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Abstract
Deep neural network (DNN) architecture based models have high expressive power and learning capacity. However, they are
essentially a black box method since it is not easy to mathematically formulate the functions that are learned within its many
layers of representation. Realizing this, many researchers have started to design methods to exploit the drawbacks of deep
learning based algorithms questioning their robustness and exposing their singularities. In this paper, we attempt to unravel
three aspects related to the robustness of DNNs for face recognition: (i) assessing the impact of deep architectures for face
recognition in terms of vulnerabilities to attacks, (ii) detecting the singularities by characterizing abnormal filter response
behavior in the hidden layers of deep networks; and (iii) making corrections to the processing pipeline to alleviate the problem.
Our experimental evaluation using multiple open-source DNN-based face recognition networks, and three publicly available
face databases demonstrates that the performance of deep learning based face recognition algorithms can suffer greatly in
the presence of such distortions. We also evaluate the proposed approaches on four existing quasi-imperceptible distortions:
DeepFool, Universal adversarial perturbations, l2, and Elastic-Net (EAD). The proposed method is able to detect both types
of attacks with very high accuracy by suitably designing a classifier using the response of the hidden layers in the network.
Finally, we present effective countermeasures to mitigate the impact of adversarial attacks and improve the overall robustness
of DNN-based face recognition.

Keywords Face recognition · Deep learning · Adversarial · Dropout · Adversarial learning · Attack detection · Attack
mitigation

1 Introduction

With the convenience of obtaining large training data, avail-
ability of inexpensive computing power and memory, and
utilization of cameras at multiple places, deep learning
paradigm has seen significant proliferation in face recogni-
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tion. Several algorithms such as DeepFace (Taigman et al.
2014), DeepID (Sun et al. 2015), FaceNet (Schroff et al.
2015), and Liu et al. (2015) are successful examples of appli-
cation of deep learning to face recognition. These deep CNN
based architectures with many hidden layers and millions of
parameters can obtain very high accuracies when tested on
databases such as the LFW database (Huang et al. 2007) and
NIST’s face recognition test (NIST face recognition vendor
test ongoing 2018). While unprecedented improvements in
the reported accuracy of machine learning algorithms con-
tinue, it is also known that they are susceptible to adversaries
which can cause the classifier to yield incorrect results. Most
of the time these adversaries are unintentional and are in the
form of outliers. However, such attacks may also be inten-
tionally executed by specifically targeting the blind spots of
classifiers and have been explored in the literature in the
context of many applications of machine learning such as
malware detection (Laskov and Lippmann 2010).
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Fig. 1 Illustrating how an image can be attacked with perceptible and
quasi-imperceptible adversarial perturbations to create false accepts
(match between different individuals) and false rejects (non-match

between two images of the same individual). Such errors compromise
the reliability of automated face recognition

Creating adversarial samples that can deceive/attack algo-
rithms has become easy lately with the application of the
same deep learning techniques. Recently, it has been shown
that fooling adversarial images can be generated in such a
manner where humans can correctly classify the images but
deep learning algorithmsmisclassify them (Goodfellow et al.
2015; Nguyen et al. 2015). There are several algorithms to
generate such images, for instance evolutionary algorithms
(e.g. Genetic Algorithm) (Nguyen et al. 2015) or adversarial
sample crafting using the fast gradient sign method (Good-
fellow et al. 2015). Threat models by creating perturbed
eye-glasses are also explored to fool face recognition algo-
rithms (Sharif et al. 2016). Inspired by recent studies, it is
our assertion that deep learning based face recognition algo-
rithms are also susceptible to adversarial attacks and such
attacks can be detrimental to recognition algorithms applied
in real world applications. In other words, if a deep learning
based recognition engine is being used, an attacker can use
synthetic deception approaches to either deceive one’s own
identity (in law enforcement applications) or impersonate
someone else’s identity (in access control applications).

Even though adversarial attacks primarily pertain to deep
network based algorithms, there do exist other forms of
attacks against face recognition systems. Ratha et al. (2001)
have identified multiple potential attack points for any bio-
metric system; e.g. presenting false biometrics to the sensor
level and injectingmodified biometrics in between the acqui-
sition and feature extraction levels. Spoofing or presentation
attacks at the sensor level are similar to adversarial attacks
where the goal is tomake the face recognition systemperform
a misclassification of the input. While extensive research has
been conducted on evaluating the vulnerabilities to spoofing
attacks and associated countermeasures (Chingovska et al.
2016), handling adversarial attacks is relatively less explored
in the literature.

The focus of this paper1 is to demonstrate that the perfor-
mance of deep learning based face recognition algorithms

1 A shorter version of the manuscript was presented at AAAI2018.

can be significantly affected due to adversarial attacks. As
shown in Fig. 1, we also postulate that it is not required to
attack the system with sophisticated learning based attacks;
attacks such as adding random noise or horizontal and verti-
cal black grid lines in the face image cause reduction in face
verification accuracies. The first key step in taking coun-
termeasures against such adversarial attacks is to be able
to reliably determine which images contain such distortions.
Once identified, the distorted images may be rejected for fur-
ther processing or rectified using appropriate preprocessing
techniques to prevent degradation in performance. Further,
such proposed solutions should be able to operate well in
a cross-attack (tested on attack types that are not included
in the training data) and cross-database (trained on a dif-
ferent database than the ones used in testing) protocol to be
applicable in a live environment wheremany new attacks and
different images may be used with the network. In this paper,
we propose a deep network based approach to perform both
detection and mitigation procedures. The key contributions
of this paper are:

– Design and evaluate image processing based adversarial
attacks towards off-the-shelf deep learning based face
recognition algorithms.

– Propose and evaluate amethodology for automatic detec-
tion of such attacks using the response fromhidden layers
of the DNN.

– Propose a novel technique of selective dropout in the
DNN to mitigate the effect of these adversarial attacks.

– The proposed algorithms have been evaluated using
cross-database protocols and have also been evaluated
in cross-attack scenarios.

We believe that being able to not only automatically detect
but also correct adversarial samples at runtime is a cru-
cial ability for a deep network that is deployed for real
world applications. With this research, we aim to present
a new perspective on potential attacks as well as a differ-
ent methodology to limit their performance impact beyond
simply including adversarial samples in the training data.
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2 RelatedWork

The existing literature on attacks against face recognition
and associated defense strategies can be divided into four
categories: face spoofing, and the generation, detection, and
mitigation of adversarial sample based attacks. We briefly
describe the existing work in each of these categories in the
following subsections. Table 1 lists some recent adversar-
ial example generation, detection, andmitigation algorithms.
Recently, Akhtar andMian (2018) have presented the survey
of adversarial generation, detection, and mitigation algo-
rithms.

2.1 Face Spoofing

Attacks on face recognition systems have been studied in
the past focusing on presentation attacks on remote unsu-
pervised face recognition. Among the first attacks on face
biometrics that have come into focus are spoofing or presen-
tation attacks. The presentation attack involves presenting a
fake face to the biometric sensor using a printed photograph,
worn mask, or even an image displayed on another elec-
tronic device. The presentation might not be just a static face
image, rather it could be previously captured or otherwise
obtained video of a face that can also be played back to the
sensor using an electronic device. Chingovska et al. (2016)
present a review of the vulnerabilities of a face based system
in the presence of these attacks as well as how multispectral
systems can mitigate some of the risk. However, Raghaven-
dra et al. (2017) and Agarwal et al. (2017b) have prepared
a database for multispectral spoofing and reported that even
such systems are not immune to presentation attacks. Recent
efforts in designing presentation attack detection method-
ologies include software level solutions such as color texture
analysis based detection (Agarwal et al. 2016; Boulkenafet
et al. 2016; Siddiqui et al. 2016) and hardware level solutions
such as light polarization analysis using a novel hardware
extension (Rudd et al. 2016). Biggio et al. (2017) have pre-
sented a method based on meta-level statistical analysis to
assess the vulnerability of multi-biometric systems against
presentation attacks. Patel et al. (2015) have proposed a
detection methodology based on the moire pattern analysis
for mobile phones. Smith et al. (2015) propose a reflection
watermark challenge-response based detection methodology
for consumer devices. Recently, Boulkenafet et al. (2017)
have proposed a detection methodology using Fisher vec-
tor encoding and speeded-up robust features (SURF) (Bay
et al. 2006) for spoofing attack detection with limited train-
ing data for a generalizable methodology that works well on
unseen databases. For detecting siliconemask based face pre-
sentation attacks, Manjani et al. (2017) propose a dictionary
learning based approach that shows state-of-the-art results
on spoofing databases. Deep learning based approaches for

face spoofing detection have also been proposed recently that
utilize CNNs in conjunction with texture features and other
types of deep networks (Akbulut et al. 2017; Gan et al. 2017;
de Souza et al. 2017).

2.2 Adversarial Example Generation

With increasing usage of deep learning algorithms for com-
plex and popular tasks such as object recognition and face
recognition, researchers are also attempting to understand the
limitations of deep learning algorithms. Szegedy et al. (2014)
have investigated the properties of deep neural networks and
concluded that the input–output mappings that are learned
by them can be fairly discontinuous and can be exploited to
create an adversarial perturbation. Goodfellow et al. (2015)
have expanded on the research presented in Szegedy et al.
(2014) and further investigated adversarial attacks on a deep
network. They explain the existence of adversarial examples
for a neural network based on the limited precision (0–255
in case of image pixels) of input data combined with the
implications of a high-dimensional dot product. Sabour et al.
(2016) generate adversarial samples by minimizing the dis-
tance between the internal feature representations of images
belonging to different classes.Moosavi-Dezfooli et al. (2016)
have presented amethodology to create adversarial examples
called DeepFool that works by computing the minimal per-
turbation such that the distance between the correct decision
hyperplane and a given data point is minimized, converging
to 0. Papernot et al. (2017) have demonstrated a practical
scenario for using an adversarial attack against a black-box
DNN without any knowledge of the network’s hyperparam-
eters. Rozsa et al. (2016) discuss adversarial attacks on a
deepCNNmethod that extracts soft biometric attributes from
facial images (such as gender). They demonstrate that cer-
tain attributes are inherently more robust towards adversarial
attacks than others. They also demonstrate that naturally
adversarial samples exist which can be correctly classified by
adding a perturbation in a kind of reverse adversarial attack.
They construct an auxiliary substitute deepmodel by emulat-
ing the input–output mapping observed by the target DNN
and then craft adversarial examples based on the auxiliary
model. Moosavi-Dezfooli et al. (2017) have extended their
DeepFool perturbations by aggregating the learned pertur-
bations across an entire collection of images to determine
a “universal” perturbation pattern that can be applied to
any image to fool the targeted network. Carlini and Wag-
ner (2017) have devised a set of attacks specifically targeted
at rendering defensive distillation ineffective using l p dis-
tancemetric optimization tomake them quasi-imperceptible.
Rauber et al. (2017) have crafted blackbox attacks using
domain-agnostic image transformations that can modify the
texture of the image to attack deep networks. Rozsa et al.
(2017a) have drafted a strategy to generate adversarial sam-
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Table 1 Literature review of adversarial attack generation, detection, and mitigation algorithms

Adversary Authors Description

Generation Szegedy et al. (2014) L-BFGS: L(x + ρ, l) + λ||ρ||2 s.t . xi + ρi ∈ [bmin, bmax ]
Goodfellow et al. (2015) FGSM: x0 + ε ∗ (�x L(x0, l0)

Kurakin et al. (2016) I-FGSM: xk+1 = xk + ε ∗ (�x L(x0, l0)

Papernot et al. (2016a) Saliency Map: l0 distance optmization

Moosavi-Dezfooli et al. (2016) DeepFool: f or each class, l �= l0,minimize d(l, l0)

Rozsa et al. (2016) Adversarial attacks on biometric attribute predicting deep CNNs

Carlini and Wagner (2017) C & W: l p distance metric optimization

Moosavi-Dezfooli et al. (2017) Universal: Distribution based perturbation

Rauber et al. (2017) Blackbox: Uniform, Gaussian, Salt and Pepper, Gaussian Blur,
Contrast

Rozsa et al. (2017a) LOTS: Layerwise Target-Origin Synthesis method to attack deep
feature based systems

Rozsa et al. (2016, 2017b) Fast flipping attribute based on inverting classifier score

Chhabra et al. (2018) Facial attribute anonymization using adversarial noise

Tramèr et al. (2018) R+FGSM x ′ + (ε − α) ∗ sign(�′
x J (x ′, ytrue)

Addad et al. (2018) Clipping free Centered Initial Attack

Alaifari et al. (2018) Gradient descent based deformation

Athalye and Sutskever (2018) Expectation Over Transformation

Detection Grosse et al. (2017) Statistical test for attack and genuine data distribution

Gong et al. (2017) and Metzen et al. (2017) Neural network based classification

Feinman et al. (2017) Randomized network using Dropout at both training and testing

Liang et al. (2017) Quantization and smoothing based image processing

Lu et al. (2017) Quantize ReLU output for discrete code + RBF SVM

Meng and Chen (2017) Learned manifold based classification of adversarial and clean images

Li and Li (2017) Convolutional filter statistics with cascaded classifier

Tramèr et al. (2018) Ensemble training

Akhtar et al. (2017) Perturbation Rectifying Network

Goswami et al. (2018) Filter responses of CNN

Agarwal et al. (2018) Image Pixels + PCA + SVM

Mitigation Miyato et al. (2017) Virtual adversarial training

Dziugaite et al. (2016) JPEG compression based mitigation for FGSM attacks

Das et al. (2017) JPEG compression to reduce the effect of adversary

Bhagoji et al. (2017) Compressing the data using PCA before testing

Luo et al. (2015) Applying the network to different regions of the image

Xie et al. (2017) Random resizing and random padding of the input images

Gu and Rigazio (2014) Deep Contractive Networks with smoothness penalty

Ross and Doshi-Velez (2018) Gradient regularization based on relative change in output and input

Papernot et al. (2016b) Using class probability vectors from trained network to re-train the
original model

Nayebi and Ganguli (2017) Using highly non-linear activation functions

Cisse et al. (2017) Layer-wise regularization by maintaining a small global Lipschitz
constant

Akhtar et al. (2017) Add a pre-input perturbation rectification network to the target network

Lee et al. (2017) Generative adversarial network framework to perform adversarial
training

Ye et al. (2018) Model compression using pruning + LOGITS Augmentation

Ranjan et al. (2017) Bounding the feature maps close to each other by power convolution

Kurakin et al. (2016) Naive adversarial training
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Table 1 continued

Adversary Authors Description

Rakin et al. (2018) Quantization of activation function

Prakash et al. (2018) Pixel deflections + wavelet denoising

Goswami et al. (2018) Dropout of filter responses

Tramèr et al. (2018) R+FGSM adversarial training

Guo et al. (2018) Input transformations

Xie et al. (2018) Input randomization

Song et al. (2018) Purifies images using PixelCNN

Samangouei et al. (2018) Generative Adversarial Networks based defense

ples by targeting the perturbations such that the layer-wise
features of the adversarial image closely resemble the fea-
tures of a sample from a different class. They showcase that
biometric systems using deep features along with some dis-
tancemetric aremore vulnerable to such attacks as compared
to end-to-end networks that directly predict the output label.
Athalye and Sutskever (2018) have presented the algorithm
to generate the physical adversarial examples using Expec-
tation Over Transformation (EOT).

2.3 Adversarial Example Detection

As new methods of creating adversarial examples have been
proposed, research has also been conducted in utilizing
adversarial examples for training more robust networks to
counter adversarial attack as well as improve the overall
quality of learned representations. Grosse et al. (2017) have
proposed a method to statistically model the distribution
of attacked images and genuine images, and then check-
ing the fit of each image to classify it into either category.
Meng and Chen (2017) have proposed a similar approach
but with manifold learning instead for the clean and adver-
sarial images. Feinman et al. (2017) have proposed using the
uncertainty estimates of dropout networks as features to train
separate binary classifiers for detecting attacks. Liang et al.
(2017) have suggested using smoothing and quantization
based image processing techniques to detect the perturba-
tions added to images. Lu et al. (2017) have proposed a
SafetyNet framework using the difference in the pattern of
the output of ReLU activations as features to a RBF ker-
nel SVM classifier to detect adversarial examples. Li and Li
(2017) have proposed a similar algorithm using the convolu-
tional filter statistics as features instead of ReLU activations
and a cascaded classifier instead of the RBF kernel SVM. Xu
et al. (2018) have proposed another detection methodology
based on the difference in features extracted using a full res-
olution image with that of a lower fidelity version (obtained
by reducing color bit depth or spatial smoothing). While this
approach is simple and effective for high resolution images

which contain a lot of detail, it may not be effective for low
resolution cropped faces which are often used in face recog-
nition scenarios. Recently, Agarwal et al. (2018) have shown
high detection accuracy of image agnostic perturbation using
image pixels and dimensionality reduction using PCA with
SVM classifier.

2.4 Adversarial Example Mitigation

As the existence of adversarial examples has gained atten-
tion in the literature, researchers have also proposed a few
techniques to handle adversarial attacks and mitigate their
effect on the performance of a targeted deep network. Rad-
ford et al. (2015) have utilized adversarial pair learning to
compute unsupervised representations using convolutional
neural networks where the generator model produces images
with the intent to try and fool the discriminator model. They
demonstrate that both the models learn useful feature repre-
sentations by using them for object and face recognition. This
model of learning called Generative Adversarial Network
(GAN)has since becomequite popular.Recently,GANshave
been used in domain adaptation (Bousmalis et al. 2016) and
cross-domain image generation tasks using weight-sharing
coupling (Liu and Tuzel 2016). GANs have now also been
used as part of defenses against adversarial attacks (Lee
et al. 2017; Samangouei et al. 2018). Song et al. (2018) have
proposed PixelCNN based generative model to purify the
adversarial examples. Papernot et al. (2016b) have proposed a
defense mechanism towards adversarial attacks. The authors
propose that distillation (Hinton et al. 2015) can be performed
to create a network that is resilient towards adversarial
attacks and utilize perturbations targeting sensitive gradients.
They report favorable results using this methodology on the
MNIST and CIFAR-10 databases, improving results against
the crafted adversarial data. Although distillation seems to
greatly improve resultswhen the adversarial attacks are based
on such perturbations, we focus on the impact of adversarial
examples that employ a different approach and do not depend
on network gradient information. Bhagoji et al. (2017) have
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proposed that using PCA based dimensionality reduction can
reduce the effect of adversarial examples on network perfor-
mance. With a similar idea, Das et al. (2017) have proposed
using JPEG compression to pre-process the image before
applying the deep network. Xie et al. (2017) have proposed
using randomly resizing and padding the input images before
processing themwhich can reduce the effectiveness of adver-
sarial attacks. Ross and Doshi-Velez (2018) have proposed
modifying the loss function of the network such that small
changes in the input causing large changes in the output is
penalized to improve the stability of the predictions made
by the network in the presence of adversarial examples that
have been created with a constrained l p norm. Nayebi and
Ganguli (2017) have proposed using highly non-linear acti-
vation functions that are biologically inspired to reduce the
linearity of the network and counter adversarial examples.
Akhtar et al. (2017) have proposed adding a pre-input layer
rectification network to the target network which is trained to
reconstruct clean images from their adversarial counterparts
so that the image can be cleaned before extracting features.
Recently, Goel et al. (2018) have prepared the SmartBox
toolbox containing several existing adversarial generation,
detection, and mitigation algorithms.

3 Adversarial Attacks on Deep Learning
Based Face Recognition

In this section, we discuss the adversarial distortions that
are able to degrade the performance of deep face recogni-
tion algorithms. We use both imperceptible and perceptible
perturbations. The perceptible perturbations are modeled on
commonly observed face domain distortions. For example,
an old passport might contain a laminated face image with a
different type of distortion compared to someone growing a
beard. Let I be the face image input to a deep learning based
face recognition algorithm,D, and l be the output class label
(in case of identification, it is an identity label and for verifi-
cation, it is match or non-match). Let a(·) be an adversarial
attack operatorwhich perturbs the input image I such that the
network D yields an incorrect class label l ′. In other words,
D(I ) = l and D(a(I )) = l ′ and l �= l ′. In this research,
we also evaluate the robustness of deep learning based face
recognition in the presence of image processing based distor-
tions. Based on the information required in their design, these
distortions can be considered at image-level or face-level.We
propose two image-level distortions: (a) grid based occlu-
sion, and (b) most significant bit based noise, three face-level
distortions: (a) forehead and brow occlusion, (b) eye region
occlusion, and (c) beard-like occlusion. Further, the imper-
ceptible perturbations are based on state-of-the approaches
including DeepFool (Moosavi-Dezfooli et al. 2016), Univer-
salAdversarial Perturbations (Moosavi-Dezfooli et al. 2017),

l2 attack (Carlini and Wagner 2017), and EAD (Chen et al.
2018). We have also performed the adversarial detection and
mitigation experiments on these adversarial perturbations.

3.1 Image-Level Distortions

Distortions that are not specific to faces and can be applied to
an image of any object are categorized as image-level distor-
tions. In this research, we have utilized two such distortions,
grid based occlusion and most significant bit change based
noise addition. Figure 2b and c present sample outputs of
image-level distortions.

3.1.1 Grid Based Occlusion

For the grid based occlusion (termed as Grids) distor-
tion, we stochastically select a number of points P =
{p1, p2, . . . , pn} along the upper (y = 0) and left (x = 0)
boundaries of the image according to a parameter ρgrids .
The parameter ρgrids determines the number of grids that are
used to distort each image with higher values resulting in a
denser grid, i.e., more grid lines. For each point pi = (xi , yi ),
we select a point on the opposite boundary of the image,
p′
i = (x ′

i , y
′
i ), with the condition if yi = 0, then y′

i = H
and if xi = 0 then x ′

i = W , where, W × H is the size of
the input image. Once a set of pairs corresponding to points
P and P ′ have been selected for the image, one pixel wide
line segments are created to connect each pair, and each pixel
lying on these lines is set to 0 grayscale value. In this paper,
the parameter ρgrids is set to 0.4 which results in a minimum
of 4 andmaximum of 10 grid lines (of 1 pixel thickness each)
on each perturbed image.

3.1.2 Most Significant Bit Based Noise

For the most significant bit based noise (xMSB) distortion,
we select three sets of pixels X1,X2,X3 from the image
stochastically such that |Xi | = φi × W × H , where W × H
is the size of the input image. The parameter φi denotes the
fraction of pixels where the i th most significant bit is flipped.
The higher the value of φi , the more pixels are distorted in
the i th most significant bit. For each P j ∈ Xi ,∀i ∈ [1, 3],
we perform the following operation:

Pk j = Pk j ⊕ 1 (1)

where, Pk j denotes the kth most significant bit of the j th
pixel in the set and ⊕ denotes the bitwise XOR operation. It
is to be noted that the sets Xi are not mutually exclusive and
may overlap. Therefore, the total number of pixels affected
by the noise is at most |X1 +X2 +X3| but may also be lower
depending on the stochastic selection. In this research, results
are reported with φ = [0.03, 0.05, 0.1].
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Fig. 2 Sample images representing theb grid based occlusion (Grids), c
most significant bit based noise (xMSB), d forehead and brow occlusion
(FHBO), e eye region occlusion (ERO), f beard-like occlusion (Beard),
g DeepFool (Moosavi-Dezfooli et al. 2016), h Universal (Moosavi-

Dezfooli et al. 2017), i L2 (Carlini andWagner 2017), and j Elastic-Net
(EAD) (Chen et al. 2018) distortions when applied to the a original
images

3.2 Face-Level Distortions

Face-level distortions specifically require face-specific infor-
mation, e.g. location of facial landmarks. The three face-
level region based occlusion distortions are applied after
performing automatic face and facial landmark detection.
In this research, we have utilized the open source DLIB
library (King 2009) to obtain the facial landmarks. Once
facial landmarks are identified, they are used along with
their boundaries for masking. To occlude the eye region,
a singular occlusion band is drawn on the face image as
follows:

I {x, y} = 0,∀x ∈ [0,W ], y ∈
[
ye − deye

ψ
, ye + deye

ψ

]
(2)

Here, ye = ( yle+yre
2

)
, and (xle, yle) and (xre, yre) are the

locations of the left eye center and the right eye center, respec-
tively. The inter-eye distance deye is calculated as: xre − xle
and ψ is a parameter that determines the width of the occlu-
sion band. Similar to the eye region occlusion (ERO), the
forehead and brow occlusion (FHBO) is created where facial
landmarks on forehead and brow regions are used to create a
mask. For the beard-like occlusion (Beard), outer facial land-
marks along with nose and mouth coordinates are utilized to
create the mask as combinations of individually occluded
regions. Figure 2d–f illustrate the samples of face-level dis-
tortions.

3.3 Learning Based Adversaries

Along with the proposed image-level and face-level dis-
tortions, we also analyze the effect of adversarial samples
generated using four existing adversarial models: DeepFool
(Moosavi-Dezfooli et al. 2016), Universal Adversarial Per-
turbations (Moosavi-Dezfooli et al. 2017), l2 attack (Carlini
and Wagner 2017), and EAD (Chen et al. 2018). DeepFool
(Moosavi-Dezfooli et al. 2016) calculates a minimal norm
adversarial perturbation for a given image in an iterative
manner. It initializes with the original image that lies in the
feature space in a regionwithin the decision boundaries of the
classifier for the correct class. In each subsequent iteration,
the algorithm perturbs the current image by a small vector
that is designed to shift the resulting image further towards
the boundary. The perturbations added to the image in each
iteration are accumulated to compute the final perturbation
once the perturbed image changes its label according to the
original decision boundaries of the network. The Universal
adversarial perturbations (Moosavi-Dezfooli et al. 2017) are
‘universal’ in the sense that they are designed to be able to
utilize any image to fool a network with a high probability.
These perturbations are also visually imperceptible to a large
extent. These are learned by using a set of clean images and
iteratively shifting all of them towards the decision boundary
while limiting the l2 norm and l∞ norm of the perturbation
to a fraction of the respective norms of the original image.
The universal perturbation is computed by gradually accu-
mulating the perturbations for each image in the training data
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while maintaining the constraint on the perturbation norm.
The l2 attack proposed by Carlini and Wagner (2017) oper-
ates with a similar formulation where they attempt to apply a
box constraint to the adversarial image using the l2 distance
while ensuring maximum deviation from the correct class
duringprediction.However, they consider the integrality con-
straint function as well as use multiple gradient descent in
the optimization routine. The EAD attack (Chen et al. 2018)
follows the same philosophy as the l2 attack but instead of
focusing on the l2-norm to apply the box constraint it instead
utilizes the l2 and l1 metrics to perform an elastic-net regu-
larization to optimize the adversarial generation routine. For
these learning based attacks, we have followed the training
process defined in the respective papers, along with default
parameters including strength parameter. In our experiments,
no knowledge of attacked databases is used in training the
models i.e., distortions specific to a deep learning modal are
computed on ImageNet database (Deng et al. 2009) and then
applied for face images.

The inherent difference between these learning based
adversaries and the proposed attacks is that the perturbation
caused by the learning based adversaries is smaller (visually
imperceptible) and therefore harder to detect. On the other
hand, the proposed image processing operations based dis-
tortions are completely network-agnostic and instead rely on
the domain knowledge by targeting face-specific features. By
evaluating the proposed approaches on all the learning based
quasi-imperceptible adversaries and the proposed perturba-
tions, we are able to assess its performance in a variety of
possible real world scenarios.

4 Impact of Adversarial Perturbations on
Existing DNNs

In this section, we first provide a brief overview of the deep
face recognition networks, databases, and respective experi-
mental protocols that are used to conduct the face verification
evaluations.We attempt to assess how the deep networks per-
form in the presence of different kinds of proposed distortions
to emphasize the need for addressing such attacks.

4.1 Existing Networks and Systems

In this research, we utilize OpenFace (Amos et al. 2016),
VGG-Face (Parkhi et al. 2015), LightCNN (Wu et al. 2018),
and L-CSSE (Majumdar et al. 2017) networks to measure
the performance of deep face recognition algorithms in the
presence of the aforementioned distortions. The OpenFace
library is an implementation of FaceNet (Schroff et al. 2015)
and is openly available to all members of the research com-
munity for modification and experimental usage. The VGG
face network is a deep convolutional neural network (CNN)

with 11 convolutional blocks where each convolution layer
is followed by non-linearities such as ReLU and max pool-
ing. The network has been trained on a dataset of 2.6 million
face images pertaining to 2622 subjects (Parkhi et al. 2015).
LightCNN is another publicly available deep network archi-
tecture for face recognition that is a CNN with maxout
activations in each convolutional layer and achieves good
results with just five convolutional layers. LightCNN has
been trained on a combined database with 99,891 individ-
uals. L-CSSE is a supervised autoencoder formulation that
utilizes a class sparsity based supervision penalty in the loss
function to improve the classification capabilities of autoen-
coder based deep networks. These deep learning approaches
are used to extract features and as described in the original
papers, normalization and recommendedmatching measures
are used. In order to assess the relative performance of deep
face recognition with a non-deep learning based approach,
we compare the performance of these deep learning based
algorithmswith a commercial-off-the-shelf (COTS)matcher.
The details of the COTS matching algorithm are unavail-
able but it is known that it is not deep learning based. No
fine-tuning is performed for any of these algorithms before
evaluating their performance on the test databases.

4.2 Databases

We use three publicly available face databases, namely, the
Point and Shoot Challenge (PaSC) database (Beveridge et al.
2013), the Multiple Encounters Dataset (MEDS) (Multiple
encounters dataset (MEDS) 2011), and the Multiple Bio-
metric Grand Challenge (MBGC) database (Phillips et al.
2009). The PaSC database (Beveridge et al. 2013) contains
still-to-still and video-to-video matching protocols. We use
the frontal subset of the still-to-still protocol which contains
4,688 images pertaining to 293 individuals which are divided
into equally sized target and query sets. Each image in the
target set is matched to each image in the query set and the
resulting 2344 × 2344 score matrix is used to determine the
verification performance.

The MEDS-II database (Multiple encounters dataset
(MEDS) 2011) contains a total of 1,309 faces pertaining
to 518 individuals. Similar to the case of PaSC, we utilize
the metadata provided with the MEDS release 2 database to
obtain a subset of 858 frontal face images from the database.
Each of these images is matched to every other image and
the resulting 858 × 858 score matrix is utilized to evaluate
the verification performance.

The still portion of the MBGC database (Phillips et al.
2009) contains a total of 34,729 faces pertaining to 570 indi-
viduals. These images are split into 10,687 faces in the query
set and 24,042 faces in the target set. There are two versions
for the target and query sets, where one version has an inter-
eye distance of 90 pixels and is compressed to a 8 KB JPEG
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Table 2 Verification
performance of existing face
recognition algorithms in the
presence of different proposed
distortions on the MEDS and
PaSC databases

Database System Original Grids xMSB FHBO ERO Beard

MEDS COTS 24.1 20.9 14.5 19.0 0.0 24.8

OpenFace 66.7 49.5 43.8 47.9 16.4 48.2

VGG-Face 60.1 50.3 45.0 25.7 10.9 47.7

LightCNN 89.3 80.1 71.5 62.8 26.7 70.7

L-CSSE 89.1 81.9 83.4 55.8 27.3 70.5

PaSC COTS 40.3 24.3 19.1 13.0 0.0 6.2

OpenFace 39.4 10.1 10.1 14.9 6.5 22.6

VGG-Face 31.2 3.2 1.3 15.2 8.8 24.0

LightCNN 60.1 24.6 29.5 31.9 24.4 38.1

L-CSSE 61.2 43.1 36.9 29.4 39.1 39.8

All values indicate genuine accept rate (%) at 1% false accept rate

image, and the other has an inter-eye distance of 120 pixels
and is compressed to a 20 KB JPEG image. We refer to the
first set as MBGC (8 KB) or MBGC (8) and the other as
MBGC (20 KB) or MBGC (20) while reporting the results.
The 10687 × 24042 score matrix is used to determine the
verification performance for both of these sets.

For evaluating performance under the effect of distor-
tions, we randomly select 50% of the total images from each
database and corrupt themwith the proposed distortions sep-
arately. These distorted sets of images are utilized to compute
the new score matrices for each case.

4.3 Results and Analysis

Effect of adversarial distortions on OpenFace, VGG-Face,
LightCNN, L-CSSE, and COTS are summarized in Table 2.
Figures 3 and 4 present the Receiver Operating Charac-
teristics (ROC) curves on the PaSC and MEDS databases
respectively with OpenFace, VGG-Face, and COTS. On the
PaSC database, as shown in Fig. 3, while OpenFace and
COTS perform comparably to each other at about 1% false
accept rate (FAR), OpenFace performs better than the COTS
algorithm at all further operating points when no distortions
are present. However, we observe a sharp drop in Open-
Face performance when any distortion is introduced in the
data. For instance, with grids attack, at 1% FAR, the Gen-
uine Accept Rate (GAR) drops from 39.4 to 10.1% which
is a loss of 29.3% (OpenFace) and 31.2–3.2% which is a
loss of 28.0% (VGG). On the other hand, the COTS perfor-
mance only drops to 24.3% from 40.3% which is only about
half the drop compared to what OpenFace and VGG experi-
ence. We notice a similar scenario in the presence of noise
attack (xMSB) where OpenFace performance drops down to
10.1% which is a loss of 29.2% (29.9% in the case of VGG)
as opposed to loss of 21.2% observed by COTS. In cases of
LightCNN and L-CSSE, they both have shown higher perfor-
mance with original images; however, as shown in Table 2,

similar level of drops are observed. It is to be noted that
for xMSB and grid attack, L-CSSE is able to achieve rela-
tively better performance because L-CSSE is a supervised
version of autoencoder which can handle noise better. We
also observe that changing least significant bit (LSB) does
not impact the performance of deep learning algorithms. In
our experiments, we observe that single bit based pertur-
bation has minimal impact and three most significant bit
based perturbation yields the maximum impact. We observe
similar results for the MBGC database with performance
reducing substantially in the presence of adversarial attacks.
Figure 5 shows the sample ROC of VGG based face recog-
nition on the MBGC database. Overall, deep learning based
algorithms experience higher performance drop as opposed
to the non-deep learning based COTS. In the case of occlu-
sions, however, deep learning based algorithms suffer less as
compared to COTS. It is our assessment that the COTS algo-
rithm fails to perform accurate recognition with the highly
limited facial region available in the low-resolution PaSC
images in the presence of occlusions.

All deep learning based algorithms outperform the COTS
matcher on the MEDS database with a GAR of 60–89% at
1% false accept rate (FAR) respectively as opposed to 24.1%
by COTS. However, we observe that when the data is cor-
rupted by the grids distortion, the performance of VGG and
OpenFace drops by 9.83–50.28% and 17.1–49.5% respec-
tively. In comparison, the performance of COTS drops to
21% which is only about a 3% drop. Similarly, we note that
when the xMSB attack is applied, VGG and OpenFace per-
formance drops to 45%and 43.8% showing a loss of 15%and
22.9% as opposed to 9.6% in the case of the COTS. In case
of L-CSSE, noise level attacks have less impact compared to
other deep learning models. As for the facial region occlu-
sions, all the deep learning algorithms show similar trends
when it comes to degradation in performance. VGG suffers
a drop of 34.4% for FHBO and 12.4% for beard. OpenFace
performance also degrades by 18.7% for FHBO and 18.5%
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Fig. 3 Verification performance of OpenFace, VGG, and COTS under
the effect of the adversarial distortions on the PaSC database
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Fig. 4 Verification performance of OpenFace, VGG, and COTS under
the effect of the adversarial distortions on the MEDS database
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Fig. 5 Verification performance of VGG on the MBGC (20 KB)
database under the effect of adversarial distortions
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Fig. 6 Bar chart showing the effect of quasi-imperceptible adversarial
perturbations on the MEDS and PaSC databases when the VGG face
model is used

for beard. COTS performance drops by 5% for FHBO and
notices an increase of 0.7% for the beard like occlusion. In
the case of eye region occlusion, the COTS matcher suffers
the most as in the case of the PaSC database, but high per-
formance losses are also observed for both the deep learning
algorithms: 50.3% for OpenFace and 49.2% for the VGG
network. Similar trends are observed with Light-CNN and
L-CSSE. Learning based distortions such as DeepFool and
universal adversarial perturbations also have a similar effect
on the performance of the VGG network as presented in
Fig. 6. We notice that the performance drops significantly
in the presence of distortions on the PaSC database but less
so for the relatively higher quality MEDS database. This
indicates that probably the effectiveness of such distortions
depends on the resolution and inherent quality of the targeted
images. In order to explore this further, we examine the effect
of resolution where we progressively downscale the images
fromMEDS database by a scaling factor before applying the

Fig. 7 Demonstrating the effect of image resolution on the impact of
adversarial perturbations on the MEDS database when using the VGG
face network. The relative adversarial GAR is reported at 0.01 FAR

adversarial perturbations. We compare the relative adversar-
ial GAR at 1% FAR in each case where we define the relative
adversarial GAR as: GARadv

GARorig
. The results of this experiment

are presented in Fig. 7. We observe that there is a consis-
tent increase in the impact of adversarial distortions as the
image resolution is reduced. Further, increasing the intensity
of the perturbations by manipulating the parameter values
may further deteriorate performance but the distortions will
also become more visually noticeable.

5 Detection of Adversarial Attacks

As observed in the previous section, adversarial attacks can
substantially reduce the performance of usually accurate
deep neural network based face recognition methods. There-
fore, it is essential to address such singularities in order
to make face recognition algorithms more robust and use-
ful in real world applications. In this section, we propose
novel methodologies for detecting andmitigating adversarial
attacks. First, we provide a brief overview of a deep network
followed by the proposed algorithms and their corresponding
results.

Each layer in a deep neural network essentially learns a
function or representation of the input data. The final fea-
ture computed by a deep network is derived from all of the
intermediate representations in the hidden layers. In an ideal
scenario, the internal representation at any given layer for
an input image should not change drastically with minor
changes to the input image. However, that is not the case in
practice as proven by the existence of adversarial examples.
The final features obtained for a distorted and undistorted
image are measurably different from one another since these
features map to different classes. Therefore, it is implied that
the intermediate representations also vary for such cases. It
is our assertion that the internal representations computed at
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Fig. 8 Visualizing filter
responses for selected layers
from the VGG network when
the input image is unaltered and
affected by the grids distortion.
The first two rows present
visualizations for conv3_2 and
pool3 layers for the original
input images respectively. The
next two rows present
visualizations for the same
layers when the input images are
distorted using adversarial
perturbations

123



International Journal of Computer Vision (2019) 127:719–742 731

Fig. 9 Visualizing filter
responses for selected layers
from the VGG network when
the input image is unaltered and
affected by the beard distortion.
The first two rows present
visualizations for conv3_2 and
pool3 layers for the original
input images respectively. The
next two rows present
visualizations for the same
layers when the input images are
distorted using adversarial
perturbations
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each layer are different for distorted images as compared to
undistorted images. Therefore, in order to detect whether an
incoming image is perturbed in an adversarial manner, we
decide that it is distorted if its layer-wise internal represen-
tations deviate substantially from the corresponding mean
representations.

5.1 Network Analysis and Detection

In order to develop adversarial attack detection mechanism,
we first analyze the filter responses in CNN architecture.

Visualizations in Figs. 8 and 9 showcase the filter responses
for a distorted image at selected intermediate layers and
demonstrate the sensitivity towards noisy data. The propa-
gation of the adversarial signal into the intermediate layer
representations is the inspiration for our proposed detection
and mitigation methodologies. We can see that many of the
filter outputs primarily encode the noise instead of the input
signal. We observe that the deep network based representa-
tion is more sensitive to the input and while that sensitivity
results in a more expressive representation that offers higher
performance in case of undistorted data, it also compromises
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Fig. 10 a Training and b Testing view of the proposed detection framework. During training, the original input refers to the mean of the input data
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Fig. 11 a Training and b Testing view of the proposed mitigation framework
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the robustness towards noise such as the proposed distor-
tions. Since each layer in a deep network learns increasingly
more complicated functions of the input data based on the
functions learned by the previous layer, any noise in the input
data is also encoded in the features thus leading to a higher
reduction in the discriminative capacity of the final learned
representation. Similar conclusions can also be drawn from
the results of other existing adversarial attacks on deep net-
works, where the addition of a noise pattern leads to spurious
classification (Goodfellow et al. 2015).

To counteract the impact of such attacks and ensure practi-
cal applicability of deep face recognition, the networks must
either be made more robust towards noise at a layer level
during training or it must be ensured that any input is prepro-
cessed to filter out any such distortion prior to computing its
deep representation for recognition.

In order to detect distortions we compare the pattern of the
intermediate representations for undistorted images with dis-
torted images at each layer. The differences in these patterns
are used to train a classifier that can categorize an unseen
input as an undistorted/distorted image. The overall flow of
the detection2 and mitigation algorithms is summarized in
Figs. 10 and 11, respectively. In this research, we use the
VGG (Parkhi et al. 2015) and LightCNN (Wu et al. 2018)
networks to devise and evaluate our detection methodology.
From the 50,248 frontal face images in the CMU Multi-PIE
database (Gross et al. 2010), 40,000 are randomly selected
and used to compute a set of layer-wisemean representations,
μ, as follows:

μi = 1

Ntrain
Σ

Ntrain
j=1 φi

(
I j

)
(3)

where, I j is the j th image in the training set, Ntrain is the total
number of training images, μi is the mean representation for
the i th layer of the network, and φi (I j ) denotes the represen-
tation obtained at the i th layer of the network when I j is the
input. Once μ is computed, the intermediate representations
computed for an arbitrary image I can be compared with the
layer-wise means as follows:

Ψi (I , μ) = Σλi
z

|φi (I )z − μi z |
|φi (I )z | + |μi z | (4)

2 The algorithms proposed by Metzen et al. (2017) and Lu et al. (2017)
have also used network responses for detecting adversarial attacks. As
mentioned in Sect. 2, for real and adversarial examples, SafetyNet (Lu
et al. 2017) hypothesize that the ReLU activation at the final stage of
CNN follows different distributions. Based on this assumption they
have discretized the ReLUmaps and append an RBF SVM in the target
model for adversarial examples detection. On the other hand, Metzen
et al. (2017) have trained the neural network on the features of internal
layers of CNN.

where,Ψi (I , μ)denotes theCanberra distancebetweenφi (I )
and μi , λi denotes the length of the feature representation
computed at the i th layer of the network, and μi z denotes
the zth element of μi . If the number of intermediate layers
in the network is Nlayers , we obtain Nlayers distances for
each image I . These distances are used as features to train
a Support Vector Machine (SVM) Suykens and Vandewalle
(1999) for two-class classification.

6 Mitigation of Adversarial Attacks

It is essential to take a corrective action after an adversarial
attack is detected on the system. The simplest action can
be to “reject” the input without any further processing and
thus preventing a bad decision. In this section, we describe
our mitigation approach. An ideal automated solution should
not only automatically detect but also mitigate the effect of
an adversarial attack so as to maintain as high performance
as possible. Therefore, the next step in defending against
adversarial attack is mitigation. Often a simple technique can
be discarding or preprocessing (e.g. denoising) the affected
regions. Our motivation comes from the same thought that
theremust be some excitations in the intermediate layerswith
highly anomalous behavior causing the final output to go out
of control. If we can detect those rogue filters and layers and
suppress them, we may succeed in mitigating the attack.

6.1 Mitigation: Selective Dropout

In order to accomplish these objectives, we again utilize the
characteristics of the output produced in the intermediate
layers of the network. We select 10,000 images from the
Multi-PIE database that are partitioned into 5mutually exclu-
sive and exhaustive subsets of 2000 images each. Each subset
is processed using a different distortion. The set of 10,000
distorted images thus obtained contains 2000 images pertain-
ing to each of the five proposed distortions. Using this data,
we compute a filter-wise score per layer that estimates the
particular filter’s sensitivity towards distortion as follows:

εi j = Σ
Ndis
k=1 ‖φi j (Ik) − φi j (I

′
k)‖ (5)

where, Ndis is the number of distorted images in the training
set, εi j denotes the score and φi j (·) denotes the response of
the j th filter in the i th layer, Ik is the kth distorted image
in the dataset, and I

′
k is the undistorted version of Ik . Once

these values are computed, the top η layers are selected based
on the aggregated ε values for each layer. These are the lay-
ers identified to contain the most filters that are adversely
affected by the distortions in data. For each of the selected
η layers, the top κ fraction of affected filters are disabled
by modifying the weights pertaining to 0 before computing
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the features. We also apply a median filter of size 5 × 5 for
denoising the image before extracting the features. We term
this approach as selective dropout. It is aimed at increasing
the network’s robustness towards noisy data by removing the
most problematic filters from the pipeline. We determine the
values of parameters η and κ via grid search optimization on
the training data with verification performance as the crite-
rion.

6.2 Results of Adversarial Detection andMitigation
Algorithms

This section presents the results of the proposed detection
and mitigation algorithms along with comparison with exist-
ing algorithms. For training the detection model, we use
the 10,000 frontal face images from the CMU Multi-PIE
database as undistorted samples. We generate 10,000 dis-
torted samples using all five proposed distortions (discussed
in Sect. 3.1 and 3.2) with 2000 images per distortion that are
also randomly selected from the CMU Multi-PIE database.
Each distortion based subset comprises of a 50% split of dis-
torted and undistorted faces. These are the same sets that
have been used for evaluating the performance of three face
recognition algorithms.

As discussed previously, the proposed detection algorithm
uses VGG and LightCNN. Since the VGG network has 20
intermediate layers, we obtain a feature vector of size 20
distances for each image. We perform a grid search based
parameter optimization using the 20,000×20 trainingmatrix
to optimize and learn theVGGSVMmodel. SinceLightCNN
has fewer intermediate layers, we obtain a feature vector
of size 13. Therefore, for the LightCNN SVM model, the
training matrix is of size 20,000 × 13 and grid search based
approach is used to train the SVM.Once themodel is learned,
any given test image is characterized by the distance vector
and processed by the SVM. The score given by the model
for the image to belong to the distorted class is used as the
distance metric. We observe that the metric thus obtained is
able to classify distorted images on unseen databases.

Themitigation algorithm is evaluatedwith bothLightCNN
and VGG networks on the PaSC, MEDS, and MBGC
databases with the same experimental protocol as used in
obtaining the verification results in Sect. 4. It should be
noted that all of the experiments presented in the subsequent
subsections are performed according to a cross-database pro-
tocol, i.e., training is performed only using the Multi-PIE
database (original and distorted images) and testing is per-
formed on the MEDS, PaSC, and MBGC databases.

6.3 Results and Analysis of Perturbation Detection

First, we present the results of the proposed algorithm in
detecting whether an image contains adversarial distortions

or not using theVGGandLightCNNnetworks. Figure 12 and
Table 3 present the results of adversarial attack detection.
In all the related tables and figures, the detection perfor-
mance is reported in the form of detection accuracy which is
the combined accuracy of correctly classifying both unper-
turbed and perturbed images. We choose these as the model
definition and weights are publicly available. We also com-
pare the performance of the proposed algorithm with three
existing quality measures: Blind Image Quality Index (BIQI)
(Moorthy and Bovik 2010), Spatial-Spectral Entropy-based
Quality (SSEQ) (Liu et al. 2014), and a face-specific qual-
ity measure (Chen et al. 2015). The performance is also
compared against two existing adversarial example detec-
tion algorithms: (i) Adaptive noise reduction (Liang et al.
2017), and (ii) Bayesian uncertainty (Feinman et al. 2017).

To perform detection using a quality measure, we uti-
lize the same training data and SVM classification protocol
but replacing the features with the quality score of each
image. Table 3 summarizes the detection accuracies3 of our
proposed solution for each of the different types of data dis-
tortions on both the MEDS and the PaSC databases. Results
on theMBGCdatabase are presented in both seen and unseen
attack protocols in Figs. 13 and 15, respectively. It is evident
that the proposed algorithm outperforms both the quality
based approaches with both the deep networks. Figure 12
presents the detection ROCs for the proposed algorithm.
These ROCs showcase the trade-off between the false accept
rate (unperturbed imagedetected as adversarial) and theGAR
(adversarial image correctly classified as adversarial) as the
threshold of detection varies. The LightCNN network based
detection, i.e., when the LightCNN network is the target for
the detection algorithm, performs much better for the MEDS
database with the sole exception of the grids distortion. The
performance on the PaSC database is high for both networks
but performance at lower false accept rates is poorer for the
occlusion based distortions in the case of the LightCNN net-
work. Quality based methods are unable to perform well
as distortion detectors. This is especially true for the PaSC
database which contains lower quality images that are mis-
classified by the quality based models as distorted, thereby
increasing false rejects. BIQI is an algorithm that performs
quality measurement in the wavelet domain and SSEQ uti-
lizes the Discrete Cosine Transform (DCT) coefficients for
determining the quality of an image. Therefore, we assess
that methods based on detecting noisy patterns in transform
domains such as wavelet and DCT are not trivial solutions to
perform detection of images distorted using the proposed
methodology. We have also conducted experiments using
LBP andDSIFT as feature descriptors and SVMas the classi-
fier. Using the same training data and experimental protocol,
we observe that the texture approaches are at least 25% less

3 Detection accuracies are reported at equal error rate (EER).
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Fig. 12 ROCs for the proposed detection algorithm on the MEDS and PaSC databases with VGG (a, b upper row) and LightCNN (c, d) lower
row)

Table 3 Performance of the proposed detection methodology (using LightCNN and VGG as the target networks) on MEDS and PaSC database

Database Distortion Face quality BIQI SSEQ Adaptive noise
(Liang et al. 2017)

Bayesian uncertainty
(Feinman et al. 2017)

LightCNN VGG

MEDS Beard 60.0 64.0 43.2 81.2 80.9 92.2 86.8

ERO 61.8 64.3 38.1 80.4 80.0 91.9 86.0

FHBO 56.7 63.2 43.9 79.8 79.6 92.9 84.4

Grids 60.7 63.7 44.4 62.1 62.4 68.4 84.4

xMSB 54.3 66.6 40.9 80.2 80.9 92.9 85.4

PaSC Beard 56.2 47.4 49.9 83.4 85.1 89.5 99.8

ERO 56.2 48.7 51.2 84.9 84.6 90.6 99.7

FHBO 53.5 52.5 51.4 78.3 77.8 81.7 99.8

Grids 55.8 51.1 39.0 85.1 85.7 89.7 99.9

xMSB 55.0 61.0 16.1 88.2 87.9 93.2 99.8

Bold values indicate the best performance value in each criterion
Grids grid based occlusion, xMSB most significant bit based noise, FHBO forehead and brow occlusion, ERO eye region occlusion, and Beard
beard like occlusion
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Fig. 13 Performance of the proposed detectionmethodology (using VGG as the target network) onMBGC 8 (Left) andMBGC 20 (Right) databases
in ‘intra’ attack setting

accurate than the proposed algorithm. Furthermore, we have
performed the comparative experiments with neural network
classifier (in place of SVM) and observe that, across differ-
ent attacks, SVM outperforms neural network classifier by
20–30%.

The proposed detection algorithm performs almost per-
fectly for the PaSC database with the VGG network and
maintains accuracies of 81.7–93.2%with the LightCNN net-
work. The lowest performance is observed on the MEDS
database (classification accuracyof 68.4%with theLightCNN
network). The lower accuracies with the LightCNN can be
attributed to the smaller network depth which results in
smaller size features to be utilized by the detection algo-
rithm. It is to be noted that the proposed algorithm maintains
high true positive rates even at very low false positive rates
across all distortions on the three databases which is desir-
able when the cost of accepting a distorted image is much
higher than a false reject for the system. We also observe
that the quality based algorithms struggle with high resolu-
tion distorted images and low resolution undistorted images,
classifying them as undistorted and distorted respectively.
Besides exceptionally poor quality images that are naturally
quite distorted, we observe that high or low illumination
results in false rejects by the algorithm, i.e., falsely detected
as distorted.This shows the scopeof further improvement and
refinement in the detectionmethodology. This is also another
reason for lower performance with the MEDS database
which has more extreme illumination cases as compared to
PaSC. We observe both general no-reference image qual-
ity measures and face-specific quality measures to also be
insufficient for attack detection. The Bayesian uncertainty
and adaptive noise reduction algorithms do perform better
than the quality-based metrics, but are outperformed by the
proposed algorithm. We also test using the Viola Jones face
detector (Viola and Jones 2004) and find that, on average,
approximately 60% of the distorted faces pass face detection.
Therefore, the distorted face images cannot be differentiated
from undistorted faces on the basis of failing face detection.

We attempt to reduce the feature dimensionality to deduce
the most important features using sequential feature selec-
tion based on classification loss by a SVMmodel learned on
a given subset of features. For the VGG based model, using
just the top 6 features for detection, we obtain an average
accuracy of 81.7% on MEDS and 96.9% on PaSC database
across all distortions. If we use only one most discriminative
feature to perform detection, we obtain 79.3% accuracy on
MEDS and 95.8% on PaSC on average across all distortions.
This signifies that comparing the representations computed
by the network in its intermediate layers indeed produces a
good indicator of the existence of distortions in a given image.
Finally, in Eq. 4, in place of Canberra distance, we experi-
mented with other metrics such as l1, l2, and Cosine. For
adversarial perturbation detection, Canberra distance shows
the best performance over other measures. For example, on
the MEDS database, it yields at least 4.6% better detection
accuracy compared to l1, l2, and Cosine measures.

6.4 Performance on Quasi-imperceptible Attacks

In addition to the proposed adversarial attacks, we have also
evaluated the efficacy of the proposed detection method-
ology on four existing attacks that utilize network archi-
tecture information for adversarial perturbation generation,
i.e., DeepFool (Moosavi-Dezfooli et al. 2016), Universal
adversarial perturbations (Moosavi-Dezfooli et al. 2017), l2
(Carlini and Wagner 2017), and EAD (Chen et al. 2018).
We have also compared the performance of the proposed
detection algorithm with two recent adversarial detection
techniques based on adaptive noise reduction (Liang et al.
2017) and Bayesian uncertainty (Feinman et al. 2017). The
same training data and protocol was used to train and test
all three detection approaches as specified in Sect. 4. The
results of detection are presented in Figs. 13 and 14. We
observe that the proposed methodology is at least 11% bet-
ter at detecting DNN architecture based adversarial attacks
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Fig. 14 Summarizing the results of the proposed and existing detection algorithms on the PaSC (Left) and MEDS (Right) databases

as compared to the existing algorithms for all cases except
for detecting DeepFool perturbed images from the MEDS
database where it still outperforms the other approaches by
more than 3%. We believe that this is due to the fact that
MEDS has overall higher image quality as compared to PaSC
and even the impact of these near imperceptible perturba-
tions on verification performance isminimal for the database.
Therefore, it is harder to distinguish original images fromper-
turbed images for these distortions for all the tested detection
algorithms.

We have also performed the experiments with a distortion-
invariant protocol and compared the performance with two
existing algorithms aswell. The results of distortion-invariant
protocol are given in Table 4. In these experiments, the train-
ing is done on all perturbations except for one and testing
is done on the unseen perturbation not used in training.
The cross-attack experiment is performed using the MPIE
database for training and the MEDS, PaSC, and MBGC
databases for testing so the experiment is also cross-database.
Following this protocol, we observe that the proposed detec-
tion algorithm is still able to achieve 63.2% accuracy on the
PaSC database (Table 4) when tested on the universal pertur-
bation and trained on the other distortions. In comparison, the
existing approaches [Adaptive Noise Reduction, Liang et al.
(2017) and Bayesian Uncertainty, Feinman et al. (2017)] are
only able to achieve a maximum of 41.3% accuracy on the
MEDS and 47.1% accuracy on the PaSC database. The pro-
posed algorithm outperforms these existing approaches for
the other cases as well by a margin of at least 12% on the
MEDS database and 16% on the PaSC database. As shown
in Fig. 15, we observe similar results on the MBGC database
on both the 8 KB and 20 KB sets. Thus we conclude that the
proposed algorithm is able to better generalize its detection
performance even in the case of attacks that it has never seen
during training.

Table 4 Adversarial perturbation detection accuracy of the proposed
detection methodology (using VGG as the target network) where all but
one distortions are used for training and the remaining unseen distortion
is used for testing

Distortion Algorithm Database

MEDS PaSC

DeepFool Proposed 56.1 50.6

Bayesian (Feinman et al. 2017) 38.2 34.4

Adaptive (Liang et al. 2017) 38.9 34.1

Universal Proposed 53.4 63.2

Bayesian (Feinman et al. 2017) 40.8 46.7

Adaptive (Liang et al. 2017) 41.3 47.1

l2 Proposed 55.5 63.6

Bayesian (Feinman et al. 2017) 38.6 39.2

Adaptive (Liang et al. 2017) 39.2 40.1

EAD Proposed 59.2 62.7

Bayesian (Feinman et al. 2017) 40.6 42.1

Adaptive (Liang et al. 2017) 41.5 42.2

Proposed
distortions

Proposed 58.1 53.9

Bayesian (Feinman et al. 2017) 37.6 32.2

Adaptive (Liang et al. 2017) 38.9 32.8

The proposed entry in the distortion column refer to the results on the
proposed image-level and face-level distortions as detailed in Sects. 3.1
and 3.2

6.5 Results and Analysis of Mitigation Algorithm

The proposed technique of selective dropout shows interest-
ing performance. Figure 16 and Table 5 present the results
for the mitigation algorithm.Mitigation is a two-step process
to enable better performance and computational efficiency.
First, the detection algorithm is used to detect the per-
turbed/adversarial images. Secondly, the proposedmitigation
algorithm is applied to only those images that are predicted
as adversarial by the detection algorithm. Face verification
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Fig. 15 Performance of the proposed detectionmethodology (using VGG as the target network) onMBGC 8 (Left) andMBGC 20 (Right) databases
where all but one distortions are used for training and the remaining unseen distortion is used for testing

results after applying the proposed mitigation algorithm on
the MEDS and PaSC databases are presented in Fig. 16. We
can observe that the mitigation model is able to improve the
verification performance with both the networks and bring it
closer to the original curve. For instance, as shown in Table
5, in the case of the MBGC database (20 KB), the perfor-
mance drops from 88.5 to 75.9%, which is almost a 13%
decrease. The proposed mitigation algorithm is able to boost
this performance back to 86.4%which is only a 2.1% drop in
performance compared to the original. Thus, we see that even
discarding a certain fraction of the intermediate network out-
put that is most affected by adversarial distortions, results in
better recognition than incorporating them into the obtained
feature vector. We have conducted one more study, where we
have used normalized inner product for mitigation in place
of l2-norm. The results of this study are presented in Table 6.
We have observed that using normalized inner product on the
larger and more challenging PaSC database in the mitigation
algorithm reduces the mitigated verification performance at
equal error rate (EER) by 1.5%.

To further analyze the contributions of the two different
stages of the mitigation algorithm, we assess the mitigation
performance when only one of them is applied in isolation.
The results for this experiment are summarized inTable 7.We
observe that selective dropout is comparatively more effec-
tive than just applying the median filter, but the combined
result ismuch better than either of the stages on their own.We
also evaluate how the two hyperparameters, η and κ , impact
the performance of the proposed algorithm. These results
are presented in Table 8. We observe that for the higher qual-
ity MEDS database, increasing the overall number of filters
dropped per layer results in improved performance as long
as η is not increased to 5. However, for the PaSC database,
increasing the number of filters dropped per layer to 0.1 (or
10%) results in a substantial drop in performance, even lower
than what median filter alone can accomplish in the case of
η = 3 and η = 5. We assess that higher quality faces pro-
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Fig. 16 ROCs for the proposed mitigation algorithm on the a MEDS
and b PaSC databases

vide better scope for dropping more layers and filters per
layer to improve themitigation performance whereas the val-
ues of the parameters must be set carefully for lower quality
faces. Finally, in a cross attackmitigation setting, we observe
that the proposed mitigation algorithm can transfer to sim-
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Table 5 Mitigation results on
the MEDS, PaSC, and MBGC
databases

Database LightCNN VGG

Original Distorted Corrected Original Distorted Corrected

PaSC 60.5 25.9 36.2 54.3 14.6 24.8

MEDS 89.3 41.6 61.3 78.4 30.5 40.6

MBGC (8 KB) 86.9 75.4 86.2 51.8 44.1 49.5

MBGC (20 KB) 88.5 75.9 86.4 52.7 44.3 50.3

We report GAR (%) at 1% FAR
Bold values indicate the best performance value in each criterion

Table 6 Mitigation results for
DeepFool perturbation on the
MEDS and PaSC databases
using l2-norm and inner-product

Database GAR (%) at EER GAR (%) at 1% FAR

MEDS (Original) 93.3 78.4

MEDS (Perturbed) 93.2 78.8

MEDS (Corrected, l2-norm) 93.4 78.7

MEDS (Corrected, Inner Product) 93.8 79.8

PaSC (Original) 84.8 54.3

PaSC (Perturbed) 79.8 28.6

PaSC (Corrected, l2-norm) 79.5 28.8

PaSC (Corrected, Inner Product) 78.0 29.1

EER refers to Equal Error Rate
Bold values indicate the best performance value in each criterion

Table 7 Mitigation Results on the MEDS, PaSC, and MBGC databases when the median filter (denoted as Median) and selective dropout (denoted
as Dropout) stages of the proposed mitigation algorithm are applied in isolation on the distorted data

Database LightCNN VGG

Median Selective dropout Combined Median Selective droput Combined

PaSC 28.6 31.1 36.2 19.4 21.0 24.8

MEDS 52.5 57.4 61.3 33.9 36.7 40.6

MBGC (8 KB) 77.6 81.7 86.2 46.6 48.2 49.5

MBGC (20 KB) 78.4 82.1 86.4 45.7 47.6 50.3

We report GAR (%) at 1% FAR

Table 8 Evaluating the effect of
the hyperparameters on the
performance of the proposed
mitigation algorithm. We report
the GAR (%) at 0.01 FAR when
the VGG network is used for the
MEDS and PaSC databases as
the values of η and κ are varied

MEDS PaSC

κ = 0.03 κ = 0.05 κ = 0.1 κ = 0.03 κ = 0.05 κ = 0.1

η = 1 34.1 35.7 36.9 19.7 20.4 20.8

η = 3 38.6 40.6 41.2 22.7 24.8 19.3

η = 5 40.1 39.4 37.5 20.3 19.1 18.7

Bold values indicate the best performance value in each criterion

ilar unseen image processing operations (e.g. grid based to
xMSB) but requires further research in significantly dissim-
ilar attacks.

7 Conclusion and Future Research Directions

To summarize, our work has four main contributions: (i)
a framework to evaluate robustness of deep learning based

face recognition engines, (ii) a scheme to detect adversarial
attacks on the system, (iii) methods to mitigate adversarial
attackswhendetected, and (iv) perform the detection andmit-
igation in a cross-database and cross-attack scenario which
closely resembles a real-world scenario. Playing the role of an
expert level adversary, we propose five classes of image dis-
tortions in the evaluation experiment. Using an open source
implementation of FaceNet, i.e., OpenFace, and the VGG-
Face, LightCNN, and L-CSSE networks, we conduct a series
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of experiments on the publicly available PaSC, MEDS, and
MBGC databases. We observe a substantial loss in the per-
formance of the deep learning based systemswhen compared
with a non-deep learning based COTS matcher for the same
evaluation data. In order to detect the attacks, we propose a
network activation analysis based method in the hidden lay-
ers of the network. When an attack is reported by this stage,
we invokemitigation methods described in the paper to show
that we can recover from the attacks in many situations. In
the future, we will build more efficient mitigation frame-
works to restore to normal level of performance. Further,
there is a requirement to make the proposed defense (both
detection andmitigation) robust to unseen attacks, both phys-
ical [for example, disguise Singh et al. (2019) and spoofing
Ramachandra and Busch (2017)] and digital [for example,
adversarial, morphing Agarwal et al. (2017a), and retouch-
ing Bharati et al. (2016)]. It is our assertion that with these
findings, future research can be aimed at correcting such
adversarial samples and incorporating various other kinds of
countermeasures in deep neural networks to further increase
their robustness.
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