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Abstract
Fast abnormal event detection meets the growing demand to process an enormous number of surveillance videos. Based on
the inherent redundancy of video structures, we propose an efficient sparse combination learning framework with both batch
and online solvers. It achieves decent performance in the detection phase without compromising result quality. The extremely
fast execution speed is guaranteed owing to the fact that our method effectively turns the original complicated problem into
a few small-scale least square optimizations. Our method reaches high detection rates on benchmark datasets at a speed of
1000–1200 frames per second on average when computing on an ordinary single core desktop PC using MATLAB.

Keywords Abnormal event · Realtime detection · Event detection · Video analysis

1 Introduction

With the increasing demand of security, surveillance cameras
are commonly deployed.Detecting abnormal events is a criti-
cal task based onwhat cameras capture, which is traditionally
labor-intensive and requires non-stop human attention.What
makes this interminable and boring process worse is that
concentration levels are hard to maintain so that infrequent
abnormalities may be missed. This predicament catalyzes
important research in computer vision, aiming to find abnor-
mal events automatically (Jianga et al. 2011; Adam et al.
2008; Mahadevan et al. 2010; Saligrama and Chen 2012a;
Zhang et al. 2005; Kratz and Nishino 2009; Zhao et al. 2011;
Cong et al. 2011).

It is not a typical classification problem due to the diffi-
culty to list all possible negative samples. Research in this
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area commonly follows the line that normal patterns are first
learned from training videos, and are then used to detect
events deviated from this representation. Recently, sparse
representation (Lu et al. 2013b; Shi et al. 2011) has attracted
much attention and sparsity-based abnormality detection
models (Zhao et al. 2011; Cong et al. 2011) achieved state-
of-the-art performance reported in many datasets.

Although realtime processing is a key criterion to a practi-
cally employable systemgiven continuously captured videos,
most sparsity-based methods cannot perform fast enough.
The major obstruction to high efficiency is the inherently
intensive computation to build the sparse representation.
Note a slow abnormal event detection process could delay
alarm and postpone response to special events.

In what follows, we provide brief analysis about this issue
with respect to the general sparsity strategies and present our
new framework with an effective representation. It fits the
structure of surveillance videos and leads to an extremely
cheap testing cost.

1.1 Sparsity Based Abnormality Detection

Sparsity is a general constraint (Zhao et al. 2011; Cong et al.
2011) tomodel normal event patterns as a linear combination
of a set of basis atoms. We analyze abnormality detection in
one local region to show that this process is computationally
expensive by nature.

Given training features [x1, . . . , xn] extracted from the
history video sequence in a region, a normal pattern dictio-
nary D ∈ R

p×q is learned with a sparsity prior, where p and
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q are basis vector dimension and atom number respectively.
In the testing phase for a new feature x, we reconstruct it by
sparsely combining elements in D, expressed as

min
β

‖x − Dβ‖22 s.t. ‖β‖0 ≤ s (1)

where β ∈ R
q×1 contains sparse coefficients. ‖x − Dβ‖22 is

the data fitting term; ‖β‖0 is the sparsity regularization term;
and s (� q) is a parameter to control sparsity. With this rep-
resentation, an abnormal pattern can be naturally defined as
one with large error resulted from ‖x−Dβ‖22. Previous work
verified that this form can lead to high detection accuracy.

1.1.1 Efficiency Problem

Ahigh testing cost is inevitablewhen adopting Eq. (1), which
aims to find the suitable basis vectors (with scale s) from
the dictionary (with scale q) to represent testing data x. The
search space is quite large, as (

q
s ) different combinations

exist. Although much effort has been put to reducing the
dictionary size (Cong et al. 2011) and adopting fast sparse
coding solvers (Zhao et al. 2011), in general, several seconds
are needed to process a frame as reported in prior papers.

The efficiency problem is thus critical to address before
this type of methods can be deployed practically. A realtime
process needs to be 100 times faster than the current fastest
sparsity-based methods, which is difficult without tremen-
dous hardware advancement. We tackle this problem from
an algorithm perspective. Our method yields decent per-
formance and naturally accelerates sparse coding by 2000+
times even using MATLAB implementation.

1.2 Our Contribution

We propose sparse combination learning (SCL) for detec-
tion. With high structure redundancy in surveillance videos,
instead of coding sparsity by finding an s basis combination
from D in Eq. (1), we code it directly as a set of possible
combinations of basis vectors. Each combination here corre-
sponds to a set with s dictionary bases in Eq. (1). With this
change, other than searching for s bases from q of them for
each testing feature, we only need to find the most suitable
combination by evaluating the least square error. The testing
framework is shown in Fig. 1.

This framework is efficient since only small-scale least
square optimization is required in detection with simple
matrix projection. In our experiments, testing is on a small
number of combinations, each takes 10−6–10−7 second in
MATLAB.

The effectiveness of our approach is well guaranteed by
the inherent sparsity constraint on the combination size.
Compared to original sparse coding, our model is more faith-

Fig. 1 Our testing architecture. X denotes testing data. {S1, . . . ,SK }
are learned combinations, with each Si ∈ R

p×s(s � p). Ei is the
corresponding least square reconstruction error. The final error is the
minimum among all combinations

ful to the input data. When freely selecting s basis vectors
froma total ofq vectors byEq. (1), the reconstructed structure
could much deviate from input due to the large freedom. But
in our trained combinations, it is unlikely to happen, since
each combination finds its corresponding input data, better
constraining reconstruction quality. Our method therefore is
robust to distinguish between normal and abnormal patterns.

We have verified our model on a large set of surveillance
videos in Sect. 6.2.We also benchmark it on existing datasets
for abnormal event detection. The detection speed is further
improved by our optimized implementation compared to our
conference version (Lu et al. 2013a). It reaches 1000–1200
FPS using a desktop with a 3.4GHz CPU and 8G memory in
MATLAB 2012.

This manuscript extends its conference version (Lu et al.
2013a) with the following major differences. (1) We extend
our sparse combination learning into a birth-and-death com-
binationonline solver to handle large-scale anddynamicdata.
(2) We double the size of our Avenue dataset, and label the
spatial locations of the abnormal event for accurate evalua-
tion. We further propose a large scale dataset NYDP with 7
h training data to evaluate the performance under large scale
data. (3) We conduct extensive experiments.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 introduces the sparse com-
bination learning framework. An online extension for sparse
combination learning is proposed in Sect. 4. In Sect. 5, we
present our fast testing scheme. Section 6 shows results on
several benchmark datasets.

2 RelatedWork

2.1 Abnormal Event Detection

Abnormal detection in surveillance refers to the problem
of finding unusual patterns in videos. A complete survey
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for anomaly detection is in Chandola et al. (2009). Usually,
abnormal event detection can be casted into categories.

Early work (Shet et al. 2006) explicitly defined the logic
to find anomaly. However, this method cannot be generalized
to complex scenes. Following work aims to build different
models based on different video features. Three major cate-
gories are included.

One sort of models utilize the normal event as a multivari-
ate Gaussian mixture model (GMM) (Basharat et al. 2008;
Wu et al. 2010; Mahadevan et al. 2010; Li et al. 2014; Shi
et al. 2010), which includes the clustering basedmethods as a
special case (Jiang et al. 2007, 2008). These methods utilize
each central signal to represent a group of normal patterns.
Thus, theymay involve a large amount of centers to represent
all normal cases. If the number of training data is limited, the
normal data space cannot be fully supported. Also, the recon-
struction ability by using a single central signal for a group
of normal signals is restrictive. Thus, the resulting detection
accuracy could be reduced due to errors or inappropriate clus-
tering. Recently, a model using Gaussian process regression
(Cheng et al. 2015) was proposed. Interaction from training
videos is modeled as seeking frequent geometric relation of
nearby sparse interest points.

Another set of models fit video cubes into graph mod-
els in Zhang et al. (2005), Kratz and Nishino (2009), Kim
and Grauman (2009), Benezeth et al. (2009), Wang et al.
(2007), Mehran et al. (2009), Cui et al. (2011), Antic and
Ommer (2011), Jager et al. (2008) and Pruteanu-Malinici and
Carin (2008), which utilize co-occurrence patterns. Among
these methods, normal patterns were fitted in a space-time
Markov random field (MRF) in Zhang et al. (2005), Kratz
and Nishino (2009), Kim and Grauman (2009), Jouseok and
Kyoungmu (2012) and Benezeth et al. (2009). Nearly all
MRF-based models use the cuboid window strategy, which
may lose important information since meaningful features
are separated into regions.

Topic models such as Latent Dirichlet Allocation (LDA),
can also be adopted to detect anomaly (Wang et al. 2007;
Mehran et al. 2009). However, this model would face diffi-
culties in choosing the number of topics, and losing spatial
information in video sequences.

There is work focusing on histogram representation. For
example in Kaltsa et al. (2015), based on swarm theory, his-
tograms of oriented swarms were proposed to describe each
scene.

Xu et al. (2015) introduced deep learning in abnor-
mal event detection. An appearance and motion DeepNet
(AMDN) was presented, which can automatically learn fea-
ture representation for normal patterns.

Recently, sparsity basedmodels (Lu et al. 2013b; Shi et al.
2011) have gained success in abnormal event detection (Zhao
et al. 2011; Cong et al. 2011). They draw intrinsic compo-
nents, i.e. dictionary atoms, to represent usual events. These

methods can be easily generalized to online versions. The
problem of sparse coding is that the testing process is time
consuming, which may not satisfy real time detection tasks.

In short, several of these methods do not meet the realtime
processing requirement for abnormal event detection. In this
paper, we aim at high computation speed and propose a very
fast solution with reasonable accuracy.

Previous work (Basharat et al. 2008; Mahadevan et al.
2010; Kim and Grauman 2009) also employed mixture of
probabilistic principal component model (MPPCA) to sum-
marize normal events. The normal patterns are mapped into
multi-space in a probabilistic manner. If testing data is far
away from the space, it is abnormal. Assumptions about data
(e.g. Gaussian distributions for normal patterns) are required
in these methods.

2.2 Subspace Clustering

Our proposed sparse combinations learning framework is
related with subspace clustering. The early work follows
RandomSample Consensus (RANSAC) (Fischler andBolles
1981) where subspace is fitted by data randomly chosen from
a pool. When there are many different combinations, the
number of trials to find points in the subspace grows expo-
nentially. Generalized principal component analysis (GPCA)
(Vidal et al. 2005; Ma et al. 2008) seeks a polynomial whose
gradient at a point is normal to the subspace. Thus, subspace
clustering becomes fitting the polynomial. However, it is sen-
sitive to noise and outliers. Complexity is also high.

In Elhamifar and Vidal (2013) and Elhamifar and Vidal
(2009), sparse subspace clustering (SSC) was proposed. This
set of methods are based on the fact that each point has a
sparse reconstruction representation with regard to the dic-
tionary formed by other data points. �1 sparse coding was
thus adopted. This method is good at handling affine sub-
spaces. It needs to have rough estimation of the number of
subspaces. For abnormal event detection, this number is hard
to know in prior and may vary in different cases.

Our approach can be regarded as enhancement of sparse
subspace clustering (Elhamifar and Vidal 2009) with the
major difference on the working scheme. The relationship
between sparse subspace clustering (Elhamifar and Vidal
2009) and our method is similar to that between K-means
and hierarchical clustering (Trevor et al. 2001). Specifically,
for real data that iswith noise, subspace clustering (Elhamifar
and Vidal 2009) takes the number of clusters k as known or
fixed beforehand, like K-means. In video abnormality detec-
tion applications, it is however difficult to know the optimal
number of bases in prior. Our approach utilizes the allowed
representation error to build combinations, where the error
upper bound is explicitly implemented with clear statisti-
cal meaning. There is no need to define the cluster size in
this method. In addition, our training cost is much cheaper.
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Fig. 2 Pyramid region architecture. A frame is resized into 3 different
scales. In each scale the frame is partitioned into several regions

We only need several minutes to training 10K-sample data,
while sparse subspace clustering (Elhamifar and Vidal 2009)
involving sparse coding over a large size matrix needs 1 day
on the same hardware platform. Our extensive experiments
manifest that our strategy is both reliable and efficient.

3 Sparse Combinations Training

We describe our framework that learns sparse basis combi-
nations. To extract usable data, we resize each frame into
different scales as Cong et al. (2011) and uniformly par-
tition each layer to a set of non-overlapping patches. All
patches have the same size in terms of pixel. Corresponding
regions in 5 continuous frames are stacked together to form
a spatial-temporal cube. An example is illustrate in Fig. 2.
This pyramid involves local information in fine-scale layers
and more global structures in small-resolution ones.

With the spatial-temporal cubes, we compute 3D gradient
features on each of them following (Kratz andNishino 2009).
These features in a video sequence are processed separately
according to their spatial coordinates. Only features at the
same spatial location in the video frames are used together
for training and testing.

3.1 Learning Combinations on Training Data

For each cube location, 3D gradient features in all frames are
denoted as X = {x1, . . . , xn} ∈ R

p×n , gathered temporally
for training. Our goal is to find a basis combination set S =
{S1, . . . ,SK } with each Si ∈ R

p×s containing s dictionary
basis vectors, forming a unique combination, where s � q.
Here, the number of basis combinations K is adaptive to data,
inferredbyour algorithm.EachSi belongs to a closed, convex
and bounded set C, which ensures column-wise unit norms to
prevent over-fitting. Our sparse combination learning has to
satisfy two requirements, namely effectiveness and efficiency
representation.

Effective representation Our first requirement is to ensure
a small reconstruction error for training data—each training
sample in X should be constructed by at least one combina-
tion. It is coarsely expressed as

( min
γ j , β j

K∑

i=1

γ i
j ‖x j − Siβ i

j‖22) ≤ λ, ∀ j = 1, . . . , n (2)

where β j = {β1
j , . . . ,β

K
j } and γ j = {γ 1

j , . . . , γ
K
j }. Each

γ i
j indicates whether or not the i th combination Si is cho-

sen for data x j . β i
j is the corresponding coefficient set

for representing x j with combination Si . The constraints∑K
i=1 γ i

j = 1 and γ i
j = {0, 1} require that only one combina-

tion is selected. The reconstruction error of any combination
should be smaller than a threshold λ.

Efficient representation The other requirement is to make
the total number of combinations K small to enable fast test-
ing. Actually a surveillance video is inherently redundant for
representation by a small number of combinations. The ideal
minimal K can reflect how informative the data is.

Optimization framework We enable both effective and effi-
cient representations in the unified model of

min
S

K

s.t. min
γ j , β j

K∑

i=1

γ i
j ‖x j − Siβ i

j‖22 ≤ λ, ∀ j = 1, . . . , n

K∑

i=1

γ i
j = 1, γ i

j = {0, 1}, Si ∈ C, ∀i = 1, . . . , K . (3)

We seek a S whose combination number K is small and is
with the reconstruction errors on training samples lower than
λ.

3.2 Maximum Commonness Representation
Strategy

We address the problem by themaximum commonness repre-
sentation strategy (MCRS). It makes K naturally reduced by
encouraging each combination to represent as many training
samples as possible. We give a simple illustration in Fig. 3.

We solve Eq. (3) in iterations by maximizing the number
of training samples represented by one combination each
time. This process can quickly find dominating combinations
in the first a few passes. Remaining training samples that
cannot be well represented by current combinations are sent
to the next round to gather residual maximum commonness.
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Fig. 3 An illustration of our MCRS. By maximizing the number of
training samples that can be reconstructed by each combination, we
naturally reduce the number K

This process ends until all training data are computed and
bounded. The size of combinations K can reach a reasonably
small value eventually.

To estimate a combination that represents asmany training
samples as possible, we propose a maximum commonness
objective function as follows. We will prove it satisfies con-
dition (2). Specifically, in the i th pass, given the leftover
training dataXc(i) ⊆ X that cannot be represented by previ-
ous combinations {S1, . . . ,Si−1}, we computeSi to represent
most data in Xc(i), expressed as

max
γ

∑

j∈Ωc(i)

γ i
j (4)

and

min
Si ,γ , β

∑

j∈Ωc(i)

γ i
j (‖x j − Siβ i

j‖22)

s.t. γ i
j = {0, 1}, Si ∈ C, ∀i = 1, . . . , K (5)

where Ωc(i) is the index set forXc(i). Eq. (5) encourages Si
to represent training data. Eq. (4) maximizes commonness,
which can be rewritten in the minimization form as

min
γ

∑

j∈Ωc(i)

−γ i
j . (6)

Now, Eqs. (5) and (6) are combined to form a unified objec-
tive function, using a hyper-parameter λ, as

min
Si ,γ , β

∑

j∈Ωc(i)

γ i
j (‖x j − Siβ i

j‖22) + λ(
∑

j∈Ωc(i)

−γ i
j )

s.t. γ i
j = {0, 1}, Si ∈ C, ∀i = 1, . . . , K (7)

We name it as maximum commonness model. It is now easy
to prove Eq. (7) satisfies condition (2). Specifically, if ‖x j −
Siβ i

j‖22 − λ ≥ 0, setting γ i
j = 0 yields a smaller value

compared to setting γ i
j = 1. Contrarily, γ i

j should be 1 if

‖x j − Siβ i
j‖22 − λ < 0, complying with condition (2).

Noted that γ i
j = 1 indicates x j is included in Ωc(i) and

γ
q
j = 0 where q ≤ j − 1. Since x j does not appear in

next pass, we safely set γ
q
j = 0 where q > j . Therefore

∑K
i=1 γ i

j = 1 holds after all passes.

3.2.1 Solver

There are a three variables in Eq. (7), namely Si , β and γ . We
solveEq. (7) by dividing it into two subproblems to iteratively
update {Si ,β} and γ using the following procedure.

Update {β}Withfixedγ andSi , Eq. (7) becomes a quadratic
function

L(β,Si ) =
∑

j∈Ωc(i)

γ i
j ‖x j − Siβ i

j‖22.

s.t. Si ∈ C (8)

It can be solved by SVD decomposition with a global opti-
mumguaranteed. But computation of SVD is heavywhen the
size of training samples is large. We resort to another itera-
tion procedure to speed it up. We optimize β while fixing Si
for all γ i

j 	= 0. These two steps alternate. The closed-form
solution for β is

β i
j = (STi Si )

−1STi x j . (9)

The resulting β i
j can be considered as the orthogonal pro-

jection of x j onto Si

Update {Si} With fixed γ and β, Sis finds its solution as

Si =
∏

[Si − δt∇Si L(β,Si )], (10)

where δt is set to 1E − 4 and
∏

denotes projecting the basis
to a unit column. Block-coordinate descent can converge to a
global optimumdue to its convexity (Bertsekas 1999). There-
fore, the total energy for L(β,Si ) decreases in iterations and
finally converges.

Update γ With the {Si ,β} output, for each x j ∈ Xc, the
objective function becomes
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min
γ i
j

γ i
j ‖x j − Siβ i

j‖22 − λγ i
j

s.t. γ i
j = {0, 1} . (11)

The solution can be achieved based on the following Lemma.

Lemma 1 In Eq. 11, γ i
j has a closed-form solution

γ i
j =

{
1 i f ‖x j − Siβ i

j‖22 ≤ λ

0 otherwise
(12)

Proof If ‖x j − Siβ i
j‖22 − λ ≥ 0, setting γ i

j = 0 yields a

smaller value compared to setting γ i
j = 1. Contrarily, γ i

j

should be 1 if ‖x j − Siβ i
j‖22 − λ < 0, ��

Therefore, the update step guarantees condition (2).

3.2.2 Algorithm Summary and Analysis

Our maximum commonness representation strategy works
well in practice. K is kept small by optimizing S using Eq.
(7). The effectiveness condition (2) also strictly holds. This
scheme reduces information overlap between combinations.
The resulting energy of Eq. (7) does not increase in iterations,
since all subproblems find global optima.

Our MCRS framework is described in Algorithm 1. The
initial dictionary Si in each pass is calculated by clustering
training data Xc via K-means with s centers.

Our algorithm is controlled by λ—the upper bound of
reconstruction errors. Reducing it could lead to a larger
K . Our approach is expressive because all training normal
event patterns are represented with controllable reconstruc-
tion errors under condition (2).

Algorithm 1Maximum Commonness Representation Strat-
egy (MCRS)
Input: X , current training features Xc = X
initialize S = ∅ and i = 1
repeat

repeat
Optimize {β} and {Si } with Eqs. (9) and (10)
Optimize {γ } using Eq. (12)

until Eq. (8) converges
Add Si to set S
Remove computed features x j with γ i

j = 1 from Xc
i = i + 1

until Xc = ∅
Output: S

4 Birth-and-Death Combination Online
Learning

The sparse combination learning step in Sect. 3 requires to
keep all data in memory. Its computational cost is polyno-
mial with respect to data scale. To deal with large data and
dynamic scene, we further improve the online system with
constant memory consumption and linear computation com-
plexity with respect to the number of training data.

The dynamic scene problem can be explained this way—a
normal pattern can become abnormal over time. For example,
in a building entrance, one person moving inside is normal
in the morning, but it can be abnormal after people leave in
the afternoon.

In traditional online dictionary learning (Szabo et al. 2011;
Mairal et al. 2010; Zhao et al. 2011), the dictionary is
updated by assigning recent samples with large weights to
capture normal-pattern evolution. However, our representa-
tion is completely different under the combination definition.
We introduce the principle of combination birth-and-death
where new combinations are formed to capture new normal
patterns,while old combinations could be deadwhendescrib-
ing outdated patterns.

Our new strategy is to separate training data X into
many mini-batches. Each mini-batch contains h samples.
{x(k−1)h+1, . . . , xkh} is contained in the kth mini-batch Xk .
We denote the learned sparse combinations after processing
the kth mini-batch as Tk . Obviously, T1 can be obtained by
sparse combination learning inAlgorithm1.Thenweprocess
X in an online manner for the following mini-batch Xk+1.

4.1 Optimization for Online Training

We denote Tk = {S1, . . . ,Svk }, where vk is the number of
combinations for Tk . Each combination has an active score to
indicate its current activeness level. For dynamic scenes, we
remove these outdated combinations according to the active
score. The i th active score is denoted as ϕi .

When next mini-batch Xk+1 = {xkh+1, . . . , x(k+1)h}
arrives, we first update Tk . Then we create new combinations
if there exist samples from Xk+1 that cannot be represented
by Tk . We remove some combination if their active scores
are less than a threshold ε.

4.1.1 Updating Existing Combinations inTk

We update Tk by first evaluating whether the new samples
can be represented by Tk or not. For data x j ∈ Xk+1, if there
exists Si ∈ Tk , which satisfies minβi

j
‖x j − Siβ i

j‖22 < λ,

we assign γ i
j = 1. Otherwise, we set it as zero. Then Tk is

updated by minimizing the function for each Si of
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W (Si ) =
(k+1)h∑

j=1

γ i
j ‖Siβ i

j − x j‖22 s.t. Si ∈ C (13)

Similar to Eqs. (8), (13) can be solved via block-coordinate
descent update as

Si =
∏

[Si − δt∇Si W (Si )], (14)

where δt is set to 1E − 4 and
∏

denotes projecting the basis
to a unit column. According to Bertsekas (1999), by solving
Eq. (14) iteratively, we can reach a global optimum for Eq.
(13) due to its convexity. The derivative part in Eq. (14) is

∇Si W (Si ) = Si M
k+1
j − Ek+1

j , (15)

where

Mk+1
i =

(k+1)h∑

j=1

γ i
jβ

i
j (β

i
j )
T ,

Ek+1
i =

(k+1)h∑

j=1

γ i
j x j (β

i
j )
T . (16)

Following Mairal et al. (2010) and Lu et al. (2013b), we
recordMi and Ei as twoauxiliarymatrices in eachmini-batch
process. Mk+1

i and Ek+1
i are updated with simple computa-

tion as

Mk+1
i = Mk

i +
(k+1)h∑

j=kh+1

γ i
jβ

i
j (β

i
j )
T ,

Ek+1
i = Ek

i +
(k+1)h∑

j=kh+1

γ i
j x j (β

i
j )
T . (17)

With that two auxiliary matrices, we do not need to store
all information for history data. For large data, it only use
constant running time and memory for combination update.

4.1.2 Generating New Combinations

We remove those training samples inXk+1 that can be repre-
sented by existing combinations in Tk described in previous
section, and form a new data set X k+1. It is a subset whose
samples cannot be represented by Tk . Then we apply our
standard sparse combination leaning solver in Algorithm 1
into create new combinations.

4.1.3 Removing Outdated Combinations

For each combination,we compute an active score tomeasure
its activeness. We define the active score of the i th combina-
tion as

ϕt
i =

∑t
j=1 ρ jγ i

j

ρt
∑t

j=1 γ i
j

, (18)

where ρ is a factor and ρ j is the power j of ρ. If ρ > 1,
samples existing for long time result in small weights. If a
combination whose most samples are old, its active score
would be small. When ρ = 1, the active score is 1 for con-
sistency. We also define an auxiliary normalized factorCi (t)
as

Ci (t) =
t∑

j=1

γ i
j = Ci (t − 1) + γ i

t . (19)

Considering Eqs. (18) and (19), we have the update function

ϕt
i = Ci (t − 1)

ρCi (t)
ϕt−1
i + γ i

t

Ci (t)
(20)

Algorithm Our framework works for both dynamic scenes
(ρ > 1) and stationary patterns (ρ = 1). The entire birth-
and-death online learning procedure is listed in Algorithm 2.

Algorithm 2 Online birth-and-death Combination Learning
Input: Tk = {S1, . . . ,Svk }, mini-batch data Xk+1 =
{xkh+1, . . . , x(k+1)h}, history statistics Mk

i , active score
{ϕkh

1 , . . . , ϕkh
vk

}, active normalized factor {C1(kh), . . . ,Cvk (kh)}
for j = kh + 1 → (k + 1)h do

for i = 1 → vk do
if minβi

j
‖x j − Siβ i

j‖22 < λ then

γ i
j = 1; break.

end if
end for

end for
for i = 1 → vk do

Update Mk+1
i , and Ek+1

i using Eq. (17).
Update Si using Eq. (13).

end for
Set X k+1 = Xk+1.
for j = kh + 1 → (k + 1)h do

if
∑vk

i γ i
j = 1 then

Remove x j from X k+1.
end if

end for
Generate new combinations via Alg. 1 for X k+1.
Generate Mk+1

i and Ek+1
i , i = vk + 1, . . . v̂k+1.

for j = kh + 1 → (k + 1)h do
update {C j (1), . . . ,C j (ϕvk ) using Eq. (19)

update {ϕ j
1 , . . . , ϕvk } j using Eq. (20)

end for
for i = 1 → v̂k+1 do

if ϕ
(k+1)h
i < ε then
remove i th Combination

end if
end for
Output: Tk+1 = {S1, . . . ,Svk+1 }.
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4.2 Analysis for Online Training

In our online process, it is not necessary to keep all data in
memory. Instead,we only record history data statisticsM and
E , which result in constant memory consumption. In terms
of running time, the computation complexity of our online
approach is O(UN/h), where U is the upper bound of min-
batch processing time. It means the computation complexity
is linear with respect to data scale N in our online algorithm,
compared with the polynomial form for the batch algorithm.
In the following experiment section, we demonstrate that
the online solver can reduce training cost significantly for
a large amount of training data with only minor accuracy
compromise.

5 Testing

Given the learned sparse combinations S = {S1 . . . SK }, in
the testing phase with new data x, we check if there exists a
combination inS fitting the reconstruction error upper bound.
It can be quickly achieved by checking the least square error
for each Si :

min
βi

‖x − Siβ i‖22 ∀ i = 1, . . . , K (21)

It is a standard quadratic function with the optimal solution

β̂
i = (STi Si )

−1STi x. (22)

The reconstruction error in Si is

‖x − Si β̂
i‖22 = ‖(Si (STi Si )−1STi − Ip)x‖22, (23)

where Ip is a p × p identity matrix. To further simplify
computation, we define an auxiliary matrix Ri for each Si :

Ri = Si (STi Si )
−1STi − Ip. (24)

Reconstruction error for Si is accordingly ‖Rix‖22. If it is
small,x is regarded as a normal event pattern.Thefinal testing
scheme is summarized in Algorithm 3.

Algorithm 3 Testing with Sparse Combinations
Input: x, auxiliary matrices {R1, . . . ,RK } and threshold T .
for j = 1 → K do

if ‖Rkx‖22 < T then
return normal event.

end if
end for
return abnormal event.

It is noted that the first a few dominating combinations
represent the largest number of normal event features, which
enable us to determine positive data quickly. In our exper-
iments, the average combination checking ratio is 0.325,
which is the number of combinations checked divided by
the total number K . Also, our method can be easily accel-
erated via parallel processing to achieve O(1) complexity
although it is already very fast.

5.1 Comparison with �1 normMinimization

�1-norm approximation is another solution to speed up Eq.
(1). However, it still assumes that a good basis combination
from dictionary atoms can be found. This model does not
consider the fact that in surveillance videos, normal patterns
are highly redundant in terms of the level of information
where a small number of combinations can already represent
them. Differently, our sparse combination learning encour-
ages that the number of basis combinations is adaptive to
the complexity of data. Our testing only needs least square
(by matrix multiplication) operations. We will compare our
method with �1-norm minimization solvers in terms of effi-
ciency in the following section.

6 Experiments

In this section, we empirically demonstrate that our model is
suitable to represent general surveillance videos. We apply
our method to different datasets. Quantitative comparisons
are reported.

6.1 System Setting

The size of Si ∈ R
p×s controls the sparsity level. We experi-

mentally set s = 0.1× p where p is the data dimension. λ in
Eq. (2) is the error upper bound, set to 0.04 in experiments.

Given the input video, we resize each frame to 3 scales
with 20 × 20, 30 × 40, and 120 × 160 pixels respectively
and uniformly partition each layer to a set of non-overlapping
10×10 patches, leading to 208 sub-regions for each frame in
total shown in Fig. 2. Corresponding sub-regions in 5 contin-
uous frames are stacked together to form a spatial-temporal
cube, each with resolution 10×10×5. We compute 3D gra-
dient features on each of them following (Kratz and Nishino
2009). Those gradients are concatenated to a 1500-dimension
feature vector for each cube and are then reduced to 100
dimensions via PCA. Normalization is performed to make
them mean 0 and variance 1.

In frame-level detection, we compute an abnormal indi-
cator V by summing the number of cubes in each scale with
weights. It is defined as V = ∑z

i=1 2
z−ivi , where vi is the

number of abnormal cubes in scale i . The top scale is with
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Fig. 4 A few frames from the surveillance videos used for verification

index 1 while the bottom one is with z (z = 3 in our exper-
iment). For pixel or region level detection, abnormal pixels
are the ones whose corresponding cubes (in any scale) are
abnormal. In the online solver, we fix the size of mini-batch
to h = 200. All experiments are conducted using MATLAB.
In what follows, “Our (online)” and “Our (batch)” in report-
ing results refer to those achieved by online solver (Sect. 4)
and batch solver (Sect. 3) respectively.

6.2 Verification of Sparse Combinations

Surveillance videos consist of many redundant patterns. For
example, in subway exit, people generally move in similar
directions. These patterns share information coded in our
sparse combinations. To verify it, we collect 150 normal
event surveillance videos with a total length of 107.8 h. The
videos are obtained from sources including dataset UCSD
Ped1 (Mehran et al. 2009), Subway datasets (Adam et al.
2008) (excluding abnormal event frames), 68 videos from
YouTube, and 79 videos we captured. The scene includes
subway, mall, traffic, indoor, elevator, square, etc. We show
a few example frames in Fig. 4.

Each video contains 208 regions as illustrated in Fig. 6.
With the 150 different videos, we gather a total of 31,200
(208 × 150) groups of cube features with each group corre-
sponding to a set of patches (cubes). They are used separately
to verify the combination model. Each group contains 6,000-
120,000 features. The number of combinations for each
group is denoted as K . We show in Fig. 5 the distribution
of K in the 31,200 groups. Its mean is 9.75 and variance is
10.62, indicating 10 combinations are generally enough in
our model to represent events. The largest K is 108. About
99% of the K s are smaller than 45.

We illustrate the K distributions spatially in the Avenue
data (described below) in Fig. 6. Many regions only need
1 combination because they are static. Largely varying
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Fig. 5 Different numbers of basis combinations to represent normal
events in 31,200 groups (x-axis: K ; y-axis: number of groups that use
K combinations)

Fig. 6 Spatial distribution of combination numbers to represent normal
structures in the Avenue data

patches may need dozens of combinations to summarize
normal events. The statistical regression error is as small as
0.0132±1.38E−4, which indicates our dictionaries contain
almost all normal patterns (Fig. 7).

6.3 Avenue Data Benchmark

We construct a new avenue dataset for evaluation. In compar-
ison to our conference version, we extend the avenue dataset
from 23 videos to 37 videos. The videos are captured in a
campuswith 30652 (15328 for training and 15324 for testing)
frames in total. Frame resolution is 360 × 640. The train-
ing videos capture normal situations. Testing videos include
both normal and abnormal events. Three abnormal samples
are shown in Fig. 8.

Our dataset includes a few realistic scenarios that are not
contained in pervious datasets. First, some clips are with
slight camera shake (frames 1051–1100 in testing video 2).
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Fig. 7 Detection results in a video sequence. The bottom plot is the response. A peak appears when an abnormal event-paper throwing-happens.
The x value indexes frames and y-index denotes response strength

Fig. 8 Representative abnormal events in Avenue Dataset. a Abnormal
object, b strange action, c wrong direction

Second, a few outliers are involved in training data, which
require the training process robust enough. These are com-
mon problems in real world videos.

Besides frame-level evaluation,we further evaluate abnor-
mal events in the region level. We label spatial locations
of abnormal events using rectangular regions similar to the
bounding boxes in VOC Pascal labeled data, and define
abnormality in a frame as

Ad ∩ Ag

Ad ∪ Ag
≥ υ. (25)

where Ad and Ag are the detected region and ground truth
abnormal event region respectively and υ is a threshold. For
the frames containing no abnormal event, we have Ad∩Ag =
0. In this case, we specially define the result value as 1. The
accuracy is the percentage of frames satisfying Eq. (25). We
report our accuracy values under thresholds in {0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8} in Table 1.

A video sequence and its abnormal event detection result
are demonstrated in Fig. 7. Figure 9 contains three important
frames and their abnormal event regions in two image scales.

This dataset is with stationary patterns. We set ρ = 1 for the
active score in Eq. (18) with ε = 0.01. We list the detection
statistics in Table 1. The performance of our methods is sat-
isfactory with the average detection speed as quick as 964.8
frames per second.

6.4 Subway Dataset

We conduct quantitative comparison with previous methods
on the Subway dataset (Adam et al. 2008). The videos are 2 h
long in total, containing 209,150 frames with size 512×384.
There are two types of videos, i.e., “exit gate” and “entrance
gate” videos. We also set ρ = 1 in the active score and
ε = 0.01 in Eq. (18).

6.4.1 Exit Gate

The subway exit surveillance video contains 19 different
types of unusual events, such as walking in the wrong direc-
tion and loitering near the exit. The video sequence in the first
15 min is used for training. This configuration is the same as
those in Kim and Grauman (2009) and Zhao et al. (2011).

The abnormal event detection results for a few frames are
shown in Fig. 10. Table 2 lists the comparison with other
methods. Our false alarm rate is low mainly because each
combination can construct many normal event features, thus
reducing the chance of constructing an abnormal structure
with a small error. This representation tightens feature mod-
eling and makes it not that easy to misclassify abnormality

Table 1 Detection accuracy (in
%) under different threshold υ

in the Avenue dataset

υ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Mean

Sparse combination (Batch solver) 70.0 67.3 63.3 59.3 57.5 55.7 54.4 61.0

Sparse combination (Online solver) 68.3 65.2 62.2 56.1 54.2 52.5 51.2 58.5

Subspace clustering (K=10) 58.7 52.5 47.1 45.5 42.9 39.1 36.4 46.0

Subspace clustering (K=50) 50.6 47.4 43.5 41.0 38.7 36.8 34.1 41.7

Subspace clustering (best K=13) 60.2 54.4 49.7 47.3 44.8 40.5 38.3 47.9

Subspace clustering (K=10), (K=50) and (best K=13) means using subspace number 10, 50 and 13 respec-
tively, where “K=13” has best performance
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Fig. 9 Three abnormal events and their corresponding abnormal
patches under two different scales in the Avenue dataset. a Events,
b maps, c maps

Fig. 10 Subway dataset (exit-gate): three abnormal events and their
corresponding detection maps in two different scales. a Events, bmaps,
c maps

as normal events. In this dataset, our combination number K
varies from 1 to 56 for different cube features.

6.4.2 Entrance Gate

In this video, again, the first 15 min are used for training.
Detection statistics are listed in Table 3. Our results are com-
parable to those of Zhao et al. (2011), Kim and Grauman
(2009) and Cong et al. (2011). The proposed method yields
high detection rates together with low false alarm.

Table 2 Comparison with other sparsity-based methods (Zhao et al.
2011; Cong et al. 2011) on the Exit-Gate subway dataset

WD LT MISC Total FA

Ground truth 9 3 7 19 0

Zhao et al. (2011) 9 3 7 19 2

Kim and Grauman (2009) 9 3 7 19 3

Cong et al. (2011) 9 – – – 2

Subspace (K=10) 6 3 5 14 4

Subspace (K=50) 5 2 5 12 5

Subspace (best, K=15) 7 3 5 15 4

Ours (online) 9 3 7 19 3

Ours (batch) 9 3 7 19 2

WD wrong direction; LT loitering; FA false alarm; “-”: results not
provided. “Subspace” represents replacing our combination learning
by subspace clustering (Elhamifar and Vidal 2009). Subspace (K=10),
(K=50) and (best K= 15) means using subspace number 10, 50 and
13 respectively, where “K=15” has best performance

6.4.3 Running Time Comparison

We compare our systemwith other sparse dictionary learning
based methods (Zhao et al. 2011; Cong et al. 2011) in terms
of running time on the Subway dataset in Table 4. The speed
of methods (Zhao et al. 2011; Cong et al. 2011) is reported
in their respective papers. The discrepancy is huge.

6.5 UCSD Ped1 Dataset

The UCSD Ped1 dataset (Mahadevan et al. 2010) provides
34 short clips for training, and another 36 clips for testing.
All testing clips have frame-level ground truth labels, and
10 clips have pixel-level ground truth labels. There are 200
frames in each clip.

Our configuration is similar to that of Mahadevan et al.
(2010). That is, the performance is evaluated on frame- and
pixel-levels.We show the results viaROCcurves, EqualError
Rate (EER), and Equal Detected Rate (EDR).

6.5.1 ROC Curve Comparison

According to Mahadevan et al. (2010) in frame-level detec-
tion, if a frame contains at least one abnormal pixel, it is
considered as successful detection. In our experiment, if a
frame contains one or more abnormal patches, we label it
as an abnormal event. For frame-level evaluation, we alter
frame abnormality threshold to produce a ROC curve shown
in Fig. 11. Our method has a reasonably high detection rate
when the false positive value is low. It is vital for practical
detection system development.

In pixel level evaluation, a pixel is labeled as abnormal, if
and only if the regions it belongs to in all scales are abnor-
mal. We alter threshold for all pixels. Following Mahadevan
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Table 3 Comparison using the
subway-entrance video with
several previous methods

WD NP LT II MISC Total FA

GT 26 13 14 4 9 66 0

Zhao et al. (2011) 25 9 14 4 8 60 5

Kim and Grauman (2009) 24 8 13 4 8 57 6

Cong et al. (2011) 21 6 – – – – 4

Subspace (K=10) 21 6 9 3 7 46 7

Subspace (K=50) 20 6 8 3 6 43 8

Subspace (best K=13) 21 6 9 4 7 47 6

Ours (online) 24 7 12 4 7 54 5

Ours (batch) 25 7 13 4 8 57 4

GT ground truth; WD wrong direction; NP no payment; LT loitering; II irregular interactions; MISC misc;
FA false alarm (desire to be small). “-” means results are not provided. Subspace: replacing our combination
learning by subspace clustering (Elhamifar and Vidal 2009). Subspace (K=10), (K=50) and (best K=13)
means using subspace number 10, 50 and 13 respectively, where “K=13” has best performance

Table 4 Testing time
comparison on the Subway
dataset

SPF Platform CPU Memory

Zhao et al. (2011) 2 MATLAB 7.0 2.6 GHz 2.0 GB

Cong et al. (2011) 4.6 – 2.6 GHz 2.0 GB

Ours (online) 0.00102 MATLAB 2012 3.4 GHz 8.0 GB

Ours (batch) 0.00098 MATLAB 2012 3.4 GHz 8.0 GB

“SPF” stands for seconds per frame
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Fig. 11 Frame-level comparison of the ROC curves on UCSD Ped1
dataset.Method abbreviation:MPPCA+SF (Mahadevan et al. 2010), SF
(Mahadevan et al. 2010), MDT (Mahadevan et al. 2010), Sparse (Cong
et al. 2011), Saligrama (Saligrama and Chen 2012a), Antic (Antic and
Ommer 2011), Adam (Adam et al. 2008) Subspace: replacing our com-
bination learning by subspace clustering (Elhamifar and Vidal 2009)

et al. (2010), if more than 40% of truly anomalous pix-
els are detected, the corresponding frame is considered as
being correctly detected. We show the ROC curve in Fig. 12.
Besides all methods that are compared in Mahadevan et al.
(2010), we also include the performance of subspace clus-
tering (Elhamifar and Vidal 2009). Our method achieves
satisfactory performance.

We demonstrate the influence of parameters s and λ in
Tables 5 and 6 . Reasonable ranges of λ and s are 0.01–0.05
and 0.05p 0.2p (p is the feature dimension) respectively.

6.5.2 EER and EDR

Different parameters could affect detection rates. Following
Mahadevan et al. (2010), we obtain these rates when the false
positive number equals to the missing value. They are called
equal error rate (EER) and equal detected rate (EDR). We
compute the area under the ROC curve (AUC). The running
time is shown in Table 7. The detection time per frame and
the configuration of Mahadevan et al. (2010), Cong et al.
(2011) and Antic and Ommer (2011) are obtained from the
original papers. We report EER, ERD and AUC in the pixel-
level comparison (Table 8) and calculate EERandAUC in the
frame-level (Table 9). Our results are also with high quality
regarding these measures (Fig. 13).

6.5.3 Pixel-Wise Performance Improvement

Unlike image parsing (Antic and Ommer 2011) that employs
pixel-wise processing, our approach works in the patch level.
As shown in Fig. 14b, the regional result is sufficient to cap-
ture abnormal events. To finally improve our performance
under the pixel-level metric, we apply a simple foreground
bilateral filtering on the regional abnormality map. It is to
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Fig. 12 Pixel-level comparison of the ROC curves in UCSD Ped1
dataset.Method abbreviation:MPPCA+SF (Mahadevan et al. 2010), SF
(Mahadevan et al. 2010), MDT (Mahadevan et al. 2010), Sparse (Cong
et al. 2011), Saligrama (Saligrama and Chen 2012a), Antic (Antic and
Ommer 2011), Li (Li et al. 2014), Adam (Adam et al. 2008), Subspace:
replacing our combinations learning by subspace clustering (Elhamifar
and Vidal 2009)

Table 5 ACU performance on Ped1 dataset (frame-level) with respect
to different s

s 0.01p 0.05p 0.1p 0.2p 0.5p 0.8p

AUC 39.6% 84.7% 91.8% 87.1% 56.3% 35.5%

p is the feature dimension. We fix λ = 0.04

Table 6 ACU performance on Ped1 dataset (frame-level) with respect
to different λ, we fix s = 0.1 × p, where p is the feature dimension

λ 0.001 0.005 0.01 0.05 0.1 0.5

AUC 45.1% 74.1% 88.3% 92.0% 87.5% 30.7%

joint filter the regional map (Fig. 14b) with the foreground
map (c). The result is shown in (d), produced almost instantly.

We show our decent pixel-level result in the last column
of Table 8.We estimate the backgroundmap by simple frame
average. The foreground bilateral filtering takes 0.007 second
per frame in average, achieving 130–150 FPS.

6.6 UCSD Ped2 Data (Mahadevan et al. 2010)

UCSD Ped2 dataset was proposed in Mahadevan et al.
(2010). The dataset contains 16 training video clips and 12
testing clips. The frame resolution is 360 × 240. We imple-
ment our method following previous setting. Quantities of
the area under ROC curves (AUCs) are reported in Table 10.
Our results are reasonable.

We also compare the results in the pixel level. We list
AUC of pixel-level detection in Table 11. Our method out-
performs others except for that of Antic and Ommer (2011).
Our method can process 978.45 frames per second in com-

parison to 0.2–0.1 frames per second using the method of
Antic and Ommer (2011).

6.7 UMNData [1]

There are three scenes in the UMN dataset [1], which con-
tains crowds. People running suddenly produces an abnormal
event. Our goal is to detect these abnormal frames. There are
7739 frames with resolution 240×320. Following Saligrama
and Chen (2012b), we use the first 600 normal frames of each
scene as training data and others for testing. Our method can
also achieve state-of-the-art results, as shown in Table 12. A
few representative frames are shown in Fig. 13. We achieve
981.75 FPS detection speed. UMN dataset is a small scale
dataset. So we do not use our online solver.

6.8 LongVideo: NYPD Dataset

We carry out experiment on a long video sequence to test
the efficiency of our online solver. The video we use is a
7.5-h street surveillance one1 with busy crowd and vehi-
cles. A new abnormal event dataset is built on this video.
We name it NYPD Dataset. Unlike subway dataset with
many static scenes, 96.6% of the frames in the NYPD dataset
are dynamic and moving ones. In addition, the illumination
and environment-lighting change drastically from 4:32pm to
12:00am (from daytime to night) (Fig. 15).

This dataset slightly changes the normal patterns over time
due to the crowd. In online procedure, we set ρ = elog(2)/ς

to compute the active score in Eq. (18), where ς is the frame
number in 10 min. It sets the weight of current samples 2
times larger than the one 10 min ago. In this dataset, we
have ρ = 1.000046210879727. We set the threshold as ε =
0.001. Thus normal patterns of 2 h ago are removed. We also
experimented with ρ = 1 that assumes stationary patterns.

The dataset includes 853,200 frameswith resolution 240×
320.We select a 7-h normal video to form a training dataset –
representative frames are demonstrated inFig. 16. The testing
data contain 20 min clip including 31 abnormal events—
examples are shown in Fig. 17. In the testing data, abnormal
and normal events take 6 and 14 min respectively. We eval-
uate the performance in region-level where bounding boxes
of abnormal events are manually labeled.

The evaluation scheme is the same as that for the Avenue
dataset. The accuracy comparison between our online and
batch solvers is given in Table 13. We also compare our
results with sparse subspace clustering. Unfortunately, the
standard process is slow. Using the publicly available code
does not output result after 70 days on a 24-core server.
Therefore, we resort to a faster version of scalable sparse

1 http://www.youtube.com/watch?v=sTvpzN4CldE
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Table 7 Testing time
comparison on the UCSD Ped1
dataset

SPF Platform CPU Memory

Mahadevan et al. (2010) 25 – 3.0 GHz 2.0 GB

Cong et al. (2011) 3.8 – 2.6 GHz 2.0GB

Antic and Ommer (2011) 5–10 MATLAB – –

Ours (online) 0.00098 MATLAB 3.4 GHz 8.0 GB

Ours (batch) 0.00096 MATLAB 3.4 GHz 8.0 GB

SPF stands for seconds per frame

Table 8 Comparison of pixel-level EDR and AUC curves on the UCSD Ped1 dataset

Adam
et al.
(2008)

Antic
and
Ommer
(2011)

Elhamifar
and
Vidal
(2009)

Kaltsa
et al.
(2015)

Li et al.
(2014)

Cheng
et al.
(2015)

Xu et al.
(2015)

Ours
(online)

Ours
(batch)

Ours +
Xu et al.
(2015)

Ours
(FBLF)

Ours +
Xu et al.
(2015)
(FBLF)

EDR (%) 24 68 39.3 79 74.3 63.4 62.1 54.5 59.1 66.5 75.7 76.5

AUC (%) 13.3 76 43.2 80 82.7 72.2 67.2 58.8 63.8 75.5 82.1 84.1

“FBLF” means our abnormality maps are processed with foreground bilateral filter. “Ours + Xu et al. (2015)” means replacing 3D gradient features
by autoencoding feature proposed in Xu et al. (2015)

Table 9 Comparison of frame-level EER and AUC curves on the UCSD Ped1 dataset

MDT
(Mahade-
van et al.
2010)

Sparse
(Cong
et al.
2011)

Saligrama
(Saligrama
and Chen
(2012a)

Antic
(Antic and
Ommer
2011)

Xu et al.
(2015)

SC
(K=10)

SC
(K=50)

SC
(K=14)

Ours
(online)

Ours
(batch)

Ours +
Xu et al.
(2015)

EER (%) 25 19 16 18 16 29.6 30.2 27.4 19 15 14

AUC (%) 81.8 86 92.7 91 92.1 68.4 67.9 70.2 89.1 91.8 93.8

“Ours + Xu et al. (2015)” means replacing 3D gradient features by autoencoding feature proposed in Xu et al. (2015). SC (K=10), (K=50) and
(K=14) means subspace clustering method (Elhamifar and Vidal 2009) using subspace number 10, 50 and 14 respectively, where “K=14” has
best performance

subspace clustering (Peng et al. 2013). We report our accu-
racy under overlap thresholds {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}
in Table 13. It demonstrates that our birth-and-death online
solver helps handle the dynamic scene problem. The testing
phase using our sparse combination learning reaches 1073.8
FPS.

6.9 Training Cost

To demonstrate the training efficiency of our online solver,
the training cost is reported and discussed. Training time
with respect to different data scales on each dataset is plot-
ted in Fig. 15. The curves manifest that our online solver
is much faster than the batch one. It is also observable that
running time of the online solver grows linearly as the data
scale increases, while the batch solver grows polynomially.
Another phenomenon is that larger data actually work bet-
ter by taking advantage under the online solver. For the
medium size data, such as the Subway and Avenue datasets,
online solver can still accelerate the process for 10–15 times.
Notably, for large scale data, such as the day-level NYDP

dataset, our online solver can achieve about 80 times speedup.
It is certain that when the video is dozens or hundreds of
hours long, the online solver will play an irreplaceable role
and demonstrate its overwhelming advantage for construct-
ing a practical system (Table 14).

6.10 Comparison with Other Sparsity Approaches

We compare testing efficiency with several other �1-norm
minimization solvers surveyed in Yang et al. (2010). The
methods we compare include gradient projection (GP)
(Nowak et al. 2007) , homotopy (Osborne et al. 2000), ite.
shrinkage- thresholding (IST) (Combettes and Wajs 2005),
proximal gradient (PG) (Beck and Teboulle 2009), and aug-
mented Lagrange multiplier (ALM) (Yang and Zhang 2011).
The source codes are from Yang et al. (2010). Results in
Table 15 show that our testing speed is much faster than �1-
norm minimization. It is because our method only need to
compute scores of matrix multiplication.

These sparsity methods also perform less well than ours
in terms of distinguishing between normal and abnormal pat-
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Fig. 13 Detected abnormal regionsmarked in blue (Color figure online)

terns. They select basis combination from a large basis pool
where the reconstructed structure could deviate from input
due to the enormous freedom. To verify it, we compare the
average precision (AP) under different recalls in Table 15.

Our approach is effective since the number of basis for com-
bination is adaptive to information complexity.

6.11 Combining Autoencoding Feature

Our main contribution is a novel combination learning
framework that is general to different video features. To
demonstrate its generality, we use an autoencoding video
feature proposed by Xu et al. (2015) to replace 3D gradient
feature. Experiments in Tables 8, 9 and 11 show that the use
of autoencoding feature advance the performance.

6.12 Separate Testing Cost Analysis

Our testing includes two main steps: feature extraction (3D
cube gradient computing and PCA) and combination testing
using Algorithm 2. Other minor procedures contain frame
resizing, matrix reshape and so on. We list the average run-
ning time spent for each step to process one frame in the three
datasets in Table 14.

6.13 Online Updating with Abnormality

We evaluate the robustness of our online solver toward
abnormal samples. During testing, online update is pre-
formed where learned combination from the training phase
is taken as initialization. We use the UCSD Peb1 and sub-
NYPD datasets where sub-NYPD is a 3-h non-dynamic

Fig. 14 Pixel-level process—the car is abnormal in this case. a Input frame, b Our regional detection map, c Foreground map, d Foreground
bilateral filtering result

Table 10 The AUCs of different methods in the UCSD Ped2 dataset in frame level

Adam
et al.
(2008)

Mehran
et al.
(2009)

MPPCA
(Mahade-
van et al.
2010)

MDT
(Mahade-
van et al.
2010)

Antic
and
Ommer
(2011)

Xu et al.
(2015)

SC
(K=10)

SC
(K=50)

SC
(K=11)

Ours
(online)

Ours
(batch)

Ours +
Xu et al.
(2015)

AUC 0.63 0.63 0.77 0.85 0.92 0.91 0.80 0.78 0.81 0.87 0.93 0.95

Subspace: replacing our combination learning by subspace clustering (Elhamifar and Vidal 2009) “Ours + Xu et al. (2015)” means replacing 3D
gradient features by autoencoding feature proposed in Xu et al. (2015). SC (K=10), (K=50) and ( K=11) means subspace clustering method
(Elhamifar and Vidal 2009) using subspace number 10, 50 and 11 respectively, where “K=11” has best performance

123



1008 International Journal of Computer Vision (2019) 127:993–1011

Table 11 AUCs of different methods in the UCSD Ped2 dataset in pixel level

Adam
et al.
(2008)

Mehran
et al.
(2009)

MPPCA
(Mahade-
van et al.
2010)

MDT
(Mahade-
van et al.
2010)

Antic and
Ommer
(2011)

SC
(K=10)

SC
(K=50)

SC
(K=13)

Kaltsa
et al.
(2015)

Li et al.
(2014)

Ours
(online)

(batch) (FBLF)

AUC 0.18 0.14 0.21 0.44 0.76 0.59 0.58 0.60 0.75 0.78 0.64 0.67 0.80

Subspace: replacing our combination learning by subspace clustering (Elhamifar and Vidal 2009). “FBLF” means our abnormality maps are
processed with foreground bilateral filter. C (K=10), (K=50) and ( K=13) means subspace clustering method (Elhamifar and Vidal 2009) using
subspace number 10, 50 and 11 respectively, where “K=11” has best performance

Table 12 AUC results in the UMN dataset

Methods AUC (%)

Chaotic invariants (Wu et al. 2010) 99

Social force (Mehran et al. 2009) 96

Optical flow (Mehran et al. 2009) 84

Sparse (Cong et al. 2011) 97.5

Local aggregate (Saligrama and Chen 2012b) 98.5

Ours 98

sequence from NYPD. Results are shown in Table 16. It
reveals that our batch solver is still better than the online ones
since it captures globally normal patterns. Among the online
solvers, testing with online update works slightly better. It
is because extra normal patterns during testing contribute

more information. In the meantime, abnormal events are rare
among collected data and impose minor influence on combi-
nation update. We do not recommend the scheme of “testing
with update” when running time is critical as it largely slows
down computation.

7 Conclusion

We have presented an abnormal event detection method via
sparse combination learning. This approach learns sparse
combinations, which increase the testing speed hundreds to
thousands of times without compromising effectiveness. An
online solver is also provided to handle large-scale data. Our
method achieves state-of-the-art results in several datasets. It
is related to but differs largely from traditional subspace clus-
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Fig. 15 Training cost as the data scale grows. a Avenue dataset, b subway entrance dataset, c subway exit dataset, dUSCD (Ped1) dataset, e USCD
(Ped2) dataset, f NYDP dataset
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Fig. 16 Representative normal frames

Fig. 17 Representative abnormal frames. a Steel bars fall, b a man pushes a big box, c a strange vehicle passes, and d three motorcycles pass

Table 13 Detection accuracy
(in %) on the NYDP dataset

υ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Mean

Our (online, non-evolution) 47.4 43.4 40.6 36.1 32.5 27.9 16.7 34.9

Our (online,evolution) 50.2 46.7 43.5 39.4 35.2 30.3 18.1 37.62

Our (batch) 44.9 41.5 38.7 34.5 30.1 24.2 14.3 32.6

Subspaces 36.7 31.2 29.5 25.3 22.0 19.7 8.6 24.7

“evolution”(“non-evolution”) indicates dynamic patterns (stationary patterns) over time

Table 14 Average running time of processing one frame in each step on the four datasets

Feature extraction (ms) Combinations testing (ms) Others (ms) All (ms) FPS

Avenue 0.6513 0.2641 0.1211 1.0365 964.8

UCSD Ped1 0.6126 0.2301 0.1132 0.9559 1046.1

Subway 0.6721 0.2256 0.0871 0.9848 1015.4

NYPD 0.6225 0.2047 0.1041 0.9313 1073.8

“ms” is short for millisecond

Table 15 Comparison with �1-norm sparsity solvers

GP (Nowak
et al. 2007)

homotopy
(Osborne
et al. 2000)

IST (Com-
bettes and
Wajs 2005)

PG (Beck
and
Teboulle
2009)

ALM (Yang
and Zhang
2011)

Ours

Testing time (ms) 432.11 317.34 109.08 227.24 631.73 0.62

Average precision (AP) 0.89 0.89 0.90 0.88 0.87 0.94

The first row contains the average testing time for single regions. The second row is for average precision under different recalls. The dataset is the
UCSD Ped1 Dataset. The number of dictionary atoms is 512. “ms” is short for millisecond. All experiments are conducted on the same PC with a
2.2GHz CPU and 8G RAM
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Table 16 AUC (Area under
precision-recall curve) on
sub-NYPD and USCD Ped1
datasets

Batch solver (%) Online solver (%) Online solver
(testing with updating) (%)

sub-NYPD 35.5 32.4 33.1

USCD Ped1 91.8 89.1 89.6

“Online Solver (testing with update)” means we preform online update during testing

tering.We believe it will greatly benefitmany applications, as
well as fundamental understanding of video structures from
a new perspective.
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