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Abstract
Most modern face hallucination methods resort to convolutional neural networks (CNN) to infer high-resolution (HR) face 
images. However, when dealing with very low-resolution (LR) images, these CNN based methods tend to produce over-
smoothed outputs. To address this challenge, this paper proposes a wavelet-domain generative adversarial method that can 
ultra-resolve a very low-resolution (like 16 × 16 or even 8 × 8 ) face image to its larger version of multiple upscaling factors 
( 2× to 16× ) in a unified framework. Different from the most existing studies that hallucinate faces in image pixel domain, our 
method firstly learns to predict the wavelet information of HR face images from its corresponding LR inputs before image-
level super-resolution. To capture both global topology information and local texture details of human faces, a flexible and 
extensible generative adversarial network is designed with three types of losses: (1) wavelet reconstruction loss aims to push 
wavelets closer with the ground-truth; (2) wavelet adversarial loss aims to generate realistic wavelets; (3) identity preserving 
loss aims to help identity information recovery. Extensive experiments demonstrate that the presented approach not only 
achieves more appealing results both quantitatively and qualitatively than state-of-the-art face hallucination methods, but 
also can significantly improve identification accuracy for low-resolution face images captured in the wild.
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1  Introduction

Face hallucination, also known as face super-resolution 
(SR), refers to generating high-resolution (HR) face images 
from their corresponding low-resolution (LR) inputs. It 
is significant for most face-related applications, e.g. face 
recognition (Shamir 2008; Hayat et al. 2017), where most 
captured faces in the wild are low-resolution and lacking in 
essential facial details. It is a domain-specific single image 
super-resolution (SISR) problem and many methods (Wang 
and Tang 2005; Liu et al. 2007; Yang et al. 2008; Park and 
Lee 2008; Li et al. 2009; Ma et al. 2010; Jung et al. 2011; 
Yang et al. 2013; Wang et al. 2014; Jiang et al. 2014; Zhu 
et al. 2016; Yu and Porikli 2016, 2017a, b; Farrugia and 
Guillemot 2017; Yang et al. 2017) have been proposed to 
address it. It is a widely known undetermined inverse prob-
lem, i.e., there are various corresponding high-resolution 
answers to explain a given low-resolution input.

Recently, deep learning based methods have been intro-
duced into single image super-resolution problem and made 
great improvements. However, most of these CNN (Convo-
lutional Neural Networks) based methods (Bruna et al. 2016; 
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Dong et al. 2016; Kim et al. 2016a, b; Shi et al. 2016; Tai 
et al. 2017; Lai et al. 2017) depend on a pixel-wise mean 
squared error (MSE) loss in image pixel domain to push 
the outputs pixel-wise closer to the ground-truth HR images 
in training phase. Such approaches ignore the conditional 
dependency between super-resolved pixels and thus tend to 
produce blurry and over-smoothed outputs, lacking high-
frequency textural details. Besides, they seem to only work 
well on limited up-scaling factors ( 2× to 4× ) and degrade 
greatly when ultra-resolving a very small input (like 16 × 16 
or smaller). Specifically for face hallucination, several recent 
efforts (Dahl et al. 2017; Yu and Porikli 2016, 2017a, b; Zhu 
et al. 2016) have been made to deal with ultra-resolving very 
small faces based on convolutional neural networks. Dahl 
et al. (2017) use PixelCNN (van den Oord et al. 2016) to 
synthesize realistic details. Yu and Porikli (2016, 2017a, b) 
investigate GAN (Goodfellow et al. 2014) to create perceptu-
ally realistic results. Zhu et al. (2016) combine dense corre-
spondence field estimation with face hallucination. However, 
the applications of these methods for the super-resolution in 
image pixel domain face many problems, such as computa-
tional complexity in sampling (Dahl et al. 2017), instability 
in training (Yu and Porikli 2016, 2017a, b), poor robust-
ness for pose and occlusion variations (Zhu et al. 2016). 
Moreover, the existing face hallucination methods mainly 
use visual perceptual results and standard image quality met-
rics such as PSNR and SSIM to evaluate their performance, 
which is inadequate to demonstrate whether the recovered 
information is helpful for face-related applications, e.g. face 
recognition. Therefore, due to various problems yet to be 
solved, face hallucination remains an open and challenging 
task.

Wavelet transform (WT) has been shown to be an effi-
cient and highly intuitive tool to represent and store multi-
resolution images (Mallat 1996). It can depict the contex-
tual and textural information of an image at different levels, 
which motivates us to introduce wavelet transform to a deep 
super-resolution system. As illustrated in Fig. 1, the approxi-
mation coefficients, i.e. the top-left patches in Fig. 1b–d, 
of different-level wavelet packet decomposition (Coifman 
and Wickerhauser 1992) compress the face’s global topol-
ogy information at different levels; the detail coefficients, 
i.e. the rest patches in Fig. 1b–d, reveal face’s structure and 
texture information. While the approximation coefficient 
can be seen as the down-sampled low-resolution version of 
a high-resolution image, super-resolution can be approxi-
mately considered as the inverse process of wavelet decom-
position with the inferred detail coefficients. We assume 
that a high-quality high-resolution image with abundant 
textural details and invariant global topology information 
can be reconstructed via a low-resolution image as long as 
the corresponding wavelet coefficients are accurately pre-
dicted. Hence, the task of inferring a high-resolution face 

is transformed to predicting a series of wavelet coefficients. 
Emphasis on the prediction of high-frequency wavelet coef-
ficients helps recover texture details, while constraints on the 
reconstruction of low-frequency wavelet coefficients enforce 
consistence on global topology information. The combi-
nation of the two aspects makes the final high-resolution 
results more photo-realistic.

To take full advantage of wavelet transform, we present 
a wavelet-domain generative adversarial network (Wave-
letSRGAN) for face hallucination with three types of losses: 
wavelet reconstruction loss to push wavelets closer with the 
ground-truth, wavelet adversarial loss to generate perceptu-
ally realistic wavelets, and identity preserving loss to help 
identity information recovery. Coordinated with these losses, 
as outlined in Fig. 2, WaveletSRGAN contains three parts: 
wavelet-domain super-resolution network (WaveletSRCNN), 
wavelet-domain discriminator network (WaveletDNet) and 
facial evaluation network (EvalNet).

The wavelet-domain super-resolution network (Wave-
letSRCNN) takes a low-resolution face as an input and pre-
dicts the corresponding series of wavelet coefficients before 
reconstructing the high-resolution outputs. It can be further 
decomposed into three subnetworks: embedding, wavelet 
prediction and reconstruction networks. The embedding 
net represents a low-resolution face image to a set of fea-
ture maps before up-scaling. The wavelet prediction net is a 
series of parallel individual subnetworks, each of which aims 
to learn a certain wavelet coefficient using the embedded 
features. The number of these subnetworks is flexible and 
easy to adjust on demand, which makes the upscaling factor 
flexible as well. Besides, as each wavelet coefficient shares 
the same size with the low-resolution input, the network 

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1   Illustration of wavelet decomposition and our wavelet-domain 
face hallucination. Top row: a the original 128 × 128 HR face image 
and its b 1 level, c 2 level, d 3 level, full wavelet packet decompo-
sition image. Bottom row: h the 16 × 16 low-resolution face image 
and its g 2× , f 4× , e 8× , upscaling versions inferred by our approach. 
While the approximation coefficient can be seen as the down-sampled 
low-resolution version of a high-resolution face, face hallucination 
can be approximately considered as the inverse process of wavelet 
decomposition with the inferred detail coefficients
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configuration is selected to keep every feature map the same 
size with the input, which reduces the difficulty of train-
ing. The reconstruction network is used to reconstruct the 
expected HR image from the inferred wavelet coefficients, 
acting as a fixed learned matrix. As the proposed network is 
fully convolutional and trained with simply-aligned faces, it 
can apply to different input resolutions with various magni-
fications, regardless of pose and occlusion variations.

The wavelet-domain discriminator network (WaveletD-
Net) is adopted to distinguish fake and real wavelets rather 
than fake and real images, which is different from other 
GAN based SR methods (Sønderby et al. 2017; Ledig et al. 
2017; Yu and Porikli 2016, 2017a, b; Sajjadi et al. 2017; 
Xu et al. 2017). Through adversarial training, the pro-
posed WaveletSRCNN tends to produce realistic wavelets, 
namely realistic low-frequency wavelets for global facial 
topology information and realistic high-frequency wave-
lets for local facial texture details. WaveletDNet consists 
of three parts: the wavelet embedding network, the sum 
operator and the prediction network. The wavelet embed-
ding network employs multiple independent subnets to 
map each wavelet into an individual set of feature maps. 
These feature maps are fused using sum operation and then 
fed to the prediction net, which makes the discriminator 
network also flexible like WaveletSRCNN. Besides, as the 
wavelets have the same small size with the low-resolution 

inputs, WaveletDNet can be designed with a very shal-
low architecture to ensure enough receptive field, which 
reduces the difficulty in adversarial training for high-res-
olution images.

The facial evaluation network (EvalNet) is designed to 
evaluate and improve the recovered useful facial informa-
tion, i.e. identity information in this paper, via face hallu-
cination. It takes the hallucinated and ground-truth faces as 
inputs and compute the similarity scores to evaluate how 
much useful facial information has been recovered. For the 
reason that identity is the most important intrinsic facial 
information, we select a pretrained face recognition model 
as EvalNet and propose an identity preserving loss to help 
the recovery of identity information. Moreover, face verifica-
tion metrics are employed to evaluate the identity recovery 
performance of face hallucination.

The main contributions are summarized as follows:

–	 A novel wavelet-domain approach is proposed for deep 
face hallucination. To the best of our knowledge, this is 
the first attempt to transform single image super-resolu-
tion to wavelet coefficients prediction task in deep learn-
ing framework - albeit many wavelet-domain researches 
exist for super-resolution.

–	 A flexible and extensible fully convolutional neural net-
work is presented to make the best use of wavelet trans-

Wavelet
SRCNN

Wavelet
DNet

EvalNet

HR Ground-truth

Wavelet 
Reconstruct

Wavelet 
Decompose

Real/Fake

Score

LR Input

Real Wavelets

Predicted Image

Predicted Wavelets

Fig. 2   The proposed wavelet-domain generative adversarial network 
(WaveletSRGAN) for face hallucination comprises wavelet-domain 
super-resolution network (WaveletSRCNN), wavelet-domain dis-
criminator network (WaveletDNet) and facial evaluation network 
(EvalNet). WaveletSRCNN is a CNN that takes a low-resolution face 

image as an input, predicts the corresponding wavelets and outputs 
the desired high-resolution image. WaveletDNet is trained adver-
sarially against WaveletSRCNN to distinguish the generated and real 
wavelets. EvalNet is adopted to evaluate and improve the recovered 
identity information via face hallucination
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form. It can apply to faces of different input-resolutions 
with multiple upscaling factors.

–	 A simple yet effective wavelet-domain discriminator net-
work is proposed for face hallucination. It simplifies the 
complexity of discriminator architecture and reduces the 
difficulty in training GAN for high-resolution images.

–	 A facial evaluation network with identity preserving loss 
is proposed to improve the recovery of identity informa-
tion. Face verification metrics are also introduced to face 
hallucination.

–	 Experimental results on multi-scale face hallucination, 
especially on very small faces, show that the proposed 
approach outperforms state-of-the-art methods in terms 
of both traditional super-resolution metrics and face veri-
fication metrics.

This paper is an extension of our previous conference ver-
sion (Huang et al. 2017). Apart from providing more in-
depth analysis and more extensive experiments, the major 
difference between this paper and its previous version lies in 
three-folds: 1) Face hallucination is extended from wavelet-
domain convolutional neural network (WaveletSRCNN) to 
wavelet-domain generative adversarial network (WaveletSR-
GAN) with the additions of a wavelet-domain discriminator 
and a facial evaluation net. Two new loss functions are used 
to synthesize photo-realistic textures and preserve identity 
information. 2) A simple yet effective wavelet-domain dis-
criminator is proposed to generate perceptually plausible 
wavelets. It simplifies the discriminator architecture and 
reduces the training difficulty for GAN to generate high-
resolution images. 3) Identity verification evaluation is intro-
duced to face hallucination and demonstrate the advantage 
of the proposed method compared with the state-of-the-arts. 
Our new adversarial method further improves the verifica-
tion rate on the LFW (Huang et al. 2007) database from 
68.33% to 81.20% (false acceptance rate is at 0.1% ) when the 
probe faces are of low-resolution 16 × 16 pixel-size before 
being hallucinated.

2 � Related Work

Face hallucination is a specific case of single image super-
resolution, which is extended to wavelet-domain generative 
adversarial network in this paper. In this section, we briefly 
review some related advances in generic single image super-
resolution, face hallucination, wavelet-domain super-resolu-
tion and generative adversarial network.

2.1 � Single Image Super‑Resolution

In general, single image super-resolution methods can be 
divided into three types: interpolation-based, statistics-based 

and learning-based methods. In the early years, the former 
two types (Sun et al. 2008; Yang et al. 2010; Yang and Yang 
2013) have attracted most of attention for their computation-
ally efficiency. However, they are always limited to small 
upscaling factors. Learning based methods (Chang et al. 
2004; Lin et al. 2008; Singh et al. 2014; Huang et al. 2015) 
employ large quantities of LR/HR image pair data to infer 
missing high-frequency information and promise to break 
the limitations of big magnification.

Recently, deep learning based methods (Dong et al. 2016; 
Kim et al. 2016a, b; Shi et al. 2016; Lai et al. 2017; Tai et al. 
2017; Tong et al. 2017) have been introduced into super-res-
olution problem due to their powerful ability to learn knowl-
edge from large databases. Dong et al. (2016) incorporate 
convolutional neural networks to directly learn an end-to-
end mapping between the low/high-resolution images. The 
following researchers explore various methods to improve 
CNN-based super-resolution through deeper and more com-
plex networks. However, most of these convolutional meth-
ods depend on MSE loss to learn a map function of LR/HR 
image pairs, which leads to over-smoothed outputs when the 
input resolution is very low and the magnification is large.

Several works have been recently presented to alleviate 
this problem. To improve the outputs’ perceptual quality, 
Johnson et al. (2016) and Bruna et al. (2016) propose the 
perceptual loss based on the high-level features extracted 
from pretrained networks. Sajjadi et al. (2017) propose the 
texture matching loss to create realistic textures. Ledig et al. 
(2017) propose a generative adversarial network (SRGAN) 
for image super-resolution, which optimizes a combination 
function of an adversarial loss and a content loss. Though 
the architecture of our network is similar with theirs to some 
degree, we hallucinate face images in wavelet domain rather 
than image pixel domain; our version of the perceptual loss 
is facial specific to help identity preserving; our method 
works well on very small faces with large upscaling factors 
like 8× to 16× while SRGAN focuses on 4×.

2.2 � Face Hallucination

Specific to face hallucination, many methods (Wang and 
Tang 2005; Jung et al. 2011; Wang et al. 2014; Yang et al. 
2013; Zhu et al. 2016) are proposed to exploit the specific 
static information of face images with the help of face analy-
sis technique. Wang and Tang (2005) estimate landmarks 
and facial pose before reconstructing high-resolution images 
while the accurate estimation is difficult for rather small 
faces. Zhu et al. (2016) present a unified framework of face 
hallucination and dense correspondence field estimation to 
recover textural details. They achieve appealing results for 
low-resolution faces but cannot work well on faces with vari-
ous poses and occlusions, due to the difficulty of accurate 
spatial prediction.
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Similarly with single image super-resolution, generative 
models (Yu and Porikli 2016, 2017a, b; Dahl et al. 2017) 
are also brought to face hallucination to learn face prior 
knowledge. Yu and Porikli (2016) propose a generative 
adversarial network to resolve 16 × 16 pixel-size faces to 
its 8× larger versions. Dahl et al. (2017) present a recur-
sive framework based on PixelCNN (van den Oord et al. 
2016) to synthesize details of 4× magnified images with 
8 × 8 low-resolution inputs. The 32 × 32 outputs are not 
sufficiently perceptual appealing, and their method suf-
fers from high computational complexity when sampling 
high-resolution images.

Recently, several new approaches have been proposed 
to tackle with similar tasks. Most of these approaches 
try to explore prior information or attributes to facilitate 
face hallucination. Bulat and Tzimiropoulos (2018) local-
ize the facial landmarks on the hallucinated faces and 
improve super-resolution through a heatmap loss. Chen 
et al.  (2018) estimate facial prior on the coarse super-
resolved faces to help the fine super-resolution subnet. Yu 
et al. (2018a) present a multi-task framework to exploit 
image intensity similarity and explore the face structure 
prior simultaneously. Yu et al. (2018b) utilize supplemen-
tal attributes to reduce the ambiguity in face hallucination. 
Moreover, Bulat et al. (2018) train a high-to-low GAN to 
simulate the image degradation process and another low-
to-high GAN for real-world super-resolution. On contrast 
to these methods, our wavelet domain method provides a 
basic super-resolution architecture. We can easily combine 
these priors into our method or apply it to other related 
problems.

2.3 � Wavelet‑Domain Super‑Resolution

Many wavelet-domain methods have already been pro-
posed for super-resolution problem. A large percentage of 
them (Nguyen and Milanfar 2000; Ji and Fermüller 2009) 
focus on multiple images super-resolution, which means 
inferring a high-resolution image from a sequence of low-
resolution images. As for single image super-resolution, 
wavelet transform is mostly used to help interpolation-
based  (Anbarjafari and Demirel 2010; Naik and Patel 
2013) and statistic-based (Zhao et al. 2003) methods. Naik 
et al. (Naik and Patel 2013) propose a modified version of 
classical wavelet-domain interpolation method (Anbarjafari 
and Demirel 2010). Gao et al. (2016) propose a hybrid wave-
let convolution network. They use wavelet to provide a set 
of sparse coding candidates and utilize another convolution 
net for sparse coding, which is totally different from ours. 
Besides, Mallat (2016) uses wavelet transform to separate 
the variations of data at different scales, while we predict the 
wavelets from low-resolution inputs for face hallucination.

2.4 � Generative Adversarial Networks

Our work is also related to the generative adversarial 
networks(GAN) (Goodfellow et al. 2014), which trains 
generator and discriminator via a min-max two player 
game to learn image prior. It is easy for discriminator to 
distinguish the generated and real high-resolution images, 
which harms the balance of adversarial training and makes 
it difficult for GAN to generate realistic high-resolution 
images. While many efforts (Zhang et al. 2017; Karras 
et al. 2018; Huang et al. 2018) have been made to address 
this problem, our proposed wavelet adversarial method 
provides another simple yet efficient way to reduce the 
training difficulty in generating high-resolution images via 
low-resolution wavelets.

3 � Approach

In this section, we present a novel wavelet-domain frame-
work for face hallucination, which predicts a series of cor-
responding wavelet coefficients instead of high-resolution 
images directly. Three types of losses are proposed to gen-
erate realistic wavelets and recover identity information. 
Then, a flexible and extensible wavelet-domain generative 
adversarial network (WaveletSRGAN) is designed for multi-
scale face hallucination. At last, the implementation details 
of WaveletSRGAN are given.

3.1 � Wavelet Transform

In order to further illustrate the motivation of hallucinat-
ing faces in wavelet domain, we first explore the relation-
ship between the high-frequency wavelets and the image 
blur level. Given a high-resolution face image of 128 × 128 
pixel-size, a series of blurry images are synthesized through 
down-sampling following by up-sampling using bicubic 
interpolation. The responding wavelets are achieved by 
2-level haar wavelet packet decomposition. We sample 
10K images of each blur level and then compute the mean 
absolute value (AVG_HF) of the detail wavelet coefficients. 
As shown in Fig. 3, both the visual and quantitative results 
demonstrate that high-frequency wavelets fade along with 
the increase of the blur level. In other words, it is essential 
to recover high-frequency wavelets as more as possible for 
generating shaper images. As described in the first section, 
deep super-resolution networks with the reconstruction loss 
in image domain tend to generate blurry images, which 
illustrates that those methods fail to predict high-resolution 
images with abundant high-frequency wavelets. To allevi-
ate this problem, we resort to hallucinating faces directly in 
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wavelet domain for recovering high-frequency details while 
preserving global facial information.

Our method is based on wavelet transform, more specifi-
cally wavelet packet transform (WPT), which decomposes 
an image into a sequence of wavelet coefficients of the same 
size. We choose the simplest wavelet, Haar wavelet, for it 
is enough to depict different-frequency facial information. 
We use 2-D fast wavelet transform (FWT) (Mallat 1989) to 
compute Haar wavelets. The wavelet coefficients at differ-
ent levels are computed by repeating the decomposition in 
Fig. 4 to each output coefficient iteratively. Example results 
of wavelet packet transform at different levels are showed 
in Fig. 1b–d.

3.2 � Loss Function

3.2.1 � Wavelet Reconstruction Loss

Generic single image super-resolution aims to learn a map 
function f�(x) defined by the parameter � to estimate a 
high-resolution image ŷ with a given low-resolution input 
x. Suppose that y denotes a ground-truth HR image and 
D ≡ {(xi, yi)}

N
i

 represents a large dataset of LR/HR image 
pairs, then most current learning-based SR methods opti-
mize the parameter � through the following form

The most common loss function is pixel-wise MSE in image 
pixel domain, defined as

As argued in many papers (Ledig et al. 2017; Yu and Porikli 
2016; Sønderby et  al. 2017; Dahl et  al. 2017), merely 

(1)argmax
�

∑

(x,y)∈D

log p(y|x).

(2)lmse(ŷ, y) = ‖ŷ − y‖2
F
.

minimizing MSE loss can hardly capture high-frequency 
texture details to produce satisfactory perceptual results. 
As texture details can be depicted by high-frequency wave-
let coefficients, we transform the super-resolution problem 
from the original image pixel domain to the wavelet domain 
and introduce wavelet-domain loss functions to help texture 
reconstruction.

Consider n-level full wavelet packet decomposition, where 
n determines the upscaling factor r and the number of wavelet 
coefficients Nw , i.e., r = 2n , Nw = 4n . Let C = (c1, c2,… , cNw

) 
and Ĉ = (ĉ1, ĉ2,… , ĉNw

) denote the ground-truth and inferred 
wavelet coefficients respectively, the model parameter � of 
the map function g�(x) = (g�,1(x), g�,1(x),… , g�,Nw

(x)) can 
be optimized by

We propose a weighted version of MSE loss in wavelet 
domain to optimize the above object, defined as

(3)argmax
�

∑

(x,C)∈D

log p(C|x).

Images

Wavelets

Wavelets
(normalized)

Avg_HF 0.0268        0.0236       0.0198       0.0187        0.0144       0.0126       0.0099       0.0081      0.0061        0.0031

Fig. 3   The relationship between the high-frequency wavelets and the 
image blur level. The top row are the images of different blur level 
(which are generated from low-resolution images using bicubic inter-
polation; the input resolutions are 128, 96, 64, 48, 32, 24, 16, 12, 8, 

and 4, respectively). The second and third rows are the responding 
wavelets and the responding normalized wavelets for better view. The 
bottom row are the mean absolute values of the high-frequency wave-
lets (i.e., all the detail wavelet coefficients)

Fig. 4   Illustration of fast wavelet transform (FWT). FWT uses low-
pass and high-pass decomposition filters iteratively to compute 
wavelet coefficients, where Haar-based hlow = (1∕

√
2, 1∕

√
2) and 

hhigh = (1∕

√
2,−1∕

√
2)
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where W = (�1, �2,… , �Nw
) is the weight matrix to balance 

the importance of different-band wavelet coefficients. More 
attention can be paid on local textures with bigger weights 
appointed to high-frequency coefficients. Meanwhile, the 
term ‖ĉ1 − c1‖2F captures global topology information and 
serves as the loss function of an auto-encoder when the 
approximation coefficient c1 is taken as an input.

3.2.2 � Wavelet Adversarial Loss

In addition to the wavelet reconstruction loss, we also employ 
a wavelet adversarial loss to encourage the reconstructed wave-
lets to obey the prior distribution of realistic facial wavelets. 
In the original setting (Goodfellow et al. 2014), generator net-
work G is trained to learn a mapping from noise variables to 
a data space of images; discriminator network D is trained to 
distinguish between real and generated images. In our work, 
we use the proposed WaveletSRCNN as the generator, which 
outputs the wavelets conditioned on the low-resolution inputs. 
The discriminator network is designed to distinguish between 
real and generated wavelets.

We adopt the Least Squares Generative Adversarial Net-
works (LSGANs) (Mao et al. 2017) to train our network. The 
wavelet adversarial losses for generator and discriminator are 
defined as

where x is the low-resolution input, C contains the ground-
truth wavelets, and L is the size of the output of the 
discriminator.

3.2.3 � Identity Preserving Loss

An identity preserving loss is proposed to recover use-
ful facial information. It is motivated by the ideas of Gatys 
et al. (2016), Johnson et al. (2016) and Bruna et al. (2016), 
Sohn et al. (2017) that semantic information can be represented 
at different levels by the features extracted from pretrained 
networks. Perceptual losses defined on high-level features can 

(4)

lwavelet_rec(Ĉ,C) = ‖W1∕2 ⊙ (Ĉ − C)‖2
F

=

Nw�

i=1

𝜆i‖ĉi − ci‖2F

= 𝜆1‖ĉ1 − c1‖2F +

Nw�

i=2

𝜆i‖ĉi − ci‖2F,

(5)lwavelet_adv =
1

2L
‖D(G(x)) − 1‖2

F
,

(6)lwavelet_dis =
1

2L
‖D(C) − 1‖2

F
+

1

2L
‖D(G(x)) − 0‖2

F
,

improve image perceptual quality. As our main purpose is to 
enforce the hallucinated faces to have small distances with the 
ground-truths in a facial semantic space, we select a pretrained 
face recognition network, i.e. LightCNN (Wu et al. 2018), to 
extract high-level features.

The identity preserving loss based on LightCNN is defined 
as

where Fi is the i-th layer of Nf  feature extractor layers, Li is 
the size of the i-th layer, y is the ground-truth face, ŷ = RĈ 
and Ĉ are the generated image and wavelets respectively, R 
is the reconstruction matrix to reconstruct HR images from 
wavelets.

3.2.4 � Overall Loss Function

To sum up, the full objective for generator WaveletSRCNN 
is a weighted sum of all the losses defined above: lwavelet_rec to 
force wavelet reconstruction, lwavelet_adv to generate realistic 
wavelets, lidentity to recover identity information.

where �1 , �2 and �3 are weighting coefficients to balance 
each item.

3.3 � Network Architecture

As outlined in Fig. 2, our proposed network for face hal-
lucination (WaveletSRGAN) consists of three subnetworks: 
wavelet-domain convolutional neural network (Wave-
letSRCNN), wavelet-domain discriminator network (Wave-
letDNet) and facial evaluation network (EvalNet). In the fol-
lowing, the architectures of each subnetwork are described 
in detail.

3.3.1 � Architecture of WaveletSRCNN

As showed in Fig. 5, our wavelet-domain SR network con-
sists of three subnetworks: embedding, wavelet prediction, 
and reconstruction networks. The embedding net represents 
a low-resolution input as a set of feature maps. Then the 
wavelet prediction net estimates the corresponding wave-
let coefficient images. Finally the reconstruction net recon-
structs the high-resolution image from these coefficient 
images.

(7)

lidentity =

Nf�

i=1

1

Li
‖Fi(ŷ) − Fi(y)‖1

=

Nf�

i=1

1

Li
‖Fi(RĈ) − Fi(y)‖1,

(8)lG = �1lwavelet_rec + �2lwavelet_adv + �3lidentity
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The embedding net takes a low-resolution image of the 
size 3 × h × w as an input and represents it as a set of fea-
ture maps. All the convolution filters share the same size of 
3 × 3 with a stride of 1 and a pad of 1, which makes each 
feature map in the embedding net the same size with the 
input image. The number of feature maps (or the channel-
size) increases in the forward direction to explore enough 
information for wavelet prediction. Through the embedding 
net, the input LR image is mapped to feature maps of the size 
Ne × h × w without up-sampling or down-sampling, where 
Ne is the last layer’s channel-size.

The wavelet prediction net can be split into Nw paral-
lel independent subnets, where Nw = 4n on the condition 
that the level of wavelet-packet decomposition is n and 
the magnification r = 2n . Each of these subnets takes the 
output feature maps of the embedding net as an input and 
generates the corresponding wavelet coefficients. We set 
all the convolution filters the size of 3 × 3 with a stride 
of 1 and a pad of 1 just like the embedding net, so that 
every inferred wavelet coefficient is the same size with the 
LR input, i.e, 3 × h × w . Besides, motivated by the high 
independence between the coefficients of Haar wavelet 
transform, no information is allowed to interflow between 
every two subnets, which makes our network extensible. 
It is easy to realize different magnifications with different 
numbers of the subnets in the prediction net. For example, 
Nw = 16 and Nw = 64 stand for 4× and 8× magnifications, 
respectively.

The reconstruction net is used to transform the wave-
let images of the total size Nw × 3 × h × w into the original 
image space of the size 3 × (r × h) × (r × w) . It comprises a 
deconvolution layer with a filter-size of r × r and a stride of r. 

Although the size of the deconvolution layer is dependent on 
the magnification r, it can be initialized by a constant wave-
let reconstruction matrix (i.e., R in Eq. 7, the pre-computed 
parameters can be downloaded with the released code)1 and 
fixed in training. Hence it has no effect on the extensibility 
of the whole networks. It is noted that the reconstruction net 
acts like a function to implement the wavelet reconstruction 
and can be done offline as post-processing step if the identity 
preserving loss is not used. It is designed as a deconvolution 
layer to allow the backward propagation of the gradients 
from the EvalNet and allow the end-to-end training of the 
whole network of WaveletSRGAN.

As mentioned above, all the convolution filters of the 
embedding and wavelet prediction nets share the same size 
of 3 × 3 with a stride of 1 and a pad of 1, keeping each fea-
ture map the same spatial size with the input image. This 
reduces both the size of model parameters and the compu-
tation complexity. Besides, to prevent gradients exploding/
vanishing and accelerate convergence, we use skip-connec-
tions between every two layers except the first layer. Batch-
normalization (Ioffe and Szegedy 2015) and Rectified Linear 
Unit (ReLU) are also used after each layer, except the last 
layer of the wavelet prediction net.

The definition of WaveletSRCNN can be formulated as 
follows

where

(9)

ŷ = 𝜙(Ĉ) = 𝜙{(ĉ1, ĉ2,… , ĉNw
)}

= 𝜙{(𝜑1(ẑ),𝜑2(ẑ),… ,𝜑Nw
(ẑ))}

= 𝜙{(𝜑1(𝜓(x)),𝜑2(𝜓(x)),… ,𝜑Nw
(𝜓(x)))},
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Fig. 5   The architecture of our wavelet-domain super-resolution net 
(Wavelet-SRNet). All the convolution layers have the same filter ker-
nel-size of 3 × 3 and each number below them defines their individual 

output channel-size. Skip connections exist between every two con-
volution layers (except the first layer) in the embedding and wavelet 
prediction nets

1  https​://githu​b.com/hhb07​2/Wavel​etSRN​et

https://github.com/hhb072/WaveletSRNet
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are mappings of the embedding, wavelet prediction, recon-
struction nets, respectively. It is noted that Ne is fixed while 
Nw changes in accordance with the upscaling factor r , i.e., 
Nw = r2.

3.3.2 � Architecture of WaveletDNet

As showed in Fig. 6, our wavelet-domain discriminator net 
(WaveletDNet) consists of three parts: wavelet embedding 
network, sum operator, and prediction network. The wave-
let embedding network takes the generated or real wavelets 
as an input and represents each wavelet into corresponding 
individual feature maps. It comprises Nw parallel independent 
subnets, where Nw = 4n on the condition of n level of wavelet-
packet decomposition like the above wavelet prediction net in 
WaveletSRCNN. Each subnet takes a wavelet image of the size 
3 × h × w as an input and represents it as a set of feature maps. 
Then all these sets of the feature maps are fused using sum 
operation. The prediction net map the fused features into a 
single channel of feature map, which is regressed to zero or 
one in the adversarial training. All the convolution layers in 
WaveletDNet have the same small kernel-size 3 × 3 and pad-
size 1. The stride-sizes are 2 to reduce the size of feature maps, 

(10)

� ∶ R3×h×w
→ RNe×h×w,

�i ∶ RNe×h×w
→ R3×h×w, i = 1, 2,… ,Nw,

� ∶ RNw×3×h×w
→ R3×(r×h)×(r×w),

except those of the last layer in the wavelet embedding net and 
the prediction layer are 1.

As we use sum operation to fuse the output features, the 
number of the subnets in the wavelet embedding net is also 
flexible to change, just like that in WaveletSRCNN, which 
makes WaveletDNet is also extensible according to the upscal-
ing factor. Besides, as the input wavelet has the same low-
resolution with the LR input, a very shallow architecture is 
able to ensure enough receptive field. We use two convolution 
layers in the wavelet embedding net in this paper, the output 
channel-sizes of which are 32 and 256 respectively.

The definition of WaveletDNet can be formulated as follows

where Wp is the corresponding matrix of the convolution 
layer in the prediction net, �i is the corresponding map func-
tion of the i-th subnet in the wavelet embedding net.

3.3.3 � Architecture of EvalNet

We select the pretrained LightCNN (Wu et al. 2018) as our 
EvalNet. LightCNN is a face recognition network, which 
includes 29 convolution layers, 4 max-pooling layers, and 
one fully-connected layer. It is pre-trained to classify tens of 
thousands of identities, which make it has powerful ability 
to capture the most distinguishable feature for face iden-
tity information. We use the outputs of the last two layers 
of LightCNN to compute the similarity score and the loss 
function in Eq. (8). The parameters in LightCNN are fixed 
during training.

3.4 � Implementation Details

A novel training trick for face hallucination, called as co-
training, is used to make our model stable in training. Two 
types of low-resolution images are taken as the input, one 
of which is down-sampled by bicubic interpolation and the 
other is the approximation coefficient of wavelet packet 
decomposition. Take the case of 16 × 16 input-resolution 
resolved to 128 × 128 for example. All the face images are 
normalized with two eyes aligned horizontally and then 
center-cropped to 128 × 128 size, following Wu et al. (2018). 
Wavelet packet decomposition at 3 level is used to get the 
ground-truth wavelet coefficients ci in Eq. (4). The approxi-
mation coefficient c1 is treated as one version of the low-
resolution input. With the mapping function ĉ1 = 𝜑1(𝜓(c1)) 
and the distance constraint ‖ĉ1 − c1‖2F , the embedding and 
prediction nets serve as an auto-encoder, which assures 
no loss of the original input information and facilitates 

(11)D(C) = WT
p

Nw∑

i

�i(ci),

Predic�on 
NetWavelet Embedding Net

...

c0

c1

cNw
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Fig. 6   The architecture of our wavelet-domain discriminator net 
(WaveletDNet). The wavelet embedding net consists of multiple indi-
vidual subnets, each of which is a sequence of convolution layers with 
the kernel-size 3 × 3 following by batch-norm and leaky-relu. The 
stride-sizes are 2 except that of the last layer is 1. ⊗ means the sum 
operation. The prediction net is a single convolution layer with the 
kernel-size 3 × 3 and stride-size 1. Each number below the blocks is 
their output channel-size
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training stability. Another version of the low-resolution 
input, directly down-sampled by bicubic interpolation, is 
used cooperatively with the wavelet version, which helps 
maintain the robustness of our model. In the testing phase, 
we evaluate on faces down-sampled by bicubic interpolation.

Since our generator network WaveletSRCNN is fully con-
volutional without fully-connected layers, it can be applied 
to the input of arbitrary size. We firstly train a model for 
16 × 16 input resolution with 8× magnification, and then 
fine-tune it for 8 × 8 input resolution with 8× magnification. 
For 8 × 8 input resolution with 16× magnification, we ini-
tialize the parameters by the overlapping ones of the model 
for 8 × 8 with 8× magnification before fine-tuning it. For 
other cases, we just choose the closest model for evaluation. 
Besides, as our discriminator network WaveletDNet is also 
fully convolutional, similar training tricks are taken for dif-
ferent upscaling factors.

We set the hyper-parameters empirically to balance the 
importance of different losses. The trade-off parameter �1 
for wavelet reconstruction loss is set to 1, �2 for wavelet 
adversarial loss is set to 10, and �3 for identity preserving 
loss is set to 10, �1 for the reconstruction of approximation 
wavelets is set to 0.01, �2 ∼ �Nw

 for the reconstruction of 
high-frequency wavelets are set to 0.99. We train generator 
WaveletSRCNN and discriminator WaveletDNet adversari-
ally using Adam algorithm (Kingma and Ba 2014) with a 
batch size of 64 and a fixed learning rate of 0.0002. It takes 
about 30 epochs for our network to converge, among which 
the first 10 epochs are pretrained using only wavelet recon-
struction loss.

4 � Experiments

In this section, we evaluate the proposed approach against 
state-of-the-art generic super-resolution and face hallucina-
tion methods for multiple input-resolutions on two widely 
used face databases. Both qualitative results and quantita-
tive results are reported, not only on traditional SR metrics 
(PSNR and SSIM) but also on face verification metrics. 
Ablation experiments are also conducted to demonstrate the 
effectiveness of each part of our model. The time complexity 
and robustness toward several hard cases is also discussed.

4.1 � Datasets and Protocols

The CelebA database  (Liu et al. 2015) The CelebFaces 
Attributes (CelebA) dataset is the mostly used super-reso-
lution and face hallucination database. There are more than 
200k celebrity face images that cover large pose and occlu-
sion variations. Following the standard protocol, we divide 
the database into three subsets: the training set of 162,700 

images, the validation set of 19,867 images and the test-
ing set of 19,962 images. We use the training set to train 
our model and the validation set for validation during the 
training phase. We use the testing set to evaluate the SR 
performance in the testing phase. The standard image quality 
measures, i.e., PSNR and SSIM, are adopted as the quantita-
tive metrics for super-resolution, where PSNR is calculated 
on the luminance channel, following Zhu et al. (2016) and 
SSIM is calculated on the three channels of RGB (It is noted 
that we use Matlab to calculate the two metrics, which may 
cause different values with those using other tools).

The LFW database  (Huang et al. 2007) The Labeled 
Faces in the Wild (LFW) dataset is the commonly used data-
base for unconstrained face recognition. There are 13,233 
face images of 5,749 people captured in the wild. The data-
set provides a standard protocol for face verification, which 
contains 6,000 face pairs with 3,000 positive pairs and 3,000 
negative pairs. On one hand, we use the whole dataset to 
evaluate the SR performance using PSNR and SSIM like the 
CelebA testing set. On the other hand, we use the standard 
6,000 face pairs to evaluate face verification performance 
via face hallucination. The images in the gallery set are kept 
unchanged and the images in the probe set are down-sam-
pled to generate low-resolution samples. We hallucinate the 
down-sampled probe faces using our method and the state-
of-the-arts and then compare the verification performance.

To sum up, we generate HR/LR sample pairs using the 
images in the CelebA and LFW database. The proposed net-
work is trained on the CelebA training set and evaluated on 
the CelebA testing set and the whole LFW dataset, assuring 
no over-lapped images appearing in both the training and 
testing phase. We use two types of quantitative metrics for 
evaluation: PSNR and SSIM to evaluate traditional SR per-
formance; face verification metrics to evaluate how much 
identity information has been recovered.

4.2 � Results on Multiple Input Resolutions

As mentioned above, our method can apply to different input 
resolutions with multiple magnifications. In Fig. 7, we pro-
vide the qualitative results of our method on three input 
resolutions ( 8 × 8 , 16 × 16 and 32 × 32 ) compared with the 
bicubic interpolation baseline.

As for the faces of 16 × 16 and 32 × 32 pixel-sizes, the 
hallucination results of our method both have a realistic 
looking and keep almost pixel-wise similarity with the 
ground-truth. As for the faces of 8 × 8 resolutions, the hallu-
cination results are unable to keep accurately pixel-wise sim-
ilarity, while still looking photo-realistic, which is different 
with the somewhat blurry results in our prior work  (Huang 
et al. 2017). It is noted that facial attributes, like sketch, hair 
style, skin color and so on, can be excellently recovered for 
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8× 8 input-resolution, 16× upscaling factor

16× 16 input-resolution, 8× upscaling factor

32× 32 input-resolution, 4× upscaling factor

128× 128 ground-truth

Fig. 7   Qualitative results of various input resolutions: 8 × 8 , 16 × 16 
and 32 × 32 . For each input resolution, the first row is the low-reso-
lution input faces, the second is the results of bicubic interpolation, 
and the third is ours. The bottom row is the ground-truth. From left 

to right, the former five and the latter five columns are randomly 
selected from the CelebA testing set and the LFW dataset, respec-
tively. Best viewed by zooming in the electronic version
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all the three types of input resolutions. The inferred outputs 
are also perceptually identity-persistent to some degree. 
These facts imply that our method can recover abundant 
useful facial information from low-resolution faces, even 
for those very small ones of only 64 pixels.

4.3 � Comparison on Very Low‑Resolutions

We evaluate our method qualitatively on two very low-
resolutions, i.e., 16 × 16 and 8 × 8 , with the comparison 
with bicubic interpolation, wavelet-domain interpolation 
(WTIP for short) (Naik and Patel 2013) and state-of-the-art 

LR (b) GT (c) Bicubic (d) WTIP (e) SRCNN (f) SRGAN (g) URDGN(h) SRDense (i) CBN (j) Our-CNN (k) Ours(a)

Fig. 8   Comparison with the state-of-the-art methods on 16 × 16 input resolution with 8× upscaling factor. All the images are randomly selected 
from the LFW dataset

(a) LR (b)GT (c) Bicubic (d)WTIP (e) SRCNN (f) SRGAN (g) SRDense (h) CBN (i) Our-CNN (j) Ours

Fig. 9   Comparison with the state-of-the-art methods on 8 × 8 input resolution with 16× upscaling factor. All the images are randomly selected 
from the LFW dataset
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methods: SRCNN (Dong et al. 2016), SRGAN (Ledig et al. 
2017), URDGN (Yu and Porikli 2016), SRDense (Tong 
et al. 2017), CBN (Zhu et al. 2016). We also compare the 
proposed method with our prior work (Huang et al. 2017), 
indicated as Our-CNN, which can be seen the generator 
WaveletSRCNN in Fig. 5 without wavelet adversarial loss 
and identity preserving loss. We retrain SRCNN, SRGAN 
and SRDense on the CelebA training set to suit better for 
face images. Since CBN uses the whole CelebA dataset for 
training, we give the qualitative results on LFW for a fair 
comparison, as showed in Figs. 8 and 9.

As for 16 × 16 input resolution in Fig. 8, our method 
achieves the best visual perceptual performance. As the 
input resolution is very low, there is very little information 
contained in the input images. Interpolation based methods 
like bicubic interpolation and WTIP cannot generate texture 
details and their results are rather over-smoothed. SRCNN is 
a very shallow CNN with three convolution layers and lack 
the ability to learn the map function between LR/HR pairs 
from such low input resolution. SRGAN and SRDenese have 
very deep architectures, which are enough to learn the map 
function. CBN uses a deep cascaded bi-network that works 
well when face landmarks can be accurately located. These 
above three methods achieve relatively high-quality results 
with the most facial information recovered. Our-CNN infers 
the corresponding wavelets from LR inputs to capture both 
the global topology information and local texture details 
and achieves comparable or a little better perceptual results 
than SRGAN, SRDense and CBN. The proposed method in 
this paper infers the most high-frequency details, like hair 
and beard, and its results look the most photo-realistic while 
keeping the pixel-similarity with the ground-truth at some 
degree.

As for 8 × 8 input resolution in Fig. 9, our method still 
achieves the best visual perceptual performance. This is a 

very hard case for face hallucination because only 64 pix-
els are contained in the input image. Bicubic interpolation, 
WTIP and SRCNN can only generate very over-smoothed 
facial contours. SRGAN and SRDense infer facial features 
but the results are blurry and closer to the mean face rather 
than the ground-truth. CBN generates mean-face like results 
for lack of the ability to accurately locate facial landmarks. 
Our-CNN produces better results in which global informa-
tion is maintained and local details are recovered, while its 
results are also a little blurry on the edges and textures. Dif-
ferent from all the above methods, the proposed method can 
still hallucinate photo-realistic faces in this hard case. Even 
if the results of our method cannot keep accurately pixel-
wise similar with the ground-truth, they seem to preserve 
identity information much better than others.

4.4 � SR Quantitative Results

We evaluate our method quantitatively using standard SR 
quantitative measures, i.e., PSNR (db) and SSIM, on the 
CelebA testing set and LFW dataset. The evaluations are 
conducted in three cases: (32 × 32, 4×) , (16 × 16, 8×) and 
(8 × 8, 16×) , where ( m × n, r×) means m × n input resolu-
tion with magnification factor r.

As shown in Table  1, Our-CNN and the proposed 
method achieve the best and the second best quantitative 
performances in the most cases. Our-CNN is a wavelet-
domain convolutional neural network for face halluci-
nation, which can be seen as a simplified version of the 
proposed method without the wavelet adversarial loss and 
identity preserving loss. The reason for it achieving the 
highest PSNR and SSIM values may be that the wavelet 
reconstruction loss in wavelet domain is helpful to mini-
mize the reconstruction error in image pixel domain. The 
proposed method achieves a little lower quantitative values 

Table 1   Quantitative comparison results on the CelebA testing set and the LFW dataset

Bold values indicate the best result

Dataset Settings Metric Bicubic WTIP SRCNN SRGAN URDGN SRDense CBN Our-CNN Ours

CelebA 32 × 32 , 4× PSNR 29.39 27.09 26.26 30.60 – 30.22 26.63 33.81 31.86
SSIM 0.9320 0.8919 0.9092 0.9433 – 0.9386 0.8889 0.9630 0.9480

16 × 16 , 8× PSNR 24.82 23.18 23.07 26.18 24.61 26.21 25.36 28.15 27.38
SSIM 0.8599 0.7854 0.8425 0.8814 0.8525 0.8886 0.8810 0.9107 0.8916

8 × 8 , 16× PSNR 21.43 20.52 20.18 22.67 – 21.55 21.61 24.40 23.18
SSIM 0.7953 0.7041 0.7789 0.8067 – 0.7870 0.8076 0.8507 0.8141

LFW 32 × 32 , 4× PSNR 32.43 25.78 27.87 33.38 – 32.84 26.28 37.07 34.81
SSIM 0.9628 0.8727 0.9442 0.9658 – 0.9639 0.9055 0.9799 0.9701

16 × 16 , 8× PSNR 26.31 22.63 23.94 27.45 24.57 27.20 25.95 29.44 28.41
SSIM 0.8948 0.7662 0.8773 0.9068 0.8604 0.9113 0.8986 0.9317 0.9117

8 × 8 , 16× PSNR 22.28 19.86 20.61 22.98 – 22.15 22.24 24.76 23.40
SSIM 0.8273 0.6849 0.8090 0.8249 – 0.8146 0.8300 0.8675 0.8250
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than Our-CNN because it tends to pursue more perceptu-
ally plausible results rather than those merely with the 
minimization of MSE losses, as shown in Figs. 8 and 9. 
Even so, the proposed method outperforms the state-of-
the-arts quantitatively, which implies that it not only pro-
vides perceptually plausible results with abundant texture 
details, but also preserves pixel-wise consistence with the 
ground-truth at some degree.

Besides, we also compare the proposed method with 
PixelCNN-based SR method (Dahl et al. 2017) on Cel-
ebA faces of 8 × 8 pixels with magnification factor 4 . The 
results in Table 2 show that our method achieves better 
quantitative performance while runs much faster.

4.5 � Face Verification Results

Besides the standard image quality measures like PSNR and 
SSIM, we introduce face verification metrics to evaluate the 
recovery of identity information via face hallucination. We 

conduct face verification experiments on the LFW dataset 
following the protocol described in the Sect. 4.1. The images 
in the probe set are down-sampled and then super-resolved. 
Face verification is conducted between the super-resolved 
probe set and the original gallery set. Two publicly released 
face recognition models are tested, i.e., the LightCNN (Wu 
et al. 2018) and the VGG-Face (Parkhi et al. 2015). The area 
under the ROC curve (AUC), true accept rates at 1% and 
0.1% (TPR@FAR = 1%, TPR@FAR = 0.1%) are taken as 
evaluation metrics. The results in three settings of LR input 
resolutions and upscaling factors are reported in Table 3.

We use the hallucinated probe set by bicubic interpolation 
as baseline to demonstrate the influence of input resolutions 
on face verification. Take the metric TPR@FAR = 1% by 
LightCNN as example, it can be seen that the verification 
performance degrades greatly when the input resolution 
decreases, where the values are 97.77%, 96.10%, 45.50%, 
3.17% for input-resolutions 128 × 128 , 32 × 32 , 16 × 16 and 
8 × 8 pixel-size, respectively. This illustrates that face hal-
lucination is important for low-resolution face recognition. 
We employ different face hallucination methods on the LR 
probe faces and find that most of them are helpful to face 
verification. As for 32 × 32 input-resolutions, the proposed 
method and Our-CNN outperform the others and achieve 
almost equivalent performance, where the values of TPR@
FAR = 1% are 97.03% and 97.40%, respectively. As for the 
other two cases, 16 × 16 and 8 × 8 input-resolutions, the pro-
posed method and Our-CNN achieve the best and the second 

Table 2   Comparison against Dahl et  al. (2017) on CelebA faces of 
8 × 8 pixels with magnification factor 4

Bold values indicate the best result

Method PSNR SSIM GPU-time (s) CPU-time (s)

Bicubic 28.92 0.84 – 0.000514
Dahl et al. (2017) 29.09 0.86 53.01 382.4
Ours 29.12 0.9121 0.009205 0.3258

Table 3   Face verification results on the LFW dataset

Bold values indicate the best result
The images in the probe set are down-sampled and then super-resolved. We conduct face verification on the transformed probe set and the origi-
nal gallery set. Results of ‘Original’ are obtained by directly testing on the original probe set

Model Settings Metric Original Bicubic WTIP SRCNN SRGAN URDGN SRDense CBN Our-CNN Ours

LightCNN 32 × 32 , 4× AUC​ 99.31 99.16 99.04 99.17 99.22 – 99.21 90.80 99.25 99.28
FAR = 1% 97.77 96.10 95.83 96.23 96.93 – 96.90 46.77 97.40 97.03
FAR = 0.1% 96.23 91.90 91.70 92.87 94.07 – 94.97 32.53 95.73 96.10

16 × 16 , 8× AUC​ 99.31 90.68 89.97 91.42 96.77 93.60 96.35 89.98 97.92 98.48
FAR = 1% 97.77 45.50 40.53 48.70 78.83 53.57 77.50 46.90 87.97 90.86
FAR = 0.1% 96.23 21.17 24.47 23.50 56.60 27.10 57.03 31.13 68.33 81.20

8 × 8 , 16× AUC​ 99.31 60.89 59.40 61.47 77.10 – 74.30 63.00 87.29 89.40
FAR= = 1% 97.77 3.17 2.90 2.83 16.40 – 12.67 4.57 38.43 42.87
FAR= = 0.1% 96.23 0.27 0.47 0.30 4.23 – 3.73 1.30 12.93 22.83

VGG-Face 32 × 32 , 4× AUC​ 99.33 98.97 98.82 99.02 99.07 - 99.07 90.34 99.19 99.21
FAR= = 1% 89.90 88.23 84.70 88.43 88.43 – 88.63 35.67 89.40 88.83
FAR= = 0.1% 79.63 68.50 71.77 69.03 75.53 – 77.03 11.73 78.27 77.97

16 × 16 , 8× AUC​ 99.33 86.61 82.85 88.56 96.08 91.52 95.64 89.54 97.50 98.07
FAR= = 1% 89.90 24.77 19.53 29.47 62.70 44.37 56.93 34.33 73.77 77.50
FAR = 0.1% 79.63 6.93 3.23 10.20 30.37 20.23 32.53 12.60 39.60 55.87

8 × 8 , 16× AUC​ 99.33 54.78 53.92 56.86 80.10 – 77.48 65.67 89.92 92.04
FAR = 1% 89.90 1.73 1.90 1.97 12.50 – 12.27 4.37 31.37 41.33
FAR = 0.1% 79.63 0.30 0.13 0.17 3.67 – 2.13 0.50 3.63 9.10
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best verification performance. It is worth noting that our 
method can improve the verification performance by a large 
margin for very low input-resolutions compared with other 
methods. For example, our method can improve the values 
of TPR@FAR = 1% on 16 × 16 and 8 × 8 input-resolutions 
to 90.86% and 42.87%, respectively. This fact illustrates the 
strong ability of our method to recover identity information 
from very low-resolution faces.

4.6 � Ablation Study

In this section, we conduct the ablation study to gain insight 
into the respective roles of each part of our model in face 
hallucination. We take the case of hallucinating the LR faces 
of 16 × 16 input-resolution in the LFW dataset for example 
and report the qualitative and quantitative results in Fig. 10 
and Table 4. ImgRecNet and ImgAdvNet are two variant nets 
to show the effectiveness of wavelet-domain generator and 

discriminator. Our-CNN, Our-CNN+adv and Our-CNN+id 
are the models trained with different combinations of the 
loss functions by setting the hyper-parameters �2 = �3 = 0 , 
�3 = 0 and �2 = 0 , respectively. Details are discussed in the 
following.

Wavelet-Domain Generator To demonstrate the effec-
tiveness of our method comes from the proposed wavelet-
domain method rather than the deep network architecture, we 
replace the wavelet prediction net in Fig. 5 with a sequence 
of de-convolution blocks, of which the architecture is the 
same with the generator of DCGAN (Radford et al. 2016) 
except the input is the output feature maps of the embedding 
net. The new network is denoted as ImgRecNet and trained 
using a traditional MSE loss in image pixel domain. From 
Fig. 10 and Table 4, we can see that wavelet-domain gen-
erator Our-CNN outperforms image-pixel-domain genera-
tor ImgRecNet both qualitatively and quantitatively, which 

(a) LR (b)GT (c) ImgRec (d) ImgAdv (e) Our-CNN (f) Our-CNN+adv (g) Our-CNN+id (h)Ours

Fig. 10   Ablation: qualitative results of WaveletSRGAN and its variants on 16 × 16 input resolution with 8× upscaling factor. All the images are 
randomly selected from the LFW dataset. Best viewed by zooming in the electronic version

Table 4   Ablation: quantitative 
results of WaveletSRGAN 
and its variants on the LFW 
dataset with the input-resolution 
16 × 16 and the upscaling factor 
8×

Bold values indicate the best result
The verification metrics are calculated using LightCNN

Metric ImgRec ImgAdv Our-CNN Our-CNN+adv Our-CNN+id Ours

PSNR 29.04 29.07 29.44 28.79 29.42 28.41
SSIM 0.9215 0.9265 0.9317 0.9228 0.9306 0.9117
AUC​ 97.64 98.06 97.92 98.07 98.44 98.48
FAR = 1% 83.77 88.07 87.97 88.43 90.43 90.86
FAR = 0.1% 55.43 70.97 68.33 72.67 80.60 81.20
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illustrates that wavelet domain is more suitable than image 
pixel domain to deal with face hallucination.

Wavelet-Domain Discriminator To show the effective-
ness of the wavelet-domain discriminator WaveletDNet, we 
also train the generator Our-CNN adversarially against an 
image-pixel-domain discriminator, i.e., the discriminator of 
SRGAN (Ledig et al. 2017) here. The discriminator of the 
new GAN model (named as ImgAdvNet) takes the generated 
and real HR images as inputs and tries to distinguish them. 
To be fair, we train ImgAdvNet the same epochs with Our-
CNN+adv, i.e., 30 epochs. As shown in Fig. 10 and Table 4, 
Our-CNN+adv with wavelet-domain discriminator achieves 
better visual perceptual and verification performances than 
ImgAdvNet with image-pixel-domain discriminator, though 
the latter has a little higher PSNR and SSIM values. This 
demonstrates that adversarial learning in wavelet domain 
can capture more local texture details and generate more 
perceptually plausible images, which is also helpful to face 
recognition.

Wavelet Adversarial Loss From Fig. 10, it can be seen that 
Our-CNN+adv has more texture details than Our-CNN, such 
as hair, beard and tooth textures. From Table 4, it can be seen 
that Our-CNN+adv achieves lower PSNR and SSIM values 
while better verification performance than Our-CNN. This 

again proves that adversarial learning in wavelet domain can 
generate perceptually plausible results with abundant texture 
details and recover more identity information. The compari-
son between Our-CNN+id and the proposed method can also 
support this argument.

Identity Preserving Loss From Fig. 10, we can see that the 
results of Our-CNN+id look more similar with the ground-
truth compared with the other methods without the identity 
preserving loss. The verification measures in Table 4 show 
that the addition of the identity preserving loss can improve 
face verification performance by a large margin, while it 
also causes a little decrease in PSNR and SSIM values like 
the adversarial loss. Both the visual perceptual and quantita-
tive results demonstrate that the identity preserving loss is 
essential to improve face recognition performance via face 
hallucination.

To sum up, we can conclude that the wavelet-domain gen-
erator with the wavelet reconstruction loss is superior to the 
image-pixel-domain generator with the image reconstruction 
loss (i.e., MSE loss in image pixel domain); the wavelet-
domain discriminator with the wavelet adversarial loss can 
generate photo-realistic texture details and is helpful to face 
verification; the identity preserving loss can bring a great 
improvement to face verification via face hallucination.

Table 5   The influence of different classification net. The baseline model is WaveletSRCNN trained without the identity-preserving loss

Bold values indicate the best result

Test Metric Train

Original Bicubic Baseline VGG VGGFace LightCNN LightCNN-29v2

VGGFace AUC​ 99.33 86.61 97.49 97.17 97.94 98.07 97.86
FAR = 1% 89.90 24.77 72.57 68.47 74.13 77.50 73.97
FAR = 0.1% 79.63 6.93 45.46 47.03 46.77 55.87 47.20

LightCNN AUC​ 99.31 90.68 98.07 97.48 98.51 98.48 98.54
FAR = 1% 97.77 45.50 88.43 85.70 90.73 90.86 91.43
FAR = 0.1% 96.23 21.17 72.67 70.63 80.93 81.20 76.27

LightCNN-29v2 AUC​ 99.47 95.65 98.69 98.50 98.97 99.07 99.04
FAR = 1% 99.53 64.30 91.57 87.93 94.13 94.20 94.60
FAR = 0.1% 99.30 43.73 81.87 71.10 85.76 85.87 87.43

Table 6   The running time (ms) on GPU and CPU

a The run time of CBN on CPU is copied from the cited paper for no publicly available cpu version of CBN code

Hardware Settings Bicubic WTIP SRCNN SRGAN SRDense CBN URDGN TDN TDAE Ours

GPU 32 × 32 , 4× – – 3.805 15.12 25.24 1890 – – – 9.306
16 × 16 , 8× – – 3.805 6.259 16.20 2067 13.45 19.11 39.13 9.001
8 × 8 , 16× – – 3.805 3.916 19.83 2128 – – – 33.93

CPU 32 × 32 , 4× 0.8903 22.50 223.0 627.1 1051 – – – – 1263
16 × 16 , 8× 0.8823 22.64 223.0 427.9 315.2 - 1268 1306 2765 700.8
8 × 8 , 16× 0.8765 19.85 223.0 394.4 149.7 3840a – – – 975.9
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4.7 � EvalNet Analysis

Extensive experiments are conducted on CelebA faces of 
pixel-size 16 × 16 with magnification factor 8× to study 
the influence of different evaluation networks on face veri-
fication performance. We train and evaluate the proposed 
model with four classification networks, i.e., VGG (Simon-
yan and Zisserman 2015), VGGFace(Parkhi et al. 2015), 
LightCNN (Wu et al. 2018) and LightCNN-29v2 (the newest 
and strongest version of LightCNN).

As shown in Table 5, testing with a better face recog-
nition network always achieves better performance, while 
different training settings have significant influences on the 
performance. Compared to Bicubic interpolation, the base-
line model trained with no classification network has already 
improved the face verification performance greatly. How-
ever, the performance degrades if using the pre-trained VGG 
network, which implies that non-face classification network 
may not be helpful for face hallucination on face verification 
performance. When training with different face recognition 
nets, such as VGGFace, LightCNN and LightCNN-29v2, the 
face verification performances improve with a large margin 
but they are very close to each other, especially when testing 
with a better classification net like LightCNN-29v2.

In summary, the face verification performance of the pro-
posed method may improve with a face recognition network 
while degrade with a non-face classification network, but 
it is not very sensitive to the specific selection of the face 
recognition network.

LR (b) GT (c) E0 (d) E1 (e) E2 (f) E3 (g) E4 (h) E5 (i) E6 (j) E7 (k) E8 (l) E9 (m) E10(a)

Fig. 11   The visual results of different discriminators along with 
the training epochs. a and b are the input and ground-truth images, 
respectively. c–m are the results after the training epochs 0–10, 

respectively. The top three and bottom three rows are the results of 
WaveletCNN training with the original discriminator of DCGAN and 
the proposed wavelet-domain discriminator, respectively

Fig. 12   Comparison on PSNR (higher is better) and MS-SSIM (lower 
is better) along with the training epochs
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4.8 � Time Complexity

We compare the time complexity against the state-of-the-art 
models on a single GPU (TITAN Xp GP102) and a single 
CPU (i7-4790), respectively. As demonstrated in Table 6, 
the proposed method achieves appealing time performance 
among the state-of-the-art deep models. It runs the second 

and third fast on GPU for the (32 × 32, 4×) and (16 × 16, 8×) 
settings, respectively; its time cost increases a lot for the 
(8 × 8, 16×) setting but is still less than CBN’s. When run-
ning on CPU, our method is faster than CBN, URDGN, TDN 
and TDAE. The superior performance on GPU comes from 
that the presented network consists of multiple independ-
ent subnets, i.e., the subnets in the wavelet prediction net. 

LR

CBN

Ours

HR

Fig. 13   Robustness toward large pose variations on 16 × 16 input resolution with 8× upscaling factor. All the images are selected from the Cel-
ebA testset

LR

CBN

Ours

HR

Fig. 14   Robustness toward occlusion variations on 16 × 16 input resolution with 8× upscaling factor. All the images are selected from the Cel-
ebA testset
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This speeds up the execution time very much when running 
parallelly on GPU.

4.9 � Training Stability

The training instability still remains a challenge to gen-
erative adversarial networks (GANs), especially for 
high-resolution images. Different from most of the cur-
rent GANs, we propose a wavelet domain discriminator 
(WaveletDNet) to synthesize realistic wavelets. Since 
each wavelet has the same small size with the low-res-
olution inputs, a very shallow network architecture is 
able to ensure enough receptive field for the adversarial 
learning. This reduces the difficulty in training GANs for 
high-resolution images.

We conduct experiments to compare the training sta-
bility, where two different discriminators are used to 
train WaveletSRCNN, i.e., an image domain discrimina-
tor used in DCGAN and the proposed WaveletDNet. As 
shown in Fig. 11, the proposed WaveletDNet converges 
faster than the image discriminator and the image results 
are more appealing. Besides, we adopt two metrics, 
i.e., PSNR and multi-scale structural similarity (MS-
SSIM) (Odena et al. 2017), to quantitatively evaluate 
the training stability. As shown in Fig. 12, WaveletDNet 
outperforms the image discriminator in training stability 
for both the metrics.

Table 7   Quantitative results on unaligned noisy data

Bold values indicate the best result
aMeans the results are copied from the cited papers. The different PSNRs and SSIMs for TDAE come from the different test-sets and the differ-
ent computation details of SSIM

Input image Method CelebA LFW

PSNR SSIM PSNR SSIM AUC​ FAR = 1% FAR = 0.1%

16 × 16 , unaligned TDN 22.66a 0.66a − − − − −
Our-CNN 23.31 0.8349 22.70 0.8373 97.53 81.13 66.50
Ours 22.39 0.7913 22.03 0.7973 97.84 86.40 68.03

16 × 16 , unaligned, noisy TDAE 20.20 ( 20.47a) 0.8525 ( 0.56a) 19.31 0.7153 76.48 15.27 5.667
Our-CNN 20.40 0.7491 19.30 0.7258 75.48 11.73 2.900
Ours 20.80 0.7574 19.67 0.7382 79.06 17.50 5.33

8 × 8 , unaligned Our-CNN 21.29 0.7727 20.99 0.7777 84.97 27.00 9.867
Ours 20.82 0.7392 20.56 0.7462 87.75 32.60 19.60

8 × 8 , unaligned, noisy Our-CNN 18.35 0.6806 17.59 0.6637 60.45 3.267 0.6333
Ours 18.71 0.6913 17.95 0.6767 62.55 4.100 0.6333

LR

TDN

Our-CNN

Ours

HR

Unaligned faces Unaligned noisy faces

LR

TDAE

Our-CNN

Ours

HR

Fig. 15   Comparison on 16 × 16 unaligned faces with/without 10% Gaussian noise. The top two and the bottom rows in left panel are copied from 
the cited paper
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4.10 � Robustness Towards Poses and Occlusions

We evaluate the robustness of our method toward large pose 
and occlusion variations. Some visual results of our method 
compared with the state-of-the-art CBN on the LR faces 
with large poses and occlusions are reported in Figs. 13 and 
14.

Large Poses As shown in Fig. 13, CBN fails to recon-
struct plausible HR faces of large poses, where the edges 
are blurry and the hidden facial parts are synthesized like 
ghost. This is because CBN incorporates corresponding 
field estimation with face hallucination, which is hard to be 
accurate with large poses. Meanwhile, our method can still 
infer plausible high-quality images with abundant textures. 
This demonstrates that dealing with face hallucination in 
wavelet-domain helps to infer high-frequency details while 
maintaining plausible global facial topology.

Occlusions We take some faces with natural occlusions 
for example. As shown in Fig. 14, as the accurate location 
of the landmarks is hard for the occluded LR faces, CBN 
tends to over-synthesize occluded facial parts and gener-
ate blurry edges around the occlusion boarders. Different 
from CBN, our method super-resolves the occluded and the 
rest facial parts dependently and is able to produce high-
quality images, not only for the facial parts but also for the 
occlusions.

Besides, since the LFW dataset contains large quanti-
ties of face images captured in the wild, which includes 
large variations of poses, occlusions and other noises, the 
appealing evaluation results in the former sections provide 
additional beneficial evidence that the proposed method has 
promising robustness toward unconstrained face images with 
large poses, occlusions and so on.

4.11 � Hallucinating Unaligned and Noisy Faces

We conduct experiments to explore the performance of the 
proposed method for unaligned faces with/without noise. 
Following the protocols of TDN (Yu and Porikli 2017a) and 
TDAE (Yu and Porikli 2017b), we train the proposed network 
to predict the aligned high-resolution faces directly from the 
unaligned (noisy) low-resolution inputs.

As demonstrated in Fig. 15 and Table 7, the performance 
of the proposed method on the unaligned faces of 16 × 16 pix-
els is comparable to or better than that of TDN/TDAE both 
quantitatively and qualitatively. We also evaluate the proposed 
method on the unaligned faces of 8 × 8 pixels. It can be seen 
from Fig. 16 that our method is able to predict high-resolution 
faces from 8 × 8 unaligned faces while preserving most of the 
facial information. However, it fails to preserve the facial infor-
mation for 8 × 8 unaligned faces with 10% Gaussian noise.

The face verification results in Table 7 demonstrate that 
it is still difficult to recover the identity information from 
the unaligned tiny faces polluted by a large amount of noise. 
Super-resolving unaligned noisy tiny faces remains an open 
and challenging task.

5 � Conclusion

We propose a novel wavelet-domain generative adversarial 
approach for multi-scale face hallucination, which transforms 
single image super-resolution to wavelet coefficients prediction 
task in deep learning framework. A flexible wavelet-domain 
generative adversarial network (WaveletSRGAN) is presented, 
which consists of three subnetworks: wavelet-domain super-
resolution network , wavelet-domain discriminator network 
and facial evaluation network. Three types of losses, i.e., wave-
let reconstruction loss, wavelet adversarial loss and identity 
preserving loss, are designed to generate abundant photo-
realistic texture details while maintaining the global facial 

LR

Our-CNN

Ours

HR

LR

Our-CNN

Ours

HR

(a) Unaligned faces (b) Unaligned noisy faces

Fig. 16   Results on 8 × 8 unaligned faces with/without 10% Gaussian noise
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topology information. Due to its extensible fully convolutional 
architecture trained with simply-aligned faces, our network is 
applicable to different input resolutions with various upscaling 
factors. Experimental results show that the proposed method 
demonstrates promising robustness toward very low-resolution 
faces with large pose and occlusion variances. It achieves more 
appealing results both qualitatively and quantitatively than the 
state-of-the-arts, and can significantly improve identity veri-
fication performance for low-resolution face images captured 
in the wild.
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