belong to any of the above 19
classes, or the class of which is uncertain due to the presence
of fog. Every such pixel is ignored for semantic segmen-
tation evaluation. Comprehensive statistics for the semantic
annotations of Foggy Zurich-test are presented in Fig. 6. Fur-
thermore, we note that individual instances of person, rider,
car, truck, bus, train, motorcycle and bicycle are annotated
separately, which additionally induces bounding box anno-
tations for object detection for these 8 classes, although we
focus solely on semantic segmentation in this paper.

We also distinguish the semantic classes that occur fre-
quently in Foggy Zurich-test. These “frequent” classes are:
road, sidewalk, building,wall, fence, pole, traffic light, traffic
sign, vegetation, sky, and car. When performing evaluation
on Foggy Zurich-test, we occasionally report the average
score over this set of frequent classes, which feature plenty
of examples, as a second metric to support the corresponding
results.

Despite the fact that there exists a number of prominent
large-scale datasets for semantic road scene understanding,
such as KITTI (Geiger et al. 2012), Cityscapes (Cordts 2016)
and Mapillary Vistas (Neuhold et al. 2017), most of these
datasets contain few or even no foggy scenes, which can
be attributed partly to the rarity of the condition of fog and
the difficulty of annotating foggy images. Through manual
inspection, we found that even Mapillary Vistas, which was
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Fig. 6 Number of annotated pixels per class for Foggy Zurich-test
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Table 1 Absolute and average number of annotated pixels, humans and
vehicles for Foggy Zurich-test, Foggy Driving, KITTI and Cityscapes

Pixels Humans Vehicles h/im v/im

Foggy Zurich 66.1M 27 135 0.7 3.4

Foggy Driving 72.8M 290 509 2.9 5.0

KITTI 0.23G 6.1k 30.3k 0.8 4.1

Cityscapes 9.43G 24.0k 41.0k 7.0 11.8

Only the training and validation sets of KITTI and Cityscapes are con-
sidered. “h/im” stands for humans per image, “v/im” for vehicles per
image and “Foggy Zurich” for Foggy Zurich-test

specifically designed to also include sceneswith adverse con-
ditions such as snow, rain or nighttime, in fact contains very
few images with fog, i.e. in the order of 10 images out of
25000, with relatively more images depicting misty scenes,
which have MOR ≥ 1km, i.e. significantly better visibility
than foggy scenes [1].

To the best of our knowledge, the only previous dataset
for semantic foggy scene understanding whose scale exceeds
that of Foggy Zurich-test is Foggy Driving (Sakaridis et al.
2018), with 101 annotated images. However, most images
in Foggy Driving contain relatively light fog and most
images with dense fog are annotated coarsely. Compared
to Foggy Driving, Foggy Zurich comprises a much greater
number of high-resolution foggy images. Its larger, unlabeled
part is highly relevant for unsupervised or semi-supervised
approaches such as the one we have presented in Sect. 4.2.2,
while the smaller, labeled Foggy Zurich-test set features fine
semantic annotations for the particularly challenging setting
of dense fog, making a significant step towards evaluation of
semantic segmentation models in this setting. In Table 1, we
compare the overall annotation statistics of Foggy Zurich-
test to some of the aforementioned existing datasets; we
note that the comparison involves a test set (Foggy Zurich-
test) and unions of training plus validation sets (KITTI and
Cityscapes), which are much larger than the respective test
sets. The comparatively lower number of humans and vehi-
cles per image in Foggy Zurich-test is not a surprise, as the
condition of dense fog that characterizes the dataset discour-
ages road transportation and reduces traffic.

In order to ensure a sound training and evaluation,weman-
ually filter the unlabeled part of Foggy Zurich and exclude
from the resulting training sets that are used in CMAda
those images which bear resemblance to any image in Foggy
Zurich-test with respect to the depicted scene.

6 Experiments

Our model of choice for experiments on semantic seg-
mentation with our CMAda pipeline is the state-of-the-art

RefineNet (Lin et al. 2017). We use the publicly available
RefineNet-res101-Cityscapes model, which has been trained
on the clear-weather training set of Cityscapes. In all exper-
iments of this section, we use a constant learning rate of
5× 10−5 and mini-batches of size 1. Moreover, we compile
all versions of Foggy Cityscapes-DBF by applying our fog
simulation (which is denoted by “SDBF” in the following for
short) on the same refined set of Cityscapes images that was
used in Sakaridis et al. (2018) to compile Foggy Cityscapes-
refined. This set comprises 498 training and 52 validation
images; we use the former for training. In our experiments,
we use the values 0.005 and 0.01 for attenuation coefficient
β both in SDBF and the fog simulation of Sakaridis et al.
(2018) (denoted by “SGF”) to generate different versions of
Foggy Cityscapes-DBF and Foggy Cityscapes respectively
with varying fog density.

6.1 Performance on Foggy Scenes

For evaluation, we use (1) Foggy Zurich-test, (2) a subset of
Foggy Driving (Sakaridis et al. 2018) containing 21 images
with dense fog, which we term Foggy Driving-dense, and (3)
the entire Foggy Driving (Sakaridis et al. 2018).

We summarize our main experimental results in Table 2.
Overall, our method significantly improves the performance
of semantic segmentation under dense fog compared to
the original RefineNet model which has been trained on
clear-weather images of Cityscapes. More specifically, we
improve the performance (mIoU) from 34.6 to 46.8% on
Foggy Zurich-test and from 35.8 to 43.0%on Foggy Driving-
dense. With the new extensions, our fully-fledged CMAda3+
method significantly outperforms CMAda2, which was orig-
inally presented in the conference version of this paper
(Sakaridis et al. 2018).

It is worthwhile to mention that these improvements are
achievedwithout using any extra human annotations on topof
the original Cityscapes. Also, images in Foggy Driving were
taken by different cameras than the GoPro Hero 5 camera
used forFoggy Zurich, showing that CMAda also generalizes
well to different sensors from that corresponding to the real
training set of the method.

In the rest of Sect. 6.1, we analyze the effect of the individ-
ual components of our approach. This analysis demonstrates
the benefit for semantic segmentation of real foggy scenes
of: (1) our fog simulation for generating synthetic training
data, (2) our fog density estimator against a state-of-the-art
competing method, 3) combining our synthetic foggy data
from Foggy Cityscapes-DBF with unlabeled real data from
Foggy Zurich through our CMAda pipeline to adapt grad-
ually to dense real fog in multiple steps, and 4) using our
fog densification method to further close the gap between
light real fog and dense real fog. Finally, we provide some
qualitative results.
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6.1.1 Benefit of Adaptation with Our Synthetic Fog

Our first segmentation experiment shows that our semantic-
aware fog simulation (SDBF) performs competitively com-
pared to the fog simulation of Sakaridis et al. (2018) (SGF)
for generating synthetic data to adapt RefineNet to real dense
fog. RefineNet-res101-Cityscapes is fine-tuned on Foggy
Cityscapes-DBF and alternatively Foggy Cityscapes, both
with attenuation coefficient β = 0.01, for 8 epochs. The cor-
responding results in Table 2 are presented in the top two
rows under the group “CMAda1”. Training on synthetic fog
with either type of fog simulation helps to beat the base-
line clear-weather RefineNet model on all three test sets, the
improvement being more significant on Foggy Zurich-test
and Foggy Driving. In addition, SDBF slightly outperforms
SGF consistently.

Moreover, in all cases that both synthetic and real foggy
data are used in the two-stage CMAda pipeline, correspond-
ing to the rows of Table 2 grouped under “CMAda2”, SDBF
yields significantly higher segmentation performance on
Foggy Zurich-test compared to SGF, while the two methods
are on a par on the other two sets.

6.1.2 Benefit of Our Fog Density Estimator on Real Data

The second component of the CMAda pipeline that we ablate
is the fog density estimator. In particular, Table 2 includes
results for the single-stage pipeline with adaptation on real
images from the unlabeled part of Foggy Zurich and the two-
stage pipeline with adaptation on synthetic and real images
fromFoggyCityscapes andFoggy Zurich respectively, where
the ranking of real images according to fog density is per-
formed either with the method of Choi et al. (2015) or
with our AlexNet-based fog density estimator described in
Sect. 4.2.1. In all experimental settings, our fog density esti-
mator outperforms (Choi et al. 2015) significantly in terms
of mIoU on all datasets. This fully lifts the need of manu-
ally designing features and labeling images for fog density
estimation, as was done in Choi et al. (2015).

For further verification of our fog density estimator, we
conduct a user study on Amazon Mechanical Turk (AMT).
In order to guarantee high quality, we only employ AMT
Masters in our study and verify the answers via a Known
Answer Review Policy. Each human intelligence task (HIT)
comprises five image pairs to be compared: three pairs are
the true query pairs with images from the real Foggy Zurich
dataset, and the rest two pairs contain synthetic fog of dif-
ferent densities and are used for validation. The participants
are shown two images at a time, side by side, and are simply
asked to choose the one which is more foggy. The query pairs
are sampled based on the ranking results of our estimator. In
order to avoid confusing cases, i.e. two images of similar fog

densities, the two images of each pair need to be ranked at
least 20 percentiles apart from each other by our estimator.

We have collected answers for 12,000 pairs in 4000 HITs.
The HITs are considered for evaluation only when both vali-
dation questions are correctly answered. 87% of all HITs are
valid for evaluation. On these 10,400 pairs, the agreement
between our fog density estimator and human judgment is
89.3%. This high agreement confirms that fog density esti-
mation is a relatively easier task which can be solved by
using synthetic data, and the acquired knowledge can be fur-
ther exploited for solving high-level tasks on foggy scenes.
Figure 7 shows foggy images in ascending order of estimated
fog density using our estimator.

6.1.3 Benefit of Adaptation with Synthetic and Real Fog

The main segmentation experiment showcases the effective-
ness of our CMAda pipeline. Foggy Cityscapes-DBF and
Foggy Cityscapes (Sakaridis et al. 2018) are the two alterna-
tives for the synthetic foggy training sets in steps 4 and6of the
pipeline, corresponding to the two alternatives for fog simu-
lation (SDBF and SGF respectively). Foggy Zurich serves as
the real foggy training set. We use the results of our fog den-
sity estimation to select 1556 images fromFoggy Zurichwith
light fog and name this setFoggy Zurich-light.We implement
CMAda2 byfirst fine-tuningRefineNet onFoggyCityscapes-
DBF (alternatively Foggy Cityscapes) with β = 0.005 for
6k iterations and then further fine-tuning it on the union
of Foggy Cityscapes-DBF (alternatively Foggy Cityscapes)
with β = 0.01 and Foggy Zurich-light, where the latter set is
labeled by the aforementioned initially adapted model. Two-
stage curriculum adaptation to dense fog with synthetic and
real data, which corresponds to the results in the rows that
are grouped under “CMAda2” in Table 2, consistently out-
performs single-stage adaptation with either only synthetic
or only real training data (“CMAda1”), irrespective of the
selected fog simulation and fog density estimation methods.
The combination of our fog simulation SDBF and our fog
density estimator delivers the best result on all three test sets
among all variants of CMAda2, improving upon the baseline
RefineNet model on Foggy Zurich-test by 8.3%. The same
combination also provides a clear generalization benefit of
4.2% against the baseline on Foggy Driving, even though
this dataset involves different camera sensors and scenes than
Foggy Zurich, which is the sole real-world dataset used in our
training.

We note that the significant performance benefit delivered
by CMAda both on Foggy Zurich-test and Foggy Driving
is not matched by the state-of-the-art domain-adversarial
approach of Tsai et al. (2018) for adaptation of semantic
segmentation models, which we also trained both on our
synthetic Foggy Cityscapes-DBF set and our unlabeled real
Foggy Zurich-light set. This can be attributed to the fact that
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Table 2 Performance comparison on Foggy Zurich-test (FZ), Foggy Driving-dense (FDD) and Foggy Driving (FD) of different variants of our
CMAda pipeline as well as competing approaches, using with the mean intersection-over-union (mIoU) metric over all classes

Clear-weather Synthetic fog Real fog Density Estimator FZ FDD FD
Cityscapes
Cordts
(2016)

SGF
Sakaridis
et al. (2018)

SDBF
(ours)

GoPro FADE
Choi et al.
(2015)

Ours mIoU (%) mIoU (%) mIoU (%)

Comparison

RefineNet Lin
et al. (2017)

� 34.6 35.8 44.3

SFSU Sakaridis
et al. (2018)

� � 35.7 35.9 46.3

AdSegNet Tsai
et al. (2018)

� � � 25.0 15.8 29.7

CMAda2
Sakaridis et al.
(2018)

� � � � 42.9 37.3 48.5

CMAda3+ � � � � 46.8 43.0 49.8

Ablation study

Baseline Lin
et al. (2017)

� 34.6 35.8 44.3

CMAda1 � � 35.7 35.9 46.3

� � 36.3 36.1 46.3

� � � 37.5 36.4 45.7

� � � 38.9 36.6 46.0

CMAda2 � � � � 39.8 35.7 47.5

� � � � 41.5 37.0 48.5

� � � � 40.6 35.5 47.7

� � � � 42.9 37.3 48.5

CMAda3 � � � � 43.7 40.6 48.9

CMAda2+ � � � � 43.4 40.1 49.9

CMAda3+ � � � � 46.8 43.0 49.8

Bold values indicate the best performance on each dataset by all segmentation methods

Fig. 7 Foggy images from Foggy Zurich, sorted from left to right in ascending order with respect to estimated fog density using our estimator

images captured under adverse conditions such as fog have
large intra-domain variance as a result of poor visibility,
effects of artificial lighting sources and motion blur. How-
ever, we believe that domain-adversarial approaches have
the potential to be used for transferring knowledge to adverse
weather domains.

6.1.4 Benefit of Adaptation at Finer Scales

We also experiment with the three-stage instantiation of
CMAda, CMAda3, using the optimal configuration of all

components of the pipeline based on the previous compar-
isons. Compared to CMAda2, CMAda3 adapts the semantic
segmentationmodel at a finer scale, i.e. 1) fromclear-weather
to mist with synthetic misty data; 2) then to light fog with
synthetic light foggy data and real misty data; and 3) finally
to dense fog with synthetic dense foggy data and real light
foggy data. The exact fog densities at each stage are defined
in Sect. 4.2.2. In particular, the extra stage compared to
CMAda2 consists in labeling a split of Foggy Zurich with
very light estimated fog,whichwe termFoggy Zurich-light+,
via the clear-weather RefineNet model and using it in con-
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junction with Foggy Cityscapes-DBF with β = 0.005 to
form the training set for the first stage of CMAda.

Including this extra stage affords higher segmentation per-
formance on all three test sets as reported in row “CMAda3”
of Table 2, outperforming the respective best CMAda2
instance by 3.3% onFoggy Driving-dense. The improvement
of CMAda3 over CMAda2 shows that our approach benefits
from adaptation at finer scales, which is in line with the ratio-
nale of curriculum learning (Bengio et al. 2009). However,
training for a large number of stages increases the com-
putational cost significantly. Thus, selecting the “optimal”
number of stages and the exact fog densities that correspond
to the intermediate target domains needs further investigation
and could be solved to some extent by cross-validation.

6.1.5 Benefit of Fog Densification

The final component of our proposed pipeline that we eval-
uate is our fog densification method, introduced in Sect. 4.3.
Table 2 shows the results of CMAda2+ and CMAda3+ on
the three test datasets, along with the results of their counter-
parts CMAda2 and CMAda3. CMAda2+ and CMAda2 use
the same training parameters. The same holds for CMAda3+
and CMAda3. Applying our fog densification to the real
foggy training sets used in CMAda significantly improves
performance for both numbers of adaptation stages that are
examined. For instance, CMAda3+ outperformsCMAda3 by
3.1%, 2.4% and 0.9% on Foggy Zurich-test, Foggy Driving-
dense and Foggy Driving respectively. This is because
without fog densification, the images in the synthetic dataset
Dz

syn of each adaptation stage (defined in (6)) have the exact
same fog density βz as images in the target domain of that
stage, whereas the images in the real datasetDz

real have lower
fog density than βz (cf. 7). This lower fog density of the
real training images facilitates the self-learning, bootstrap-
ping strategy. However, it also creates a domain gap between
training and test images due to the difference in their fog den-
sity. On the contrary, the dataset with densified fog defined
in (15) matches the target fog density of the test images,
which helps close this domain gap and significantly boosts
the performance of CMAda.

6.1.6 Qualitative Results and Discussion

In Fig. 8, we show segmentation results on Foggy Zurich-test
generated with our best-performing method CMAda3+, our
conference paper method CMAda2 and the single-stage ver-
sion CMAda1 using only synthetic training data from Foggy
Cityscapes-DBF, compared to the method of Sakaridis et al.
(2018) that only uses synthetic data from Foggy Cityscapes
(Sakaridis et al. 2018) and the clear-weatherRefineNetmodel
(Lin et al. 2017). This visual comparison demonstrates that
our multiple-stage methods CMAda3+ and CMAda2 yield

significantly better results and generally capture the road
layout more accurately than the two competing approaches
and our single-stage method CMAda1. Moreover, the more
stages CMAda involves, the more accurate the segmentation
result is in general. For instance, on the leftmost image of
Fig. 8, CMAda3+ segments the wall and the vegetation on
the right side much better than the other methods and only
misclassifies some parts of them as building, which is a much
less detrimental error from a driving perspective than con-
fusing these classes with road, as is the case for the other
methods. Similarly, the buildings and the tree trunk in the
third image are better segmented by CMAda3+.

To further demonstrate the behavior of CMAda, we also
show semantic segmentation results of the clear-weather
RefineNet model (Lin et al. 2017) and the three aforemen-
tioned variants of our method for variable fog density in
Fig. 9. In particular, we have applied our fog density estima-
tor toFoggyDriving and use four images therefrom forwhich
the estimated fog density ranges from very low to very high.
First, we observe that the clear-weather baseline performs
comparably well for very light fog due to the small domain
shift from clear weather, but for higher fog densities CMAda
variants outperform this baseline. The advantage gets more
pronounced as fog density increases. Second, comparing the
different CMAda variants, we conclude that having more
adaptation stages leads to increasing returns as fog density
increases. For instance, the bus in the highly foggy rightmost
image is correctly recognized only after all three adaptation
stages have been applied.

Whileweobserve a significant improvementwithCMAda,
semantic segmentation performance on foggy scenes is still
much worse than the reported performance by existing
papers on clear-weather scenes. Foggy scenes are indeed
more challenging than clear-weather scenes with respect to
understanding their semantics. There are more underlying
causal factors of variation that generated foggy data, which
requires eithermore training data ormore intelligent learning
approaches to disentangle the increased degrees of freedom.
While ourmethod shows considerable improvement by trans-
ferring semantic knowledge from clear-weather to fog, the
models are adapted in an “unsupervised”manner, i.e. without
using human annotations of real foggy data. Incorporating a
moderate amount of human annotations of real foggy scenes
into our learning approach is a promising research direction,
if significantly better results are desired.

Our method involves two data streams: partially synthetic
data with annotations and real data without annotations.
Learning from the real data stream is based on a “self-
learning” mechanism, which creates a risk of entering a
negative reinforcement loop by adapting to mistakes made at
previous stages. In practice, we find that our training process
is stable. In order to further investigate this, we follow the lit-
erature (Radosavovic et al. 2018) to identify and exclude the
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Fig. 8 Qualitative results for semantic segmentation on Foggy Zurich-test

erroneous predictions from training. In particular, the con-
fidence scores of the predictions are used as a proxy for
prediction quality and we generate pseudo-labels only for
pixels where this confidence is higher than a defined thresh-
old. This prediction selection step, however, does not provide
clear benefit and thus is not included in our approach.

We believe that the low risk of entering the negative rein-
forcement loop and the steady improvement of our method

can be ascribed to two factors: (1) the accurate human annota-
tions of the partially synthetic data stream restrict the space of
adapted models, ruling out solutions that would create severe
errors in the inferred labels of the real data; and (2) each adap-
tation stage is initialized with the solution of the previous
stage, which helps smoothly traverse the model space from
the initial clear-weather model to the target foggy model.
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Fig. 9 Qualitative semantic segmentation results on images from Foggy Driving with varying fog density. Foggy images in the top row are sorted
from left to right in ascending order of estimated fog density using our estimator

123



1200 International Journal of Computer Vision (2020) 128:1182–1204

Im
ag

es
B

as
el

in
e

[4
0]

C
M

A
da

1
C

M
A

da
2

C
M

A
da

3+
M

od
el

Se
le

ct
io

n
G

ro
un

d
T

ru
th

Void Road Sidewalk Building Wall Fence Pole Traffic Light Traffic Sign Vegetation

Terrain Sky Person Rider Car Truck Bus Train Motorcycle Bicycle

Fig. 10 Qualitative semantic segmentation results under two weather
conditions: clear weather (left) and foggy weather (right)

6.2 Performance in MultipleWeather Conditions

We first note that the results which have been presented in
Table 2 on the Foggy Driving dataset (Sakaridis et al. 2018),
which contains images of varying fog densities from very

low to high, show that adaptation with CMAda to dense fog
also brings a significant benefit for lower fog densities.

In the following, we turn to evaluation of our Model
Selection method presented in Sect. 4.4.1 for the task of
semantic scene understanding in multiple weather condi-
tions. We consider two conditions: foggy weather and clear
weather. This means that the test set comprises a mixture
of images captured either in clear weather or under fog.
In particular, we report the performance of three domain-
specific methods and two variants of our Model Selection
on three datasets. The three domain-specific methods are:
(1) RefineNet, which is trained on Cityscapes dataset (Lin
et al. 2017) for clear weather, (2) CMAda2, which is trained
for foggy weather, and (3) CMAda3+, which is also trained
for foggy weather. The first variant of Model Selection uses
RefineNet and CMAda2 as its two expert models and the
second one uses RefineNet and CMAda3+ respectively. The
three test datasets are Cityscapes-lindau-40, Foggy Zurich-
test, and Clear-Foggy-80, which is the union of the two
previous sets. Cityscapes-lindau-40 contains the first 40
images (in alphabetical order) from the city of Lindau in
the validation set of Cityscapes.

The performance of all five methods on the three datasets
is reported in Table 3. We share a few observations. First, as
discussed in previous sections, our adapted models signifi-
cantly improve the recognition performance on foggy scenes.
Second, it seems that some knowledge initially learned for
recognition in clear-weather scenes is forgotten by our mod-
els during the adaptation process. This is also evidenced by
the visual comparison in Fig. 10, where the sky in the first
image is misclassified after the adaptation. This is because
during the adaptation stages, we aim for the best expert
model for (dense) foggy scenes and have not included any
clear weather images. Adding some clear-weather images
into the training data will alleviate this problem, but at a cost
of lower performance on foggy scenes. Last but not least,
both variants of our Model Selection method demonstrate
higher performance than their constituent expert models.
The second variant of Model Selection with RefineNet and
CMAda3+ yields the best performance. It works especially
well on the Clear-Foggy-80 dataset which contains 40 foggy
images and 40 clear weather images, due to the good per-
formance of the two expert models in their own domains.
The improved performance with Model Selection implies
that training multiple expert models—each for a different
condition—and adaptively selecting the best one at testing
time based on the input is a promising direction for semantic
scene understanding in adverse conditions. We also demon-
strate the improvement withModel Selection in Fig. 10when
both clear weather and fog are considered.
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Table 3 Performance comparison of RefineNet (trained for clear
weather), CMAda2 (trained for foggy weather), CMAda3+ (trained
for foggy weather), and our Model Selection method on three

datasets: Cityscapes-lindau-40 (clear weather), Foggy Zurich-test
(foggyweather) and the union of the twoClear-Foggy-80 (clear + foggy
weather)

Weather RefineNet CMAda2 CMAda3+ MS_R2 MS_R3+

Mean IoU over all classes (%)

Clear 67.2 65.1 59.6 67.2 67.2

Foggy 34.6 42.9 46.8 42.9 46.8

Clear + Foggy 54.3 59.1 58.1 59.3 62.2

Bold values indicate the best performance on each dataset by all segmentation methods
“MS_R2” stands for Model Selection with RefineNet and CMAda2 as the two expert models and “MS_R3+” for Model Selection with RefineNet
and CMAda3+ as the two expert models

Fig. 11 Representative images from Foggy Zurich-test and dehazed
versions of them obtained with the three dehazing methods that we
consider in our experiments on utility of dehazing preprocessing. a

Foggy Zurich-test image. bMSCNN (Ren et al. 2016). c DCP (He et al.
2011). d Non-local (Berman et al. 2016). This figure is better seen on
an screen and zoomed in

6.3 Investigating the Utility of Dehazing
Preprocessing

For completeness, we conduct an experimental comparison
of the baseline RefineNet model of Table 2 and our single-
stage CMAda pipeline using only synthetic training data
against a dehazing preprocessing baseline, and report the
results on Foggy Zurich-test and Foggy Driving-dense in
Tables 4 and 5 respectively. In particular, we consider dehaz-

ing as an optional preprocessing step before feeding the input
foggy images to the segmentation model, and experiment
with four options with respect to this dehazing preprocess-
ing: no dehazing at all (already examined in Sect. 6.1.1),
multi-scale convolutional neural networks (MSCNN) (Ren
et al. 2016), dark channel prior (DCP) (He et al. 2011), and
non-local dehazing (Berman et al. 2016). Apart from directly
applying the original clear-weather RefineNet model on the
dehazed test images, the results of which are included in the
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Table 4 Performance comparison on Foggy Zurich-test of RefineNet
(“w/o FT”) versus fine-tuned versions of it (“FT”) trained on Foggy
Cityscapes-DBF with attenuation coefficient β = 0.005, for four
options regarding dehazing: no dehazing, MSCNN (Ren et al. 2016),
DCP (He et al. 2011), and Non-local (Berman et al. 2016)

No dehazing MSCNN DCP Non-local

Mean IoU over all classes (%)

w/o FT 34.6 34.4 31.2 27.6

FT 36.7 36.1 34.2 29.1

Mean IoU over frequent classes (%)

w/o FT 51.8 48.6 42.9 41.1

FT 51.7 49.8 46.6 44.2

Bold values indicate the best performance among all pre-processing
(dehazing) methods

Table 5 Performance comparison on Foggy Driving-dense of
RefineNet (“w/o FT”) versus fine-tuned versions of it (“FT”) trained on
Foggy Cityscapes-DBF with attenuation coefficient β = 0.005, for four
options regarding dehazing: no dehazing, MSCNN (Ren et al. 2016),
DCP (He et al. 2011), and Non-local (Berman et al. 2016)

No dehazing MSCNN DCP Non-local

Mean IoU over all classes (%)

w/o FT 35.8 38.3 33.2 32.8

FT 36.6 40.0 35.8 37.5

Mean IoU over frequent classes (%)

w/o FT 57.6 55.5 47.4 50.7

FT 60.8 60.6 54.6 58.9

Bold values indicate the best performance among all pre-processing
(dehazing) methods

“w/o FT” rows of Tables 4 and 5, we also fine-tune thismodel
on the dehazed versions of our synthetic Foggy Cityscapes-
DBF dataset, and compare against fine-tuning directly on the
synthetic foggy images (already examined in Sect. 6.1.1).
Our experimental protocol is consistent: the same dehaz-
ing option is used both before fine-tuning and at testing
time. The attenuation coefficient for Foggy Cityscapes-DBF
is β = 0.005. The rest details are the same as in Sect. 6.1.1.
Not applying dehazing generally leads to the best results
irrespective of using the original model or fine-tuned ver-
sions of it. Fine-tuning without dehazing performs best in
all cases but one (Foggy Driving-dense and evaluation on all
classes), which confirms the merit of our approach. This lack
of significant improvement with dehazing preprocessing is in
congruencewith the findings of (Sakaridis et al. 2018), which
has dissuaded us from including dehazing preprocessing in
our default CMAda pipeline.

Figure 11 illustrates the results of the examined dehaz-
ing methods on sample images from Foggy Zurich-test and
reveals the issues these methods face on real-world outdoor
images with dense fog. Only MSCNN are able to slightly

enhance the image contrast while introducing only minor
artifacts. This correlates with the superior performance of
the segmentation model that uses MSCNN for dehazing pre-
processing compared to the models that use the other two
methods, as reported in Table 4. Still, directly using the
original foggy images generally outperforms all dehazing
preprocessing alternatives.

7 Conclusion

In this article, we have shown the benefit of using partially
synthetic as well as unlabeled real foggy data in a curriculum
adaptation framework to progressively improve performance
of state-of-the-art semantic segmentation models in dense
real fog. To this end, we have proposed a novel fog simula-
tion approach on real scenes, which leverages the semantic
annotation of the scene as additional input to a novel dual-
reference cross-bilateral filter, and applied it to theCityscapes
dataset (Cordts 2016) to obtain Foggy Cityscapes-DBF. In
addition, we have introduced a simple CNN-based fog den-
sity estimator which can benefit from large synthetic datasets
such as Foggy Cityscapes-DBF that provide straightforward
ground truth for this task. On the real data side, we have
presented Foggy Zurich, a large-scale real-world dataset of
foggy scenes, including pixel-level semantic annotations for
40 scenes with dense fog. Through extensive evaluation, we
have showcased that: (1) our Curriculum Model Adaptation
exploits both our synthetic and our real data in a synergis-
tic manner and significantly boosts performance on real fog
without using any labeled real foggy image, and (2) our fog
simulation and fog density estimation methods outperform
their state-of-the-art counterparts.
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