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Abstract
In this paper, we propose a novel approach to person detection in UAV aerial images for search and rescue tasks in Mediter-
ranean and Sub-Mediterranean landscapes. Person detection in very high spatial resolution images involves target objects that
are relatively small and often camouflaged within the environment; thus, such detection is a challenging and demanding task.
The proposed method starts by reducing the search space through a visual attention algorithm that detects the salient or most
prominent segments in the image. To reduce the number of non-relevant salient regions, we selected those regions most likely
to contain a person using pre-trained and fine-tuned convolutional neural networks (CNNs) for detection. We established
a special database called HERIDAL to train and test our model. This database was compiled for training purposes, and it
contains over 68,750 image patches of wilderness acquired from an aerial perspective as well as approximately 500 labelled
full-size real-world images intended for testing purposes. The proposed method achieved a detection rate of 88.9% and a
precision of 34.8%, which demonstrates better effectiveness than the system currently used by Croatian Mountain search and
rescue (SAR) teams (IPSAR), which is based on mean-shift segmentation. We also used the HERIDAL database to train and
test a state-of-the-art region proposal network, Faster R-CNN (Ren et al. in Faster R-CNN: towards real-time object detection
with region proposal networks, 2015. CoRR arXiv:1506.01497), which achieved comparable but slightly worse results than
those of our proposed method.

Keywords Convolutional neural networks · RCNN · Salient object detection · Unmanned aerial vehicles (UAV) · Search and
rescue · SAR image database

1 Introduction

In Croatia, Bosnia and Herzegovina (BiH) and Montenegro,
responsibility for search and rescueof amissingor lost person
falls under the jurisdiction of the Mountain Rescue Service.
This service is specially equipped and trained for such mis-
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sions. The largest number of missions are conducted on hilly,
karst Mediterranean terrain, characterized by low but not
dense vegetation. A search and rescue (SAR) mission begins
with a call for help and ends when the missing or lost person
is found-hopefully alive but possibly dead (Koester 2008).
In the relevant search and rescue literature (Koester 2008),
the terms ‘missing’ and ‘lost’ are not equivalent; however, in
this paper, we use them interchangeably to denote the person
being sought. After receiving a call, the SAR team collects all
available information about the lost persons, including their
gender, age, descriptions, times and locationswhen theywere
last seen, clothing and items carried and their health and psy-
chological conditions, to mention just some of the valuable
information that can help search planners to categorize the
lost people into corresponding subject types. For each subject
type, there are certain statistical patterns of behaviour from
which it is possible to gain insight into the likely actions of
the searched person. Together with factors such as type of
terrain, degree of afforestation, weather conditions and time
of day, the SAR leader creates a probabilitymap of the area or
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Fig. 1 Search scenarios for person detection from UAV imagery

‘map of likelihood’where themissing person could be poten-
tially located. The SAR team has various resources at their
disposal: trackers, searching dogs, unmanned aerial vehicles
and sometimes even military or police helicopters; thus, the
goal is to optimally allocate available resources to each spe-
cific search task. For comparative advantages and practical
reasons, UAVs have been used for years in searchmissions to
cover large search areas rapidly and provide access to remote
or difficult-to-reach locations (Yeong et al. 2015). UAVs have
been especially effective for difficult-to-reachMediterranean
karst landscapes. The CroatianMountain Rescue Service has
been usingUAVs on their missions for several years. Accord-
ing to the available SAR data, more than 50% of lost/missing
hikers, hunters and children are found within a 1.8km radius
from the initial planning point (IPP) (the last known loca-
tion of the missing person or the location where the person
was last seen). According to SAR procedures, the first phase
involves searching roads, paths and the area surrounding the
IPP. At this stage, a UAV is programmed to inspect (pho-
tograph) the surrounding roads and paths or the terrain of
interest. SpecialMission Planner software is used to program
the UAV. Figure 1 presents possible usage scenarios in SAR
missions: Fig. 1amapping an earth sectionwith a grid search;
Fig. 1b patrolling and mapping. Based on the survey grid
parameters in the Mission planner, our custom-made UAV
equipped with a compact 12-Mpixel camera (Canon S120)
can easily map and photograph more than 20 hectares of ter-
rain at a spatial resolution of 2 cm in less than 16min while
maintaining an altitude of 50m. Depending on the weather
conditions, the UAV records between 120 and 160 images
(500–700MB of data) per flight. It is not uncommon to use
multipleUAVs. In the subsequentmission stages, the remain-
ing terrain must be searched in accordance with the SAR
mission plan.

All the acquired images are screened by an expert on the
search team to detect missing persons or find other useful
traces. Person detection from high spatial resolution images
such as in Fig. 2, in which the target objects are relatively
small and often camouflaged within the environment, is a
challenging and demanding task. Based on the Croatian SAR
team’s experience, inspecting a single image (depending on
its complexity and the display size) requires between 15 and
90s. Images are often analysed in the field; however, when
appropriate network capacity is available, they are sometimes
uploaded to the cloud and processed remotely in parallel by
multiple experts. Inspecting images for person detection is a
slow, exhausting and tedious process that consumes excessive
human resources and is subject to error. To address the above
problem, a method for detecting people from aerial images
based on amean-shift algorithm (Turić et al. 2010)was devel-
oped. Thismethod significantly facilitated the image analysis
process by suggesting potential suspect locations in images;
then, the search team experts could perform further visual
inspections. This approach achieved a satisfactory level of
detection, but it had the drawback of producing relatively
significant number of false detections that were counterpro-
ductive to the visual inspection process. To overcome these
disadvantages, in this study, we developed a more advanced
model based on deep learning. This paper presents our new
method, which has improved and enhanced the visual inspec-
tion process by utilizing saliency for region proposal and a
CNN for classification. Our method functions as a support
mechanism to aid in possible detection or to suggest poten-
tial locations for missing or lost persons from UAV-acquired
imagery.We compare our proposed method with the existing
method based on the mean-shift algorithm as well as with the
state-of-the art Faster R-CNN algorithm.

The three main contributions of this paper are as follows.
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Fig. 2 Example UAV image
from a SAR exercise mission

– We design a model to detect or suggest possible missing-
person (small objects) locations based on saliency and
deep learning models.

– We compile a public available image database of UAV
imagery of lost or missing persons in natural environments
called HERIDAL.1

– We analyse and compare the proposed model with one
of our earlier solutions used by the Croatian Mountain
Service on SAR missions, as well as with a state-of-art
solution for region proposal and classification R-CNN.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a brief review of the relevant literature.
Section 3 describes the proposed model and our method-
ology. The database of UAV imagery of lost or missing
persons in natural environments intended for CNN training
and testing is presented in Sect. 4. Section 5 describes the
experiments and the results of the study as well as compar-
isons with the method based on the mean-shift algorithm and
Faster R-CNN. Finally, Sects. 6 and 7 present a discussion
and conclusions, respectively.

2 RelatedWork

Person detection from an aerial perspective is a challeng-
ing task compared to other object detection problems (for
example, detecting vehicles). The wide range of person

1 The data set has been published on IPSAR website, http://ipsar.fesb.
unist.hr under the page “HERIDAL” or direct link: http://ipsar.fesb.
unist.hr/HERIDAL%20database.html.

appearances resulting fromchanging articulated poses, cloth-
ing, lighting and background (Enzweiler and Gavrila 2009)
is one challenge. However, many successful models have
been created and tested that can identify objects-particularly
moving objects-and these have been specifically tailored to
address automotive industry issues such as pedestrian avoid-
ance or applied to the security and surveillance domain. The
simplest models involve background subtraction, which can
detect moving regions across two consecutive video frames.
Thesemodels are most often applied to surveillance systems,
where the camera is static. However, these models are gener-
ally unsuitablewhen the object of interest is notmoving or for
object detection fromstill images.One early study fromViola
et al. (2003) built an efficient moving-person detector that
used AdBoost to select the best features from integral image
representations and trained a chain of progressively more
complex region rejection rules based on Haar-like wavelets
and space-time differences. In recent years, based on the
similarity of pedestrian detection to other generic object
detection and classification tasks, deep learning models have
become increasingly attractive. Some deep learning models
are hybrids that combine traditional, hand-crafted features
with convolutional features (Tian et al. 2015; Hosang et al.
2015),while others are pureCNNmodels (Zhang et al. 2016).

Person detection from UAV imagery introduces an addi-
tional spectrum of issues such as the small average size of a
human body observed from an aerial platform, rapid plat-
form motion and image instability; in combination, these
issues increase the difficulty of the person detection task.
Additionally, the standard approaches to pedestrian detection
generally address large object sizes within an image together
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with texture and shape information. Several authors have pro-
posed bimodal systems that use thermal and optical imagery
fromUAVs to achieve a better detection rate. Anna Gaszczak
and Breckon (2011) proposed using both thermal and visi-
ble imagery for aerial reconnaissance and surveillance. Their
main goal was to develop a real-time person and vehicle
detection system by fusing the two image sources. For vehi-
cle detection, they trained several independent cascadedHaar
classifiers to detect vehicles in different orientations based
on their lighter or darker colours in optical images. After
detecting a vehicle within an optical image, they searched
for confirmation in the thermal imagery. In contrast, for per-
son detection, they first trained cascaded Haar classifiers on
human thermal signatures; then, they achieved secondary
detection confirmation using a multivariate Gaussian shape
matching technique on regions from optical images.

Rudol and Doherty (2008) also used thermal and visi-
ble imagery to find persons lying or sitting on the ground
in video sequences. They first identified high-temperature
regions corresponding to human body silhouettes. The corre-
sponding regions were then analysed in the visible spectrum
using a cascade of boosted classifiers working with Haar-like
features.

A significant number of papers have relied on UAVs
equippedwith thermal cameras as themain image acquisition
source. However, in Mediterranean regions, particularly the
karst areas,which are characterized byvery hot summers, this
type of device is not quite suitable. Most searches in the area
of Dalmatia occur in the summer when the external tempera-
tures and ground thermal radiation exceed the temperature of
the humanbody. Searchmissions are generally not conducted
at night because of the inaccessibility of the terrain, the
danger of encountering wild animals and many other unfore-
seeable situations that may endanger the seekers themselves.
Additionally, most state regulators forbid night flights, which
is the periodwhen thermal cameras aremost effective.Conse-
quently, in this study, we exclusively used optical cameras for
image acquisition as well as in our research team’s previous
papers throughout the IPSAR project. A conference paper
(Turić et al. 2010) from our department published by Turic,
Dujmic and Papic proposed a method based primarily on
the mean-shift segmentation algorithm. After segmentation
tuned for small segments, the authors decided to use heuris-
tic rules such as the sizes of segments and clusters to make
decisions. The mean-shift algorithm was selected primarily
because it had demonstrated good results regarding stability
and segmentation quality. To reduce the high computational
requirements and the quadratic computational complexity
of the algorithm, they decided to modify and use two-stage
mean-shift segmentation, which resulted in only a minor loss
of accuracy. The pseudocode for this algorithm is provided
in Appendix A. Musić et al. (2016) used the aforementioned
detection model to conduct performance comparisons of the

system on compressive-sensing-reconstructed images and
original images, focusing primarily on image quality and
information exchange. In Gotovac et al. (2016) the authors
tried different approaches, applying and analysing various
salient detection algorithms to detect lost persons. The con-
clusions from this paper are partly used in our new proposed
model.

3 ProposedModel andMethodology

A number of different algorithms exist to detect objects in
images. Using a sliding-window is the most popular and
simplest approach and has been proven to be effective in
many applications; however, this technique is not particu-
larly efficient when used with CNN models as classifiers.
The sliding window approach uses an exhaustive search to
determine the locations of objects in an image, which results
in a large number of image areas that must be processed to
extract features for classification. CNN models are gener-
ally more computationally expensive than using generated
handcrafted features; consequently the whole process can be
rather slow. One solution is to use cascaded deep networks
and fast features, as was done in Angelova et al. (2015), or
to use a variant of region-proposal-based CNN frameworks
for object detection, which was the approach taken by Gir-
shick (2015), Girshick et al. (2013) and Ren et al. (2015).
Recent advances in object detection have mostly been driven
by the success of region-proposal-based or region-based R-
CNNs. In their simplest forms, these models are composed
of three consecutive parts. The first part reduces the feature
space and selects the regions that are most likely to include
the object/s of interest. Various techniques have been used
to select the most promising regions; these techniques range
from segmentation techniques, to saliency methods, or even
to small separately trained CNN networks specially designed
to identify candidate regions. After selecting the best candi-
dates, in the second part, a computationally expensiveCNN is
used to extract features, and the third part applies a classifier
that evaluates and performs classification. In this paper, we
adopted a region-based solution that resembles the R-CNN
framework pipeline (Girshick et al. 2013). An overview of
the proposed model is shown in Fig. 3. To select candidate
regions that possibly contain people and to obtain the relevant
locations in an image, we modified the salient object detec-
tion algorithm that was described and published in Imamoglu
et al. (2013). As domost algorithms in this field, this salience
detection approach produces a grey-scale salience map that
includes the most prominent objects. To further simplify the
image, we used threshold and morphological operations to
produce a binary map containing a limited number of blobs.
These blobs are then furtherwinnowed out by considering the
expected size of the target object with respect to the UAV’s
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Fig. 3 Architecture of proposed model

flight altitude and camera characteristics. The binary map
serves as a mask that allows extraction of the image parts
used as input to the CNN classification module. The network
processes the candidate patches using several convolutional
(conv) and max pooling layers to produce several convo-
lution feature maps that are subsequently used to produce

fixed-length feature vectors classified as ‘person’ or ‘non-
person’. The final detection map shown in Fig. 3 includes
some of the most prominent regions (3 per image) and was
produced by skipping the classification model’s evaluation.
More detailed elaborations of the proposed model can be
found in the following subsections.
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3.1 Region Proposals Using Saliency Object
Detection

One of the most important features of the human visual
system (HVS) is that it derives important and compact infor-
mation from natural scenes using a process called visual
attention. Because the surrounding environment includes an
excessive amount of information, the visual attention mech-
anism reduces the redundant data, concentrating only on
the information that benefits perception during the selective
attention process (Treisman and Gelade 1980; Koch and Ull-
man 1987; Imamoglu et al. 2013). In this way, humans can
quickly locate the most important parts of a scene - the parts
that stand out relative to their neighbours and thus capture
our attention.

These prominent, dominant or interesting objects are also
called ‘salient objects’. Computational models that imitate
biologically inspired processes and detect objects of inter-
est are called salience detection models. Many studies have
attempted to build computational models to simulate this
mechanism (Borji et al. 2014); however, most studies have
examined and tested on high-quality and high-resolution
colour images with minimal noise in which where the salient
object is the main subject or occupies the a substantial part
of the image (Sokalski et al. 2010). In contrast, our sub-
jects of interest occupy an extremely small area on of the
image, and; therefore, some the classical (non-deep learning)
state-of-the-art models typically give yield only the average
or not unsatisfactory results. However, Leroy et al. (2014)
compared the results of nine salient detection algorithms
on the Jian Li database (Li et al. 2016) for objects with
three size categories (large, medium and small). Based on
this paper, an algorithm based on wavelete transformation
(WT) (Imamoglu et al. 2013) demonstrated excellent results
in the detection of small objects. That conclusion was con-
firmed in one of our earlier papers (Gotovac et al. 2016),
where we compared some bottom-up salient object detection
algorithms on the images obtained from the UAV aircraft.
Because this algorithm is very highly suitable for detecting
smaller salient parts portions of the an image, we included
WT (Imamoglu et al. 2013) as the base of our region proposal
part/module to simplify the image and find regions of interest
or candidates. An overview of WT model is shown in Fig. 4.

In the first phase, RGB images are converted into CIE
Lab colour space due to the fact that because Lab that colour
space is more uniform and better approximates similar to
human perception. Then, a Gaussian low-pass filter is used
to remove the noise from input colour image I:

In = I ∗ Gmxm (1)

Gmxm represents a 2D Gaussian filter in which we set
m = 5. The filtered image In channels are then normal-

Fig. 4 Framework of saliency detection model based on wavelet trans-
form

ized to the range [0, 255]. Wavelet decomposition is used
to extract oriented details (horizontal, vertical and diagonal)
from the multi-scale perspective on in the normalized chan-
nels. Wavelet decomposition enables high spatial resolution
with higher frequency components and low spatial resolution
with lower frequency componentswithout losing detail infor-
mation loss in detail during the decomposition process. The
sub-bands of the image formed by WT for a number of lev-
els using Daubechies wavelets (Daubechies 1992) 1, . . . , N
wavelets (db5) as follows:

[Ac
N , Hc

s , V c
s , Dc

s ] = W Tn(In) (2)

where N represents the maximum scaling number for the
WT decomposition process and the level with the coarsest
resolution. S represents the resolution index s ∈ {1, . . . , N },
and c represents the image colour channels c ∈ {L, a, b}.
Hc

s , V c
s , Dc

s are the wavelet coefficients of the horizontal,
vertical and diagonal details for the given s and c, respec-
tively, and Ac

N is the an approximation component at the
coarsest level, which is not used during feature extraction.
Feature maps f c

s (x, y) are created during the inverse wavelet
transformation (IWT) of the wavelet coefficients for the sth
level decomposition for each image sub-band c (the approx-
imation component Ac

N is used during feature extraction) as
follows:
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f c
s (x, y) = (I W Ts(Hc

s , V c
s , Dc

s )
2

η
(3)

where η scaling factor to limit the range of feature values
and is necessary to avoid huge variations in the covariance
matrix among the feature maps during the computation of
the global saliency map. After calculating the feature maps,
a local saliency map sl(x, y) is created by fusing the feature
maps at each level linearly using the formula given below:

sl(x, y) =
(

N∑
s=1

argmax( f L
s (x, y), f a

s (x, y), f b
s (x, y))

)

∗Gmxm (4)

A global saliency map is calculated on from a 3×N feature
vector (3×3 channels and N-level wavelet-based features for
each channel) from all the feature maps using a probability
density function (PDF), that calculates the likelihood of the
features appearing at a given location. The PDF in multi-
dimensional space is given by

p( f (x, y)) = 1

(2π)n/2| ∑ |1/2
∗ xe−1/2( f (x,y)−μ)T ∑−1( f (x,y)−μ)

with

∑
= E[( f (x, y) − μ)( f (x, y) − μ)T ] (5)

whereμ is a mean vector containing themean of each feature
map, T is the transpose operation,

∑
in (5) is the covariance

matrix; | ∑ | is the determinant of the covariance matrix.
Using the PDF from (5), the global saliency sg(x, y) map
can be computed as follows:

sg(x, y) = (log(p( f (x, y))−1))1/2 ∗ Gmxm (6)

In the final step, the local and global salient maps are
combined using amodulation functionM as a non-linear nor-

malization function (M(.) = (.)ln
√
2√

2
)to produce final salience

map, S(x, y)

S(x, y) = M(Sl(x, y)xesg(x,y))xGmxm (7)

As shown in (4) (6) and (7), each resulting salient map is
filtered with a 2-D Gaussian low-pass filter to obtain a set
of smooth maps. In our work, we made several changes and
adjustments to this algorithm to enhance its performance and
improve its execution speed. In the original paper, the authors
enhanced the final saliency map based on Gestalt law prin-
ciples. These principles can be interpreted in such a way
that locations around the focus of attention (FOA) gain more

attention than those that are further away. Thus, the more
salient points in the saliency map are enhanced, while the
points more distant from the salient point are suppressed.
However, we did not use these principles in our evalua-
tions because it showed no additional benefits on our set
of images; therefore, we disregard this technique to enhance
the performance. One reason we chose this algorithm for
region proposal instead of one of the pure segmentation
methods, such as the mean-shift algorithm, was its linear
asymptotic execution time. However, in its original form, this
algorithm applies an extensive number of calculations to a
larger amount of data, which makes it impractical for larger-
sized images. Consequently, it was necessary tomake certain
considerations and adjustments. The algorithm’s main draw-
backs are its memory requirements and the amount of data
needed to calculate the global saliency map or probability
density map. After obtaining the feature maps from (3), we
need to concatenate them for every channel and at every
level of decomposition. For example, calculation of a global
saliency map for an RGB image with a size of 4000 × 3000
requires a 12-level wavelet decomposition that generates 12
featuremaps per channel (36 featuremaps overall). Each fea-
turemap has the samewidth and height as the original image;
therefore,wewould need to calculate 36 * 4000 * 3000 or 432
million features. To store this much information in memory,
we would need approximately 1728MB of single-precision
floating point memory space. However, using every feature
map and every decomposition level to calculate the proba-
bility density map is overkill. Experimentally, we found that
no accuracy was lost by using only every third feature map
per channel; this approach results in 12 * 4000 * 3000 or 144
million features,which significantly reduces the performance
impact. As a proof of concept, the first step was to implement
the algorithm inMATLAB. Table 1 shows the execution time
with respect to the size of the image and the number of fea-
tures generated by the modified version of the algorithm.
The Data/Time Ratio row shows that the algorithm behaves
linearly with respect to data growth. Although it may seem
from Table 1 that the algorithm is uncompetitive regarding
execution speed, we note that the original MATLAB imple-
mentation was not optimized for multi-core processors or
GPUs. By implementing the algorithm in C++ and CUDA,
we managed to achieve a 38x speedup on a computer with
an Intel Xeon (6 Core) processor and an Nvidia Titan GTX
graphic card, which resulted in an execution time of 1.89 s
for an RGB 4000 × 3000-pixel image.

3.2 Deep Learning and Feature Extraction Using a
CNN

Deep convolution neural networks (DCNNs) have recently
shown outstanding performances on image classification
tasks. In addition to image classification, DCNNs have also
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Table 1 Time analysis of the modified WT algorithm implemented in MATLAB and implemented and optimized in C++

Image size 500 × 375 1000 × 375 1000 × 750 2000 × 750 2000 × 1500 4000 × 1500 4000 × 3000

Numb. of features (mil) 1.69 3.38 6.75 13.50 27.00 72.00 144.00

Execution time(s)—Matlab 0.93 1.81 3.54 7.01 13.87 35.18 71.45

Data/time ratio—Matlab 1.82 1.87 1.91 1.93 1.95 2.05 2.02

Execution time(s)—CUDA 0.023 0.046 0.091 0.179 0.36 0.93 1.89

Data/time ratio—CUDA 73.55 73.91 74.12 75.31 75.82 77.25 76.19

been used in object detection tasks to provide precise loca-
tions of the detected objects.

DCNNs are composed of several layers, each contain-
ing linear or non-linear operators that are jointly trained in
an end-to-end fashion to solve specific tasks. Certain deep
architectures have contributed significantly to the field of
deep learning and some architectures have become stan-
dards [e.g., LeNet5 (Lecun et al. 1998), AlexNet (Krizhevsky
et al. 2012), VGG-16 (Simonyan and Zisserman 2014),
GoogLeNet (Szegedy et al. 2015) and ResNet (He et al.
2015)]. In our paper, we chose the visual geometry group
(VGG) convolutional neural network proposed by Simonyan
and Zisserman (2014) at the University of Oxford. They have
suggested various models and configurations of deep convo-
lution neural networks and presented one of their proposals to
ILSVRC-2013. Thismodel, also known asVGG-16 (because
it contains 16 layers), became popular for achieving TOP-5
accuracy of as much as 92.6% on the ILSVRC Image clas-
sification task and showed that network depth is a critical
component in achieving good performance.

The main difference between the VGG-16 model and
its predecessors (LeNet and AlexNet) is that VGG-16 uses
many convolutional layers with small receptive fields in the
first layers of the network. It features an extremely homoge-
neous architecture that performs only 3×3 convolutions and
2 × 2 pooling from the beginning to the end. This approach
reduced the parameters and increased the network’s nonlin-
earity, resulting in a model that is easier to train.

CNNmodels with various architectures are primarily used
to learn features from data that constitute a main-but not the
only-building block in successful generic object detection
frameworks. As previously mentioned, we used a pipelined
approach similar to that of R-CNN (Girshick et al. 2013)
which significantly improved the detection performance in
terms of mean average precision (mAP) compared to models
that did not use CNNs. This system consists of three parts.
The first part generates region proposals using a selective
search. The second part uses the CNN to extracts features
from every proposed region. The third part uses an SVM
to perform classification. The Fast-RCNN model was pre-
sented in Girshick (2015) and it improved the training and
testing speed of the original R-CNN and its detection accu-
racy by sharing the CNN computation among all the region

proposals. In this model, an image is first input into a CNN to
create a convolution feature map; then, the Region of Interest
(RoI) pooling layer extracts a feature vector for each region
proposal. The feature vectors are fed into fully connected lay-
ers. Finally, the model produces soft-max class-probability
estimates and bounding boxes for each detected object. The
bottleneck of these two proposed systems lies in the first
part or region proposal stage, where a selective search (SS)
greedily merges super-pixels based on engineered low-level
features, which is relatively time-consuming operation. In
Ren et al. (2015) the authors addressed this issue by using
a Region Proposal Network (RPN)—a separate neural net-
work responsible only for suggesting candidate regions. In
the RPNmodule, a small network slides over the convolution
feature map with multiple anchors at each sliding window
location and then outputs bounding boxes (region proposals)
that are input to the Fast R-CNN detector for inspection. The
proposed model is known as Faster R-CNN and consider-
ably reduced the computational requirements of the overall
inference process.

In general, we can say that all three of the above models
efficiently classify object proposals using deep convolutional
networks and have achieved state-of-the-art status on stan-
dard classification and detection data-sets, they have become
the de facto standards of this field. However, the standard
image databases mostly contain objects that are prominent,
large, and occupy a sizable proportion of the total image
area. Therefore, in their original form these frameworks did
not yield similar performance with regard to the detection
of relatively small objects. The authors of Chen et al. (2017)
evaluated this issue and empirically determined that the selec-
tive search and edge box approaches work well in generating
proposals for large objects in the PASCAL VOC dataset, but
were unsatisfactory for generating small object proposals.
Even with exhaustive search and 2000 object proposals per
image, the recall rate was lower than 60%.

Region proposals by an RPN present similar behaviours
and do not provide resultswith the same accuracy, as reported
in Yuan et al. (2017); Chen et al. (2017) and Eggert et al.
(2017). This result occurs because RPN uses hard-coded
anchorswith fixed scales and aspectswhen identifying poten-
tial regions. Therefore, to use these generic frameworks
effectively for small-object detection, the problem charac-
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teristic considered in this paper, in most cases it is necessary
to modify the part that generates region proposals. In this
study, we decided to select regions of interest from saliency
maps. These image proposals are used as input to pretrained
and fine-tuned VGG-16 CNN networks using transfer learn-
ing from our dataset. The final classifications are performed
using the SoftMax classifier.

4 Design and Implementation of the
HERIDAL Image Database

One important consideration in object detection and other
computer vision tasks is acquiring a relevant image database.
Image database has been design according to the instructions
presented in paper (Zendel et al. 2017). In general, image data
are collected from a large variety of locations and sources,
from social media activities to surveillance data. However,
due to the specific problem of detecting people in SAR mis-
sions in non-urban areas, these image sources are inadequate.
Additionally, it is worth mentioning that the experimental
images in related works mostly consist of a small number of
images or are created in simulated conditions that do not cor-
respond to real-world scenarios. We considered it necessary
to take certain theoretical and practical knowledge from the
SAR literature into account when designing and collecting
an image dataset that can be used for the experimental phase.

It is particularly important that the set contains as many
realistic scenes as possible, including mountains, wilderness
and remote terrain and that it covers most real-world situa-
tions that could be encountered in practice, such as person
poses, colour of clothing, position in the environment, illumi-
nation, etc. All the data required to build such a database can
be gleaned from statistics of theCroatian SAR teamaswell as
from the literature, especially from the book (Koester 2008)
that represents the starting point of SAR theory. In that book,
the author processed and interpreted data obtained from the
International Search and Rescue Incident Database (ISRID),
which contains 50,692 SAR cases. According to Syrotuck
and Syrotuck (2000) and Koester (2008), subject types can
be classified by age, mental status and activity into a dozen
broad categories. Some of these categories involve children
(various age groups), hunters, mushroom gatherers, hikers,
climbers, irrational, mentally challenged and despondent
people. Each category is characterized by specific behaviour
patterns that can manifest when a person is lost and that can
be helpful in predicting the missing person’s potential loca-
tion and pose in the environment. For example, an irrational
person tends to move in a straight line until they encounter
obstacles such as bushes, trees or reach water. Depressed
people as a subject category include people who have been
depressed and those with a high possibility of suicide or who
have expressed the intent to commit suicide. Most just seek

to get out of sight so they cannot be considered lost per-
sons; sometimes, they intentionally hide themselves, do not
answer calls or actively avoid the search team. Climbers and
mountaineers often travel considerable distances to ascend
prominent peaks or to climb rocks. The biggest risks for
these two categories are over- or underestimation of the ter-
rain difficulty or the time required to complete the climb. The
second biggest risk is becoming stranded and bad weather.
Trauma and injuries from falls or falling debris are also
frequent. Hunters and berry and mushroom pickers gener-
ally get lost in the wilderness while travelling cross-country.
Preoccupied with their activities, they often fail to pay atten-
tion to changing terrain, weather conditions or the passage
of time. Children frequently become lost because they take
shortcuts that may in actuality represent a longer route. They
are also commonly involved in fantasy play, exploring or
adventuring, and in most cases, they are drawn to wilderness
areas. When lost, they use a trail/road following strategy.
Additionally, children may be hiding intentionally to avoid
punishment, to gain attention or simply sulking. From these
examples and the statistical data presented in Table 2, we
can draw some conclusions about potential missing-person
locations.

As shown in Table 2 for the selected types of subjects,
most people were found along roads, drains or other linear
structures (e.g., trails, railroads, or pipelines), followed by
structures (enclosed structures or shelters), and finally, in
bushes/forests. However, the table does not include all the
types of subjects, not does it apply to all climatic zones (only
moderate climate zones). Such information as well as infor-
mation concerning the average distance from the IPP for a
particular subject type are used by search planners primarily
to determine the probability of area (POA) and thus, posi-
tion a search team in the most probable location as soon
as possible. Information about locations where people can
potentially be found was highly important in designing a
proper and valid image database for use in the experimental
phase in this paper. The dataset needs to include open fields,
roads, drainage areas, bushes and forest as well as enclosed
structures or shelters.

Additionally, it would be beneficial to know the body posi-
tion of injured or missing persons at the moment they were
found, but these data are not available from existing statis-
tical databases related to SAR missions. This situation is
understandable because such information is not particularly
important or relevant for classic SAR missions. In contrast,
such information could contribute significantly to a better
performance for computer vision tasks. We mentioned that
depressed people may actively attempt to avoid the search
team or crouch down to hide in bushes. Mountaineers or hik-
ers can experience an accident and severe trauma that causes
them to remain immobile in various lying or sitting positions.
Children as a subject type have amuch smaller projection and
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Table 2 Finding locations for some selected subject types

Subject type Structure Road, Drainage, Linear Brush, scrub, woods Field Rock Other

Demented 20 36 23 14 0 7

Despondent 26 26 26 6 2 14

Climbers 0 27 9 9 27 28

Gatherers 0 80 10 0 10 0

Hikers 13 50 9 14 4 10

Hunters 8 55 14 0 2 21

Children (7–9) 29 38 15 6 1 11

Average 16 44 15 7 6 13

footprint in images compared to adults; they are sometimes
difficult to distinguish from natural artefacts, especially in
low lighting conditions. The silhouette and shape of a person
stuck in the bush and trees can be severely occluded such that
only a small part of the person is visible from the air, which
further complicates the entire detection model.

It should also be noted that not all searches are related to
only one missing person. A subject can be lost alone or in
a group. The majority, approximately two-thirds (67%), of
all incidents involve solo subjects. Groups of two account for
19%, and the rest are groups of 3 ormore subjects. According
to these data, we obviously cannot expect that every search
will be organized for a solo subject. Thus, the possibility of a
search for multiple subjects cannot be neglected; we need to
ensure that the dataset includes images with multiple people
as well as images with traces of human presence.

Figure 5 shows the variety of terrain and an excerpt of the
image database on which the experimental analysis was per-
formed. A test set of 101 images was gathered and selected
from 12 locations with various terrain configurations from
different locations in Croatia and BiH. The images were
acquired during mountain tours, nature trips or during moun-
tain rescue service exercises. At several locations, we used
staged volunteers and students to act as missing persons.
Images (vertical or nadir) were acquired at altitudes of 40
m to 65m from a custom-made UAV equipped with a Canon
Powershot S110 camera and Mavic Pro from a Phantom
3 Advanced model. Both models are equipped with sen-
sors capable of photographing 12-Mpx images, resulting in
ground resolution of 2 cm. At one location (Medjugorje),
images were taken with a DJI Inspire UAV (wide-format
4000×2250 px). Each image contains at least one “missing”
person, and some of the images contain more than 10 people.
All the people in the images are adequately labelled. Table 3
lists information about the image locations, the number of
images per location, the number of persons per location, as
well as various person poses in the scene presented accord-
ing to statistic proposed by Croatian Mountain SAR Team.
Table 4 presents a distribution of the images according to lost

person location given in Table 2. It should be emphasised that
the person location is not easy uniquely to determine. For
example, when according to statistics a person was found on
the road in many cases it is not directly on the road but in
nearby bushes, shrub or rocky area. Also, locating persons
on the road is not a challenging task, while locating them in
bushes, shrub or rocky area is incomparably more difficult.

We emphasize that the level of scene lighting is an impor-
tant factor in acquiring good and usable images, and it is
highly dependent on the time of day a photograph was
acquired (dawn, morning, noon, sunset) as well as the mete-
orological conditions (sunny, cloudy, partly cloudy). These
dynamic characteristics can be partly compensated for by the
settings of the image capture devices (i.e., ISO, exposure, and
lens aperture). However, in practice, due to the complexity
of the scenes, the resulting images are overexposed or under-
exposed, which can result in reduced detection accuracy or
an increased number of false alarms.

For example, although Fig. 5a, b show similar areas,
Fig. 5b is somewhat overexposed compared to Fig. 5a. The
same conclusion applies to Fig. 5i, m. However, in the first
case, we are dealing with different camera settings, while
in the second case, changed weather conditions resulted
in a greatly altered scene. The pictures shown in Fig. 5g,
p are somewhat underexposed. Figure 5h, i show micro-
localities of the Cabulja mountains in spring and summer:
we can clearly see changes in the vegetation (green and yel-
low grass). Generally, each image includes a large amount
of data and details that must be inspected. In this wealth
of information, natural artefacts and objects are predomi-
nant, whereas artificial or manufactured objects or missing
persons are generally extremely rare. From a dataset per-
spective, we face a highly unbalanced set that is not suitable
for standard machine learning detection models and leads
us to the field of artificial intelligence/machine learning
that deals with outliers, which in most cases yields poorer
results. To overcome these issues, we invested a great deal of
time and effort in creating a training database that includes
many positive examples of persons on various terrains to
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Fig. 5 Example of images from various terrains and locations: a Blidinje (1), b Blidinje(2), c Brač, d Goranci, e Čapljina, f Brkan Hill, Mostar, g
Brštanovo, Split, h Čabulja (1), i Čabulja (2), jMe -dugorje, k Blato, l Široki Brijeg (1),m Široki Brijeg (2), n Trimusa, Mostar (1), o Zrinjevac (2),
p Zrinjevac (3)

allow us to train machine learning algorithms in general
and deep-learning approaches in particular. Logistically and
organizationally, it would be very difficult and expensive to
gather large numbers of people to simulate injured people in
wilderness areas. Therefore, we gathered images of people
on several occasions, as illustrated in Fig. 6. Figure 6a shows
Catholic believers climbing on Apparition Hill in Medju-
gorje (12/08/2017); Fig. 6b shows mountaineers climbing at
Mount Cvrsnica; Fig. 6c shows a mass meeting at Kupres
(30/07/2017); and Fig. 6d shows people gathering in a park
in Mostar (all locations are in Bosnia and Herzegovina).
These vertical or nadir image acquisitions were acquired
from a UAV equipped with a Canon Powershot S110 cam-
era, which is characterized by a CMOS sensor capable of

taking 12-Mpx images at altitudes from 30 to 40m. These
images include a large number of people (children, women,
youths and the elderly) wearing a variety of clothing, in var-
ious poses and positions within the environment, and under
differing lighting conditions. By cropping people from the
images, we created a database containing 12,378 positive
patches. However, these images did not include enough peo-
ple sitting or lying down,which is a common situation inSAR
missions. To address this problem, we decided to syntheti-
cally generate such positive patches. We gathered students
and photographed them in various positions (standing, walk-
ing, sitting, squatting, lying down) in a local stadium. This
approach placed the people on a uniform grassy background
that can be easily removed from patches. Subsequently, we
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Table 3 Details about image database and distribution of various person poses in the scene

Location Abbr. Platform Number of images Number of person Standing Sitting Laying Squatting

Blidinje BLI Custom (Cannon S120) 9 47 10 12 18 7

Brač BRA Phantom 3 Pro 12 22 19 3 0 0

Brkan hill BRK Cannon S120 12 21 5 10 6 0

Brstanovo BRS Phantom 3 Pro 11 21 18 0 3 0

Čabulja CAB Custom (Cannon S120) 8 34 4 3 16 11

Čapljina CAP Custom (Cannon S120) 6 19 1 1 11 6

Medjugorje MED Custom (Cannon S120) 6 53 49 1 0 3

Blato MOB Phantom 3 Pro 5 13 7 0 5 1

Široki Brijeg SB Phantom 3 Pro 10 24 11 3 8 2

Trimusa TRS Phantom 3 Pro 6 18 11 0 0 7

Zrinjevac ZRI Custom (Cannon S120) 6 49 29 15 3 2

Goranci GRO Mavic Pro 10 20 13 1 3 3

Overall 101 341 177 49 73 42

Table 4 Distribution of the
images according to lost person
location

Location Abbr. Number of
images

Road and near
road

Brush, scrub Field Rocks

Blidinje BLI 9 6 2 1 0

Brač BRA 12 4 8 0 0

Brkan hill BRK 12 3 9 0 0

Brstanovo BRS 11 11 0 0 0

Čabulja CAB 8 0 0 0 8

Čapljina CAP 6 4 0 2 0

Medjugorje MED 6 0 0 0 6

Blato MOB 5 0 1 4 0

Široki Brijeg SB 10 5 5 0 0

Trimusa TRS 6 6 0 0 0

Zrinjevac ZRI 6 6 0 0 0

Goranci GRO 10 0 10 0 0

Overall 101 45 35 7 14

inserted the person images into real environment images, cre-
ating an additional 1000 positive patches. This procedure is
presented in Fig. 7.

For training purposes, we also needed negative patches.
We selected negative patches using the proposed saliency
detection algorithm from real images with a 4000 × 3000-
pixel resolution. By applying the algorithm to images that
do not contain people and cropping the most prominent
salient regions, we created 19,850 negative patches. To create
additional positive sample, we performed data augmentation
using rotation, shear and horizontal flip operations. For the
negative samples, we used only rotation by 90 degrees as
a data augmentation technique. In this way, we extracted
29,050 positive samples and 39,700 negative samples. After
finding the centroid/anchor of a particular blob, we created
and labelled a rectangular 80×80-pixel bounding box around

it. Examples of positive and negative patches are shown in
Fig. 8.

Using the techniques described above, we established a
special database called HERIDAL for training and testing
purposes. HERIDAL is specifically designed to cover most
of the real-world situations encountered in practice, includ-
ing person poses, clothing colours, people’s positions in the
environment, varying illumination levels, etc. This database
contains over 68,750 image patches of people in wilder-
ness locations viewed from an aerial perspective. Of these,
approximately 3000 image patches are synthetically gener-
ated; the others are cropped from real images. Additionally,
theHERIDALdatabase contains approximately 500 labelled,
full-size 4000×3000 pixel real-world images for testing pur-
poses.
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Fig. 6 Gathering patches: a Apparition Hill in Medjugorje; bMountaineers at Cvrsnica; c Mass gathering in Kupres; d People gathered in a park

5 Experiments and Results

In this chapter, we explain the entire proposedmodel in detail
and present the results of the experiments. Testing was per-
formed on the aerial imagery dataset HERIDAL, which is
described in Sect. 4. From a test set of 101 images, the most
representative aerial images were taken at non-urban loca-
tions in BiH and Croatia. The altitude of the UAV of the
platform was 45–60m above the ground. The resolution of
most of the acquired images is 4000 × 3000 pixels. At least
one person is present in each image; on average, images
contain 3.37 persons. We adopted three well-known mea-
surements to properly evaluate the separate stages and the
overall detection model: Recall, Precision and Accuracy.

Recall is the number of true positives relative to the sum of
the true positives and the false negatives. Recall represents
the percentage of people correctly detected among all the
candidate regions that should have been detected as people.
Here, true positive (TP) is the number of correctly detected
persons, and false negatives (FN) is the number of misde-
tected persons (detection failures). Recall also represents the

detection rate. Precision represents the percentage of cor-
rectly detected people divided by the total detected people. It
includes false positives (FP), detected objects that are false
alarms or are incorrectly detected as people. Accuracy is a
measure of the performance of the systemwith regard to both
correctly detecting and correctly rejecting targets. It is the
sum of the true positive and true negatives relative to the total
number of region proposals. True negatives (TN) represents
the number of objects correctly identified as background or
non-person. In this paper, we did not adopt bounding box
regression to measure the precise localization of an object

5.1 Region Proposal Module (RPM) Evaluation

The region proposal module based on the salient detection
algorithm when applied to a colour image produces a grey-
scale salient map. To suggest region proposals from the
saliencymaps, we first need to produce binarymaps or binary
masks. The key step in calculating a binary mask is bina-
rization of the saliency map S-and the simplest way to do
that is to pick a threshold that varies between 0 and 255.
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Fig. 7 Procedure of stitching human patches on various backgrounds

Then, for each threshold value, a pair of (Precision, Recall)
scores are computed and used to plot a precision-recall (PR)
curve. In this way, we can select the best ratio between recall
and precision. Additionally, one popular choice is to use an
image-dependent adaptive threshold for binarizing S, which
is computed as twice as the mean saliency of S:

Ta = 2

W x H

W∑
x=1

H∑
y=1

S(x, y) (8)

Unfortunately, neither of these popular approaches are
suitable for our task. Using the first approach requires man-
ually adjusting the threshold step for each image, which
is highly impractical. The second approach has not proven
reliable with complex images such as ours (Fig. 12). How-
ever, this situation is quite reasonable because our task does
not represent a standard saliency object detection problem.
The typical saliency goal is to find one or a small number

of prominent areas that occupy relatively substantial areas
of the image. In contrast, our goal is to simplify a com-
plex scene by filtering to retain only those parts that are
sufficiently prominent and conspicuous. In this phase, it is
crucial to focus on better recall: in other words, if we miss
an important part of the image that represents a person at
this early stage, the person will be irretrievably lost at the
later classification stage. After performing some analysis,
we found that in most cases, 300 proposals or binary blobs
is the optimal number. To accomplish this task, we took an
iterative approach in which we binarized the saliency map
using a starting threshold value of 115 (the 45% intensity
level for grey-scale images) in the first iteration. Then, the
connected-component labelling operation was performed as
a convenient way to determine howmany blobs were present
in the binary map. When the total number of blobs after
labelling exceeds 300, we repeat the entire process using a
higher threshold value in the binarization process. In every
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Fig. 8 Training dataset excerpt: a positive samples (people), b negative samples (background)

iteration, the threshold value is increased at a step size of 5.
On average, it is necessary to perform several iterations to
reduce the number of blobs to the target value of 300 or fewer
blobs per saliency map. After producing the binary map and
extracting the blobs, we further filtered some blobs based on
size and a priori knowledge of the dimensions of the target
objects. This prior knowledge is used as a preprocessing step
to eliminate large areas or regions that we presumably know
are not people (e.g., roads, forests, meadows) or small areas
or blobs that occupy less than 12×12 pixels. To merge close
blobs, we dilated the entire image using a kernel size of 7.
By applying this procedure to all 101 images, we extracted
15,048 blobs, or approximately 14,899 blobs per image. This
number represents a significant reduction of the potential
candidates. For the remaining parts of the binary map, we
calculated the centroids or (x, y) central coordinates of each
individual blob. The coordinates of a blob on the binary map
correspond to its coordinates in the RGB blob representa-
tion in the original image because the saliency map, binary
map and original image all have the same size. In this way,
it is relatively easy to isolate parts of the colour image or
patches without additional computations and forward them
to the CNN module for classification. An illustration of the
region selection described above is shown in Fig. 9.

Figure 9a shows the colour RGB image from a remote
location. Figure 9b, c represent the corresponding saliency
and binary maps, respectively, and Fig. 9d represents the fil-
tered and selected RGB regions. As we can see from Fig. 9d,
this approach significantly reduces the search space area and
the number of region proposals. Table 5 shows the perfor-
mance of the region proposal module per location on our test
dataset of images.

Fig. 9 Region proposal procedure: a GB image. b Saliency map. c
Binary map. d Selected regions

From a total of 341 ground-truth (GT) lost persons in 101
images, RPMsuccessfully detected 317 region proposals that
include a person or part of a person, achieving a detection
rate of 93.0% compared to the ground truth. Evaluating all
148.99 region proposals per image through a visual inspec-
tion would be a tedious task for a human observer; in fact,
it would actually be quite counterproductive. The number of
region proposals needs to be drastically reduced in the next
stage. Overall, 15,048 selected salient blobs, a mean of 148.9
per image, are forwarded to the classification module for fur-
ther inspection. This total includes 317 blobs that represent
a person or part of a person. At this stage, the model failed to
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Table 5 Region proposal
module performance on test
images

Location Number of images Ground truth Recall Number of ROIs ROIs per location

BLI 9 47 100.0% 1672 1858

BRA 12 22 86.4% 2006 1672

BRK 12 19 100.0% 1561 1301

BRS 11 21 95.2% 1685 1532

CAB 8 34 88.2% 1292 1615

CAP 6 19 100.0% 909 1515

MED 6 53 81.1% 864 1440

MOB 5 13 100.0% 161 322

SB 10 26 100.0% 1088 1088

TRS 6 15 100.0% 672 1120

ZRI 6 49 89.8% 1120 1867

GOR 10 20 100% 2018 2018

Overall 101 341 93.0% 15,048 14,899

detect 24 ground-truth blobs; consequently, those were not
available for the subsequent classification stage.

5.2 CNN ClassificationModule

With sufficient data, deep CNNs in most cases give state-of-
the art results, especially for classifying objects in images.
However, as mentioned in the previous chapter, no public
training set of people in natural environments has been gath-
ered from UAV images, and in most cases, relatively sparse
training datasets lead to an overfitting problem. Inmost cases,
to resolve this issue, we need to acquire more data and/or
use transfer learning by using models pre-trained on some
other, larger image dataset. These pre-trained models can
be adapted to specific tasks either by fine tuning (using the
network parameters as initialization and re-training with the
new dataset) or by using them as simple feature extractors
for the recognition task. Determining whether to use fine-
tuning or feature extraction depends on two main factors:
the size of the new dataset and its similarity to the original
dataset. Fine-tuning is recommended when we have many
data and the new dataset is similar to the original dataset.
Additionally, it is considered beneficial to fine-tune through
the entire network if we have a large dataset that is differ-
ent from the original dataset (although in this case we could
also simply train a network from scratch). We decided to use
fine-tuning as a transfer-learning method because we man-
aged to acquire a relatively modest dataset of person patches
for training positive “person-like” as well as negative back-
ground “no-person” patches. Positive samples were labelled
on the training images that contained persons.

Before fine-tuning the pre-trained VGG-16 network on
ILSVRC (Russakovsky et al. 2014), the patches were first
resized to 224 × 224 pixels and then zero-cantered by mean
pixel from the ImageNet dataset. Training was conducted

using the Caffe deep learning framework on a workstation
equipped with an Nvidia GTX Titan X graphic card.

5.3 Results and Comparative Study

After all the images from the testing collection were pro-
cessed by the RPM module described in Sect. 5.1, we
obtained a corresponding binary map for each image. Binary
maps consist of blobs or object suggestions.Theseobject sug-
gestions represent anchors around which we form regions or
patches that are used as input to the VGG16 network or CNN
module. Note that in the majority of cases, the anchors do not
segment the entire target object; they cover only some part of
the person’s body such as the feet, shoulders, head, or other
body part. Consequently, we need to consider the context
and define an area around anchors that is sufficiently large
to extract enough features to describe a person. For every
anchor, we use three scales (1:1, 1:1.16, 1.16:1). Although
the test images were obtained from comparable altitudes,
due to large variations in possible person poses and camera
characteristics from the different UAV platforms, it was not
easy to ascertain an appropriate size for the bounding boxes.
After experimenting with a variety of sizes, we concluded
that the best starting size for the bounding box is approxi-
mately 60 × 60 pixels. On the centroid of each anchor, we
formed a region using a certain window size and cropped
it. To acquire images for input to the VGG16 network, each
cropped region was scaled and normalized to 224×224 pix-
els. After the images were passed through the convolutional
and other layers in the network, we obtained a score based
on the SoftMax classifier. Based on this score, the regions
were classified as either “person-like” or “not person” (back-
ground). The following table and graphs show the results
from using various selected window sizes on the anchors.

From Table 6 and the corresponding graphs it can be seen
that accuracy and recall decrease with respect to window
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Table 6 Analysis in regard to the anchor window size (Ground Truth = 341; ROI = 15,048)

Window size in pixels Detected objects (TP + FP) TP FP FN Recall (%) Precision (%) Accuracy (%)

52 × 52 1203 299 904 42 87.7 24.9 93.7

56 × 56 867 297 570 44 87.1 34.3 95.9

60 × 60 750 296 454 45 86.8 39.5 96.7

64 × 64 629 282 347 59 82.7 44.8 97.3

68 × 68 532 277 255 64 81.2 52.1 97.9

size, while the opposite is true for precision. Using a win-
dow size of 52× 52 pixels, the model detected 1203 objects,
ofwhich 299were true positives and 904were false positives.
The recall was 87.7%, and the precision was 24.9%. In con-
trast, when using a window size of 68×68 pixels, the model
detected considerably fewer objects (532), ofwhich 277were
true positives and 255 were false positives. The recall was
81.2%, and the precision was 52.1%. These numbers rep-
resent a considerable reduction in recall, but the precision
more than doubled. Based on these observations, we decided
to adopt a window size of 60×60 pixels as our referent win-
dow size. Using this referent widow size, the model achieved
a recall of 86.8%: only 4 fewer true positives than with a
window size of 52 × 52 pixels. However, it resulted in only
450 false positives, which improved the precision to 39.5%.
Accuracy is a measure of system performance with regard to
both correctly detecting and correctly rejecting targets. Using
a window size of 60 × 60, the accuracy was 96.7%. To fur-
ther enhance the detection model for each image, three most
prominent points were selected and included in such a way
that they completely skipped the CNN classification mod-
ule. By combining and incorporating the CNN module and
the TOP3 salient points from the RPM module, we obtained
the final results for our proposed system, which are shown
in Table 6. Using this approach, we managed to increase the
true positives by 7, which led to an increase in recall of 2.1%
(88.9%). The number of false positives increased by 114,
leading to a 4.7% drop in precision (34.8%) rate compared
to using only the CNN. Nevertheless, the precision score is
still better than when using smaller-sized windows (56× 56
or 52 × 52) and results in a much better detection rate.

5.3.1 Comparative analysis with the method based on the
mean-shift algorithm and Faster R-CNN

For comparative analysis, we included a detection model
from a previous research paper within the IPSAR project
as well as state of the art Faster R-CNN. The model within
the IPSAR project is based on the mean-shift segmenta-
tion algorithm (Turić et al. 2010; Musić et al. 2016) model
which mostly uses heuristic rules such as the size of seg-
ments and clusters for decision making. The authors chose

the mean-shift algorithm for segmentation mostly because
it demonstrated good results regarding segmentation quality
and stability. To reduce the high computational requirements
and the quadratic computational complexity of the algorithm,
they decided to modify and use two-stage mean-shift seg-
mentation, which caused only minor loss of accuracy.

Faster R-CNN has shown excellent results in many com-
plex computer vision detection problems. It is a purely
CNN-based two-stage architecture consisting of two mod-
ules (a region proposal network module and a Fast RCNN
detector) (Ren et al. 2015). Its main advantage is that both
modules can share the bottom convolutional layers for the
whole image. In this way, the RPN can use deep neural
networks such as VGG16 to generate high-quality propos-
als, making the entire process of proposal generation almost
computationally cost-free. The Faster R-CNN detector takes
multiple regions of interest (ROIs) from a shared convo-
lutional feature map as input. In the RoI pooling layer, a
fixed-length feature vector is extracted for every RoI and
propagated through a sequence of fully connected (FC) lay-
ers. Finally, it outputs branches into two sibling output layers:
one produces SoftMax probability estimates over K object
classes plus a catch-all background class, and the other layer
outputs four real-valued numbers for each of the K object
classes.

Faster RCNN model is not trained on image patches but
on labeled images. Therefore, the images described in Sect. 4
are used for training purposes. In training there is no need
for explicit allocation of negative samples because the neg-
ative or background class is calculated automatically by
the FasterR-CNN framework. We used a stochastic gradient
descent (SGD) solver with 40 K iterations and a learning rate
of 0.001,which are the same values used to train our proposed
model.In its original form, the Faster RCNNdetection frame-
work is not well-optimized for training and testing models in
large format images.Mainly due tomemory requirements for
the GPU framework it is not possible to process our image
dataset at original resolution; Instead, it reduces or scale them
to a feasible resolution. We experimentally determined that
the maximum resolution supported by the test GPU on the
VGG16 network is one third of each axis (1333 × 1000px).
Scaling does not pose a particular issue in detection appli-
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Table 7 Comparison of models on IPSAR database of images

Location GT Mean-Shift model (Turić et al. 2010) Faster RCNN (Ren et al. 2015) Our model

Recall (%) Precision (%) Recall (%) Precision (%) Recall (%) Precision (%)

BLI 47 74.5 36.8 87.2 71.9 97.9 42.6

BRA 22 81.8 14.9 72.7 39.0 86.4 27.5

BRK 21 76.2 12.8 90.5 65.5 100 28.0

BRS 21 61.9 14.3 76.2 23.2 85.7 27.7

CAB 34 73.5 29.1 85.3 72.5 82.4 45.9

CAP 19 89.5 21.3 94.7 81.8 100.0 51.4

MED 53 66.0 27.8 84.9 71.4 75.7 35.5

MOB 13 100.0 17.8 100.0 54.2 100.0 50.0

SB 24 73.1 12.0 79.2 57.6 87.5 42.0

TRS 18 61.1 10.7 66.7 52.2 94.4 18.3

GRO 20 90.0 11.8 90.0 54.6 90.0 28.1

ZRI 49 71.4 22.3 89.8 67.7 87.8 39.1

Overall 341 74.7 18.7 85.0 58.1 88.9 34.8

cations where the target object is relatively large, but in
applications where the target objects are small, it signifi-
cantly undermines the detection performance. The one-third
scaling operation reduces the spatial information by a factor
of 9, which consequently leads to extremely small person
blob objects that are unable to meet threshold parameters or
anchor settings in the RPN network or in the Faster R-CNN
detector. Therefore, instead of rescaling, we decided to crop
the original images in segments of 1333 × 1000px (with an
overlapping offset).

Table 7 presents the results of the two-stage mean-shift-
based model from Turić et al. (2010), Faster R-CNN (Ren
et al. 2015) and our presented model.

As Table 7 shows, our proposed model achieved better
results compared to the model from the previous research.
Our proposed model achieved an 88.9% detection rate, an
improvement of 14.2%. In absolute amounts, out of a total of
341 searched objects in the set, ourmodel successfully recog-
nized 303 objects, an improvement of 48 persons. From the
graph, at the ten locations, our model achieved a significant
improvement in recall. In absolute terms, the largest improve-
ment was achieved at the BLI location, where the proposed
model had 11 more hits, while in relative terms, the greatest
improvement occurred at the BRK location, showing a dif-
ference of 34.8% in favour of our model. In two locations,
MOB and GOR, the system based on mean-shift segmen-
tation achieved the same results as our system. Regarding
precision, our model achieved better results at all locations
by significant margins. The greatest improvement in both
absolute and relative terms was at location SB, where our
model yielded 110 fewer false alarms or a 30% better preci-
sion rate. Overall, our model achieved a precision of 34.8%,
which is 16.1% better than the previous model.

As shown in Table 7, our proposed model achieved
an average 3.9% improvement compared to Faster RCNN
detection framework, which is important for SAR missions.
However, Faster RCNN achieved better precision than our
model, mainly because it uses a different mechanism for
negative background sample generation. For every positive
ground truth sample, it generates three hard negative back-
ground samples by choosing ambiguous, confusing samples
that are harder to correctly classify. By default, approxima-
tion of hard negative samples is done by choosing samples
that slightly overlap with ground truth positives (IoU < 0.5).
This mechanism and fact that Faster RCNN uses a larger
number of negative background samples (three negatives to
one positive) contributes to better overall precision.We could
improve the precision of our model by increasing the number
of negative samples number.

It can be seen from the graph - that our model achieved
better results in recall, at the seven locations. In absolute
terms, the largest improvement was achieved at the BLI and
TRS location, where the proposed model had 5 more hits,
while in relative terms, the greatest improvement occurred at
the TRS location, showing a difference of 27.3% in favour
of our model. At three locations, ZRI, CAB and MED, the
system based on Faster RCNN achieved better results and
this is particularly emphasized at MED location. Regarding
precision, Faster RCNN model achieved better results at all
locations by significant margins which indicates that it is
more tuned to precision than recall.

Additional comparison of these methods is presented in
Figs. 10, 11, 12, 13 and 14. In these figures our system
detected all the “lost” persons, while the mean-shift-based
model had problems detecting persons dressed in black and
white clothing or clothing similar to the background colours.
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Fig. 10 Image at TRS location: a IPSAR system. b Faster R-CNN. c Proposed system

Fig. 11 Image at BRK location: a IPSAR system. b Faster R-CNN. c Proposed system

Fig. 12 Image at MED location: a IPSAR system. b Faster R-CNN. c Proposed system

Fig. 13 Image at TRS location: a IPSAR system. b Faster R-CNN. c Proposed system

Faster RCNN had problems with detecting people in yellow
and dark clothing. Although this study is primarily interested
in detecting people, FasterRCNNwas not able to detect items
such as bags, jackets and similar items that can function as

clues of human presence unlike the other two models. Fig-
ure 12 is particularly interesting because it represents a rather
complex scene that includes vegetation and rocky environ-
ments as well as many objects of interest. The complexity of
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Fig. 14 Image at BRS location: a IPSAR system. b Faster R-CNN. c Proposed system

Fig. 15 Using colour information to select additional proposed regions (Color figure online)

Fig. 16 Selected patches missed by RPM module

Fig. 17 Selected patches missed by CNN module. Green circles are related to those “missing” persons that the CNN did not detect but which were
detected by the RPM module. Orange circles represent “missing” persons that were not detected, either by the CNN module or by the RPM (Color
figure online)

the scene is further aggravated by the sun, which results in
reflections and shadows. These are some of the reasons why
all three models failed to detect all target objects. Our pro-

posed model and Faster RCNN detected 13 out of 16 objects
of interest, while the mean-shift-based model detected only
11. In the selected images, as well as in all others, our
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model detected more target objects, while Faster RCNN had
fewer false alarms. Our model has another advantage spe-
cific to SAR missions compared to the Faster R-CNN. At
the beginning of a SAR mission, planners gather as much
relevant information about missing persons as possible. This
includes information about clothing colours, which can sig-
nificantly contribute to a more successful search. Therefore,
we included this as one possibility in our model. When the
sought person’s clothing colour is known, it can be specified
as additional search criteria. In this case, our region proposal
module processes an additional 200 salient patches. These
patches are converted to HSV colour space, over-segmented
by the SLIC algorithm and propagated to a colour filter. If this
patch responds to the colour range, the patch is forwarded to
the CNN and classified. This process is illustrated in Fig. 15.
Using this approach resulted in an increase in the number of
positively detected people.

6 Discussion

From Table 5 in subsection 4.1, it is evident that the region
proposal module did not detect all the possible candidate
regions with perfect accuracy. The overall recall was 93.0%:
in absolute terms, it detected 317 regions correctly butmissed
24 true candidate proposals. In four locations (BRA 86.4%,
CAB 88.2%, MED 81.1% and ZRI 89.8%), we obtained
below average results. Some of the missed persons in these
locations are shown in Fig. 16. The RPM based on wavelet
decomposition failed to detect the persons shown in Fig. 16a–
e. mostly due to the relatively weak local contrast in the
surrounding area. This is particularly apparent in Fig. 16a, c,
e. The unusual contours of a person in a white t-shirt blended
well with the environment in Fig. 16b and make it very hard
for even a human observer to recognize. The mountain loca-
tion CAB, which includes many interspersed rocks makes
the target in Fig. 16b difficult for the RPM module to iden-
tify as salient. In this scene, the error occurred mainly due
to the global contrast computation in the salient detection
algorithm.

A loss of 24 true candidates or 7.0% is significant because
it cannot be reversed in a later stage by the CNN mod-
ule, which in fact demonstrated very good results. From the
total 317 true positives forwarded by the RPM module, 296
proposals were correctly classified as “person”, resulting in
a classifier recall of 93.4%. In Fig. 17, we selected some
patches that were incorrectly labelled as background by the
CNN module. Individual images are marked with green or
orange circles around the objects of interest. The green cir-
cles are related to those “missing” persons that the CNN did
not detect but whichwere detected by the RPMmodule using
the TOP3 rule. This rule, as discussed earlier, detects three
most prominent objects unconditionally and labels them as
a positive class. This approach introduces some amount of

uncertainty in thewhole systembecausewhile it can cause the
system to correctly label a positive class, as shown inFig. 17b,
d, e it can also result in some objects (blue bag) being misla-
belled as positive, as shown in Fig. 17a. The orange circles
represent “missing” persons that were not detected, either
by the CNN module or by the RPM TOP3 rule. Figure 17a
shows a person in a yellow jacket in a highly occluded envi-
ronment, so it is understandable that that object was wrongly
classified as background. Nevertheless, the system managed
to detect the nearby blue bag; thus, it is highly possible for
a human observer to spot a person by using this nearby clue
during the visual inspection process. Objects such as bags,
jackets and other clues that lost people can leave behind can
also contribute to a successful find; however, our CNNmod-
ule is not well trained to detect such objects. Therefore, it
is highly beneficial to include certain heuristic rules, expert
knowledge or a priori information to make the whole system
more robust. These are some of the main reasons why we
decided that a certain number (or more precisely, 3) of most
significant salient points should be selected without being
further processed in the CNN module. Using this approach,
we managed to significantly improve the detection results
(recall).

7 Conclusion

In this paper, we proposed a region-based CNN person
detection framework to support ground search and rescue
missions. Also, we compile public available image database
of UAV imagery of lost or missing persons in natural envi-
ronments called HERIDAL. The main focus in this study
is on supporting missions that occur in remote, wild or non-
urban areaswhereUAVsare used for gathering terrain images
that are later inspected by our computer vision model. The
model’s goal is to detect and suggest possible locationswhere
peoplemight be present in images. Themodel consists of two
separate parts. In the first part, or region proposal module,
we modified the class-agnostic salient detection algorithm to
filter and reduce the search space and to propose blobs as
building blocks for patch generation. The patches are then
further processed in the CNN classification module. The
CNN module is based on the VGG16 architecture, and its
role is to classify the proposed RoI into one of two classes:
person or non-person. The experiments and testingwere con-
ducted on a HERIDAL image dataset collected in a variety of
weather conditions and at various locations inCroatia,Bosnia
and Herzegovina. HERIDAL comprises over 68,750 wilder-
ness image patches taken from an aerial perspective intended
for training, as well as approximately 500 labelled full-size
real-world images intended for testing. Our proposed model
was inspired by RCNN methods, and it has achieved signif-
icantly better results in detecting the presence of people in
images, surpassing previous methods based on segmentation
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and heuristic decision-making that are used by Croatian SAR
teams. The overall detection rate achieved by our proposed
method was 88.9%, while the false alarm rate was 34.8%.
We compared the proposed model with the state-of-the-art
Faster R-CNN, trained on the HERIDAL database, and our
proposedmodel showedbetter performance for SARapplica-
tions. In future work, we plan to expand the image database
and make it even more relevant, thus further encouraging
research in this important area. The demonstrated effective-
ness of deep learning methods and the overall proposed
system can still be improved, especially with regard to the
false alarm rate and the execution speed. In this paper, devel-
opment of a real-time system was not required; however, this
real-time performance is an aspect that we plan to address in
future research.
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Appendix A

Algorithm 1: Two-stage segmentation of aerial image
for SAR pseudocode
Data: Color RGB images
Result: Segmented regions potentially with human presence
transform image to YCbCr color space;
apply median filter to Cb and Cr components;
divide image into subimages;
foreach subimage do

run mean shift clustering algorithm;
append K with subimage cluster matrix;

end
apply mean shift to global cluster matrix K;
return set of resulting clusters;
foreach cluster do

if cluster_si ze ≥ NM AX then
ignore cluster;

end
find set of spatially connected areas;
foreach area do

if area_si ze ≥ NM I N then
eliminate area;

end
dilate image to merge nearby segments;

end
if q ≥ NA then

ignore cluster;
end
outline potential target regions

end
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