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Abstract
In this article,wepresent theMenpo2DandMenpo3Dbenchmarks, twonewdatasets formulti-pose 2Dand3Dfacial landmark
localisation and tracking. In contrast to the previous benchmarks such as 300W and 300VW, the proposed benchmarks contain
facial images in both semi-frontal and profile pose. We introduce an elaborate semi-automatic methodology for providing
high-quality annotations for both the Menpo 2D and Menpo 3D benchmarks. In Menpo 2D benchmark, different visible
landmark configurations are designed for semi-frontal and profile faces, thus making the 2D face alignment full-pose. In
Menpo 3D benchmark, a united landmark configuration is designed for both semi-frontal and profile faces based on the
correspondence with a 3D face model, thus making face alignment not only full-pose but also corresponding to the real-
world 3D space. Based on the considerable number of annotated images, we organised Menpo 2D Challenge and Menpo 3D
Challenge for face alignment under large pose variations in conjunction with CVPR 2017 and ICCV 2017, respectively. The
results of these challenges demonstrate that recent deep learning architectures, when trained with the abundant data, lead to
excellent results. We also provide a very simple, yet effective solution, named Cascade Multi-view Hourglass Model, to 2D
and 3D face alignment. In our method, we take advantage of all 2D and 3D facial landmark annotations in a joint way. We
not only capitalise on the correspondences between the semi-frontal and profile 2D facial landmarks but also employ joint
supervision from both 2D and 3D facial landmarks. Finally, we discuss future directions on the topic of face alignment.

Keywords 2D face alignment · 3D face alignment · Menpo challenge

1 Introduction

Facial landmark localisation and tracking on images and
videos captured in unconstrained recording conditions is a
problem that has received a lot of attention during the past
few years. This is attributed to the fact that it is a neces-

Communicated by Rama Chellappa, Xiaoming Liu, Tae-Kyun Kim,
Fernando De la Torre, Chen Change Loy.

B Jiankang Deng
j.deng16@imperial.ac.uk

1 Department of Computing, Imperial College London,
London, UK

2 Department of Computer Science, University of Exeter,
Exeter, UK

3 Department of Computer Science, Middlesex University
London, London, UK

4 Centre for Machine Vision and Signal Analysis, University of
Oulu, Oulu, Finland

sary pre-processing step for many applications such as face
recognition (Taigman et al. 2014), facial behaviour analysis
(Eleftheriadis et al. 2016b, a), lip reading (Chung and Zisser-
man 2016; Chung et al. 2017), 3D face reconstruction (Booth
et al. 2016, 2017, 2018) and face editing (Shu et al. 2017),
just to name a few.

Currently, methodologies (Xiong and De la Torre 2013;
Ren et al. 2014; Zhu et al. 2016a; Trigeorgis et al. 2016;
Güler et al. 2017; Bulat and Tzimiropoulos 2017a, b; Honari
et al. 2018) that achieve good performance in facial landmark
localisation have been presented in recent top-tier com-
puter vision conferences (e.g., CVPR, ICCV, ECCV). This
progress would not be feasible without the efforts made by
the scientific community to design and develop both bench-
markswith high-quality landmark annotations (Sagonas et al.
2013, 2016; Belhumeur et al. 2013; Le et al. 2012; Zhu and
Ramanan 2012; Köstinger et al. 2011), as well as rigorous
protocols for performance assessment.
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The recent benchmarks 300W (Sagonas et al. 2013) and
300VW (Shen et al. 2015) are amongst the most popular
datasets for facial landmark localisation and tracking and are
widely used by both the scientific community and the indus-
try (Trigeorgis et al. 2016; Zhu et al. 2016a; Ren et al. 2014;
Xiong and De la Torre 2013; https://megvii.com; https://
www.sensetime.com).

The 300W benchmark was developed for the correspond-
ing 300W competition held in conjunction with ICCV 2013.
It provides publicly available annotations for images, which
originate from the following “in-the-wild” datasets:

– Labeled Face Parts in the Wild (LFPW) dataset (Bel-
humeur et al. 2013). Since LFPW provides only the
source links to download the images and not the actual
images, only 1035 images were available (out of 1287).

– Helen dataset (Le et al. 2012)which consists of 2330 high
resolution images downloaded from the flickr.com
web service.

– The Annotated Faces in-the-wild (AFW) (Zhu and
Ramanan 2012) dataset which consists of 250 images
with 468 faces.

– Two new datasets, namely the IBUG dataset and the
300W test set. IBUG consists of 135 images. In addition,
300W test set consists of 300 images captured indoors
and 300 images captured outdoors. The 300W test set
was publicly releasedwith the second version of the com-
petition (Sagonas et al. 2016).

In total, the 300W benchmark provides 4350 “in-the-wild”
images that contain around 5000 faces. The faces have been
annotated using the 68 landmark frontal face markup scheme
shown in Fig. 3a.1

The next competition on the topic was held in conjunc-
tion with ICCV 2015 and revolved around facial landmark
tracking “in-the-wild”. The challenge introduced the 300VW
benchmark (Shen et al. 2015). The 300VW benchmark
consists of 114 videos and 218,595 frames. For a recent com-
parison of the state-of-the-art in 300VW, the interested reader
may refer toChrysos et al. (2018). The 68 frontal facemarkup
scheme was also used for annotating the faces of the 300VW
benchmark. Even though the data of 300W and 300VW had
a large impact in the computer vision community, there are
still two obvious limitations.More specifically, the pose vari-
ations and the data size were limited.

In 300W and 300VW, the data were annotated using only
the semi-frontal shape (68 landmarks), and there are few
faces in extreme poses (e.g. full profile face images). Large-
pose face alignment is a very challenging task, until now
there are not enough annotated facial images in arbitrary

1 Please note that this markup scheme had been also used in Multi-PIE
dataset (Gross et al. 2010).

Fig. 1 Landmark annotation on
face contour between 2D and
3D views. Red annotation is
from 2D view, and green
annotation is from 3D view
(Color figure online)

poses, especially with a large number of landmarks. Anno-
tated Facial Landmarks in the Wild (AFLW) (Koestinger
et al. 2011) provides a large-scale collection of annotated
face images gathered from Flickr, exhibiting a large vari-
ety in appearance (e.g., pose, expression, ethnicity, age,
gender) as well as general imaging and environmental con-
ditions. In total, about 25k faces are annotated with up to
21 landmarks, but excluding coordinates for invisible land-
marks, causing difficulties for model training. Although all
invisible landmarks are manually annotated in Zhu et al.
(2016a), there is no landmark annotation along the face con-
tour. In Zhu et al. (2016b), a large-scale training dataset in
profile views are synthesised from the 300W dataset with
the assistance of a 3D Morphable Model (3DMM). How-
ever, the generated profile face images have artifacts that
affect the alignment accuracy. In Jeni et al. (2016), a 3D
landmark localisation challenge was organised in conjunc-
tion with ECCV 2016. However, it mainly revolved around
images that have been either captured in highly controlled
conditions or generated artificially (i.e., rendering a 3D
face captured in controlled conditions using arbitrary back-
grounds).

In this paper, we introduce multi-view 2D and 3D facial
landmark annotations to facilitate large-pose face alignment.
As shown in Fig. 1, we consider two kinds of annotation
schemes. The first one is the 2D scheme (Red). That is, facial
landmarks are always located on the visible face bound-
ary. Faces which exhibit large facial poses are extremely
challenging to annotate under this configuration because the
landmarks on the invisible face side stack together. To this
end, we used different 2D landmark annotation schemes for
semi-frontal and profile faces. The second one is the 3D
scheme (Green). Since the invisible face contour needs to be
consistent with 3D face models, labelling the self-occluded
3D landmarks is quite difficult for human annotators. To this
end, we present an elaborate semi-automatic methodology
for providing high-quality 3D annotationswith the assistance
of a state-of-the-art 3DMMmodel fittingmethod (Booth et al.
2016).

In order to train recent deep learning architectures, such
as ResNets (He et al. 2016) and Stacked Hourglass (Newell
et al. 2016), large-scale training data are required. However,
the training data provided in 300Wand 300VWare quite lim-

123

https://megvii.com
https://www.sensetime.com
https://www.sensetime.com


International Journal of Computer Vision (2019) 127:599–624 601

Fig. 2 Some extremely challenging examples (e.g. a pose, b occlusion, c expression, d illumination) from the proposed Menpo dataset

ited. To facilitate the training of face alignment models, we
provide a large number of facial imageswith 2D and 3D land-
mark annotations. In this paper, we make a significant step to
face alignment and propose a new comprehensive large pose
and large-scale benchmark, which contains both semi-frontal
and profile faces, annotated with their corresponding 2D and
3D facial shapes. We introduce an elaborate semi-automatic
methodology for providing high-quality 2D and 3D facial
landmark annotations. The annotations have been used to
set two new benchmarks and two challenges, i.e. Menpo
2D and Menpo 3D. In the Menpo 2D challenge, the par-
ticipants had access to over 10k annotated semi-frontal faces
images (300W andMenpo challenge training data) and 1906
annotated profile images. In the Menpo 3D challenge, the
participants had access to around 12k annotated face images
and around 280k annotated face frames with regards to the
3D annotation scheme. We outline the results achieved by
the participants of the Menpo 2D and 3D challenges. The
results demonstrate that recent deep learning architectures,
when trained with the abundant data of the Menpo chal-
lenges, lead to excellent results. Finally, we also propose a
new, simple and very strong baseline, named Cascade Multi-
view Hourglass Model, for 2D and 3D face alignment. In
our method, we not only capitalise on the correspondences
between the semi-frontal and profile 2D facial landmarks but
also employ joint supervision from both 2D and 3D facial
landmarks. Finally, we discuss future directions on the topic
of face alignment.

2 Menpo 2D andMenpo 3D Benchmarks

In this section, we present the Menpo 2D and Menpo 3D
benchmarks, in terms of the datasets used, the adopted land-
mark configurations, as well as the creation of ground-truth
landmark annotations.

2.1 Datasets

The datasets of Menpo 2D and Menpo 3D benchmarks
include face images and videos under completely uncon-
strained conditions, which exhibit large variations in pose,
occlusion, expression and illumination. InFig. 2,we illustrate
some extremely challenging examples from the proposed
Menpo dataset. In fact, these four factors have a significant
influence on the local facial appearance and thus affect the
local feature for a particular face alignment model.

– Pose Large pose variations can cause heavy self-
occlusion, and some facial components such as half of
the facial contour can even be completely missing in a
profile face.

– Occlusion Occlusion frequently happens on facial con-
tour and some facial organs (e.g. sunglasses on eyes and
food on mouths) under uncontrolled conditions. Heavy
occlusions can bring great challenges to the in-the-wild
face alignment as the facial appearance can be locally
changed or even completely missing.
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– Expression Some inner facial components (e.g. mouth
and eyes) have their own variation patterns. Especially,
mouth shape is largely affected by some expressions (e.g.
supervise and happy), thus it is very challenging for face
alignment under exaggerated expressions.

– Illumination Illumination changes (e.g. intensity and
direction variations) can significantly alter the facial
appearance, and even make some detailed textures miss-
ing.

In more detail, the dataset of Menpo 2D Benchmark
consists of the following:

– Image Training Set 5658 semi-frontal and 1906 profile
facial images from AFLW (Koestinger et al. 2011) and
FDDB (Jain and Learned-Miller 2010).

– Image Test Set 5335 semi-frontal and 1946 profile facial
images from AFLW (Koestinger et al. 2011) and FDDB
(Jain and Learned-Miller 2010).

Furthermore, the dataset of Menpo 3D Benchmark con-
sists of the following:

– Image Training Set 337 images from the Annotated
Faces in-the-wild (AFW) (Zhu andRamanan 2012), 1035
images from the Labeled Face Parts in the Wild (LFPW)
(Belhumeur et al. 2013), 2300 images from Helen (Le
et al. 2012), 135 images from IBUG(Sagonas et al. 2013),
600 images from 300W (Sagonas et al. 2013, 2016) and
7564 images from Menpo 2D training dataset (Zafeiriou
et al. 2017b).

– Video Training set 55 videos from 300VW (Shen et al.
2015).

– Video Test Set 111 in-the-wild videos manually collected
from YouTube.

It is worth noting that for Menpo 3D, the test set contains
only videos because this is a tracking challenge. However,
an image training set is also provided, which give the ability
to participants to train their methods on not only videos but
also images.

In Table 1, we list the details (e.g. year, size and annota-
tions) of several previously famous face alignment datasets,
ranging from the controlled 2D datasets to the recent in-the-
wild challenging 2D datasets and 3D datasets.

Early 2D face alignment datasets [e.g. XM2VTS (Messer
et al. 1999), BioID (Jesorsky et al. 2001), FRGC (Phillips
et al. 2005), PUT (Kasinski et al. 2008),BUHMAP-DB(Aran
et al. 2007), MUCT (Milborrow et al. 2010) and Multi-PIE
(Gross et al. 2010)] are collected under controlled conditions
with neutral expression, frontal pose and normal lighting. On
these controlled datasets, the classic approaches [e.g. ASM

(Cootes et al. 1995), AAM (Cootes et al. 2001) and CLM
(Cristinacce and Cootes 2006)] have set up state-of-the-art
performance, and face alignment under controlled conditions
has been well-solved by now.

Recently, some uncontrolled datasets [e.g. LFW (Huang
et al. 2008), AFLW (Köstinger et al. 2011), LFPW (Bel-
humeur et al. 2013),AFW(Zhu andRamanan2012),HELEN
(Le et al. 2012), COFW (Burgos-Artizzu et al. 2013; Ghi-
asi and Fowlkes 2015), 300-W (Sagonas et al. 2013, 2016),
300VW(Shen et al. 2015),MTFL (Zhang et al. 2014),MAFL
(Zhang et al. 2016b)], which exhibit large appearance varia-
tions due to pose, expression, occlusion and illumination, are
introduced to investigate the problem of 2D face alignment
in-the-wild. From the competition results of 300W (Sagonas
et al. 2013, 2016), we can find that cascade regression based
methods (Xiong and De la Torre 2013; Yan et al. 2013; Deng
et al. 2016) and deep Convolutional Neural Networks (CNN)
(Zhou et al. 2013; Fan and Zhou 2016) set up the state-of-the-
art performance for the in-the-wild 2D face alignment.On the
Menpo 2D challenge (Zafeiriou et al. 2017c), we provide a
large-scale and multi-pose dataset, and more advanced deep
convolutional structures (Yang et al. 2017; He et al. 2017)
are designed to improve the robustness of 2D face alignment
in the wild.

Due to the inconsistency of the 2D facial landmark con-
figuration under large pose variations, 3D facial landmarks
are introduced into face alignment (Zhu et al. 2016c). Zhu
et al. (2016c) proposed a method to synthesise large-scale
training samples in profile views [300W-LP (Zhu et al.
2016c)] and employed CNN to fit the dense 3D face model
to facial images. In Zafeiriou et al. (2017a), an elaborate
semi-automatic methodology was proposed to provide high-
quality 3D landmark annotations for face images and videos.
From the results of the Menpo 3D challenge (Zafeiriou et al.
2017a), we find stacked hourglass network (Xiong et al.
2017) once again set up state-of-the-art performance.

2.2 Adopted Landmark Configurations

We adopt four different types of landmark configurations:

– Semi-frontal2D landmarks, which we use in the Menpo
2D benchmark.

– Profile 2D landmarks, which we also use in the Menpo
2D benchmark.

– 3DA-2D (3D Aware 2D) landmarks, which we use in the
Menpo 3D benchmark.

– 3D landmarks, which we also use in the Menpo 3D
benchmark.

In more detail, Semi-frontal 2D landmarks correspond to
the traditional facial landmarks as typically used in the liter-

123



International Journal of Computer Vision (2019) 127:599–624 603

Table 1 Datasets for face
alignment

Datasets Year Faces Points

XM2VTS (Messer et al. 1999) 1999 2360 68

BioID (Jesorsky et al. 2001) 2001 1521 20

FRGC (Phillips et al. 2005) 2005 4950 68

PUT (Kasinski et al. 2008) 2007 9971 30

BUHMAP-DB (Aran et al. 2007) 2007 2880 52

MUCT (Milborrow et al. 2010) 2010 3755 76

Multi-PIE (Gross et al. 2010) (Semi-frontal) 2010 6665 68

Multi-PIE (Gross et al. 2010) (Profile) 2010 1400 39

LFW (Huang et al. 2008) 2007 13,233 10

AFLW (Köstinger et al. 2011) 2011 25,993 21

LFPW (Belhumeur et al. 2013) 2011 1432 29

AFW (Zhu and Ramanan 2012) 2012 205 6

HELEN (Le et al. 2012) 2012 2330 194

COFW (Burgos-Artizzu et al. 2013) 2013 1007 29

COFW (Ghiasi and Fowlkes 2015) 2015 507 68

300-W (Sagonas et al. 2013, 2016) 2013 3837 68

300VW (Shen et al. 2015) 2015 218k 68

MTFL (Zhang et al. 2014) 2014 12,995 5

MAFL (Zhang et al. 2016b) 2016 20,000 5

Menpo 2D (Zafeiriou et al. 2017c) (Semi-frontal) 2017 10,993 68

Menpo 2D (Zafeiriou et al. 2017c) (Profile) 2017 3852 39

AFLW2000-3D (Zhu et al. 2016c) 2016 2000 68

300W-LP (Zhu et al. 2016c) 2016 61,225 68

Menpo 3D (Zafeiriou et al. 2017a) 2017 11,971 + 280k 84

ature [e.g. in 300W (Sagonas et al. 2013, 2016) and 300VW
(Shen et al. 2015) challenges]. They are suitable for poses
that are frontal or relatively close to frontal (semi-frontal).
This configuration consists of the 68 landmarks (Gross et al.
2010) depicted in Fig. 3a. In case of self-occlusions, these
landmarks are placed on the face contour and are annotated
along the visible face edges, as shown in Fig. 5a.

In case of views that are nearly profile, the traditional
2D landmarks are not suitable, because a large number of
landmarks is self-occluded. Therefore, we use Profile 2D
landmarks, which are especially designed for profile faces.
This configuration consists of the 39 landmarks (Gross et al.
2010) depicted in Fig. 3b, c.

Even though the above landmark configurations corre-
spond to semantically meaningful parts of the face, many
of the landmarks are hardly associated with the real 3D
geometry of the human face. On contrary, 3D landmarks
and 3DA-2D landmarks correspond directly to the 3D struc-
ture of the human face. 3D landmarks are defined as the
3D coordinates of the facial landmarks, therefore they bare
information regarding the depth of the 3D face. In addition,
3DA-2D landmarks are defined as the 2D projections of the
3D landmarks on the image plane, see Fig. 5b. The configu-
ration of 3D landmarks and 3DA-2D landmarks consists of

the 84 landmarks shown in Fig. 4, which is fixed indepen-
dently from the facial pose. Compared to the 68 landmark
configuration in 2D landmarks (semi-frontal), this configu-
ration includes 16 additional landmarks on the facial contour,
which correspond to a linear interpolation (in 3D space) of
the original 17 landmarks on the facial contour (Fig. 5).

2.3 Creation of Ground-Truth Semi-frontal and
Profile 2D Facial Landmarks

We created ground-truth Semi-frontal 2D and Profile 2D
landmarks on the images of training and test sets of the
Menpo 2D benchmark with the following procedures.

For semi-frontal images, the Semi-frontal 2D landmarks
were extracted using a semi-automatic process similar to
Sagonas et al. (2013). But instead of an Active Appearance
Model (AAM) (Cootes et al. 2001), the method we used was
the Mnemonic Descent Method (MDM) (Trigeorgis et al.
2016). In more detail, we trained the model of MDM on
the 300W dataset (Sagonas et al. 2013) and then applied it
on the images to localise the landmarks. Finally, the output
landmarks were inspected and corrected manually using the
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Fig. 3 Landmark configuration for the Menpo 2D benchmark. Semi-frontal face images are annotated by 68 landmarks, and profile face images
are annotated by 39 landmarks. a Semi-frontal 2D landmarks (68), b left profile 2D landmarks (39), c right profile 2D landmarks (39)

Fig. 4 Configuration for 3D and 3DA-2D landmarks, used in theMenpo 3D benchmark. The configuration includes 84 landmarks. It is independent
from the facial pose and corresponds directly to the 3D structure of the human face. a Frontal pose, b left yaw pose, c right yaw pose

landmarker.io2 annotation tool that was developed by
our group, as shown in Fig. 6a.

Regarding profile face images, we manually annotated
many images from scratch (around 1200), as there was
no publicly available in-the-wild image dataset with pro-
file annotations. Same as semi-frontal faces, we used these
images to conduct a semi-automatic procedure to annotate
the remaining profile images. In more detail, we trained a
model of MDM on the annotated profile images. We applied
it on the remaining images and thenmademanual corrections
using landmarker.io, as illustrated in Fig. 6b, c.

Finally, using the extracted ground-truth landmarks, the
images were cropped in a region around the face and the
cropped facial images were provided for training and testing.

2 https://www.landmarker.io/.

2.4 Creation of Ground-Truth 3DA-2D and 3D Facial
Landmarks

As already presented, the Menpo 3D benchmark consists of
both images (used in the training set) and videos (used in
training and test sets). In this section, we present the semi-
automated procedure that we adopted to create ground-truth
3DA-2D and 3D landmarks on the images and videos of the
Menpo 3D benchmark. These are based on fitting our LSFM
models (Booth et al. 2016), the largest-scale 3D Morphable
Model (3DMM) of faces, on videos and images. We focus
our presentation on the case of videos, since this is the most
challenging and interesting case for the Menpo 3D bench-
mark. Please note however that in Sect. 2.4.5, we also provide
details for the case of images of the Menpo 3D benchmark.

The core steps of extracting accurate 3D landmarks from
facial videos are depicted in Fig. 7. Initially, we employ a
DCNN network (Deng et al. 2017) to estimate the per frame
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Fig. 5 Visual comparison of the a semi-frontal 2D landmarks (68) and b 3DA-2D landmarks (84), using examples from frames of videos of the
300VW dataset

Fig. 6 Examples of manual refinement of semi-frontal 2D (a) and profile 2D (b, c) landmarks using the landmarker.io annotation tool. a
Semi-frontal 2D landmarks, b left profile 2D landmarks, c right profile 2D landmarks

3DA-2D landmarks. The automatic personalisation method
of Chrysos et al. (2015) is utilised for refining certain facial
parts (e.g. the eyes). Afterwards, an energy minimisation
method was used to fit our combined identity and expression
models on the landmarks of all frames of the video simulta-
neously. We apply this fitting twice, first by using the global
LSFM model for the identity variation and second by using
the corresponding bespoke LSFM model, based on manual
annotation of the demographics of the input face. We then
sample the dense facial mesh that is generated by the fit-
ting result at every frame on the sparse landmark locations.
Finally, we provide manual feedback by visually inspecting
the results and keeping only those that are plausible across
all frames of a video. More details follow in the subsequent
sections.

2.4.1 Dense 3D Face Shape Modelling

Let us denote the 3D mesh (shape) of a face with N vertexes
as a 3N × 1 vector

s =
[
xT1, . . . , x

T
N

]T = [x1, y1, z1, . . . , xN , yN , zN ]
T, (1)

where xi = [xi , yi , zi ]T are the object-centred Cartesian
coordinates of the i th vertex.

In this work, we unbundle the identity from the expression
variation and then combine them to articulate the 3D facial
shape of any identity. An identity shape model is considered
first, i.e. a model of shape variation across different individu-
als, assuming that all shapes are under neutral expression. For
this, we adopt our LSFM models (Booth et al. 2016), which
consist of the largest models of 3D Morphable Modelling
(3DMM) of facial identity built from approximately 10,000
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Fig. 7 Main steps of the adopted pipeline to create ground-truth 3D
facial landmarks on videos.We are based on a state-of-the-art landmark
localisationmethod and an energyminimisation approach tofittingpow-

erful dense 3D facemodels on the sequence of landmarks. a Input video,
b landmark localisation, c camera estimation (rigid SfM), d dense 3D
shape estimation, e sampling of 3D shape on face landmarks

scans of different individuals. The dataset that LSFMmodels
are trained on includes rich demographic information about
each subject, allowing the construction of not only a global
3DMM model but also bespoke models tailored for specific
age, gender or ethnicity groups. In this work, we utilise both
the global and the bespoke LSFM models.

Each LSFM model (global or bespoke) forms a shape
subspace that allows the expression of any new mesh. To
construct such a LSFM model, a set of 3D training meshes
are brought into dense correspondence so that each mesh is
described with the same number of vertices and all samples
have a shared semantic ordering. The rigid transformations
are removed from these semantically similar meshes, {si },
by applying Generalised Procrustes Analysis. Sequentially,
Principal Component Analysis (PCA) is performed which
results in {s̄id ,Uid , 6id}, where s̄id ∈ R

3N is the mean shape
vector, Uid ∈ R

3N×n p is the orthonormal basis after keep-
ing the first n p principal components and 6id ∈ R

n p×n p is
a diagonal matrix with the standard deviations of the corre-
sponding principal components. Let Ũid = Uid6id be the
identity basis with basis vectors that have absorbed the stan-
dard deviation of the corresponding mode of variation so that
the shape parameters p = [

p1, . . . , pnp

]T are normalised to
have unit variance. Therefore, assuming normal prior distri-

butions, we have p ∼ N (0, In p ), where In denotes the n × n
identity matrix.

A 3D shape instance of a novel identity can be generated
using this PCA model as a function of the parameters p:

Sid(p) = s̄id + Ũidp. (2)

Furthermore, we also consider a 3D shape model of
expression variations, as offsets from a given identity shape
Sid . The blend shapes model of Facewarehouse (Cao et al.
2014a) are utilised for this module. We adopt Nonrigid
ICP (Cheng et al. 2017) to accurately register this model
with the LSFM identity model. Then, the expression model
can be represented with the triplet

{
s̄exp,Uexp, 6exp

}
, where

s̄exp ∈ R
3N is the mean expression offset,Uexp ∈ R

3N×nq is
the orthonormal expression basis having nq principal com-
ponents and 6exp ∈ R

nq×nq is the diagonal matrix with the
corresponding standard deviations. Similarly with the iden-
tity model, we consider the basis Ũexp = Uexp6exp and the
associated normalised parameters q ∼ N (0, Inq ).

Combining the two aforementioned models, we end up
with the following combined model that represents the 3D
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Fig. 8 Principal components of the LSFM global model under identity
and expression variations, using the first 3 principal components for
identity and the first 2 components for expression. Note that the first
row corresponds to the identity model only

facial shape of any identity under any expression:

S(p,q) = s̄ + Ũidp + Ũexpq, (3)

where s̄ = s̄id + s̄exp is the overall mean shape, p is the
vector with the identity parameters and q is the vector with
the expression parameters. We construct one combined iden-
tity and expression model for each LSFM model (global or
bespoke). For example, Fig. 8 visualises the first few compo-
nents of identity and expression for the case of global LSFM
model.

2.4.2 Camera Model

The purpose of a camera model is to project the object-
centred Cartesian coordinates of a 3D mesh instance s into
2D Cartesian coordinates on an image plane.

The projection of a 3D point x = [x, y, z]T into its 2D
location in the image plane x′ = [x ′, y′]T involves two steps.
First, the 3Dpoint is rotated and translated using a linear view
transformation to bring it in the camera reference frame:

v = [
vx , vy, vz

]T = Rvx + tv, (4)

where Rv ∈ R
3×3 and tv = [tx , ty, tz]T are the camera’s

3D rotation and translation components, respectively. This
is based on the fact that, without loss of generality, we can

assume that the observed facial shape is still and that the
relative change in 3D pose between camera and object is
only due to camera motion.

Then, the camera projection is applied. For the sake of
computational efficiency and stability of the estimations, we
consider a scaled orthographic camera, which simplifies the
involved optimisation problems by making the camera pro-
jection function to be linear. In more detail, the 2D location
of the 3D point x′ is given by:

x′ = σ
[
vx , vy

]T
, (5)

where σ is the scale parameter of the camera. Note that, since
in the scaled orthographic case the translation component tz
is ambiguous, we will consider it fixed and omit it from the
subsequent formulations.

In addition, we represent the 3D rotation Rv using the
three parameters of the axis-angle parametrisation q =
[q1, q2, q3]T. The projection operation performed by the
camera model of the 3DMM can be expressed with the
function P(s, c) : R

3N → R
2N , which applies the trans-

formations of Eqs. 4 and 5 on the points of provided 3D
mesh s with

c = [
σ, q1, q2, q3, tx , ty

]T ∈ R
6 (6)

being the vector of camera parameters with length nc = 6.
For abbreviation purposes, we represent the camera model
of the 3DMM with the function W : Rn p,nc → R

2N as

W(p,q, c) ≡ P (S(p,q), c) , (7)

where S(p,q) is a 3D mesh instance using Eq. 3. Finally,
we denote byW(p,q f , c f ) : Rn p,nc → R

2L , where L is the
number of the considered sparse landmarks, the selection of
the elements of W(p,q, c) that correspond to the x, y and
z coordinates of the 3D shape vertices associated with the
facial landmarks.

2.4.3 LSFM Fitting on Videos: Energy Formulation

To achieve highly-accurate fitting results, even in especially
challenging cases,wedesign an energyminimisation strategy
that is tailored for video input and exploits the rich dynamic
information usually contained in facial videos. Since these
estimations are intended for the creation of ground-truth and
we are not constrained by the need of real-time performance,
we follow a batch approach, where we assume that all frames
of the video are available from the beginning.

Let � f = [
x1 f , y1 f , . . . , xL f , yL f

]T be the 2D facial
landmarks for the f -th frame estimated by the method of
Bulat and Tzimiropoulos (2016). Even though we consider
the identity parameters p as fixed over the frames of the
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video, we expect that every frame has its own expression,
camera, and texture parameters vectors, which we denote by
q f , c f and λ f respectively. We also denote by q̂, ĉ and λ̂

the concatenation of the corresponding parameter vectors
over all frames (with n f being the number of frames of

the video): q̂T =
[
qT1, . . . ,q

T
n f

]
, ĉT =

[
cT1, . . . , c

T
n f

]
and

λ̂
T =

[
λT
1, . . . ,λ

T
n f

]
.

To fit a 3D facemodel on the facial landmarks, we propose
to minimise the following energy:

Ê(p, q̂, ĉ) = Êland(p, q̂, ĉ)

+ Êpriors(p, q̂) + csm Êsmooth(q̂),
(8)

where Êland, Êpriors and Êsmooth are a multi-frame 2D land-
marks term, a prior regularisation term and a temporal
smoothness term, respectively.Also csm is a balancingweight
for the temporal smoothness term.

The 2D landmarks term (Êland) is a summation of the
re-projection error of the sparse 2D landmarks for all frames:

Êland(p, q̂, ĉ) =
n f∑
f=1

∥∥Wl(p,q f , c f ) − � f
∥∥2 . (9)

The shape priors term (Êpriors) imposes priors on the
reconstructed 3D facial shape of every frame. Since the facial
shape at every frame is derived from the (zero-mean and unit-
variance) identity parameter vector p and the frame-specific
expression parameter vector q f (also zero-mean and unit-
variance), we define this term as:

Êpriors(p, q̂) = ĉid ‖p‖2 + cexp

n f∑
f =1

∥∥q f
∥∥2

= ĉid ‖p‖2 + cexp
∥∥q̂∥∥2 ,

(10)

where ĉid and cexp are the balancing weights for the prior
terms of identity and expression respectively.

The temporal smoothness term (Êsmooth) enforces smo-
othness on the expression parameters vectorq f by penalising
the squared norm of the discrimination of its 2nd temporal
derivative. This corresponds to the regularisation imposed in
smoothing splines and leads to naturally smooth trajectories
over time. More specifically, this term is defined as:

Êsmooth(q̂) =
n f −1∑
f=2

∥∥q f−1 − 2q f + q f +1
∥∥2 =

∥∥∥D2q̂
∥∥∥
2
,(11)

where the summation is done over all frames for which the
2nd derivative can be expressed without having to assume
any form of padding outside the temporal window of the

video. Also D2 : R
nqn f → R

nq (n f −2) is the linear oper-
ator that instantiates the discretised 2nd derivative of the
nq -dimensional vector q f . This means that D2q̂ is a vec-
tor that stacks the vectors (q f−1 − 2q f + q f+1), for f =
2, . . . , n f − 1. It is worth mentioning that we could have
imposed temporal smoothness on the parameters c f , λ f too.
However, we have empirically observed that the temporal
smoothness on q f , in conjunction with fixing the identity
parameters p over time, is adequate for accurate and tem-
porally smooth estimations. Following the Occam’s razor
principle, our design choice is to avoid expanding the energy
with additional unnecessary terms, and it keeps the number
of hyper-parameters as low as possible.

2.4.4 Optimisation of Energy Function

As described next, we first estimate the camera parameters ĉ
(see Fig. 7c) and afterwards the shape parameters (p, q̂) (see
Fig. 7d).

Camera Parameters Estimation In this initial step, we solely
consider the 2D landmarks term Êland, which is the only term
of the energy Ê(p, q̂, ĉ) that depends on ĉ.Weminimise Êland

by assuming that the unknown facial shape is fixed over all
frames, but does not necessarily lie on the subspace defined
by the combined shape model of Eq. (2). In other words,
the facial shape S is considered to have 3N free parameters,
corresponding to the 3D coordinates of the N vertices of
the 3D shape. However, since in this step the energy that
is minimised involves only the sparse landmarks, only the
3D coordinates of the vertices that correspond to the sparse
landmarks can actually be estimated. (i.e., 3L parameters in
total for the 3D shape).

Note that the estimation of the rigid shape is only done
to facilitate the camera parameters’ estimation, which is the
main goal of this step. The assumption of facial shape rigid-
ity during the whole video is over-simplistic. However, as
verified experimentally, it provides a very robust initialisa-
tion of the camera parameters even in cases of large facial
deformation, provided that it is fed with significant amount
of frames. This is due to the nature of physical deformations
observed in human faces, which can bemodelled as relatively
localised deviations from a rigid shape.

Under the aforementioned assumptions, the 2D landmarks
term can be written as:

Êland(Srig, �̂) =
∥∥∥L̂ − �̂Srig

∥∥∥
2

F
, (12)

where ‖·‖2F denotes the Frobenius norm and Srig is a 3 × L
matrix with the unknown sparse rigid shape, where every
column of Srig contains the 3D coordinates of a specific
landmark point. Also, L̂ is a 2n f × L matrix that stacks the
matrices L̃ f ( f = 1, . . . , n f ), which are the re-arrangements
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of the landmarks vectors �̃ f into 2 × L matrices:

L̂ =
⎡
⎢⎣

L̃1
...

L̃n f

⎤
⎥⎦ , L̃ f =

[
x̃1 f . . . x̃L f
ỹ1 f . . . ỹL f

]
. (13)

Note that, without loss of generality, the landmarks L̃ f are
considered to have their centroid at the origin (0, 0). This
means that the landmark coordinates (x̃i f , ỹi f ) are derived
from the original coordinates (xi f , yi f ) after subtracting their
per-frame centroid.

In addition, �̂ =
[
�T

1 . . . �T
n f

]T
is a 2n f × 3 matrix

that stacks the scaled orthographic projection matrices� f ∈
R
2×3 from all the frames f . The matrix� f is derived by the

first two rows of the 3D rotation matrixRv of the camera [see
Eq. (4)], after multiplying them with the scale parameter σ f

of the camera for the frame f . Therefore, an orthogonality
constraint should be imposed on each � f :

� f �
T
f = σ 2

f I2, for some σ f > 0, f = 1, . . . , n f . (14)

To summarise, our goal is to minimise Êland as described
in Eq. (12) with respect to Srig and �̂, under the constraints
of Eq. (14). For this, we employ a simple yet effective rigid
Structure fromMotion (SfM) approach (Webb andAggarwal
1982): we solve the problem based on a rank-3 factorisation
of the matrix L̂.

Regarding the translation part of the camera motion, its
x and y components at frame f are derived by the centroid
of the original landmarks � f that has been subtracted in the
computation of the landmarks L̃ f in Eq. (13). This can be
easily verified as the optimal choice. Regarding the z com-
ponent of the translation, this is inherently ambiguous due to
the orthographic projection, therefore we fix it to a constant
value over all frames.

Finally, to yield the camera parameters that will be used
in conjunction with the shape model of Eq. (2), we perform a
rigid registration between the model’s mean shape s̄id (sam-
pled at the vertices that correspond to the landmarks) and
the rigid shape Srig estimated by SfM. The similarity trans-
form that registers the two sparse shapes is recovered using
Procrustes Analysis and then combined with each frame’s
similarity transform that is estimated by SfM. This yields
a sequence of estimated camera parameters c1, . . . , cn f . As
the final processing for this initialisation step, this sequence
is temporally smoothed by using cubic smoothing splines.

Shape Parameters Estimation Using the estimation of cam-
era parameters ĉ, we minimise the energy Ê of Eq. (8) with
respect to the shape parameters p and q̂. This is a linear least
squares problem that we can solve very efficiently. In more

detail, we can write Ê as follows:

Ê(p, q̂)

= c�

n f∑
f =1

∥∥∥(
IL ⊗ � f

) (
s̄(�) + Ũ(�)

id p + Ũ(�)
expq f

)
− � f

∥∥∥
2

+ ĉid ‖p‖2 + cexp
∥∥q̂∥∥2 + csm

∥∥∥D2q̂
∥∥∥
2
, (15)

where s̄(�), Ũ(�)
id , Ũ

(�)
exp are matrices with the rows of s̄, Ũid ,

Ũexp respectively that correspond to the x , y and z coordi-
nates of 3D shape vertices associated with facial landmarks.
Also, “⊗” denotes Kronecker product, such that the multi-
plication with the 2L × 3L matrix IL ⊗ � f implements the
application of the camera projection � f on each one of the
L landmarks.

Note that the sparse landmarks, in conjunction with the
adopted high-quality shape models, are able to yield surpris-
ingly plausible estimations of the dynamic facial shape, in
most of the cases. However, in some very challenging case
(e.g. frames with very strong occlusions or gross errors in
the landmarks), this sparse information might not be ade-
quate for satisfactory results. One way to compensate for
that would be to increase the regularisation weights ĉid and
cexp. Nevertheless, this would strongly affect also the non-
pathological cases, where the results are plausible either way,
leading to reconstructed shapes and expressions that would
be too similar with themean shape s̄. To avoid that, we follow
a different approach by keeping the regularisation weights as
low as in the main optimisation and imposing the following
box constraints:

|(p)i | ≤ Mp, i = 1, . . . , n p,∣∣(q f )i
∣∣ ≤ Mq , i = 1, . . . , nq and f = 1, . . . , n f ,

(16)

where (·)i denotes the selection of the i th component from a
vector. Also, Mp and Mq are positive constants correspond-
ing to the maximum values allowed for the components of
identity and expression parameter vectors respectively. These
are set so that the corresponding components do not attain
a value higher than a certain number of standard deviations
(e.g. 4). These constraints are activated only in pathological
cases and do not play any role in all the rest cases, which
actually are the vast majority. Note also that they are only
used in this initialisation step, since when the dense texture
information is used as input, they are not required.

To summarise, our goal here is tominimise the energy Ê of
Eq. 15 with respect to the shape parameters p and q̂ under the
constraints of Eq. 16. This corresponds to a large-scale lin-
ear least squares problem of the form argminx ‖Ax − b‖2,
under bound constraints on x, where the matrix A is sparse.
We solve this problem efficiently by adopting the reflective
Newton method of Coleman and Li (1996).

123



610 International Journal of Computer Vision (2019) 127:599–624

2.4.5 LSFM Fitting on Images

For the images of the Menpo 3D benchmark, we are based
on the “in-the-wild” 3DMM fitting strategy that we recently
introduced (Booth et al. 2017). Our procedure is similar to
the work of Zhu et al. (2016c), where a facial 3DMM is fitted
on the 2D landmarks and used in order to train a DCNN for
the estimation of the 3D facial surface. However, in contrast
to Zhu et al. (2016c), our 3DMMfitting strategy not only uses
the facial landmarks but also the facial texture. Furthermore,
in order to improve accuracy we annotated every image with
regards to (a) gender, (b) ethnicity and (c) apparent age and
used the corresponding bespoke LSFM model (Booth et al.
2016) for fitting. In conclusion, this procedure yielded esti-
mated identity p and expression q parameters of the bespoke
LSFM model for every image.

2.4.6 Facial Landmark Sampling and Re-projection for
Images and Videos

After having estimated the shape parameters (p,q) for any
image or any video frame from the Menpo 3D dataset, the
estimated dense facial mesh in the model space can be syn-
thesised by the model as S(p,q) = s̄ + Ũidp + Ũexpq. The
ground-truth 3D landmarks S� are then extracted by keeping
the elements of S that contain the x,y and z coordinates of
vertices that correspond to the facial landmarks. Note that
for the extraction of the 3D landmarks we do not apply the
camera parameters, meaning that these landmarks lie on the
normalised model space. The reprojected ground-truth 2D
landmarks (i.e., the 3DA-2D landmarks) are expressed in the
image space, therefore to extract them we utilise the esti-
mated camera parameters c and apply the camera function
P(·) to S�. This corresponds to the quantity W(p,q, c).

Via visual inspection of both the dense 3D and the re-
projected sparse 2D landmarks results, we choose the best
of the two results (global versus bespoke identity models).
Finally, in order to retain this result as ground-truth, we
require that it is perfect in terms of visual plausibility, oth-
erwise, we omit it. In the case of videos, we make sure that
this requirement is met over all video frames.

In conclusion, following our proposed approach, we are
able to extract high-quality ground-truth 3DA-2D and 3D
facial landmarks for images and videos. We have tested our
approach in simulated videos and it provided high accuracy
(sub-millimetre accuracy for some landmarks). Furthermore,
in the videos of both training and test set, the parameter esti-
mation andfittingwas performed in thewhole video, however
we have exported the 3DA-2D and 3D only in the first couple
of thousand frames, hence there was information only avail-
able to us (latent for participants) to ensure the high quality
of our estimations.

3 Menpo 2D Challenge

Having introduced the Menpo 2D Benchmark, this section
provides a detailed presentation of theMenpo 2D Challenge,
in terms of the evaluation metrics used, the participants and
the results of the challenge. Finally, we conclude this section
by presenting our proposed method for 2D landmark locali-
sation,whichwas not included in the challenge sincewewere
the organisers. Please note that we organised the Menpo 2D
Challenge in conjunction with CVPR 2017 conference.

The Menpo 2D Challenge consisted of two categories:

– localisationofSemi-frontal 2D landmarks in semi-frontal
facial images.

– localisation of Profile 2D landmarks in profile facial
images.

3.1 EvaluationMetrics

The standard evaluationmetric for landmark-wise face align-
ment is the normalised point-to-point root mean square
(RMS) error:

ε(ŝ, s∗) =
1√
NL

‖ŝ − s∗‖2
dscale

, (17)

where ŝ and s∗ are the estimated and ground-truth shape
vectors containing all NL facial landmarks, ‖.‖2 is the �2
norm, and dscale is a normalisation factor to make the error
scale-invariant. For the last three face alignment competitions
(Sagonas et al. 2013, 2016; Shen et al. 2015), the inter-ocular
distance was used as the normalisation factor. However, the
inter-ocular distance fails to give a meaningful evaluation
metric in the case of profile views as it becomes a very small
value in the 2D image. Therefore, we employed the face diag-
onal as the normalisation factor, which not only achieves
scale-invariance but also is more robust to changes of the
face pose. This is defined as the length of the diagonal of
the bounding box that that tightly surrounds the ground-truth
landmarks s∗. It can be mathematically written as:

dscale=
∥∥∥∥
(
max
i

(x∗
i ) − min

i
(x∗

i ) , max
i

(y∗
i ) − min

i
(y∗

i )

)∥∥∥∥
2
,

(18)

where x∗
i and y∗

i are the x and y coordinates respectively of
the i th ground-truth landmark and the maxima and minima
are computed over all landmarks i .

Many works on the topic (Ren et al. 2014) report just the
average of the error in (Eq. 17). We believe that mean errors,
particularly without accompanying standard deviations, are
not a very informative error metric as they can be highly
biased by a low number of very poor fits. Therefore, we
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provide our evaluation in the form of Cumulative Error Dis-
tribution (CED) curves. Apart from the mean value, we are
also reporting further statistics of the errors of each method,
such as the StandardDeviation (Std), theMedian, theMedian
Absolute Deviation (MAD), the Maximum Error, the area-
under-the-curve (AUC) (up to error of 0.05) measure of the
CED curve and the Failure Rate (We consider any fitting
with a point-to-point error greater than 0.05 as a failure). We
believe that for the problem of face alignment, these errors
metrics are much more representative and provide a much
more clear image of the performance of each method.

3.2 Participants

In the Menpo 2D challenge, we allowed entries from the
participants in either semi-frontal or profile challenge (i.e.,
they do not need to submit in both challenges to be consid-
ered eligible). We provided the training data accompanied
by the corresponding landmark annotations around 30th of
January 2017. The test data were released around 22nd of
March 2017 and included only the facial images without
the corresponding annotations. Furthermore, we provided
information regarding whether every image was considered
semi-frontal or profile. The participants were allowed to sub-
mit results (i.e., the facial landmarks) in a tight schedule after
the release of the test data, up until the 31st of March 2017.
After this date, the challenge was considered finished. In
total, we had 9 participants to the challenge of semi-frontal
faces and 8 participants to that of profile faces. In the follow-
ing, we will briefly describe each participating method. We
use an abbreviation based on the name of the first author of
the paper.

– X. Chen The method in Chen et al. (2017) proposed a
four-stage coarse-to-fine framework to tackle the facial
landmark localisation problem in-the-wild. In the first
stage, they predict the facial landmarks on a coarse level,
which sets a good initialisation for the whole framework.
Then, the key points are grouped into several compo-
nents and each component is refined within the local
patch. After that, each key point is further refined with
multi-scale local patches cropped according to its near-
est 3-, 5-, and 7-neighbours, respectively. The results
are further fused by an attention gate network. Since the
facial landmark configuration is different for semi-frontal
and profile faces in the menpo 2D challenge, a linear
transformation is finally learned with the least square
approximation to adapt the predictions to the competi-
tion’s subsets.

– X. Shao The method in Shao et al. (2017) used a deep
architecture to directly detect facial landmarks without
using face detection as an initialisation. The architecture
consists of two stages, a basic landmark prediction stage

and a whole landmark regression stage. At the former
stage, given an input image, the basic landmarks of all
faces are detected by a sub-network of landmark heatmap
and affinity field prediction. At the latter stage, the coarse
canonical face and the pose are generated by a Pose
Splitting Layer based on the visible basic landmarks.
According to its pose, each canonical state is distributed
to the corresponding branch of the shape regression sub-
networks for the whole landmark detection.

– Z. He The method in He et al. (2017) proposed an
effective facial landmark detection system, recorded as
Robust Fully End-to-end Cascaded Convolutional Neu-
ral Network (RFEC-CNN), to characterise the complex
non-linearity from face appearance to shape. Moreover,
a face bounding box invariant technique is adopted to
reduce the landmark localisation sensitivity to the face
detector while a model ensemble strategy is adopted to
further enhance the landmark localisation performance.

– Z. Feng The method in Feng et al. (2017) presented
a four-stage framework (face detection, bounding box
aggregation, pose estimation and landmark localisation)
for robust face detection and landmark localisation in
the wild. To achieve a high detection rate, two publicly
available CNN-based face detectors and two propri-
etary detectors are employed. Then, the detected face
bounding boxes of each input image are aggregated to
reduce false positives and improve face detection accu-
racy. After that, a cascaded shape regressor, trained using
faces with a variety of pose variations, is then employed
for pose estimation and image pre-processing. Finally,
another cascaded shape regressor is trained for fine-
grained landmark localisation, using a large number of
training samples with limited pose variations.

– J. Yang The method in Yang et al. (2017) explored a
two-stage CNN model for robust facial landmark local-
isation. First, a supervised face transformation network
is adopted to remove the translation, scale and rotation
variation of each face, in order to reduce the variance
of the regression target. Then, a deep convolutional neu-
ral network named Stacked Hourglass Network (Newell
et al. 2016) is explored to increase the capacity of the
regression model.

– M. Kowalski Themethod in Kowalski et al. (2017) used a
VGG-based Deep Alignment Network (DAN) for robust
face alignment. Thismethod uses entire face images at all
stages, contrary to the recently proposed face alignment
methods that rely on local patches. The use of entire face
images rather than patches allows DAN to handle face
images with large variation in head pose and difficult ini-
tialisation. DAN consists of multiple stages, where each
stage improves the locations of the facial landmarks esti-
mated by the previous stage.
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Fig. 9 Quantitative results (CED curves) on the test set of the Menpo 2D Benchmark for both semi-frontal (left) and profile (right) results

Table 2 Key statistics of the
performance of the participants
on semi-frontal faces (68-points
markup)

Methods Mean Std Median MAD Max error AUC0.05 Failure rate

Yang et al. (2017) 0.0120 0.0060 0.0107 0.0022 0.1453 0.7624 0.0024

He et al. (2017) 0.0139 0.0260 0.0111 0.0023 0.9624 0.7478 0.0096

Wu and Yang (2017) 0.0135 0.0095 0.0120 0.0024 0.5098 0.7337 0.0036

Kowalski et al. (2017) 0.0138 0.0157 0.0120 0.0023 0.6312 0.7337 0.0049

Chen et al. (2017) 0.0200 0.0756 0.0120 0.0026 1.2799 0.7290 0.0111

Xiao et al. (2017) 0.0159 0.0201 0.0133 0.0027 0.6717 0.6986 0.0081

Shao et al. (2017) 0.0165 0.0235 0.0138 0.0027 0.9612 0.6913 0.0101

Feng et al. (2017) 0.0182 0.0179 0.0149 0.0033 0.4661 0.6586 0.0186

Zadeh et al. (2017a) 0.0205 0.0340 0.0143 0.0035 0.9467 0.6479 0.0409

Bold value indicates best result

– A. Zadeh Themethod in Zadeh et al. (2017a) used a novel
local detector, Convolutional Experts Network (CEN), in
the framework of Constrained Local Model (CLM) for
face alignment in the wild. This method brings together
the advantages of deep neural architectures and mixtures
of experts in an end-to-end framework.

– S. XiaoThemethod inXiao et al. (2017) proposed a novel
3D-assisted coarse-to-fine extreme-pose facial landmark
detection system. For a given face image, the face bound-
ing box is first refined with landmark locations inferred
from a 3D face model generated by a Recurrent 3D
Regressor (R3R) at a coarse level. Then, another R3R is
employed to fit a 3D face model onto the 2D face image
cropped with the refined bounding box at fine-scale. 2D
landmark locations inferred from the fitted 3D face are
further adjusted with the popular 2D regression method,
i.e. LBF (Ren et al. 2014). The 3D-assisted coarse-to-fine
strategy and the 2D adjustment process explicitly ensure
both the robustness to extreme face poses and bound-
ing box disturbance and the accuracy towards pixel-level
landmark displacement.

– W.WuThemethod inWu andYang (2017) explored intra-
dataset variation and inter-dataset variation to improve
face alignment in-the-wild. Intra-dataset variation refers
to bias in expression and head pose inside one certain
dataset, while inter-dataset variation refers to differ-
ent bias across different datasets. Model robustness can
be significantly improved by leveraging rich variations
within and between different datasets. More specifically,
Wu and Yang (2017) proposed a novel Deep Varia-
tion Leveraging Network (DVLN), which consists of
two strong coupling sub-networks, e.g., Dataset-Across
Network (DA-Net) and Candidate-Decision Network
(CD-Net). In particular, DA-Net takes advantage of dif-
ferent characteristics and distributions across different
datasets, while CD-Net makes a final decision on candi-
date hypotheses given by DA-Net to leverage variations
within one certain dataset.

3.3 Competition Results

The CED curves of all 68 landmarks for semi-frontal images
and all 39 landmarks for profile images are shown in Fig. 9.
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Table 3 Key statistics of the
performance of the participants
on profile faces (39-points
markup)

Methods Mean Std Median MAD Max error AUC0.05 Failure rate

Yang et al. (2017) 0.0172 0.0105 0.0150 0.0035 0.2490 0.6613 0.0077

He et al. (2017) 0.0247 0.0422 0.0179 0.0048 0.6280 0.5932 0.0355

Wu and Yang (2017) 0.0217 0.0131 0.0193 0.0044 0.2623 0.5802 0.0221

Feng et al. (2017) 0.0285 0.0367 0.0208 0.0057 0.4725 0.5268 0.0617

Xiao et al. (2017) 0.0290 0.0417 0.0209 0.0055 0.6327 0.5237 0.0612

Zadeh et al. (2017a) 0.0375 0.0630 0.0241 0.0071 0.7594 0.4604 0.0951

Chen et al. (2017) 0.0448 0.1162 0.0265 0.0058 1.3698 0.4259 0.0642

Shao et al. (2017) 0.0451 0.0636 0.0282 0.0088 0.7534 0.3891 0.1608

Bold value indicates best result

Fig. 10 Quantitative results (CED curves) on the interior landmarks of the test set of the Menpo 2D Benchmark for both semi-frontal (49-points)
(left) and profile (28-points) (right) facial images

The key error statistics of theCEDcurves for the semi-frontal
faces are summarised in Table 2, while the key statistics for
the profile faces are summarised in Table 3.

From the statistics and the curves, it is evident that in the
category of semi-frontal faces the first three entries (Yang
et al. 2017; He et al. 2017; Wu and Yang 2017) were quite
close. Nevertheless, in the category of the profile faces, the
method of Yang et al. (2017) was the clear winner. Overall,
the method of Yang et al. (2017) was the best performing
method in both semi-frontal and profile categories and is the
winner of the competition.

As it is customary in landmark evaluation papers (Sago-
nas et al. 2013, 2016), we also provide performance graphs
excluding the boundary landmarks for both semi-frontal and
profile faces. This corresponds to markups of 49 interior
Semi-frontal 2D landmarks and 28 interior Profile 2D land-
marks. The CED curves of these landmarks in semi-frontal
and profile categories are shown in Fig. 10. The correspond-
ing key error statistics are summarised in Tables 4 and 5. We
observe that the method of Yang et al. (2017) is still the best
performing method.

3.4 A New Strong Baseline for 2D Face Alignment

Since we organised the competition, we could not submit an
entry. Nevertheless, we have applied our recent method for
face alignment in the wild (Deng et al. 2017) on the Menpo
2D Benchmark. The method is based on hourglass archi-
tectures and multi-view training. Interestingly, despite our
method is relatively simple, it achieves an improved accu-
racy on the Menpo 2D Benchmark. Therefore, we consider
it as a new strong baseline. In this section, we briefly explain
themethod and present its experimental results on this bench-
mark.

As an overview, our work in Deng et al. (2017) proposes
a coarse-to-fine joint multi-view deformable face fitting
method.Theproposedmethod includes two steps: face region
normalisation and multi-view face alignment. Based on face
proposals (Zhang et al. 2016a), we train a small network
to estimate five landmarks which are then used to remove
the similarity transformation. Then, a multi-view Hourglass
model is trained to predict the response maps for all land-
marks (both 68 landmarks of semi-frontal markup, as well
as 39 landmarks of the profile markup). Finally, we train a
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Table 4 Key statistics of the
performance of the participants
on the interior landmarks of
semi-frontal faces (49-points
markup)

Methods Mean Std Median MAD Max error AUC0.05 Failure rate

Yang et al. (2017) 0.0097 0.0053 0.0087 0.0017 0.1719 0.8084 0.0022

He et al. (2017) 0.0117 0.0253 0.0093 0.0019 0.9520 0.7886 0.0079

Wu and Yang (2017) 0.0113 0.0085 0.0101 0.0019 0.4752 0.7778 0.0024

Kowalski et al. (2017) 0.0116 0.0147 0.0102 0.0018 0.6720 0.7765 0.0036

Chen et al. (2017) 0.0174 0.0724 0.0099 0.0021 1.2699 0.7746 0.0096

Xiao et al. (2017) 0.0132 0.0188 0.0110 0.0022 0.6411 0.7513 0.0066

Shao et al. (2017) 0.0139 0.0220 0.0115 0.0022 0.9590 0.7420 0.0084

Zadeh et al. (2017a) 0.0162 0.0319 0.0111 0.0026 0.9377 0.7200 0.0204

Feng et al. (2017) 0.0159 0.0164 0.0129 0.0029 0.3686 0.7007 0.0161

Bold value indicates best result

Table 5 Key statistics of the
performance of the participants
on the interior landmarks of
profile faces (28-points markup)

Methods Mean Std Median MAD Max error AUC0.05 Failure rate

Yang et al. (2017) 0.0136 0.0093 0.0110 0.0026 0.2162 0.7319 0.0036

He et al. (2017) 0.0201 0.0414 0.0132 0.0035 0.6380 0.6778 0.0257

Wu and Yang (2017) 0.0168 0.0109 0.0142 0.0034 0.2252 0.6709 0.0128

Xiao et al. (2017) 0.0233 0.0416 0.0154 0.0042 0.7073 0.6231 0.0509

Feng et al. (2017) 0.0236 0.0361 0.0161 0.0046 0.5141 0.6124 0.0483

Zadeh et al. (2017a) 0.0293 0.0632 0.0157 0.0046 0.8780 0.5990 0.0617

Chen et al. (2017) 0.0409 0.1181 0.0223 0.0051 1.3809 0.4954 0.0493

Shao et al. (2017) 0.0388 0.0636 0.0228 0.0079 0.7769 0.4756 0.1223

Bold value indicates best result

failure checker network based on the shape-indexed feature
which is extracted around each landmark predicted by the
multi-view Hourglass heatmap. Further details follow.

3.4.1 Face Region Normalisation

Taking the first and second networks from Zhang et al.
(2016a), we can get face proposals with high recall. Based
on these face proposals, we re-train the third network on the
ALFW (Köstinger et al. 2011) and CelebA (Liu et al. 2015)
datasets with multi-task loss (Zhang et al. 2016a). For each
face box i , the loss function is defined as:

L = L1(pi , p
∗
i ) + λ1 p

∗
i L2(ti , t

∗
i ) + λ2 p

∗
i L3(li , l

∗
i ), (19)

where pi is the probability of box i being a face; p∗
i is a binary

indicator (1 for positive and 0 for negative examples); the
classification loss L1 is the softmax loss of two classes (face
/ non-face); ti = {tx , ty, tw, th}i and t∗i = {t∗x , t∗y , t∗w, t∗h }i
represent the coordinates of the predicted box and ground-
truth box correspondingly. li = {lx1, ly1 , . . . , lx5 , ly5}i and
l∗i = {l∗x1, l∗y1 , . . . , l∗x5 , l∗y5}i represent the predicted and
ground-truth five facial landmarks. The box and the land-
mark regression targets are normalised by the face size
of the ground-truth. We use L2(ti , t∗i ) = R(ti − t∗i ) and
L3(li , l∗i ) = Rv∗

i (li − l∗i ) for the box and landmark regres-
sion loss, respectively, where R is the robust loss function

Fig. 11 The architecture of third cascade network. “Conv” means con-
volution, “MP” means max pooling, and N is the number of landmarks.
The step size in convolution and pooling is 1 and 2, respectively

(smooth-L1) defined in Girshick (2015). In Fig. 11, we give
the network structure of the third cascade networkwithmulti-
task loss.

One core idea of our method is to incorporate a spatial
transformation (Jaderberg et al. 2015) which is responsible
for warping the original image into a canonical representa-
tion such that the later alignment task is simplified. Recent
work [e.g., (Tadmor et al. 2016)] has explored this idea on
face recognition and witnessed an improvement on the per-
formance. In Fig. 12, the five facial landmark localisation
network (Fig. 11) as the spatial transform layer is trained to
map the original image to the parameters of a warping func-
tion (e.g., a similarity transform), such that the subsequent
alignment network is evaluated on a translation, rotation and
scale invariant face image, therefore, potentially reducing
the trainable parameters as well as the difficulty in learn-
ing large pose variations. Since different training data are
used in face region normalisation [AFLW (Köstinger et al.
2011) and CelebA (Liu et al. 2015)] and multi-view align-
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Fig. 12 Face Region Normalisation. The five facial landmark locali-
sation network acts as the spatial transform layer and the subsequent
alignment network is evaluated on a translation, rotation and scale
invariant face image, therefore, potentially reducing the trainable
parameters as well as the difficulty in learning large pose variations

ment [300W(Sagonas et al. 2013) andMenpo2DBenchmark
(Zafeiriou et al. 2017c)], end-to-end training of these two
networks with intermediate supervision on the face region
normalisation step is equal to step-wise training. Therefore,
we employ step-wise cascade structure, and the face region
normalisation step benefits from larger training data as anno-
tation of the five facial landmarks is much easier than dense
annotation.

3.4.2 Multi-view Hourglass Model

Hourglass (Newell et al. 2016) is designed based on Residual
blocks (He et al. 2016), which can be represented as follows:

xn+1 = H(xn) + F(xn,Wn), (20)

where xn and xn+1 are the input and output of the n-th unit,
and F is the stacked convolution, batch normalisation, and
ReLU non-linearity. Hourglass is a symmetric top-down and
bottom-up full convolutional network. The original signals
are branched out before each down-sampling step and com-
bined together before each up-sampling step to keep the
resolution information. n scale Hourglass is able to extract
features from the original scale to 1/2n scale and there is no
resolution loss in the whole network. The increasing depth
of network design helps to increase contextual region, which
incorporates global shape inference and increases robustness
when local observation is blurred.

Basedon theHourglassmodel (Newell et al. 2016),we for-
mulate the Multi-view Hourglass Model (MHM) which tries
to jointly estimate both semi-frontal (68 landmarks) and pro-
file (39 landmarks) face shapes. Unlike other methods which
employ distinct models, we try to capitalise on the corre-
spondences between the profile and frontal facial shapes. As
shown in Fig. 13, for each landmark on the profile face, the
nearest landmark on the frontal face is regarded as its cor-
responding landmark in the union set, thus we can form the
union landmark set with 68 landmarks. During the training,
we use the view status to select the corresponding response
maps for the loss computation.

Fig. 13 Multi-view Hourglass Model. First row: facial landmark con-
figuration for frontal (68 landmarks) and profile (39 landmarks) faces
(Zafeiriou et al. 2017c). We define a union landmark set with 68 land-
marks for frontal and profile shape. For each landmark on the profile
face, the nearest landmark on the frontal face is selected as the same
definition in the union set. Third row: landmark response maps for all
view faces. The response maps for semi-frontal faces (2nd and 4th)
benefit from the joint multi-view training

Fig. 14 The architecture of face classifier on the shape-indexed local
patches. “Conv” means convolution, “MP” means max pooling, and N
is the landmark number. The step size in convolution and pooling is 1
and 2, respectively

L = 1

N

N∑
n=1

⎛
⎝v∗

n

∑
i j

∥∥mn(i, j) − m∗
n(i, j)

∥∥2
2

⎞
⎠ , (21)

where mn(i, j) and m∗
n(i, j) represent the estimated and the

ground-truth response maps at pixel location (i, j) for the n-
th landmark correspondingly, and vn ∈ {0, 1} is the indicator
to select the corresponding responsemap to calculate the final
loss. We can see from Fig. 13 that the semi-frontal response
maps (second and forth examples in third row) benefit from
the joint multi-view training, and the proposed method is
robust and stable under large pose variations.

Based on themulti-view responsemaps, we extract shape-
indexed patch (24 × 24) around each predicted landmark
from the down-sampled face image (128 × 128). As shown
in Fig. 14, a small classification network is trained to classify
face/non-face. This classifier is employed as a failure checker
for deformable face tracking.
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(a) (b)

Fig. 15 Landmark localisation results on the Menpo 2D benchmark: comparison of our method (Deng et al. 2017) with the best three entries of
Menpo 2D Challenge. Accuracy is reported as Cumulative Error Distribution of RMS point-to-point error normalised with the diagonal of the
ground-truth bounding box

3.4.3 Experimental Results

We train the proposed multi-view Hourglass model on the
300Wdataset (Sagonas et al. 2013) and theMenpo2Ddataset
(Zafeiriou et al. 2017c), where faces are manually annotated
with either Semi-frontal 2D (68) or Profile 2D (39) land-
marks. The training set of the 300W dataset consists of the
LFPWtrainset (Belhumeur et al. 2013), theHelen trainset (Le
et al. 2012) and the AFW dataset (Zhu and Ramanan 2012),
hence, a total of 3148 images are available. The Menpo 2D
dataset (Zafeiriou et al. 2017c) consists of 5658 semi-frontal
face images and 1906 profile face images.

The training of the proposed multi-view Hourglass model
follows a similar design as in the Hourglass Model (Newell
et al. 2016). Before the training, several pre-processing steps
are undertaken. We firstly remove scale, rotation and transla-
tion differences by five facial landmarks among the training
face images (referred as the spatial transformer step), then
crop and resize the face regions to 256 × 256. We augment
the data with rotation (+/− 30◦), scaling (0.75–1.25), and
translation (+/− 20 pixels) that would help simulate the vari-
ations from face detector and five landmark localisation. The
full network starts with a 7 × 7 convolutional layer with
stride 2, followed by a residual module and a round of max
pooling to bring the resolution down from 256 to 64, as it
could save GPU memory while preserving alignment accu-
racy. The network is trained using Tensorflow (Abadi et al.
2016) with an initial learning rate of 10−4, a batch size of
12, and learning steps of 100k. The Mean Squared Error
(MSE) loss is applied to compare the predicted heatmaps to
the ground-truth heatmaps. Each training step takes 1.2 s on
one NVIDIA GTX Titan X (Pascal) GPU card. During test-
ing, face regions are cropped and resized to 256 × 256, and
it takes 12.21ms to generate the response maps.

On the test set of Menpo 2DBenchmark (Zafeiriou et al.
2017c), we compare our method with the best three entries
(Yang et al. 2017; He et al. 2017; Wu and Yang 2017) of
the Menpo 2D Challenge. In Fig. 15, we draw the curve of

cumulative error distribution on semi-frontal and profile test
sets, separately. The proposed method has similar perfor-
mance to the best-performing methods in semi-frontal faces.
Nevertheless, it outperforms the best-performing method in
profile faces. Despite that result on profile data is worse than
that on semi-frontal data, both of the fitting errors of our
method are remarkably small, approaching 1.48%and 1.27%
for profile and semi-frontal faces respectively. In Fig. 16, we
give some fitting examples on the Menpo 2D test set. As we
can see from the alignment results, the proposed multi-view
hourglass model is robust under varying poses, exaggerated
expressions, heavy occlusions and sharp illuminations on
both semi-frontal and profile subset.

In Fig. 17, we also provide some alignment examples
with largest errors predicted by the proposed method on the
Menpo 2D semi-frontal and profile dataset. As we can see
from these extremely challenging examples,most of the land-
mark localisation failures occur when local facial appearance
is occluded thus the local feature is heavily interfered. When
two or more challenging factors (e.g. large pose, exaggerated
expression, heavy occlusion and sharp illumination) occur
together, the localisation results turn out to be not robust and
accurate, and there is still space to improve the performance
of the in-the-wild 2D face alignment.

3.5 Development of 2D Face Alignment

It is worth mentioning that, in the first (Sagonas et al. 2013)
and second (Sagonas et al. 2016) runs of 300W competition,
there were very few competing methods (Zhou et al. 2013;
Fan and Zhou 2016) that applied deep learning methods to
the problem of face alignment. The state of the art at that time
was revolving around feature-based Active Shape Model
(ASM) (Milborrow and Nicolls 2014), Active Appearance
Model (AAM) (Antonakos et al. 2015; Alabort-i Medina
and Zafeiriou 2016) and Constrained Local Model (CLM)
(Cristinacce and Cootes 2006; Saragih et al. 2011), as well
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Fig. 16 Example landmark localisation results on the test set of the Menpo 2D benchmark. a Menpo semi-frontal, bMenpo profile
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Fig. 17 Alignment examples with largest errors predicted by the proposed joint multi-view alignment method on the Menpo 2D semi-frontal and
profile dataset. aMenpo 2D semi-frontal, bMenpo 2D profile

as cascade regression architectures (Xiong and De la Torre
2013; Cao et al. 2014b; Asthana et al. 2014; Yan et al. 2013;
Deng et al. 2016). In the 300VW competition, there was no
deep learning entry. Furthermore, the competing methods
of 300VW revolved around cascade regression (Yang et al.
2015), CLM (Saragih et al. 2011) andDeformable Part-based
Model (DPM) (Zhu and Ramanan 2012).

On contrary, recent state-of-the-art methods on 2D face
alignment (Trigeorgis et al. 2016; Güler et al. 2017) exten-
sively employ deep learning methodologies to improve the
robustness of the in-the-wild face alignment model. The sig-
nificant change of the landscape is also reflected in theMenpo
2D Challenge, as all of the participating methods are apply-
ing deep learning methodologies to the problem. This is
attributed to the success of the recent deep architectures such
as ResNets (He et al. 2016) and stacked Hourglasses models
(Newell et al. 2016), as well as to the availability of a large
amount of training data.

On the semi-frontal test set of Menpo 2D Benchmark
(Zafeiriou et al. 2017c), we compare some representative
classic approaches [e.g. CLM (Cristinacce andCootes 2006),
AAM (Tzimiropoulos and Pantic 2013; Cootes et al. 2001),
CEM (Belhumeur et al. 2013) and SDM (Xiong and De la

Torre 2013; Deng et al. 2016)] with the best three entries
(Yang et al. 2017; He et al. 2017; Wu and Yang 2017) of the
Menpo 2D Challenge as well as the proposed joint multi-
view alignment method. As we can see from the CED curves
in Fig. 18, it is obvious that recent deep convolutional feature
based methods outperform the classic approaches by a large
margin. M3CSR (Deng et al. 2016), which is an improved
version of SDM (Xiong and De la Torre 2013) and the cham-
pion method of the 300W challenge (Sagonas et al. 2016),
only obtains the Normalised Mean Error (NME) of 2.17%.
By contrast, the best performed method (Yang et al. 2017)
achieves the NME of 1.2%.

4 Menpo 3D Challenge

Similarly to the Menpo 2D Challenge that was presented in
the previous section, this section provides a detailed presen-
tation of the Menpo 3D Challenge, in terms of the evaluation
metrics used, the participants and the results of the chal-
lenge. Finally, we conclude this section by presenting our
proposed method for 3D landmark localisation, which was
not included in the challenge since we were the organisers.
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Fig. 18 Recent state-of-the-art methods versus classic approaches on
the Menpo 2D semi-frontal test set. Accuracy is reported as Cumula-
tive Error Distribution of RMS point-to-point error normalised with the
diagonal of the ground-truth bounding box

Please note that we organised the Menpo 3D Challenge in
conjunction with ICCV 2017 conference.

4.1 EvaluationMetrics

For assessing the performance of the submissions, we were
once again based the standard evaluation metric, which is
the normalised point-to-point error (Eq. 17). For the 3DA-2D
landmarks, we used exactly the same evaluation metric and
same diagonal-based normalisation as for the Semi-frontal
2D landmarks of theMenpo2Dchallenge. For 3D landmarks,
we used the point-to-point error in the 3D space of themodel,
where the scale is in cm of the normalised mean face, which
corresponds to the scale of an average adult.

4.2 Participants

During the challenge, we provided approximately 12k static
images with 3DA-2D and 3D landmarks, as well as approx-
imately 90 training videos annotated with the proposed
procedure. The training data have been provided to over 25
groups from all over theworld. A tight schedule (a week) was
provided to return the results on the test set. The test set com-
prises of 110 videos with 1000 frames each. The evaluation
was performed in the 30most challenging videos. Results for
3DA-2D landmarks localisation have been returned by three
groups, while results for 3D landmarks have been returned
by one group only. In the following, we will briefly describe
each participating method.

– D. Crispell The method in Crispell and Bazik (2017)
proposed an efficient and fully automatic method for 3D
face shape and pose estimation in the unconstrained 2D

images. More specifically, the proposed method jointly
estimates a dense set of 3D landmarks and facial geome-
try using a single pass of amodified version of the popular
“U-Net” neural network architecture. In addition, the 3D
Morphable Model (3DMM) parameters are directly pre-
dictedbyusing the estimated3D landmarks andgeometry
as constraints in a linear system.

– A. Zadeh The method in Zadeh et al. (2017b) pro-
posed to apply an extension of the popular Constrained
LocalModel (CLM), the so-calledConvolutional Experts
(CE)-CLM for the problem of 3DA-2D facial land-
mark detection. The important module of CE-CLM is a
novel convolutional local detector that brings together the
advantages of neural architectures and mixtures. In order
to further improve the performance on 3D face tracking,
the authors use two complementary networks alongside
CE-CLM: a network that maps the output of CE-CLM
to 84 landmarks called Adjustment Network, and a Deep
Residual Network calledCorrectionNetworks that learns
dataset specific corrections for CE-CLM.

– P. Xiong The method in Xiong et al. (2017) proposed
a two-stage shape regression method by combining the
powerful local heatmap regression and global shape
regression. This method is based on the popular stacked
Hourglass network which is used to generate a set of
heatmaps for each 3D shape point. Since these heatmaps
are independent to each other, a hierarchical attention
mechanism is applied from global to local heatmaps into
the network, in order to model the correlations among
neighbouring regions. Then, all these heatmaps along-
side the input aligned image are processed by a deep
residual network to further learn the global features and
produce the final smooth 3D shape.

4.3 Competition Results

As alreadymentioned, all three participants submitted results
for 3DA-2D landmark localisation, whereas only Zadeh et al.
(Crispell andBazik 2017) submitted additional results for 3D
landmark localisation. The CED curves for 3DA-2D and 3D
landmarks are summarised in Fig. 19. We observe that, in
the case of 3DA-2D landmarks, the best performing method
was the method of Xiong et al. (2017). For pure 3D face
tracking, the only method that competed in this category was
the method of Zadeh (Crispell and Bazik 2017).

4.4 A New Strong Baseline for 3D Face Alignment

Since we organised theMenpo 3D competition, we could not
submit an entry. However, as in the case of Menpo 2D com-
petition, we have applied another our recent method (Deng
et al. 2018) for localising the 3DA-2D landmarks of the
Menpo 3D Benchmark. This method extends our previous
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Fig. 19 a CED curves for the 3DA-2D landmark localisation. b CED curves for the pure 3D landmark localisation (the only group that has sent
results for this category was the method of Zadeh Crispell and Bazik (2017)). a Menpo 3DA-2D, bMenpo 3D

method (Deng et al. 2017) to the case of 3D landmarks and
uses joint 2D and 3DA-2D landmark supervision. This exten-
sion retains the simplicity and very good performance of the
method of Deng et al. (2017), therefore we consider it as a
new strong baseline for 3D landmark localisation. In the fol-
lowing, we briefly present our approach and its results on the
Menpo 3D benchmark.

4.4.1 Cascade Multi-view Hourglass Model

As shown in Fig. 20, we propose the Cascade Multi-view
Hourglass Model (CMHM) for 3DA-2D face alignment, in
which two Hourglass models are cascaded with intermedi-
ate supervision from 2D and 3DA-2D facial landmarks. For
the 2D face alignment, we capitalise on the correspondences
between the frontal and profile facial shapes and utilise the
Multi-view Hourglass Model (Sect. 3.4) which jointly esti-
mates both semi-frontal and profile 2D facial landmarks.
Based on the 2D alignment results, a similarity transforma-
tion step is employed (in Fig. 21), and another Hourglass
model is performed on the normalised face image to esti-
mate the 3DA-2D facial landmarks. To improve the model
capacity and compress the computational complexity of the
Hourglass model, we replace the bottleneck block with the
parallel and multi-scale Inception block and construct the
Inception-ResNet block (Szegedy et al. 2017) as shown in
Fig. 22.

Fig. 20 CascadeMulti-viewHourglassModel for 2D and 3DA-2D face
alignment

Fig. 21 2D alignment acts as a further spatial transform network for
3DA-2D alignment

Fig. 22 aResNet andb Inception-ResNet blocks to constructHourglass
model
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Fig. 23 CED curves on the Menpo 3D tracking testset

4.4.2 Experimental Results

We train the proposed Cascade Multi-view Hourglass Model
on the image training sets of Menpo 2D and Menpo 3D
benchmarks. The training of the proposed method follows
a similar design as the Multi-view Hourglass Model for 2D
landmark localisation (Deng et al. 2017). According to the
centre and size of the bounding box provided by the face
detector (Zhang et al. 2016a), each face region is cropped
and scaled to 256 × 256. To improve the robustness of our
method, we increase the number of training examples by
randomly perturbing the ground-truth image with a differ-
ent combination of rotation (+/− 45◦), scaling (0.75–1.25),
and translation (+/− 20 pixels). The full network starts with a
7×7 convolutional layer with stride 2, followed by a residual
module and a round of max pooling to bring the resolution
down from 256 to 64, as it could reduce GPU memory usage
while preserving alignment accuracy. The network is trained
using Tensorflowwith an initial learning rate of 10−4, a batch
size of 8, and 100k learning steps. We drop the learning rate
to 10−5 after 20 epochs. The Mean Squared Error (MSE)
loss is applied to compare the predicted heatmaps to the
ground-truth heatmaps. Each training step takes 1.02 s on
one NVIDIA GTX Titan X (Pascal). During testing, face
regions are cropped and resized to 256 × 256, and it takes
20.76ms to generate the response maps. By contrast, the
baseline method, two-stack Hourglass model (Newell et al.
2016), takes 24.42ms to generate the response maps.

To track the 3DA-2D landmarks in the videos of Menpo
3D benchmark, we perform a frame-by-frame tracking on
the video. Specifically, we always initialise the next frame
by the previous facial bounding box unless there is a fitting
failure, in which case, a face detector (Zhang et al. 2016a)
would be called to re-initialise. The fitting failure is judged
by the failure checker as proposed in Sect. 3.4.

Table 6 3DA-2D alignment results on the Menpo 3D tracking testset

Method AUC FR (%)

Our method 0.7977 1.68

Baseline 0.7605 2.35

Xiong et al. (2017) 0.7935 3.38

Zadeh et al. (2017b) 0.7187 1.83

Crispell and Bazik (2017) 0.7617 1.61

Bold value indicates best result

Fig. 24 Example results of our method on the Menpo-3D tracking
testset

We expand the Menpo 3D Challenge results on 3DA-2D
landmark tracking by including ourmethod (CMHM) aswell
as the two-stack Hourglass model of Newell et al. (2016),
which we consider as the “Baseline” method. Figure 23
reports the Cumulative Error Distribution (CED) curves, and
Table 6 reports the Area Under the Curve (AUC) and Fail-
ure Rate (FR). We observe from the Table 6 that CMHM
obtains a clear improvement (3.72% in AUC) over the base-
line two-stack Hourglass model (Newell et al. 2016), and it
also achieves the best performance (AUC = 0.7977, FR =
1.68%), which is slightly better than the challenge winner
(Xiong et al. 2017), considering that they combined the local
heatmap regression and global shape regression. We believe
such good performance comes from the robustness of our
response maps under large pose variations. This can be visu-
ally observed in Fig. 24, where we select some frames from
the Menpo 3D tracking testset and plot their corresponding
response maps as well as 3DA-2D alignment results. It is
evident that the responses remain clear and evident across
different poses.

5 Discussion and Conclusions

We have presented two new benchmarks for training and
assessing the performance of landmark localisation algo-
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rithms in awide range of poses.More specifically, theMenpo
2D dataset provides different landmark configurations for
semi-frontal and profile faces based on the visible land-
marks, thus making the 2D face alignment full-pose. By
contrast, the Menpo 3D dataset provides a combined land-
mark configuration for both semi-frontal and profile faces
based on the correspondence with a 3D face model, thus
making face alignment not only full-pose but also corre-
sponding to the real-world 3D space. We introduced an
elaborate semi-automatic methodology for providing high-
quality annotations for both the Menpo 2D and 3D datasets.
The new benchmarks offer a large number of annotated train-
ing and test images for both semi-frontal and profile faces,
which helps to boost the performance of 2D and 3DA-2D
face alignment under large pose variations.

The state-of-the-art in face landmark localisation 6–
7 years ago revolved around variations of Active Shape
Models (ASMs), Active Appearance Models (AAMs) and
Constrained Local Models (CLMs). Such methods exhib-
ited good generalisation capabilities with few training data.
Thanks to the availability of large amount of data and descrip-
tive features such as HoG and SIFT, the state of the art moved
towards discriminative methods such as cascade regression.
Cascade regression methodologies dominated the field for
around 3years. The main bulk of recent work on cascade
regression revolved around how to partition the search space
so that to find good updates for various initialisation (Xiong
and De la Torre 2015; Zhu et al. 2015). This competition
shows that the landscape of facial landmark localisation has
changed drastically in the last 2years. That is, the current
trend in landmark localisation, as in many computer vision
tasks, involves the application of elaborate deep learning
architectures to the problem. This was made feasible due
to the large availability of training data, as well as due
to recent breakthroughs in deep learning. The Menpo 2D
and 3D competitions showed that elaborate deep learning
approaches, such as Hourglass networks, achieve striking
performance in facial landmark localisation. Furthermore,
such fully convolutional architectures are very robust to
initialisation/cropping of the face. Based on the Hourglass
networks, we provide a unified solution, named Cascade
Multi-view Hourglass Model (CMHM), to the 2D and 3D
landmark localisation. The proposed method obtains state-
of-the-art performance on the Menpo 2D and Menpo 3D
datasets.

A crucial question that remains to be answered is “How far
are we from solving the problem of face alignment?”. From
the competition results, it is evident that large improvement
has been achieved during the past few years. Nevertheless,
for 10% to 15% of the images, the performance is still unsat-
isfactory. Especially when two or more challenging factors
(e.g. large pose, exaggerated expression, heavy occlusion and
sharp illumination) occur together, the alignment results turn

out to be not robust and accurate enough because local facial
appearance is occluded thus the local observation is conse-
quently inaccurate.

Arguably, the most interesting question that should be
answered is the following “Is the current performance good
enough?”. Since face alignment is a means to an end of the
question, this question could have various answers depending
on the application. That is, the current performance could be
satisfactory to conduct image normalisation for face recogni-
tion, but not for the recognition of complex emotional states
or high-quality facialmotion capture. In order to answer these
questions, the community need to develop benchmarks that
contain images/videos with dense annotations that can also
be used for other facial analysis tasks.

Sincemany efforts have been devoted to sparse facial land-
mark localisation and great advances have been achieved
during the last two decades, we are also interested in the
question “What is the probable future research direction in
face alignment?”. The most promising moving direction of
this field might be defining and evaluating methods for pre-
dicting ultra-dense face correspondence, a dense version of
the face alignment task (Güler et al. 2017; Liu et al. 2017;
Feng et al. 2018). However, the main challenge of defining
the dense face alignment in the wild is that the ground truth
cannot be obtained from special devices (e.g. 3DMD) like
the controlled environment or manually annotated from the
2D images but can only be automatically generated by high
accurate 3D face model fitting. We will try to define and
evaluate dense face alignment in the future.

Regarding licensing.TheMenpochallenge further extends
already existed databases and benchmarks. In particular, (a)
Menpo builds upon 300W and 300VW (which includes parts
of LFW, Helen, etc.), hence the user should adhere to the
licensing terms of 300W and 300VW (Sagonas et al. 2013;
Shen et al. 2015) and (b) uses images from FDDB (Jain and
Learned-Miller 2010) and AFLW (Koestinger et al. 2011),
hence the user should adhere to the licensing terms of FDDB
and AFLW, as well.

Acknowledgements Jiankang Deng was supported by the President’s
Scholarship of Imperial College London. This work was partially
funded by the EPSRC Project EP/N007743/1 (FACER2VM) and a
Google Faculty Fellowship to Dr. Zafeiriou. We thank the NVIDIA
Corporation for donating several Titan Xp GPUs used in this work.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


International Journal of Computer Vision (2019) 127:599–624 623

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,
Corrado,G. S.,Davis,A.,Dean, J., Devin,M., et al. (2016). Tensor-
flow: Large-scale machine learning on heterogeneous distributed
systems. arXiv:1603.04467.

Alabort-i Medina, J., & Zafeiriou, S. (2016). A unified framework for
compositional fitting of active appearance models. In IJCV (pp.
1–39).

Antonakos, E., Alabort-i-Medina, J., Tzimiropoulos, G.,&Zafeiriou, S.
(2015). Feature-based lucas-kanade and active appearancemodels.
TIP, 24(9), 2617–2632.

Aran, O., Ari, I., Guvensan, A., Haberdar, H., Kurt, Z., Turkmen, I.,
Uyar, A., & Akarun, L. (2007). A database of non-manual signs in
Turkish sign language. In Signal Processing and Communications
Applications (pp. 1–4). IEEE.

Asthana, A., Zafeiriou, S., Cheng, S., & Pantic, M. (2014). Incremental
face alignment in the wild. In CVPR (pp. 1859–1866).

Belhumeur, P. N., Jacobs, D. W., Kriegman, D. J., & Kumar, N. (2013).
Localizing parts of faces using a consensus of exemplars. TPAMI,
35(12), 2930–2940.

Booth, J., Antonakos, E., Ploumpis, S., Trigeorgis, G., Panagakis, Y.,
Zafeiriou, S., et al. (2017). 3D face morphable models in-the-wild.
In CVPR.

Booth, J., Roussos, A., Ponniah, A., Dunaway, D., & Zafeiriou, S.
(2018). Large scale 3D morphable models. IJCV, 126(2–4), 233–
254.

Booth, J., Roussos, A., Zafeiriou, S., Ponniah, A., & Dunaway, D.
(2016).A3Dmorphablemodel learnt from10,000 faces. InCVPR.

Bulat, A., & Tzimiropoulos, G. (2016). Two-stage convolutional part
heatmap regression for the 1st 3D face alignment in the wild
(3dfaw) challenge. In ECCV workshops (pp. 616–624). Springer

Bulat, A., & Tzimiropoulos, G. (2017a). Binarized convolutional land-
mark localizers for human pose estimation and face alignmentwith
limited resources. In ICCV.

Bulat, A., & Tzimiropoulos, G. (2017b). How far are we from solving
the 2D & 3D face alignment problem? (and a dataset of 230,000
3D facial landmarks). In ICCV.

Burgos-Artizzu, X. P., Perona, P., & Dollár, P. (2013). Robust face land-
mark estimation under occlusion. In ICCV (pp. 1513–1520).

Cao, C., Weng, Y., Zhou, S., Tong, Y., & Zhou, K. (2014a). Face-
warehouse: A 3D facial expression database for visual computing.
TVCG, 20(3), 413–425.

Cao, X., Wei, Y., Wen, F., & Sun, J. (2014b). Face alignment by explicit
shape regression. IJCV, 107(2), 177–190.

Chen, X., Zhou, E., Mo, Y., Liu, J., & Cao, Z. (2017). Delving deep
into coarse-to-fine framework for facial landmark localization. In
CVPR Workshops.

Cheng, S., Marras, I., Zafeiriou, S., & Pantic, M. (2017). Statistical
non-rigid ICP algorithm and its application to 3D face alignment.
Image and Vision Computing, 58, 3–12.

Chrysos, G. G., Antonakos, E., Snape, P., Asthana, A., & Zafeiriou, S.
(2018). A comprehensive performance evaluation of deformable
face tracking in-the-wild. IJCV, 126(2–4), 198–232.

Chrysos, G.G., Antonakos, E., Zafeiriou, S., &Snape, P. (2015). Offline
deformable face tracking in arbitrary videos. In Proceedings of the
IEEE international conference on computer vision workshops (pp.
1–9).

Chung, J. S., Senior, A. W., Vinyals, O., & Zisserman, A. (2017). Lip
reading sentences in the wild. In CVPR (pp. 3444–3453).

Chung, J. S., & Zisserman, A. (2016). Lip reading in the wild. In ACCV
(pp. 87–103). Springer.

Coleman, T. F., & Li, Y. (1996). A reflective newton method for min-
imizing a quadratic function subject to bounds on some of the
variables. SIAM, 6(4), 1040–1058.

Cootes, T. F., Edwards, G. J., & Taylor, C. J. (2001). Active appearance
models. TPAMI, 23(6), 681–685.

Cootes, T. F., Taylor, C. J., Cooper, D. H., & Graham, J. (1995). Active
shape models-their training and application. CVIU, 61(1), 38–59.

Crispell, D., & Bazik, M. (2017). Pix2face: Direct 3D face model esti-
mation. In: ICCV workshops (pp. 2512–2518). IEEE.

Cristinacce, D., & Cootes, T. F. (2006). Feature detection and tracking
with constrained local models. In BMVC.

Deng, J., Liu, Q., Yang, J., & Tao, D. (2016). M3csr: Multi-view, multi-
scale andmulti-component cascade shape regression. IVC, 47, 19–
26.

Deng, J., Trigeorgis, G., Zhou, Y., & Zafeiriou, S. (2017). Joint multi-
view face alignment in the wild. arXiv:1708.06023.

Deng, J., Zhou,Y., Chen, S.,&Zafeiriou, S. (2018). Cascademulti-view
hourglass model for robust 3D face alignment. In FG.

Eleftheriadis, S., Rudovic, O., Deisenroth, M. P., & Pantic, M. (2016a).
Gaussian process domain experts for model adaptation in facial
behavior analysis. In CVPR workshops.

Eleftheriadis, S., Rudovic, O., & Pantic, M. (2016b). Joint facial action
unit detection and feature fusion: A multi-conditional learning
approach. TIP, 25(12), 5727–5742.

Fan, H., & Zhou, E. (2016). Approaching human level facial landmark
localization by deep learning. IVC, 47, 27–35.

Feng, Y., Wu, F., Shao, X., Wang, Y., & Zhou, X. (2018). Joint 3D face
reconstruction and dense alignment with position map regression
network. In ECCV.

Feng, Z. H., Kittler, J., Awais, M., Huber, P., & Wu, X. (2017).
Face detection, bounding box aggregation and pose estimation for
robust facial landmark localisation in the wild. In CVPR work-
shops.

Ghiasi, G., & Fowlkes, C. C. (2015). Occlusion coherence: Detecting
and localizing occluded faces. arXiv:1506.08347.

Girshick, R. (2015). Fast r-cnn. In ICCV (pp. 1440–1448).
Gross, R.,Matthews, I., Cohn, J., Kanade, T., &Baker, S. (2010).Multi-

pie. IVC, 28(5), 807–813.
Güler, R. A., Trigeorgis, G., Antonakos, E., Snape, P., Zafeiriou, S., &

Kokkinos, I. (2017). Densereg: Fully convolutional dense shape
regression in-the-wild. In CVPR.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for
image recognition. In CVPR (pp. 770–778).

He, Z., Zhang, J., Kan, M., Shan, S., & Chen, X. (2017). Robust fec-
cnn: A high accuracy facial landmark detection system. In CVPR
workshops.

Honari, S., Molchanov, P., Tyree, S., Vincent, P., Pal, C., & Kautz,
J. (2018). Improving landmark localization with semi-supervised
learning. In The IEEE conference on computer vision and pattern
recognition (CVPR)

Huang, G. B., Mattar, M., Berg, T., & Learned-Miller, E. (2008).
Labeled faces in the wild: A database for studying face recog-
nition in unconstrained environments. In Workshop on faces in
real-life images: Detection, alignment, and recognition.

Jaderberg,M., Simonyan, K., Zisserman, A., et al. (2015). Spatial trans-
former networks. In: NIPS (pp. 2017–2025).

Jain, V., & Learned-Miller, E. G. (2010). Fddb: A benchmark for
face detection in unconstrained settings. UMassAmherst technical
report.

Jeni, L. A., Tulyakov, S., Yin, L., Sebe, N., & Cohn, J. F. (2016). The
first 3d face alignment in the wild (3dfaw) challenge. In ECCV
(pp. 511–520). Springer.

Jesorsky, O., Kirchberg, K. J., & Frischholz, R. W. (2001). Robust face
detection using the Hausdorff distance. In Audio and video based
biometric person authentication (pp. 90–95). Springer.

Kasinski, A., Florek, A., & Schmidt, A. (2008). The put face database.
Image Processing and Communications, 13(3–4), 59–64.

Koestinger, M., Wohlhart, P., Roth, P. M., & Bischof, H. (2011).
Annotated facial landmarks in the wild: A large-scale, real-world

123

http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1708.06023
http://arxiv.org/abs/1506.08347


624 International Journal of Computer Vision (2019) 127:599–624

database for facial landmark localization. In ICCV workshop (pp.
2144–2151). IEEE.

Köstinger, M., Wohlhart, P., Roth, P. M., & Bischof, H. (2011). Anno-
tated facial landmarks in the wild: A large-scale, real-world
database for facial landmark localization. In ICCVworkshops (pp.
2144–2151). IEEE.

Kowalski,M., Naruniec, J., & Trzcinski, T. (2017). Deep alignment net-
work: A convolutional neural network for robust face alignment.
In CVPR workshops.

Le, V., Brandt, J., Lin, Z., Bourdev, L., & Huang, T. (2012). Interactive
facial feature localization. In ECCV (pp. 679–692). Springer.

Liu, Y., Jourabloo, A., Ren,W., &Liu, X. (2017). Dense face alignment.
In ICCV workshops (pp. 1619–1628).

Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep learning face
attributes in the wild. In ICCV.

Messer, K., Matas, J., Kittler, J., Luettin, J., & Maitre, G. (1999).
Xm2vtsdb: The extended m2vts database. Audio and Video based
Biometric Person Authentication, 964, 965–966.

Milborrow, S., Morkel, J., & Nicolls, F. (2010). The MUCT land-
marked face database. Pattern Recognition Association of South
Africa, 201(0)

Milborrow, S., & Nicolls, F. (2014). Active shape models with sift
descriptors and mars. In Computer vision theory and applications
(Vol. 2, pp. 380–387). IEEE.

Newell, A., Yang, K., & Deng, J. (2016). Stacked hourglass networks
for human pose estimation. In ECCV (pp. 483–499). Springer.

Phillips, P. J., Flynn, P. J., Scruggs, T., Bowyer, K. W., Chang, J., Hoff-
man, K., et al. (2005). Overview of the face recognition grand
challenge. CVPR, 1, 947–954.

Ren, S., Cao, X., Wei, Y., & Sun, J. (2014). Face alignment at 3000 fps
via regressing local binary features. In CVPR (pp. 1685–1692).

Sagonas, C., Antonakos, E., Tzimiropoulos, G., Zafeiriou, S., & Pantic,
M. (2016). 300 faces in-the-wild challenge: Database and results.
IVC, 47, 3–18.

Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., & Pantic, M. (2013). 300
faces in-the-wild challenge: The first facial landmark localization
challenge. In ICCV workshops (pp. 397–403).

Saragih, J.M., Lucey, S.,&Cohn, J. F. (2011). Deformablemodel fitting
by regularized landmark mean-shift. IJCV, 91(2), 200–215.

Shao, X., Xing, J., Lv, J. J., Xiao, C., Liu, P., Feng, Y., Cheng, C.
(2017). Unconstrained face alignment without face detection. In
CVPR workshops.

Shen, J., Zafeiriou, S., Chrysos, G. G., Kossaifi, J., Tzimiropoulos, G.,
& Pantic, M. (2015). The first facial landmark tracking in-the-
wild challenge: Benchmark and results. In ICCV workshops (pp.
1003–1011). IEEE.

Shu, Z., Yumer, E., Hadap, S., Sunkavalli, K., Shechtman, E., &
Samaras, D. (2017). Neural face editing with intrinsic image dis-
entangling. In CVPR (pp. 5444–5453). IEEE.

Szegedy, C., Ioffe, S., Vanhoucke, V., &Alemi, A. A. (2017). Inception-
v4, inception-resnet and the impact of residual connections on
learning. In AAAI (Vol. 4, p. 12).

Tadmor, O., Rosenwein, T., Shalev-Shwartz, S., Wexler, Y., & Shashua,
A. (2016). Learning ametric embedding for face recognition using
the multibatch method. In NIPS (pp. 1388–1389).

Taigman, Y., Yang, M., Ranzato, M., & Wolf, L. (2014). Deepface:
Closing the gap to human-level performance in face verification.
In CVPR (pp. 1701–1708).

Trigeorgis, G., Snape, P., Nicolaou, M. A., Antonakos, E., & Zafeiriou,
S. (2016). Mnemonic descent method: A recurrent process applied
for end-to-end face alignment. In CVPR (pp. 4177–4187).

Tzimiropoulos, G., & Pantic,M. (2013). Optimization problems for fast
aam fitting in-the-wild. In ICCV (pp. 593–600).

Webb, J. A., & Aggarwal, J. K. (1982). Structure from motion of rigid
and jointed objects. Artificial Intelligence, 19(1), 107–13.

Wu,W.,&Yang, S. (2017). Leveraging intra and inter-dataset variations
for robust face alignment. In CVPR workshops.

Xiao, S., Li, J., Chen, Y., Wang, Z., Feng, J., Yan, S., & Kassim, A. A.
(2017). 3D-assisted coarse-to-fine extreme-pose facial landmark
detection. In CVPR workshops.

Xiong, P., Li, G., & Sun, Y. (2017). Combining local and global features
for 3D face tracking. In ICCV workshops. IEEE.

Xiong, X., & De la Torre, F. (2013). Supervised descent method and its
applications to face alignment. In CVPR (pp. 532–539).

Xiong, X., & De la Torre, F. (2015). Global supervised descent method.
In CVPR (pp. 2664–2673).

Yan, J., Lei, Z., Yi, D., & Li, S. (2013). Learn to combine multiple
hypotheses for accurate face alignment. In ICCV workshops (pp.
392–396).

Yang, J., Deng, J., Zhang, K., & Liu, Q. (2015). Facial shape tracking
via spatio-temporal cascade shape regression. In ICCVworkshops
(pp. 41–49).

Yang, J., Liu, Q., & Zhang, K. (2017). Stacked hourglass network for
robust facial landmark localisation. In CVPR workshops.

Zadeh, A., Baltrusaitis, T., & Morency, L. P. (2017a). Convolutional
experts network for facial landmark detection. In CVPR work-
shops.

Zadeh, A., Lim, Y. C., Baltrusaitis, T., & Morency, L. P. (2017b). Con-
volutional experts constrained local model for 3D facial landmark
detection. In ICCV workshops (Vol. 7).

Zafeiriou, S., Chrysos, G., Roussos, A., Ververas, E., Deng, J., &
Trigeorgis, G. (2017a). The 3D menpo facial landmark tracking
challenge. In ICCV workshops.

Zafeiriou, S., Trigeorgis, G., Chrysos, G., Deng, J., & Shen, J. (2017b).
The menpo facial landmark localisation challenge: A step towards
the solution. In CVPR workshops (pp. 2116–2125).

Zafeiriou, S., Trigeorgis, G., Chrysos, G., Deng, J., & Shen, J. (2017c).
The menpo facial landmark localisation challenge: A step towards
the solution. In CVPR workshop.

Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016a). Joint face detection
and alignment using multitask cascaded convolutional networks.
SPL, 23(10), 1499–1503.

Zhang, Z., Luo, P., Loy,C.C.,&Tang,X. (2014). Facial landmark detec-
tion by deep multi-task learning. In ECCV (pp. 94–108). Springer.

Zhang, Z., Luo, P., Loy, C. C., & Tang, X. (2016b). Learning deep
representation for face alignment with auxiliary attributes. TPAMI,
38(5), 918–930.

Zhou, E., Fan, H., Cao, Z., Jiang, Y., & Yin, Q. (2013). Extensive facial
landmark localization with coarse-to-fine convolutional network
cascade. In ICCV workshops (pp. 386–391). IEEE.

Zhu, S., Li, C., Loy, C. C., & Tang, X. (2015). Face alignment by
coarse-to-fine shape searching. In CVPR (pp. 4998–5006).

Zhu, S., Li, C., Loy, C. C., & Tang, X. (2016a). Unconstrained face
alignment via cascaded compositional learning. In CVPR (pp.
3409–3417).

Zhu, X., Lei, Z., Liu, X., Shi, H., & Li, S. Z. (2016b). Face alignment
across large poses: A 3D solution. In CVPR.

Zhu, X., Lei, Z., Liu, X., Shi, H., & Li, S. Z. (2016c). Face alignment
across large poses: A 3D solution. In CVPR (pp. 146–155).

Zhu, X., & Ramanan, D. (2012). Face detection, pose estimation, and
landmark localization in the wild. In CVPR (pp. 2879–2886).
IEEE.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	The Menpo Benchmark for Multi-pose 2D and 3D Facial Landmark Localisation and Tracking
	Abstract
	1 Introduction
	2 Menpo 2D and Menpo 3D Benchmarks
	2.1 Datasets
	2.2 Adopted Landmark Configurations
	2.3 Creation of Ground-Truth Semi-frontal and Profile 2D Facial Landmarks
	2.4 Creation of Ground-Truth 3DA-2D and 3D Facial Landmarks
	2.4.1 Dense 3D Face Shape Modelling
	2.4.2 Camera Model
	2.4.3 LSFM Fitting on Videos: Energy Formulation
	2.4.4 Optimisation of Energy Function
	2.4.5 LSFM Fitting on Images
	2.4.6 Facial Landmark Sampling and Re-projection for Images and Videos


	3 Menpo 2D Challenge
	3.1 Evaluation Metrics
	3.2 Participants
	3.3 Competition Results
	3.4 A New Strong Baseline for 2D Face Alignment
	3.4.1 Face Region Normalisation
	3.4.2 Multi-view Hourglass Model
	3.4.3 Experimental Results

	3.5 Development of 2D Face Alignment

	4 Menpo 3D Challenge
	4.1 Evaluation Metrics
	4.2 Participants
	4.3 Competition Results
	4.4 A New Strong Baseline for 3D Face Alignment
	4.4.1 Cascade Multi-view Hourglass Model
	4.4.2 Experimental Results


	5 Discussion and Conclusions
	Acknowledgements
	References




