International Journal of Computer Vision (2019) 127:282-301
https://doi.org/10.1007/s11263-018-1122-2

@ CrossMark

Learning to Segment Moving Objects

Pavel Tokmakov'® - Cordelia Schmid? - Karteek Alahari?

Received: 2 December 2017 / Accepted: 10 September 2018 / Published online: 22 September 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

We study the problem of segmenting moving objects in unconstrained videos. Given a video, the task is to segment all
the objects that exhibit independent motion in at least one frame. We formulate this as a learning problem and design our
framework with three cues: (1) independent object motion between a pair of frames, which complements object recognition,
(2) object appearance, which helps to correct errors in motion estimation, and (3) temporal consistency, which imposes
additional constraints on the segmentation. The framework is a two-stream neural network with an explicit memory module.
The two streams encode appearance and motion cues in a video sequence respectively, while the memory module captures
the evolution of objects over time, exploiting the temporal consistency. The motion stream is a convolutional neural network
trained on synthetic videos to segment independently moving objects in the optical flow field. The module to build a “visual
memory” in video, i.e., a joint representation of all the video frames, is realized with a convolutional recurrent unit learned
from a small number of training video sequences. For every pixel in a frame of a test video, our approach assigns an object
or background label based on the learned spatio-temporal features as well as the “visual memory” specific to the video. We
evaluate our method extensively on three benchmarks, DAVIS, Freiburg-Berkeley motion segmentation dataset and SegTrack.
In addition, we provide an extensive ablation study to investigate both the choice of the training data and the influence of each
component in the proposed framework.

Keywords Motion segmentation - Video object segmentation - Visual memory

1 Introduction

Video object segmentation is the task of extracting spatio-
temporal regions that correspond to object(s) moving in at
least one frame in the video sequence. The top-performing
methods for this problem (Faktor and Irani 2014; Papa-
zoglou and Ferrari 2013) continue to rely on hand-crafted
features and do not leverage a learned video representa-
tion, despite the impressive results achieved by convolutional

Communicated by M. Hebert.

B Pavel Tokmakov
ptokmako @andrew.cmu.edu

Cordelia Schmid
cordelia.schmid @inria.fr

Karteek Alahari

karteek.alahari @inria.fr

Robotics Institute at Carnegie Mellon University, Pittsburgh,
PA 15213, USA

2 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK,
38000 Grenoble, France

@ Springer

neural networks (CNNs) for other vision tasks, e.g., image
segmentation (Pinheiro et al. 2016), object detection (Ren
et al. 2015). Very recently, there have been attempts to build
CNNs for video object segmentation (Caelles et al. 2017; Jain
et al. 2017; Khoreva et al. 2017). Yet, they suffer from var-
ious drawbacks. For example, (Caelles et al. 2017; Khoreva
et al. 2017) rely on a manually-segmented subset of frames
(typically the first frame of the video sequence) to guide the
segmentation pipeline. The approach of Jain et al. (2017)
does not require manual annotations, but remains frame-
based, failing to exploit temporal consistency in videos.
Furthermore, none of these methods has a mechanism to
memorize relevant features of objects in a scene. In this paper,
we propose a novel framework to address these issues.

We present a two-stream network with an explicit memory
module for video object segmentation (see Fig. 1). The mem-
ory module is a convolutional gated recurrent unit (GRU)
that encodes the spatio-temporal evolution of object(s) in
the input video sequence. This spatio-temporal represen-
tation used in the memory module is extracted from two
streams—the appearance stream which describes static fea-


http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-018-1122-2&domain=pdf
http://orcid.org/0000-0003-2043-6242

International Journal of Computer Vision (2019) 127:282-301 283
Appearance network m
h
Conv . i
: - (%)~ -
Motion w'
128 64
¢ - network

Optical flow

Fig. 1 Overview of our segmentation approach. Each video frame is
processed by the appearance (green) and the motion (yellow) networks
to produce an intermediate two-stream representation. The ConvGRU

Fig. 2 a, b Two example frames from a sequence in the FlyingTh-
ings3D dataset (Mayer et al. 2016). The camera is in motion in this
scene, along with four independently moving objects. ¢ Ground-truth

tures of objects in the video, and the temporal stream which
captures the independent object motion.

The temporal stream separates independent object and
camera motion with our motion pattern network (MP-Net),
a trainable model, which takes optical flow as input and out-
puts a per-pixel score for moving objects. Inspired by fully
convolutional networks (FCNs) (Dosovitskiy et al. 2015;
Long et al. 2015; Ronneberger et al. 2015), we propose a
related encoder-decoder style architecture to accomplish this
two-label classification task. The network is trained from
scratch with synthetic data (Mayer et al. 2016). Pixel-level
ground-truth labels for training are generated automatically
(see Fig.2d), and denote whether each pixel has moved in
the scene. The input to the network is flow fields, such as
the one shown in Fig.2c. More details of the network, and
the training procedure are provided in Sect.4.2. With this
training, our model learns to distinguish motion patterns of
objects and background.

The appearance stream is the DeepLab network (Chen
etal. 2015, 2017), pretrained on the PASCAL VOC segmen-
tation dataset, and it operates on individual video frames.
With the spatial and temporal CNN features, we train the
convolutional GRU component of the framework to learn a
visual memory representation of object(s) in the scene. Given
a frame ¢ from the video sequence as input, the network
extracts its spatio-temporal features and: (i) computes the
segmentation using the memory representation aggregated
from all frames previously seen in the video, (ii) updates
the memory unit with features from 7. The segmentation is
improved further by processing the video in the forward and

module combines this with the learned visual memory to compute the
final segmentation result. The width (w’) and height (h’) of the feature
map and the output are w/8 and h/8 respectively (Color figure online)

(c) @

optical flow of a, which illustrates motion of both foreground objects
and background with respect to the next frame (b). (d) Ground-truth
segmentation of moving objects in this scene

the backward directions in the memory unit, with our bidi-
rectional convolutional GRU.

The contributions of the paper are three-fold. First we
demonstrate that independent motion between a pair of
frames can be learned, and emphasize the utility of syn-
thetic data for this task (see Sect. 4). Second, we present an
approach for moving object segmentation in unconstrained
videos that does not require any manually-annotated frames
in the input video (see Sect. 3). Our network architecture
incorporates a memory unit to capture the evolution of
object(s) in the scene (see Sect. 5). To our knowledge, this is
the first recurrent network based approach for the video seg-
mentation task. It helps address challenging scenarios where
the motion patterns of the object change over time; for exam-
ple, when an object in motion stops to move, abruptly, and
then moves again, with potentially a different motion pattern.
Finally, we present state-of-the-art results on the DAVIS (Per-
azzietal. 2016) and Freiburg—Berkeley motion segmentation
(FBMS) (Ochs et al. 2014) benchmark datasets, and competi-
tive results on SegTrack-v2 (Lietal. 2013) (see Sect. 6.5). We
also provide an extensive experimental analysis, with abla-
tion studies to investigate the influence of all the components
of our framework in Sect. 6.4.1.

Preliminary versions of this work have been published at
CVPR (Tokmakov et al. 2017a) and ICCV (Tokmakov et al.
2017b). Here, we extend these previous publications by: (i)
significantly improving the performance of MP-Net with bet-
ter optical flow estimation and finetuning the network on real
videos (see Sects. 6.3.2 and 6.3.3), (ii) replacing the DeepLab
v1 (Chen et al. 2015) appearance stream in our moving object

@ Springer



284

International Journal of Computer Vision (2019) 127:282-301

segmentation framework with the ResNet-based DeepLab
v2 (Chen et al. 2017) and showing that this indeed improves
the performance (see Sect. 6.4.1), (iii) studying the effect of
motion estimation quality on the overall segmentation results
(see Sect. 6.4.2), and (iv) providing an analysis of the learned
spatio-temporal representation (see Sect. 6.6).

Source code and trained models are available online at
http://thoth.inrialpes.fr/research/1vo.

2 Related Work

Our work is related to: motion and scene flow estimation,
video object segmentation, and recurrent neural networks.
We will review the most relevant work on these topics in the
remainder of this section.

Motion Estimation Early attempts for estimating motion
have focused on geometry-based approaches, such as (Torr
1998), where the potential set of motions is identified with
RANSAC. Recent methods have relied on other cues to esti-
mate moving object regions. For example, Papazoglou and
Ferrari (2013) first extract motion boundaries by measuring
changes in the optical flow field, and use it to estimate mov-
ing regions. They also refine this initial estimate iteratively
with appearance features. This approach produces interesting
results, but is limited by its heuristic initialization. We show
that incorporating our learning-based motion estimation into
it improves the results significantly (see Table 7).

Narayana et al. (2013) use optical flow orientations in a
probabilistic model to assign per-pixel labels that are consis-
tent with their respective real-world motion. This approach
assumes pure translational camera motion, and is prone to
errors when the object and camera motions are consistent
with each other. Bideau and Learned-Miller (2016) presented
an alternative to this, where initial estimates of foreground
and background motion models are updated over time, with
optical flow orientations of the new frames. This initializa-
tion is also heuristic, and lacks a robust learning framework.
While we also set out with the goal of finding objects in
motion, our solution to this problem is a novel learning-based
method. Scene flow, i.e., 3D motion field in a scene (Vedula
et al. 2005), is another form of motion estimation, but is com-
puted with additional information, such as disparity values
computed from stereo images (Huguet and Devernay 2007,
Wedel et al. 2011), or estimated 3D scene models (Vogel
et al. 2015). None of these methods follows a CNN-based
learning approach, in contrast to our method.

In concurrent work, Jain et al. (2017) presented a deep net-
work to segment independent motion in the flow field. While
their approach is related to ours, they use frame pairs from
real videos, in contrast to synthetic data in our case. Conse-
quently, their work relies on estimated optical flow in train-

@ Springer

ing. Since obtaining accurate ground truth moving object seg-
mentation labels is prohibitively expensive for a large dataset,
they rely on an automatic, heuristic-based label estimation
approach, which results in noisy annotations. We explore the
pros and cons of using this realistic but noisy dataset for
training our motion segmentation model in Sect.6.3.3.

Video Object Segmentation The task of segmenting objects
in video is to associate pixels belonging to a class spatio-
temporally; in other words, extract segments that respect
object boundaries, as well as associate object pixels tem-
porally whenever they appear in the video. This can be
accomplished by propagating manual segment labels in one
or more frames to the rest of the video sequence (Badri-
narayanan et al. 2010). This class of methods is not applicable
to our scenario, where no manual segmentation is available.

Our approach to solve the segmentation problem does
not require any manually-marked regions. Several meth-
ods in this paradigm generate an over-segmentation of
videos (Brendel and Todorovic 2009; Grundmann et al. 2010;
Khorevaetal. 2015; Lezamaetal. 2011; Xu and Corso 2016).
While this can be a useful intermediate step for some recog-
nition tasks in video, it has no notion of objects. Indeed, most
of the extracted segments in this case do not directly corre-
spond to objects, making it non-trivial to obtain video object
segmentation from this intermediate result. An alternative to
this is clustering pixels spatio-temporally based on motion
features computed along individual point trajectories (Brox
and Malik 2010; Fragkiadaki et al. 2012; Ochs and Brox
2012), which produces more coherent regions. They, how-
ever, assume homogeneity of motion over the entire object,
which is invalid for non-rigid objects.

Another class of segmentation methods casts the problem
as a foreground-background classification task (Faktor and
Irani 2014; Lee et al. 2011; Papazoglou and Ferrari 2013;
Taylor et al. 2015; Wang et al. 2015; Zhang et al. 2013).
Some of these first estimate a region (Papazoglou and Fer-
rari 2013; Wang et al. 2015) or regions (Lee et al. 2011;
Zhang et al. 2013), which potentially correspond(s) to the
foreground object, and then learn foreground/background
appearance models. The learned models are then integrated
with other cues, e.g., saliency maps (Wang et al. 2015), pair-
wise constraints (Papazoglou and Ferrari 2013; Zhang et al.
2013), object shape estimates (Lee et al. 2011), to compute
the final object segmentation. Alternatives to this framework
have used: (i) long-range interactions between distinct parts
of the video to overcome noisy initializations in low-quality
videos (Faktor and Irani 2014), and (ii) occluder/occluded
relations to obtain a layered segmentation (Taylor etal. 2015).
While our proposed method is similar in spirit to this class of
approaches, in terms of formulating segmentation as a classi-
fication problem, we differ from previous work significantly.
We propose an integrated approach to learn appearance and


http://thoth.inrialpes.fr/research/lvo

International Journal of Computer Vision (2019) 127:282-301

285

motion features, and update them with a memory module, in
contrast to estimating an initial region heuristically and then
propagating it over time. Our robust model outperforms all
the top ones from this class (Faktor and Irani 2014; Lee et al.
2011; Papazoglou and Ferrari 2013; Taylor et al. 2015; Wang
et al. 2015), as shown in Sect. 6.5.

Very recently, CNN-based methods for video object seg-
mentation were proposed (Caelles et al. 2017; Jain et al.
2017; Khoreva et al. 2017). Starting with CNNs pretrained
for image segmentation, two of these methods (Caelles et al.
2017; Khoreva et al. 2017) find objects in video by finetun-
ing on the first frame in the sequence. Note that this setup,
referred to as semi-supervised segmentation, is very different
from the more challenging unsupervised case we address in
this paper, where no manually-annotated frames are available
for the test video. Furthermore, these two CNN architectures
are primarily developed for images, and do not model tem-
poral information in video. We, on the other hand, propose
a recurrent network specifically for the video segmentation
task. Jain et al. (2017) augment their motion segmentation
network with an appearance model and learn the parameters
of alayer to combine the predictions of the two. Their model
does not feature a memory module, and also remains frame-
based. Thus, it can not exploit the temporal consistency in
video. We outperform (Jainetal. 2017) on DAVIS and FBMS.

Recurrent Neural Networks (RNNs) RNN (Hopfield 1982;
Rumelhart et al. 1986) is a popular model for tasks defined
on sequential data. Its main component is an internal state
that allows to accumulate information over time. The internal
state in classical RNNs is updated with a weighted combina-
tion of the input and the previous state, where the weights are
learned from training data for the task at hand. Long short-
term memory (LSTM) (Hochreiter and Schmidhuber 1997)
and GRU (Cho et al. 2014) architectures are improved vari-
ants of RNN, which partially mitigate the issue of vanishing
gradients (Hochreiter 1998; Pascanu et al. 2013). They intro-
duce gates with learnable parameters, to update the internal
state selectively, and can propagate gradients further through
time.

Recurrent models, originally used for text and speech
recognition, e.g., (Graves et al. 2013; Mikolov et al. 2010),
are becoming increasingly popular for visual data. Initial
work on vision tasks, such as image captioning (Donahue
et al. 2015), future frame prediction (Srivastava et al. 2015)
and action recognition (Ng et al. 2015), has represented the
internal state of the recurrent models as a 1D vector — without
encoding any spatial information. In Byeon et al. (2015) the
authors used LSTMs for scene labeling, applying the recur-
rence in the spatial dimension. A separate instance of LSTM
was created in Fayyaz et al. (2016) for semantic video seg-
mentation, for each location in an image, to combine spatial
and temporal information. A better way of handling spatial

information in recurrent models has been proposed with the
introduction of ConvLSTM (Chen et al. 2016; Finn et al.
2016; Patraucean et al. 2016; Shi et al. 2015) and Con-
vGRU (Ballas et al. 2016). In these convolutional recurrent
models the state and the gates are 3D tensors and the weight
vectors are replaced by 2D convolutions. These models have
only recently been applied to vision tasks, such as video
frame prediction (Finn et al. 2016; Patraucean et al. 2016;
Shi et al. 2015), 3D image segmentation (Chen et al. 2016),
action recognition and video captioning (Ballas et al. 2016).
None of these works addresses the problem of unsupervised
video segmentation.

In this paper, we employ a visual memory module based
on a convolutional GRU (ConvGRU), and show that it is
an effective way to encode the spatio-temporal evolution of
objects in video for segmentation. Further, to fully bene-
fit from all the frames in a video sequence, we apply the
recurrent model bidirectionally (Graves et al. 2013; Graves
and Schmidhuber 2005), i.e., apply two identical model
instances on the sequence in forward and backward direc-
tions, and combine the predictions for each frame. This
makes our memory module a bidirectional convolutional
recurrent model.

3 Learning to Segment Moving Objects in
Videos

We start by describing the overall architecture of our
video object segmentation framework. It takes video frames
together with their estimated optical flow as input, and out-
puts binary segmentations of moving objects, as shown in
Fig. 1. We target the most general form of this task, wherein
objects are to be segmented in the entire video if they move
in at least one frame. The proposed model is comprised of
three key components: appearance and motion networks, and
a visual memory module described below.

Appearance Network The purpose of the appearance stream
is to produce a high-level encoding of a frame that will later
aid the visual memory module in forming a representation of
the moving object. It takes a w x h RGB frame as input and
produces a 128 x w/8 x h/8 feature representation (shown
in green in Fig. 1), which encodes the semantic content of
the scene. As a baseline for this stream we use the large-
FOV, VGG16-based version of the DeepLab network (Chen
et al. 2015). This network’s architecture is based on dilated
convolutions (Chen et al. 2015), which preserve a relatively
high spatial resolution of features, and also incorporate con-
text information in each pixel’s representation. We employ
a network (Chen et al. 2015) trained on the PASCAL VOC
dataset (Everingham et al. 2012) for the task of semantic
segmentation. This results in features that can distinguish
objects from each other and also the background—a cru-

@ Springer



286

International Journal of Computer Vision (2019) 127:282-301

cial aspect for video object segmentation. In particular, we
extract features from the fc6 layer of the network, which cap-
ture high-level semantic information. We also experiment
(in Sect. 6.4.1) with upgrading the appearance stream to
DeepLab-v2 (Chen et al. 2017), a more recent version of
the model, where the VGG16 architecture is replaced with
ResNet101, and the network is additionally pretrained on the
COCO semantic segmentation dataset (Lin et al. 2014).

CNNs are also used by Caellesetal. (2017), Khoreva et al.
(2017) to encode the frame content in the context of semi-
supervised video segmentation. In contrast to these methods,
we do not finetune the network on the test sequences. More
similar to our work, (Jain et al. 2017) use a two-stream
architecture for unsupervised video segmentation, where one
stream is responsible for motion segmentation and another
for appearance encoding. Our method differs from Jain et al.
(2017), in that we extract a feature encoding of the frame from
the network, that is later used by the ConvGRU to aggregate
a spatio-temporal representation of moving objects in the
video. In contrast, in Jain et al. (2017) the authors train the
appearance stream to output a foreground/background seg-
mentation of a frame that is later combined with the motion
segmentation.

Motion Network For the temporal stream we employ a CNN
pretrained for the motion segmentation task. It is trained to
estimate independently moving objects (i.e., irrespective of
camera motion) based on optical flow computed from a pair
of frames as input; see Sect. 4 for details. This stream (shown
in yellow in Fig. 1) produces a w/4 x h/4 motion predic-
tion output, where each value represents the likelihood of
the corresponding pixel being in motion. Its output is fur-
ther downsampled by a factor 2 (in w and h) to match the
dimension of the appearance stream output.

The intuition behind using two streams is to benefit from
their complementarity for building a strong representation of
objects that evolves over time. For example, both appear-
ance and motion networks are equally effective when an
object is moving in the scene, but as soon as it becomes
stationary, the motion network can not estimate the object,

h/2 \
|conv ) conv )
L w/2
64

128

h/2 2 7N h/4 A N\ h/8
conv ‘\"P,’ < conv/{up) €=
| - 14 — n/8
w/2 w/4 it
256

256
Fig. 3 Our motion pattern network: MP-Net. The blue arrows in the

encoder part (a) denote convolutional layers, together with ReLU and
max-pooling layers. The red arrows in the decoder part (b) are con-

@ Springer

unlike the appearance network. We leverage this comple-
mentary nature, as done by two-stream networks for other
vision tasks (Simonyan and Zisserman 2014). Note that our
approach is not specific to the particular networks described
above, but is in fact a general framework for video object
segmentation. As shown is the Sect.6.4.1, its components
can easily replaced with other networks, providing scope for
future improvement.

Memory Module The third component, i.e., a visual memory
module, takes the concatenation of appearance and motion
stream outputs as its input. It refines the initial estimates
from these two networks, and also memorizes the appearance
and location of objects in motion to segment them in frames
where: (i) they are static, or (ii) motion prediction fails. The
output of this ConvGRU memory module is a 64 x w/8 x
h/8 feature map obtained by combining the two-stream input
with the internal state of the memory module, as described in
detail in Sect. 5. We further improve the model by processing
the video bidirectionally; see Sect. 5.1. The output from the
ConvGRU module is processed by a 1 x 1 convolutional
layer and a softmax nonlinearity to produce the final pairwise
segmentation result.

4 Motion Pattern Network

Our MP-Net takes the optical flow field corresponding to
two consecutive frames of a video sequence as input, and
produces per-pixel motion labels. We treat each video as a
sequence of frame pairs, and compute the labels indepen-
dently for each pair. As shown in Fig. 3, the network com-
prises several “encoding” (convolutional and max-pooling)
and “decoding” (upsampling and convolutional) layers. The
motion labels are produced by the last layer of the network,
which are then rescaled to the original image resolution (see
Sect. 4.1). We train the network on synthetic data—a scenario
where ground-truth motion labels can be acquired easily (see
Sect. 4.2). We also experiment with finetuning our MP-Net

%)

(a)

h/8 conv ) h/16 conv) h/32
/8 ' wi16 ' Bk
w/8 256 o 256
conv]| [/;n[;\ - h/16 conv] IQ\
wiie N
256

volutional layers with ReLU, ‘up’ denotes 2 x 2 upsampling of the
output of the previous unit. The unit shown in green represents bilinear
interpolation of the output of the last decoder unit (Color figure online)

256

(b)

256



International Journal of Computer Vision (2019) 127:282-301

287

on real videos (see Sect. 6.3.3). For a detailed discussion of
motion patterns our approach detects refer to Sect. 4.3.

4.1 Network Architecture

Our encoder-decoder style network is motivated by the goal
of segmenting diverse motion patterns in flow fields, which
requires a large receptive field as well as an output at the
original image resolution. A large receptive field is critical
to incorporate context into the model. For example, when
the spatial region of support (for performing convolution)
provided by a small receptive field falls entirely within an
object with non-zero flow values, it is impossible to deter-
mine whether it is due to object or camera motion. On the
other hand, a larger receptive field will include regions cor-
responding to the object as well as background, providing
sufficient context to determine what is moving in the scene.
The second requirement of output generated at the original
image resolution is to capture fine details of objects, e.g.,
when only a part of the object is moving. Our network satis-
fies these two requirements with: (i) the encoder part learning
features with receptive fields of increasing sizes, and (ii) the
decoder part upsampling the intermediate layer outputs to
finally predict labels at the full resolution. This approach
is inspired by recent advances in semantic segmentation,
where similar requirements are encountered (Ronneberger
et al. 2015).

Figure 3 illustrates our network architecture. Optical flow
field input is processed by the encoding part of the network
(denoted by (a) in the figure) to generate a coarse represen-
tation that is a 32 x 32 downsampled version of the input.
Each 3D block here represents a feature map produced by a
set of layers. In the encoding part, each feature map is a result
of applying convolutions, followed by a ReLU non-linearity
layer, and then a 2 x 2 max-pooling layer. The coarse rep-
resentation learned by the final set of operations in this part,
i.e., the 32 x 32 downsampled version, is gradually upsam-
pled by the decoder part ((b) in the figure). In each decoder
step, we first upsample the output of the previous step by
2 x 2, and concatenate it with the corresponding intermedi-
ate encoded representation, before max-pooling (illustrated
with black arrows pointing down in the figure). This upscaled
feature map is then processed with two convolutional lay-
ers, followed by non-linearities, to produce input for the next
(higher-resolution) decoding step. The final decoder step pro-
duces a motion label map at half the original resolution. We
perform a bilinear interpolation on this result to estimate
labels at the original resolution.

4.2 Training with Synthetic Data

We need a large number of fully-labelled examples to train
a convolutional network such as the one we propose. In

our case, this data corresponds to videos of several types
of objects, captured under different conditions (e.g., mov-
ing or still camera), with their respective moving object
annotations. No large dataset of real-world scenes satisfy-
ing these requirements is currently available, predominantly
due to the cost of generating ground-truth annotations and
flow for every frame. We adopt the popular approach of
using synthetic datasets, followed in other work (Dosovit-
skiy et al. 2015; Mayer et al. 2016). Specifically, we use the
FlyingThings3D dataset (Mayer et al. 2016) containing 2250
video sequences of several objects in motion, with ground-
truth optical flow. We augment this dataset with ground-truth
moving object labels, which are accurately estimated using
the disparity values and camera parameters available in the
dataset, as outlined in Sect. 6.1. See Fig. 2d for an illustration.

We train the network with mini-batch SGD under several
settings. The one trained with ground-truth optical flow as
input shows the best performance. This is analyzed in detail
in Sect.6.3.1. Note that, while we use ground-truth flow for
training and evaluating the network on synthetic datasets,
all our results on real-world test data use only the estimated
optical flow. After convergence of the training procedure, we
obtain a learned model for motion patterns.

Our approach capitalizes on the recent success of CNNs
for pixel-level labeling tasks, such as semantic image seg-
mentation, which learn feature representations at multiple
scales in the RGB space. The key to their top performance
is the ability to capture local patterns in images. Various
types of object and camera motions also produce consis-
tent local patterns in the flow field, which our model is
able to learn to recognize. This gives us a clear advantage
over other pixel-level motion estimation techniques (Bideau
and Learned-Miller 2016; Narayana et al. 2013) that can
not detect local patterns. Motion boundary based heuristics
used in Papazoglou and Ferrari (2013) can be seen as one
particular type of pattern, representing independent object
motion. Our model is able to learn many such patterns, which
greatly improves the quality and robustness of motion esti-
mation.

4.3 Detecting Motion Patterns

We apply our trained model on synthetic (FlyingThings3D)
as well as real-world (DAVIS, FBMS, SegTrack-v2) test data.
Figure 4 shows sample predictions of our model on the Fly-
ingThings3D test set with ground-truth optical flow as input.
Examples in the first two rows show that our model accu-
rately identifies fine details in objects: thin structures even
when they move subtlely, such as the neck of the guitar in the
top-right corner in the first row (see the subtle motion in the
optical flow field (b)), fine structures like leaves in the vase,
and the guitar’s headstock in the second row. Furthermore,
our method successfully handles objects exhibiting highly

@ Springer



288

International Journal of Computer Vision (2019) 127:282-301

(W
"‘"
»a

| ’
d
(b) (©)

Fig.4 Eachrow shows: a example frame from a sequence in FlyingTh-
ings3D, b ground-truth optical flow of (a), which illustrates motion of
both foreground objects and background, with respect to the next frame,
and (c) our estimate of moving objects in this scene with ground-truth
optical flow as input

varying motions in the second example. The third row shows
a limiting case, where the receptive field of our network falls
entirely within the interior of a large object, as the moving
object dominates. Traditional approaches, such as RANSAC,
do not work in this case either.

In order to detect motion patterns in real-world videos, we
first compute optical flow with popular methods (Ilg et al.
2017; Revaud et al. 2015; Sundaram et al. 2010). With this
flow as input to the network, we estimate a motion label map,
as shown in the examples in Fig. 5c. Although the prediction
of our frame-pair feedforward model is accurate in several
regions in the frame [(c) in the figure], we are faced with two
challenges, which were not observed in the synthetic train-
ing set. The first one is motion of stuff (Adelson 2001) in
a scene, e.g., patterns on the water due to the kiteboarder’s

motion (first row in the figure), which is irrelevant for moving
object segmentation. The second one is significant errors in
optical flow, e.g., in front of the pram [(b) in the bottom row in
the figure]. Furthermore, this motion segmentation approach
is purely frame-based, thus unable to exploit temporal con-
sistency in a video, and does not segment object in frames
where they stop moving. In our previous work (Tokmakov
et al. 2017a) we introduced post-processing steps to handle
some of these problems. In particular, we incorporated an
objectness map computed with object proposals (Pinheiro
et al. 2016) to suppress motion corresponding to stuff, as
well as false positives due to errors in flow estimation. This
post-processing allowed the method to achieve competitive
results, but it remained frame-level. The video object seg-
mentation framework presented in this paper addresses all
these issues, as shown experimentally in Sect. 6.5.

5 ConvGRU Visual Memory Module

The key component of the ConvGRU module is the state
matrix /2, which encodes the visual memory. For frame 7 in
the video sequence, ConvGRU uses the two-stream repre-
sentation x; and the previous state /#;_1 to compute the new
state /1,. The dynamics of this computation are guided by an
update gate z;, a forget gate r;. The states and the gates are
3D tensors, and can characterize spatio-temporal patterns in
the video, effectively memorizing which objects move, and
where they move to. These components are computed with
convolutional operators and nonlinearities as follows.

2t = 0 (X; % Wyg + My * wpg + by), (1)
re =0 (X % Wyy + hy_1 % Wy + by), (2

(c)

Fig.5 Sample results on the DAVIS dataset for MP-Net. Each row shows: a video frame, b optical flow estimated with LDOF (Brox and Malik

2011), ¢ output of our MP-Net with LDOF flow as input

@ Springer



International Journal of Computer Vision (2019) 127:282-301

289

il‘, : candidate state

O L

Tléft
w

r; ® hy.p: modulated state

X :input

129 o

Fig. 6 Illustration of ConvGRU with details for the candidate hidden
state module, where 4, is computed with two convolutional operations
and a tanh nonlinearity

ﬁl = tanh(x; *k wxh~ + It @ h[_] k whh' + bil)’ (3)
hy = (1 _Zt)Ght—l'i_Zl@ﬁts “4)

where © denotes element-wise multiplication, * represents
a convolutional operation, o is the sigmoid function, w’s are
learned transformations, and b’s are bias terms.

The new state /1, in (4) is a weighted combination of the
previous state /;_ | and the candidate memory ;. The update
gate z; determines how much of this memory is incorporated
into the new state. If z; is close to zero, the memory repre-
sented by /, is ignored. The reset gate r, controls the influence
of the previous state /;_1 on the candidate memory h +1n (3),
i.e., how much of the previous state is let through into the
candidate memory. If r; is close to zero, the unit forgets its
previously computed state /;_1.

The gates and the candidate memory are computed with
convolutional operations over x; and /;_1 shown in Egs. (1-
3). We illustrate the computation of the candidate memory
state fz, in Fig.6. The state at + — 1, h;_1, is first multi-
plied (element-wise) with the reset gate ;. This modulated
state representation and the input x; are then convolved with
learned transformations, w i and w i respectively, summed
together with a bias term b;, and passed through a tanh
nonlinearity. In other words, the visual memory represen-
tation of a pixel is determined not only by the input and
the previous state at that pixel, but also its local neighbor-
hood. Increasing the size of the convolutional kernels allows
the model to handle spatio-temporal patterns with larger
motion.

Fig. 7 Tllustration of the bidirectional processing with our ConvGRU
module

The update and reset gates, z; and r;, are computed in an
analogous fashion using a sigmoid function instead of tanh.
Our ConvGRU applies a total of six convolutional opera-
tions at each time step. All the operations detailed here are
fully differentiable, and thus the parameters of the convolu-
tions (w’s and b’s) can be learned in an end-to-end fashion
with back propagation through time (Werbos 1990). In sum-
mary, the model learns to combine appearance features of
the current frame with the memorized video representation
to refine motion predictions, or even fully restore them from
the previous observations in case a moving object becomes
stationary.

5.1 Bidirectional Processing

Consider an example where an object is stationary at the
beginning of a video sequence, and starts to move in the
latter frames. Our approach described so far, which pro-
cesses video frames sequentially (in the forward direction),
starting with the first frame can not segment the object in
the initial frames. This is due to the lack of prior memory
representation of the object in the first frame. We improve
our framework with a bidirectional processing step, inspired
by the application of recurrent models bidirectionally in the
speech domain (Graves et al. 2013; Graves and Schmidhuber
2005).

The bidirectional variant of our ConvGRU is illustrated
in Fig.7. It is composed of two ConvGRU instances with
identical learned weights, which are run in parallel. The first
one processes frames in the forward direction, starting with
the first frame (shown at the bottom in the figure). The second
instance process frames in the backward direction, starting
with the last video frame (shown at the top in the figure). The
activations from these two directions are concatenated at each
time step, as shown in the figure, to produce a 128 xw/8xh/8
output. It is then passed through a 3 x 3 convolutional layer

@ Springer



290

International Journal of Computer Vision (2019) 127:282-301

to finally produce a 64 x w/8 x h/8 output for each frame.
Pixel-wise segmentation from this activation is the result of
the last 1 x 1 convolutional layer and softmax nonlinearity,
as in the unidirectional case.

Bidirectional ConvGRU is used both in training and in
testing, allowing the model to learn to aggregate informa-
tion over the entire video. In addition to handling cases
where objects move in the latter frames, it improves the
ability of the model to correct motion prediction errors. As
discussed in the experimental evaluation, bidirectional Con-
vGRU improves segmentation performance by nearly 3% on
the DAVIS dataset (see Table 4). The influence of bidirec-
tional processing is more prominent on the FBMS dataset,
where objects can be static in the beginning of a video, with
5% improvement over the unidirectional variant.

5.2 Training

We train our visual memory module with the back propaga-
tion through time algorithm (Werbos 1990), which unrolls the
recurrent network for n time steps and keeps all the intermedi-
ate activations to compute the gradients. Thus, our ConvGRU
model, which has six internal convolutional layers, trained on
avideo sequence of length n, is equivalent to a 6n layer CNN
for the unidirectional variant, or 12n for the bidirectional
model at training time. This memory requirement makes it
infeasible to train the whole model, including appearance and
motion streams, end-to-end. We resort to using pretrained
versions of the appearance and motion networks, and train
the ConvGRU.

In contrast to our motion segmentation model, which is
learned on synthetic videos, we use the training split of the
DAVIS dataset (Perazzi et al. 2016) for learning the Con-
vGRU weights. Despite being an order of magnitude smaller,
DAVIS consists of realistic videos, which turns out to be cru-
cial for effective use of appearance stream to correct motion
estimation errors (see Sect. 6.4.1). Since objects move in all
the frames in DAVIS, it biases the memory module towards
the presence of an uninterrupted motion stream. This results
in the ConvGRU learned from this data failing, when an
object stops to move in a test sequence. We augment the
training data to simulate such stop-and-go scenarios to learn a
more robust model for realistic videos. To this end, we create
additional sequences where we duplicate the last frame five
times, i.e., we create a part of the video in which the object is
static. This setting allows ConvGRU to learn how to segment
objects even if they are static, i.e., it explicitly memorize the
moving object in the initial part of the sequence, and then
segments it in frames where the motion stops. We also aug-
ment the training data by duplicating the first five frames to
simulates scenarios where the object is static in the beginning
of a sequence.

@ Springer

6 Experiments
6.1 Datasets and Evaluation

We use five datasets in the experimental analysis: FT3D and
DAVIS for training and test, FusionSeg only for training, and
FBMS and SegTrack-v2 only for test.

FlyingThings3D (FT3D) We train our motion segmentation
network with the synthetic FlyingThings3D dataset (Mayer
etal. 2016). It contains videos of various objects flying along
randomized trajectories, in randomly constructed scenes. The
video sequences are generated with complex camera motion,
which is also randomized. FT3D comprises 2700 videos,
each containing 10 stereo frames. The dataset is split into
training and test sets, with 2250 and 450 videos respectively.
Ground-truth optical flow, disparity, intrinsic and extrinsic
camera parameters, and object instance segmentation masks
are provided for all the videos. No annotation is directly
available to distinguish moving objects from stationary ones,
which is required to train our network. We extract this from
the data provided as follows. With the given camera parame-
ters and the stereo image pair, we first compute the 3D coor-
dinates of all the pixels in a video frame ¢. Using ground-truth
flow between frames 7 and 741 to find a pair of corresponding
pixels, we retrieve their respective 3D scene points. Now, if
the pixel has not undergone any independent motion between
these two frames, the scene coordinates will be identical (up
to small rounding errors). We have made these labels pub-
licly available on our project website (http://thoth.inrialpes.
fr/research/mpnet). Performance on the test set is measured
as the standard intersection over union score between the
predicted segmentation and the ground-truth masks.

DAVIS We use the densely annotated video segmentation
dataset (Perazzi et al. 2016) for evaluation as well as for train-
ing our visual memory module. DAVIS contains 50 full HD
videos, featuring diverse types of object and camera motion.
Itincludes challenging examples with occlusion, motion blur
and appearance changes. Accurate pixel-level annotations
are provided for the moving object in all the video frames.
A single object is annotated in each video, even if there are
multiple moving objects in the scene. Following the 30/20
training/validation split provided with the dataset, we train
the visual memory module on the 30 sequences, and test on
the 20 validation videos. Note that our motion segmentation
model is also evaluated separately on the entire trainval set,
as it is trained exclusively on FT3D. We evaluate on DAVIS
with the three measures used in Perazzi et al. (2016), namely
intersection over union for region similarity, F-measure for
contour accuracy, and temporal stability for measuring the
smoothness of segmentation over time. We follow the proto-
col in Perazzi et al. (2016) and use images downsampled by
a factor of two.


http://thoth.inrialpes.fr/research/mpnet
http://thoth.inrialpes.fr/research/mpnet

International Journal of Computer Vision (2019) 127:282-301

291

FusionSeg Jain et al. (2017) recently introduced a dataset
containing 84929 pairs of frames extracted from the
ImageNet-Video dataset (Russakovsky et al. 2015). The
frames are annotated with an automatic segmentation method,
which combines a foreground-background appearance-based
model with ground truth bounding box annotations available
in ImageNet-Video. Annotations obtained in this way may be
inaccurate, but are useful for analyzing the impact of learning
the motion network on these realistic examples, in contrast
to using synthetic examples; see Sect. 6.3.3. We will refer to
this dataset as FusionSeg in the rest of the paper.

FBMS The Freiburg—Berkeley motion segmentation dataset
(Ochsetal. 2014) is composed of 59 videos with ground truth
annotations in a subset of frames. In contrast to DAVIS, it has
multiple moving objects in several videos with instance-level
annotations. Also, objects may move only in a fraction of the
frames, but are annotated in frames where they do not exhibit
independent motion. The dataset is split into training and test
set. Following the standard protocol on this dataset (Keuper
et al. 2015), we do not train on any of these sequences, and
evaluate separately on both splits with precision, recall and
F-measure scores. We also convert instance-level annotation
to binary ones by merging all the foreground labels into a
single category, as in Taylor et al. (2015).

SegTrack-v2 It contains 14 videos with instance-level mov-
ing object annotations in all the frames. We convert these
annotations into a binary form for evaluation and use inter-
section over union as the performance measure. Note that
some videos in this dataset are of very low resolution,
which appears to have a negative effect on the performance
of deep learning-based methods trained on high resolution
images.

6.2 Implementation Details

Appearance Stream We experiment with two main vari-
ants of the appearance stream: one based on DeepLab-v1
architecture, and one based on DeepLab-v2. DeepLab-v1 is
a modified VGG model (Simonyan and Zisserman 2015),
where the last two max pooling layers are replaced with
dilated convolutions to increase the output resolution, and
the fully-connected layers are converted to convolutional lay-
ers. The model is then trained end-to-end for the task of
semantic segmentation on PASCAL VOC with pixel-wise
cross-entropy loss. In DeepLab-v2 the VGG architecture is
replaced with ResNet-101 (He et al. 2016), resulting in a sig-
nificant improvement in performance. For the experiments
using DeepLab-v1, we extract features from the fc6 layer of
the network, which has a dilation of 12. This approach can-
not be followed for DeepLab-v2 however, since dilation is
applied to fc8, the prediction layer, in this improved model.
Thus, extracting fc6 or fc7 features of the ResNet-based

model would result in a decreased field of view compared
to the baseline vl model. Moreover, there are four inde-
pendent prediction layers in v2 with dilations 6, 12, 18 and
24, whose outputs are averaged. To make the feature repre-
sentation derived from the two architectures compatible, we
introduce four new penultimate convolutional layers to the
DeepLab-v2 architecture. These layers have kernel size 3,
feature dimension 512 and dilations corresponding to those in
the prediction layers of DeepLab-v2. The maximum response
over these four feature maps is then passed to a single predic-
tion layer. We finetune this model on PASCAL VOC 2012 for
semantic segmentation. The features after the max operation
are used as the appearance representation in our final model,
and correspond to an improved version of fc6 features from
DeepLab-vl1. This representation is further passed through
two 1 x 1 convolutional layers, interleaved with fanh nonlin-
earities, to reduce the dimension to 128 for both architectures.

Training MP-Net We use mini-batch SGD with a batch size
of 13 images—the maximum possible due to GPU memory
constraints. The network is trained from scratch with learning
rate set to 0.003, momentum to 0.9, and weight decay to
0.005. Training is done for 27 epochs, and the learning rate
and weight decay are decreased by a factor of 0.1 after every
9 epochs. We downsample the original frames of the FT3D
training set by a factor 2, and perform data augmentation by
random cropping and mirroring. Batch normalization (Ioffe
and Szegedy 2015) is applied to all the convolutional layers
of the network.

Training Visual Memory Module We minimize the binary
cross-entropy loss using back-propagation through time and
RMSProp (Tieleman and Hinton 2012) with a learning rate
of 107#. The learning rate is gradually decreased after every
epoch. Weight decay is set to 0.005. Initialization of all the
convolutional layers, except for those inside the ConvGRU,
is done with the standard xavier method (Glorot and Bengio
2010). We clip the gradients to the [— 50, 50] range before
each parameter update, to avoid numerical issues (Graves
2013). We form batches of size 14 by randomly selecting a
video, and a subset of 14 consecutive frames in it. Random
cropping and flipping of the sequences is also performed
for data augmentation. Our full model uses 7 x 7 convolu-
tions in all the ConvGRU operations. The weights of the two
1 x 1 convolutional (dimensionality reduction) layers in the
appearance network and the final 1 x 1 convolutional layer
following the memory module are learned jointly with the
memory module. The model is trained for 30000 iterations
and the proportion of batches with simulated motion discon-
tinuities (see Sect.5.2) is set to 20%.

Other Details We perform zero-mean normalization of the
flow field vectors, similar to Simonyan and Zisserman (2014).
When using flow angle and magnitude together (which we
refer to as flow angle field), we scale the magnitude com-

@ Springer



292

International Journal of Computer Vision (2019) 127:282-301

Table 1 Comparing the influence of different input modalities on the
FlyingThings3D (FT3D) test set and DAVIS. Performance is shown as
mean intersection over union scores

# dec. Trained on FT3D with ... FT3D DAVIS

1 RGB single frame 68.1 12.7
RGB pair 69.1 16.6
GT flow 74.5 443
GT angle field 73.1 46.6
RGB + GT angle field 74.8 39.6
LDOF angle field 63.2 38.1

4 GT angle field 85.9 524

#dec. refers to the number of decoder units in our MP-Net. Ground-truth
flow is used for evaluation on FT3D and LDOF flow for DAVIS

ponent, to bring the two channels to the same range. Our
final model uses a fully-connected CRF (Krihenbiihl and
Koltun 2011) to refine boundaries in a post-processing step.
The parameters of this CRF are set to values used for a
related pixel-level segmentation task (Chen et al. 2015).
Many sequences in FBMS are several hundred frames long
and do not fit into GPU memory during evaluation. We apply
our method in a sliding window fashion in such cases, with
a window of 130 frames and a step size of 50. Our model is
implemented in the Torch framework.

6.3 Motion Pattern Network

We first analyze the different design choices in our MP-Net,
and then study the influence of training data and optical flow
representation on the motion prediction performance.

6.3.1 Influence of Input Modalities

We analyze the influence of different input modalities, such
as RGB data (single frame and image pair), optical flow field
(ground truth and estimated one) directly as flow vectors,
i.e., flow in x and y axes, or as angle field (flow vector angle
concatenated with flow magnitude), and a combination of
RGB data and flow, on training MP-Net. These results are
presented on the FT3D test set and also on DAVIS, to study
how well the observations on synthetic videos transfer to the
real-world ones, in Table 1. For computational reasons we
train and test with different modalities on a smaller version
of our MP-Net, with one decoder unit instead of four. Then
we pick the best modality to train and test the full, deeper
version of the network.

From Table 1, the performance on DAVIS is lower than
on FT3D. This is expected as there is a domain change from
synthetic to real data, and that we use ground truth optical
flow as input for FT3D test data, but estimated flow (Brox and
Malik 2011; Sundaram et al. 2010) for DAVIS. As a base-
line, we train on single RGB frames (‘RGB single frame’

@ Springer

in the table). Clearly, no motion patterns can be learned in
this case, but the network performs reasonably on FT3D test
(68.1), as it learns to correlate object appearance with its
motion. This intuition is confirmed by the fact that ‘RGB
single frame’ fails on DAVIS (12.7), where the appear-
ance of objects and background is significantly different
from FT3D. MP-Net trained on ‘RGB pair’, i.e., RGB data
of two consecutive frames concatenated, performs slightly
better on both FT3D (69.1) and DAVIS (16.6), suggesting
that it captures some motion-like information, but contin-
ues to rely on appearance, as it does not transfer well to
DAVIS.

Training on ground-truth flow vectors corresponding to
the image pair (‘GT flow’) improves the performance on
FT3D by 5.4% and on DAVIS significantly (27.7%). This
shows that MP-Net learned on flow from synthetic examples
can be transferred to real-world videos. We then experiment
with flow angle as part of the input. As discussed in Narayana
etal. (2013), flow orientations are independent of depth from
the camera, unlike flow vectors, when the camera is under-
going only translational motion. Using the ground truth flow
angle field (concatenation of flow angles and magnitudes)
as input (‘GT angle field’), we note a slight decrease in
IoU score on FT3D (1.4%), where strong camera rotations
are abundant, but in real examples, such motion is usu-
ally mild. Hence, ‘GT angle field” improves IoU on DAVIS
by 2.3%. We use angle field representation in all further
experiments.

Using a concatenated flow and RGB representation (‘RGB
+ GT angle field’) performs better on FT3D (by 1.7%), but
is poorer by 7% on DAVIS, re-confirming our observation
that appearance features are not consistent between the two
datasets. Finally, training on computed flow (Brox and Malik
2011) (‘LDOF angle field’) leads to significant drop on both
the datasets: 9.9% on FT3D (with GT flow for testing) and
8.5% on DAVIS, showing the importance of high-quality
training data for learning accurate models. The full version
of our MP-Net, with 4 decoder units, improves the IoU by
12.8% on FT3D and 5.8% on DAVIS over its shallower one-
unit equivalent.

Notice that the performance of our full model on FT3D is
excellent, with the remaining errors mostly due to inherently
ambiguous cases like objects moving close to the camera (see
third row in Fig.4), or very strong object/camera motion.
On DAVIS, the results are considerably lower despite less
challenging motion. To investigate the extent to which this
is due to errors in flow, we study the effect of flow quality in
the following section.

6.3.2 Effect of the Flow Quality

We evaluate the performance of MP-Net using two recent
flow estimation methods, EpicFlow (Revaud et al. 2015) and



International Journal of Computer Vision (2019) 127:282-301

293

Table 2 Performance of the best MP-Net variant (4 decoder units
trained on GT angle field) with different flow inputs (LDOF, EpicFlow,
FlowNet 2.0) on FT3D and DAVIS

Flow in test FT3D DAVIS
LDOF (Sundaram et al. 2010) 58.7 52.4
EpicFlow (Revaud et al. 2015) 52.5 56.9
FlowNet 2.0 (Ilg et al. 2017) 66.3 62.6

FlowNet 2.0 (Ilg et al. 2017), and LDOF (Brox and Malik
2011; Sundaram et al. 2010), a more classical approach, on
the FT3D test and DAVIS datasets in Table 2. We observe a
significant drop in performance of 27.2% (from 85.9% to
58.7%) on FT3D when using LDOF, compared to evalu-
ation with the ground truth in Table 1. This confirms the
impact of optical flow quality and suggests that improve-
ments in flow estimation can increase the performance of our
method on real-world videos, where no ground truth flow is
available.

We experimentally demonstrate this improvement, by uti-
lizing state-of-the-art flow estimation methods, instead of
LDOF. EpicFlow, which leverages motion contours, pro-
duces more accurate object boundaries, and improves over
MP-Net using LDOF by 4.5% on DAVIS. On FT3D though it
leads to a 6.2% decrease in performance. We observe that this
is due to EpicFlow, which does produce more accurate object
boundaries, but also smooths out small objects and objects
with tiny motions. This smoothing appears to be beneficial on
real videos, but degrades the performance on synthetic FT3D
videos. FlowNet 2.0, which is a CNN-based method trained
on a mixture of synthetic and real videos to estimate optical
flow from a pair of frames, further improves the performance
on DAVIS by 5.7%. It also achieves better results on FT3D,
with a 7.6% improvement over LDOF. The remaining gap of
19.6% between the ground truth flow and FlowNet 2.0 perfor-
mance on FT3D shows the potential for future improvement
of flow estimation methods.

6.3.3 Training on Real Videos

We also experiment with training our MP-Net on FusionSeg
and DAVIS, in order to explore the value real videos can
bring in learning a motion segmentation model, compared to
training exclusively on synthetic videos. On one hand, real
videos contain motion patterns that have similar statistics to
those encountered in the testing phase. On the other hand,
no ground truth flow is available, so a noisy flow estimation
has to be used, which was shown to be suboptimal when
training on FT3D (see Sect. 6.3.1). For FusionSeg the labels
are, furthermore, not ground truth, but are instead obtained
automatically and contain a significant amount of noise, as
discussed in Sect. 6.1.

Table 3 Performance of the best MP-Net variant trained with different
datasets on FT3D test and DAVIS validation sets

Trained on FT3D DAVIS
FT3D 85.9 62.6
FusionSeg 40.8 60.4
FT3D + FusionSeg 43.0 63.9
DAVIS 34.0 62.3
FT3D + DAVIS 45.7 66.7
FT3D + FusionSeg + DAVIS 40.8 68.6

FlowNet 2.0 is used for flow estimation on DAVIS both in training and
in testing in all these experiments

All the models in this experiment are trained on flow
extracted with the state-of-the-art FlowNet 2.0, in order to
minimize the influence of errors in flow. FlowNet 2.0 is also
used for evaluation on the DAVIS validation set, whereas
ground truth flow is used for FT3D test set. As shown in
Table 3, the model trained on FusionSeg is 2.2% below the
one trained on synthetic data in the case of DAVIS. On FT3D,
its performance drops by 45.1%. This shows that the synthetic
dataset contains a lot more challenging motions than those
typically encountered in real videos, and although a model
learned on synthetic data can generalize to real data, the con-
verse does not hold. Learning the model only on real videos
also does not bring any improvement on DAVIS, due to errors
in flow estimation and labels in FusionSeg outweighing the
potential benefits. We then finetune the FT3D-trained model
on FusionSeg to leverage the benefits of the two domains.
This leads to a notable improvement on both datasets, e.g.,
3.5% on DAVIS compared to the model trained on Fusion-
Seg alone. The results on synthetic FT3D videos, despite the
improvement over the FusionSeg-trained model, remain low
however, showing the significant difference between the two
domains.

To further explore the use of real videos, we train our
motion estimation model on the DAVIS training set. This
dataset contains only 2079 frames, compared to 84929 in
FusionSeg, but they are manually annotated, removing one
source of errors due to incorrect labels from training. The per-
formance on DAVIS increases by 1.9% with this, compared
to training on FusionSeg. On FT3D, though, IoU decreases
by 6.8%, because the variety of motions in DAVIS is even
smaller than that seen in FusionSeg. Combining the syn-
thetic and real datasets, i.e., training on FT3D and finetuning
on DAVIS, improves the performance on both FT3D and
DAVIS. Finetuning the FT3D-trained model with FusionSeg
and then DAVIS training data further improves the perfor-
mance on the DAVIS validation set, but results in a drop in
the case of FT3D, as the model is even more different from
synthetic data.

@ Springer



294

International Journal of Computer Vision (2019) 127:282-301

6.4 Video Object Segmentation Framework
6.4.1 Ablation Study

Table 4 demonstrates the influence of different components of
our approach on the DAVIS validation set. We use the model
with DeepLab-v1 appearance stream, ConvGRU memory
module, bi-directional processing, motion network trained
on FT3D+GT-flow and LDOF used for flow estimation on
DAVIS as a baseline. We learn all the models on the train-
ing set of DAVIS. First, we study the role of the appearance
stream. As a baseline, we remove it completely (“no” in “App
stream” in the table), i.e., the output of the motion stream is
the only input to our visual memory module. In this setting,
the memory module lacks sufficient information to produce
accurate segmentations, which results in an 26.6% drop in
performance compared to the method where the appearance
stream with fc6 features is used (“Ours” in the table). We
then provide raw RGB frames, concatenated with the motion
prediction, as input to the ConvGRU. This simplest form of
image representation leads to a 14.8% improvement, com-
pared to the motion only model, showing the importance
of the appearance features. The variant where RGB input
is passed through two convolutional layers, interleaved with
tanh nonlinearities, that are trained jointly with the memory
module (“2-layer CNN”), further improves this. This shows
the potential of learning appearance representation as a part

Table 4 Ablation study on the DAVIS validation set showing variants
of appearance and motion streams and memory module

Aspect Variant Mean IoU
Ours (fc6, ConvGRU, Bidir, DAVIS) 70.1
App stream No 43.5
RGB 58.3
2-layer CNN 60.9
DeepLab fc7 69.8
DeepLab conv5 67.7
DeepLab seg 65.2
DeepLab-v2 72.5
App pretrain ImageNet only 64.1
Motion stream No 59.6
256-dim 63.1
Memory module No 64.1
ConvRNN 68.7
ConvLSTM 68.9
Bidir processing No 67.2
Train data FT3D GT Flow 553
FT3D LDOF Flow 59.6

“Ours” refers to the model using fc6 appearance features together with
a motion stream, and a bidirectional ConvGRU trained on DAVIS

@ Springer

of the video segmentation pipeline. Next, we compare fea-
tures extracted from the fc7 and conv5 layers of the DeepLab
model to those from fc6 used by default in our method. Fea-
tures from fc7 and fc6 show comparable performance, but fc7
ones are more expensive to compute. Conv5 features perform
significantly worse, perhaps due to a smaller field of view.

Inspired by Jain et al. (2017), where a combination of fore-
ground/background segmentation extracted from the appear-
ance stream, and a motion segmentation is used for unsuper-
vised video segmentation, we evaluate a variant “DeepLab
seg”. To this end, we obtain a foreground/background seg-
mentation from the semantic segmentation produced by
DeepLab-v1, and pass it to the ConvGRU, together with the
output from the motion stream. This results in a 4.9% drop
in performance compared to our final model (“Ours” in the
table). While this variant shows the benefits of combining
appearance and motion cues to some extent, it provides much
weaker cues to the visual memory module. The memory mod-
ule no longer captures the appearance of moving objects,
having to rely exclusively on their location in the fore-
ground/background segmentation, which explains the lower
IoU. Finally, we replace the VGG16-based DeepLab archi-
tecture with the ResNet101-based DeepLab-v2, as described
in Sect. 3. This improves the performance over DeepLab-v1
by 2.4%, which is consistent with our previous observations
that better representations directly affect the overall perfor-
mance of the method. We thus use DeepLab-v2 appearance
stream in our final model.

The importance of appearance network pretrained on the
semantic segmentation task is highlighted by the “ImageNet
only” variant in Table 4, where the PASCAL VOC pre-
trained DeepLab segmentation network is replaced with a
network trained on ImageNet classification. Although Ima-
geNet pretraining provides a rich feature representation, it is
less suitable for the video object segmentation task, which is
confirmed by an 6% drop in performance. Surprisingly, the
variant of our approach that discards the motion information
(“no” in “Motion stream”), although being 10.5% below the
baseline, still outperforms many of the state-of-the-art meth-
ods on DAVIS (see Table 6). This variant learns foreground/
background segmentation, which is sufficient for videos with
a single dominant object, but fails in more challenging cases.
We also evaluate using a feature encoding from the last layer
of MP-Net as input to the ConvGRU, instead of the actual
motion segmentation. This variant is shown as “256-dim” in
the table. It can potentially allow the visual memory module
to capture richer motion information. In practice, however, it
performs 7.0% worse than the final model (“Ours” in the
table). We hypothesize that providing higher-dimensional
encoding of motion information leads to overfitting in the
case of small training sets such as DAVIS. Section 6.4.2
presents additional experiments to explore the quality of
motion estimation during the training and testing phases.



International Journal of Computer Vision (2019) 127:282-301

295

Table 5 Influence of motion stream variants, used in training and test
phases on DAVIS. ‘FT3D + LDOF’ corresponds to the segmentation
model with baseline MP-Net (trained on FT3D only), and LDOF used
for flow estimation on DAVIS

Train Test Mean IoU + CRF
FT3D + LDOF FT3D + LDOF 72.5 76.8
FT3D + LDOF FSeg + FNet 72.0 75.3
FSeg + FNet FSeg + FNet 73.3 78.2
FSeg + FNet FT3D + LDOF 70.2 76.2

‘FSeg + FNet’ is the variant with improved MP-Net (finetuned on
FusionSeg), and FlowNet 2.0 used for flow estimation

Next, we evaluate the design choices in the visual memory
module. We replaced the memory module (ConvGRU) with
a stack of six convolutional layers to obtain ‘no memory’
variant of our model (“no” in “Memory module” in Table 4),
but with the same number of parameters. This variant results
in a 6% drop in performance compared to our full model
with ConvGRU on the DAVIS validation set. The perfor-
mance of the ‘no memory’ variant is comparable to 63.3, the
performance of “MP-Net+Obj,” the approach without any
memory (see Table 2 in Tokmakov et al. 2017a). Using a sim-
ple recurrent model (ConvRNN) results in a slight decrease in
performance. Such simpler architectures can be used in case
of amemory vs segmentation quality trade off. The other vari-
ant using ConvLSTM is comparable to ConvRNN, possibly
due to the lack of sufficient training data. Performing unidi-
rectional processing instead of a bidirectional one decreases
the performance by nearly 3% (“no” in “Bidir processing”).

Lastly, we train two variants (“FT3D GT Flow” and
“FT3D LDOF Flow”) on the synthetic FT3D dataset (Mayer
et al. 2016) instead of DAVIS. Both of them show a signifi-
cantly lower performance than our method trained on DAVIS.
This is due to the appearance of synthetic FT3D videos being
very different from the real-world ones. The variant trained
on ground truth flow (GT Flow) is inferior to that trained on
LDOF flow because the motion network (MP-Net) achieves
a high performance on FT3D with ground truth flow, and
thus our visual memory module learns to simply follow the
motion stream output.

6.4.2 Influence of the Motion Network

In Sects. 6.3.2 and 6.3.3 we have demonstrated that the per-
formance of MP-Net can be improved by using more accurate
optical flow estimation methods, and finetuning the network
on FusionSeg and DAVIS. Here we explore the influence
of these improvements in motion estimation on our video
object segmentation framework. In Table 5 we evaluate the
best version of our framework so far (DeepLab-v2 appear-
ance stream, ConvGRU memory module trained on DAVIS,
Bi-directional processing) with baseline and improved ver-

sions of MP-Net. The version denoted as ‘FT3D + LDOF’ in
the table corresponds to the segmentation model with base-
line MP-Net (trained on FT3D only), and LDOF used for flow
estimation on DAVIS, whereas ‘FSeg + FNet’ corresponds to
the model with improved MP-Net (finetuned on FusionSeg)
and FlowNet 2.0 used for flow estimation. Note that the vari-
ant of MP-Net finetuned on FusionSeg and then on DAVIS,
which showed the best results in the Sect.6.3.3, leads to a
drop in performance of our video segmentation framework
when used in training due to overfitting on the small number
of sequences in DAVIS, thus we do not include it in the com-
parison. We independently evaluate the effect of replacing
the baseline MP-Net with the improved one in training and
testing on DAVIS.

The main observation from the results in Table 5 is that
our approach is fairly robust to the motion estimation model
being used. The performance differs by at most 3% here,
whereas the MP-Net variants differ by 11.5%, as seen in
Tables 2 and 3. This shows that the visual memory module
learns to use appearance and temporal consistency cues to
overcome variations in quality of motion estimation.

The performance on the DAVIS validation set is best when
the same motion model is used in the training and the test
phases; see the second and the third rows in Table 5 for a
comparison. This is expected because ConvGRU adapts to
the motion model used in training, and suffers from a domain
shift problem, if this model is replaced during the test phase.
The variant trained and tested with the ‘FSeg + FNet” model
(row 3 in the table), which shows the best performance, with
or without the CRF post-processing is used in the final version
of the model.

6.5 Comparison to the State-of-the-Art

In this section we compare the best version of our method
(DeepLab-v2 appearance stream, ConvGRU memory mod-
ule trained on DAVIS, Bi-directional processing, MP-Net
finetuned on FusionSeg with FlowNet 2.0 used or flow
estimation (FSeg + FNet) and DenseCRF (Krihenbiihl and
Koltun 2011) post-processing) to the state-of-the-art methods
on 3 benchmark datasets: DAVIS, FBMS and SegTrack-v2.

DAVIS Table 6 compares our approach to the state-of-the-art
methods on DAVIS. In addition to comparing our results to
the top-performing unsupervised approaches reported in Per-
azzi et al. (2016), we included the results of recent methods
from the benchmark website:! CUT (Keuper et al. 2015),
FSG (Jain et al. 2017) and ARP (Koh et al. 2017), as well
as the frame-level variant of our method: MP-Net-F (Tok-
makov et al. 2017a). This frame-level approach augments
our motion estimation model with an heuristic-based object-

! http://davischallenge.org/soa_compare.html.

@ Springer


http://davischallenge.org/soa_compare.html

296

International Journal of Computer Vision (2019) 127:282-301

@ Springer

Table 6 Comparison to the state-of-the-art methods on DAVIS with intersection over union (7), F-measure (F), and temporal stability (7)

Ours

ARP (Koh et al.

2017)

FSG (Jain et al.

FST (Papazoglou = MP-Net-F
2017)

CUT (Keuper
et al. 2015)

NLC (Faktor and
Irani 2014)

KEY (Lee MSG (Brox

CVOS

Measure

(Tokmakov et al.

2017a)

and Ferrari 2013)

and Malik
2010)

etal. 2011)

(Taylor

et al. 2015)

70.0 70.7 76.2 78.2

55.8

55.2

49.8 53.3 55.1

48.2

J  Mean

85.0 83.5 91.1 89.1

64.9

57.5

55.8

59.1 61.6

54.0

Recall
Decay

F  Mean

4.1
75.9

7.0
70.6

1.5
65.3

1.4
65.9

0.0

51.1

2.3
55.2

12.6
52.3

2.4
50.8

14.1

10.5

42.7

44.7

79.2 73.8 83.5 84.7

51.6

61.0

51.9

375 60.0

52.6

Recall
Decay

7  Mean

35
20.2

7.9
39.3

1.8
32.8

2.5
56.3

29
34.3

34
26.3

11.4
41.4

5.1
29.1

10.6

11.7
244

252

ness score and uses DenseCRF for postprocessing (boundary
refinement). Our method outperforms ARP (Koh et al. 2017),
the previous state of the art by 2% on the mean IoU measure.
We also observe an 8.2% improvement over MP-Net-F in
mean IoU and 36.1% in temporal stability, which clearly
demonstrates the significance of the visual memory module.

Figure 8 shows qualitative results of our approach, and
the next three top-performing methods on DAVIS: MP-Net-
F (Tokmakov et al. 2017a), FSG (Jain et al. 2017) and
ARP (Koh et al. 2017). In the first row, our method fully seg-
ments the dancer, whereas MP-Net-F and FSG miss various
parts of the person and ARP segments some of the people in
the background. All these approaches use heuristics to com-
bine motion and appearance cues, which become unreliable
in cluttered scenes with many objects. Our approach does not
include any heuristics, which makes it robust to this type of
errors. In the second row, all the methods segment the car, but
only our approach does not leak into other cars in the video,
showing high discriminability. In the next row, our approach
is able to fully segment a complex object, whereas the other
methods either miss parts of it (MP-Net-F and FSG) or seg-
ment background regions as moving (ARP). In the last row,
we illustrate a failure case of our method. The people in the
background move in some of the frames in this example. MP-
Net-F, FSG and our method segment them to varying extents.
ARP focuses on the foreground object, but misses a part of it.

FBMS As shown in Table 7, MP-Net-F (Tokmakov et al.
2017a) is outperformed by most of the methods on this
dataset. Our approach based on visual memory outperforms
MP-Net-F by 21.3% on the test set and by 21.0% on the
training set according to the F-measure. FST (Papazoglou
and Ferrari 2013) based post-processing (“MP-Net-V” in
the table) significantly improves the results of MP-Net-F on
FBMS, but it remains below our approach for all measures.
We compare with ARP (Koh et al. 2017) using masks pro-
vided by the authors on the test set. Our method outperforms
ARP on this set by 12.2% on the F-measure. Overall, our
method shows a significantly better performance than all the
other approaches in terms of precision, recall and F-measure.
This demonstrates that the visual memory module, in com-
bination with a strong appearance representation, handles
complex video segmentation scenarios, where objects move
only in a fraction of the frames.

Figure 9 shows qualitative results of our method and the
two next-best methods on FBMS: MP-Net-V (Tokmakov
etal. 2017a) and CUT (Keuper et al. 2015). MP-Net-V relies
highly on FST’s (Papazoglou and Ferrari 2013) tracking
capabilities, and thus leaks to background in the top three
examples, which is a common failure mode of FST. CUT
misses parts of objects and incorrectly assigns background
regions to the foreground in some cases, whereas our method
demonstrates very high precision. It is also the only approach



International Journal of Computer Vision (2019) 127:282-301

297

Ground truth

FSG [35]

ARP [39] Ours

Fig. 8 Qualitative comparison with the top-performing methods on DAVIS. Left to right: ground truth, results of MP-Net-F (Tokmakov et al.

2017a), FSG (Jain et al. 2017), ARP (Koh et al. 2017), and our method

which is able to correctly segment all three moving objects in
the second example. In the last row we show a failure case of
our method. Although it does segment the three moving cars
in this video, segmentation leaks to the static cars on the right.
Our memory module uses a high-level semantic encoding of
the frames to propagate noisy motion segmentations, which
leads to incorrectly propagating the segmentation from the
moving car to the static ones which are adjacent to it in this
case. CUT also captures the three moving cars in this video,
but leaks to the background. MP-Net-V does not segment
static regions, but misses two of the cars.

SegTrack-v2 The performance of our method on SegTrack
is presented in the Table 8. NLC (Faktor and Irani 2014)
is the top-performing method, followed by FSG (Jain et al.
2017), on this dataset. Note however, that these methods are
both tuned to SegTrack. FSG is trained directly on a subset
of SegTrack sequences, and the parameters of NLC are set
manually for this dataset. In contrast, we use the same model
trained on DAVIS in all the experiments, which is a possible
explanation for a lower performance than NLC and FSG. As
shown recently (Jain et al. 2017; Khoreva et al. 2017), the
low resolution of some of the SegTrack videos poses a signif-
icant challenge for deep learning-based video segmentation
methods. Being trained on datasets like PASCAL VOC or
COCO, which are composed of high-quality images, these
models suffer from the well-known domain shift problem,
when applied to low-resolution videos. Our method, with its
appearance stream trained on VOC, is subject to this issue as
well. Additionally, CRF post-processing decreases the per-

formance of our method on SegTrack; see ‘Ours w/o CRF’
in Table 8 and qualitative comparison in the next paragraph.

A qualitative comparison of our method and the variant
without CRF post-processing (‘Ours w/o CRF”) with NLC is
presented in Fig. 10. In the first row, all the three approaches
are segment the moving cars in the challenging racing scene,
but NLC s less precise than the two variants of our method. In
the second example, the monkey is fully extracted by NLC
only. Our method’s prediction (w/o CRF) is not confident
due to the low resolution of the video. It is thus merged into
the background by CRF refinement. In the last row, none of
the methods captures the group of penguins. Our results are
further diminished by the CRF, due to unreliability of the
initial prediction (w/o CRF).

6.6 ConvGRU Visualization

We present a visualization of the gate activity in our Con-
vGRU unit on two videos from the DAVIS validation set. We
use the unidirectional model with the DeepLab-v1 appear-
ance stream and LDOF optical flow in the following for better
clarity. The reset and update gates of the ConvGRU, r; and
¢ respectively, are 3D matrices of 64 x w/8 x h/8 dimen-
sion. The overall behavior of ConvGRU is determined by the
interplay of these 128 components. We use a selection of the
components of r; and (1 — z,) to interpret the workings of
the gates. Our analysis is shown on two frames which corre-
spond to the middle of the goat and dance-twirl sequences
in (a) and (b), respectively in Fig. 11.

@ Springer



298

International Journal of Computer Vision (2019) 127:282-301

Table 7 Comparison to the state-of-the-art methods on FBMS with precision (P), recall (R), and F-measure (F)

Measure Set KEY (Lee MP-Net-F FST (Papazoglou ARP (Koh  CVOS (Taylor CUT (Keuper MP-Net-V Ours
etal. 2011) (Tokmakov and Ferrari 2013) etal. 2017) et al. 2015) et al. 2015) (Tokmakov et al.
et al. 2017a) 2017a)
P Training 64.9 83.0 71.3 79.2 86.6 69.3 89.9
Test 62.3 84.0 76.3 76.1 83.4 83.1 81.4 93.8
R Training 52.7 54.2 70.6 79.0 80.3 80.8 83.5
Test 56.0 494 63.3 66.9 67.9 71.5 73.9 75.3
F Training 58.2 65.6 71.0 79.3 83.4 74.6 86.6
Test 59.0 62.2 69.2 71.3 74.9 76.8 71.5 83.5

CUT [36]

MP-Net-V [69] Ours

Fig. 9 Qualitative comparison with the top-performing methods on
FBMS. Left to right: results of CUT (Keuper et al. 2015), MP-Net-
Video (Tokmakov et al. 2017a), and our method

Table 8 Comparison to the state-of-the-art methods on SegTrack-v2
with mean IoU

Method Mean IoU
CUT (Keuper et al. 2015) 47.8
FST (Papazoglou and Ferrari 2013) 54.3
FSG (Jain et al. 2017) 61.4
NLC (Faktor and Irani 2014) 67.2
Ours 53.7
Ours w/o CRF 59.1

The outputs of the motion stream alone (left) and the final
segmentation result (right) of the two examples are shown in
the top row in the figure. The five rows below correspond to
one of the 64 dimensions of 7, and (1 — z;), with i denoting
the dimension. These activations are shown as grayscale heat

@ Springer

NLC [18] Ours w/o CRF Ours

Fig. 10 Qualitative comparison of two variants of our method with
the top-performing approach on SegTrack. Left to right: results of
NLC (Faktor and Irani 2014), our method without CRF post-processing,
and our full method

maps. High values for either of the two activations increases
the influence of the previous state of a ConvGRU unit on
the new state matrix computation. If both values are low, the
state in the corresponding locations is rewritten with a new
value; see Egs. (3) and (4).

For i = 8, we observe the update gate being selective
based on the appearance information, i.e., it updates the state
for foreground objects and duplicates it for the background.
Note that motion does not play a role in this case. This can be
seen in the example of stationary people (in the background)
on the right, that are treated as foreground by the update
gate. In the second row, showing responses for i = 18, both
heatmaps are uniformly close to 0.5, which implies that the
new features for this dimension are obtained by combining
the previous state and the input at time step 7.

In the third row for i = 28, the update gate is driven
by motion. It keeps the state for regions that are predicted
as moving, and rewrites it for other regions in the frame.
For the fourth row, where i = 41, r, is uniformly close to
0, whereas (1 — z;) is close to 1. As a result, the input is
effectively ignored and the previous state is duplicated. In



International Journal of Computer Vision (2019) 127:282-301

299

(a) goat, t =23

1=28
1 =18
1 =28
1 =41
1 =63

i
11—z

Tt

Fig. 11 Visualization of the ConvGRU gate activations for two
sequences from the DAVIS validation set. The first row in each example
shows the motion stream output and the final segmentation result. The

the last row showing i = 63, a more complex behavior can
be observed, where the gates rewrite the memory for regions
in object boundaries, and use both the previous state and the
current input for other regions in the frame.

7 Conclusion

This paper introduces a novel approach for video object
segmentation. Our method combines two complementary
sources of information: appearance and motion, with a visual
memory module, realized as a bidirectional convolutional
gated recurrent unit. To separate object motion from cam-
era motion we introduce a CNN-based model, which is
trained using synthetic data to segment independently mov-

(b) dance-twirl, t=19

i
T 11—z

other rows are the reset (r,) and the inverse of the update (1 — z,) gate
activations for the corresponding ith dimension. These activations are
shown as grayscale heat maps, where white denotes a high activation

ing objects in a flow field. The ConvGRU module encodes
spatio-temporal evolution of objects in a video based on
a state-of-the-art appearance representation, and uses this
encoding to improve motion segmentation. The effectiveness
of our approach is validated on three benchmark datasets. We
plan to explore instance-level video object segmentation as
part of future work.

Acknowledgements This work was supported in part by the ERC
advanced Grant ALLEGRO, a Google research award, the Inria-CMU
associate team GAYA, a Facebook and an Intel gift. We gratefully
acknowledge the support of NVIDIA with the donation of GPUs used
for this work. We also thank Yeong Jun Koh for providing segmenta-
tion masks produced by their method (Koh et al. 2017) on the FBMS
dataset, and the associate editor and the anonymous reviewers for their
suggestions.

@ Springer



300

International Journal of Computer Vision (2019) 127:282-301

References

Adelson, E. H. (2001). On seeing stuff: The perception of materials by
humans and machines. In Proceedings of SPIE.

Badrinarayanan, V., Galasso, F., & Cipolla, R. (2010). Label propaga-
tion in video sequences. In CVPR.

Ballas, N., Yao, L., Pal, C., & Courville, A. (2016). Delving deeper
into convolutional networks for learning video representations. In
ICLR.

Bideau, P., & Learned-Miller, E. G. (2016). It’s moving! A probabilistic
model for causal motion segmentation in moving camera videos.
In ECCV.

Brendel, W., & Todorovic, S. (2009). Video object segmentation by
tracking regions. In /ICCV.

Brox, T., & Malik, J. (2010). Object segmentation by long term analysis
of point trajectories. In ECCV.

Brox, T., & Malik, J. (2011). Large displacement optical flow: Descrip-
tor matching in variational motion estimation. PAMI, 33(3),
500-513.

Byeon, W., Breuel, T.M., Raue, F., & Liwicki, M. (2015). Scene labeling
with Istm recurrent neural networks. In CVPR.

Caelles, S., Pont-Tuset, J., Maninis, K. K, Leal-Taixé, L., Cremers, D.,
& Van Gool, L. (2017). One-shot video segmentation. In CVPR.

Chen, J., Yang, L., Zhang, Y., Alber, M., & Chen, D.Z. (2016). Com-
bining fully convolutional and recurrent neural networks for 3d
biomedical image segmentation. In NIPS.

Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A.
L. (2015). Semantic image segmentation with deep convolutional
nets and fully connected CRFs. In /ICLR.

Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L.
(2017). Deeplab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected CRFs. PAMI,
40, 834-848.

Cho, K., van Merrienboer, B., Giilgehre, C., Bougares, F., Schwenk, H.,
& Bengio, Y. (2014). Learning phrase representations using RNN
encoder-decoder for statistical machine translation. In EMNLP.

Donahue, J., Hendricks, L. A., Guadarrama, S., Rohrbach, M., Venu-
gopalan, S., Saenko, K., & Darrell, T. (2015). Long-term recurrent
convolutional networks for visual recognition and description. In
CVPR.

Dosovitskiy, A., Fischer, P, Ilg, E., Hausser, P., Hazirbas, C., Golkov,
V., van der Smagt, P., Cremers, D., & Brox, T. (2015). FlowNet:
Learning optical flow with convolutional networks. In /CCV.

Everingham, M., Van Gool, L., Williams, C. K. 1., Winn, J., & Zis-
serman, A. (2012). The PASCAL visual object classes challenge
(VOC2012) results. http://www.pascal-network.org/challenges/
VOC/voc2012/workshop/index.html.

Faktor, A., & Irani, M. (2014). Video segmentation by non-local con-
sensus voting. In BMVC.

Fayyaz, M., Saffar, M. H., Sabokrou, M., Fathy, M., Klette, R., & Huang,
F. (2016). Stfcn: spatio-temporal fcn for semantic video segmen-
tation. arXiv preprint arXiv:1608.05971.

Finn, C., Goodfellow, I., & Levine, S. (2016). Unsupervised learning
for physical interaction through video prediction. In NIPS.

Fragkiadaki, K., Zhang, G., & Shi, J. (2012). Video segmentation by
tracing discontinuities in a trajectory embedding. In CVPR.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training
deep feedforward neural networks. In AISTATS.

Graves, A. (2013). Generating sequences with recurrent neural net-
works. arXiv preprint arXiv:1308.0850.

Graves, A., Jaitly, N., & Mohamed, A. (2013). Hybrid speech recog-
nition with deep bidirectional LSTM. In Workshop on automatic
speech recognition and understanding.

Graves, A., Mohamed, A., & Hinton, G. (2013). Speech recognition
with deep recurrent neural networks. In /CASSP

@ Springer

Graves, A., & Schmidhuber, J. (2005). Framewise phoneme clas-
sification with bidirectional LSTM and other neural network
architectures. Neural Networks, 18(5), 602-610.

Grundmann, M., Kwatra, V., Han, M., & Essa, 1. (2010). Efficient hier-
archical graph based video segmentation. In CVPR.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Identity mappings in deep
residual networks. In ECCV (pp. 630-645). Springer.

Hochreiter, S. (1998). The vanishing gradient problem during learning
recurrent neural nets and problem solutions. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, 6(2),
107-116.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory.
Neural Computation, 9(8), 1735-1780.

Hopfield, J. J. (1982). Neural networks and physical systems with emer-
gent collective computational abilities. Proceedings of National
Academy of Sciences, 79(8), 2554-2558.

Huguet, F., & Devernay, F. (2007). A variational method for scene flow
estimation from stereo sequences. In ICCV.

Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., & Brox,
T. (2017). Flownet 2.0: Evolution of optical flow estimation with
deep networks. In CVPR.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In /ICML.

Jain, S. D., Xiong, B., & Grauman, K. (2017). Fusionseg: Learning to
combine motion and appearance for fully automatic segmention
of generic objects in videos. In CVPR.

Keuper, M., Andres, B., & Brox, T. (2015). Motion trajectory segmen-
tation via minimum cost multicuts. In /CCV.

Khoreva, A., Galasso, F., Hein, M., & Schiele, B. (2015). Classifier
based graph construction for video segmentation. In CVPR.
Khoreva, A., Perazzi, F., Benenson, R., Schiele, B., & Sorkine-Hornung,
A.(2017). Learning video object segmentation from static images.

In CVPR.

Koh, Y. J., & Kim, C. S. (2017). Primary object segmentation in videos
based on region augmentation and reduction. In CVPR.

Krihenbiihl, P., & Koltun, V. (2011). Efficient inference in fully con-
nected CRFs with Gaussian edge potentials. In NIPS.

Lee, Y. J., Kim, J., & Grauman, K. (2011). Key-segments for video
object segmentation. In ICCV.

Learning motion patterns in videos. http://thoth.inrialpes.fr/research/
mpnet

Lezama, J., Alahari, K., Sivic, J., & Laptev, I. (2011). Track to the future:
Spatio-temporal video segmentation with long-range motion cues.
In CVPR.

Li, E, Kim, T., Humayun, A., Tsai, D., & Rehg, J. M. (2013). Video
segmentation by tracking many figure-ground segments. In /CCV.

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D.,
Dollar, P., & Zitnick, C. L. (2014). Microsoft COCO: Common
objects in context. In ECCV.

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional net-
works for semantic segmentation. In CVPR.

Mayer, N., Ilg, E., Hdusser, P., Fischer, P., Cremers, D., Dosovitskiy, A.,
& Brox, T. (2016). A large dataset to train convolutional networks
for disparity, optical flow, and scene flow estimation. In CVPR.

Mikolov, T., Karafiat, M., Burget, L., Cernocky, J., & Khudanpur, S.
(2010). Recurrent neural network based language model. In Inter-
speech.

Narayana, M., Hanson, A. R., & Learned-Miller, E. G. (2013). Coherent
motion segmentation in moving camera videos using optical flow
orientations. In /CCV.

Ng,J. Y., Hausknecht, M. J., Vijayanarasimhan, S., Vinyals, O., Monga,
R., & Toderici, G. (2015). Beyond short snippets: Deep networks
for video classification. In CVPR.

Ochs, P., & Brox, T. (2012). Higher order motion models and spectral
clustering. In CVPR.


http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://arxiv.org/abs/1608.05971
http://arxiv.org/abs/1308.0850
http://thoth.inrialpes.fr/research/mpnet
http://thoth.inrialpes.fr/research/mpnet

International Journal of Computer Vision (2019) 127:282-301

301

Ochs, P, Malik, J., & Brox, T. (2014). Segmentation of moving objects
by long term video analysis. PAMI, 36(6), 1187-1200.

Papazoglou, A., & Ferrari, V. (2013). Fast object segmentation in uncon-
strained video. In ICCV.

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of
training recurrent neural networks. In /ICML.

Patraucean, V., Handa, A., & Cipolla, R. (2016). Spatio-temporal video
autoencoder with differentiable memory. In ICLR Workshop track.

Perazzi, F., Pont-Tuset, J., McWilliams, B., van Gool, L., Gross, M., &
Sorkine-Hornung, A. (2016). A benchmark dataset and evaluation
methodology for video object segmentation. In CVPR.

Pinheiro, P. O., Lin, T. Y., Collobert, R., & Dollar, P. (2016). Learning
to refine object segments. In ECCV.

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards
real-time object detection with region proposal networks. In NIPS.

Revaud, J., Weinzaepfel, P., Harchaoui, Z., & Schmid, C. (2015).
EpicFlow: Edge-preserving interpolation of correspondences for
optical flow. In CVPR.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional
networks for biomedical image segmentation. In MICCAI.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning
representations by back-propagating errors. Nature, 323, 533-536.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al.
(2015). Imagenet large scale visual recognition challenge. 1JCV,
115(3), 211-252.

Shi, X., Chen, Z., Wang, H., Yeung, D. Y., Wong, W., & Woo, W. (2015).
Convolutional LSTM network: A machine learning approach for
precipitation nowcasting. In NIPS.

Simonyan, K., & Zisserman, A. (2014). Two-stream convolutional net-
works for action recognition in videos. In NIPS.

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional net-
works for large-scale image recognition. In /CLR.

Srivastava, N., Mansimov, E., & Salakhutdinov, R. (2015). Unsuper-
vised learning of video representations using LSTMs. In /CML.

Sundaram, N., Brox, T., & Keutzer, K. (2010). Dense point trajectories
by GPU-accelerated large displacement optical flow. In ECCV.

Taylor, B., Karasev, V., & Soatto, S. (2015). Causal video object seg-
mentation from persistence of occlusions. In CVPR.

Tieleman, T., & Hinton, G. (2012). RMSProp. COURSERA: Lecture
6.5—Neural Networks for Machine Learning.

Tokmakov, P., Alahari, K., & Schmid, C. (2017). Learning motion pat-
terns in videos. In CVPR.

Tokmakov, P., Alahari, K., & Schmid, C. (2017). Learning video object
segmentation with visual memory. In ICCV.

Torr, P. H. S. (1998). Geometric motion segmentation and model selec-
tion. Philosophical Transactions of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences, 356(1740),
1321-1340.

Vedula, S., Baker, S., Rander, P., Collins, R., & Kanade, T. (2005).
Three-dimensional scene flow. PAMI, 27(3), 475-480.

Vogel, C., Schindler, K., & Roth, S. (2015). 3D scene flow estimation
with a piecewise rigid scene model. IJCV, 115(1), 1-28.

Wang, W., Shen, J., & Porikli, F. (2015). Saliency-aware geodesic video
object segmentation. In CVPR.

Wedel, A., Brox, T., Vaudrey, T., Rabe, C., Franke, U., & Cremers,
D. (2011). Stereoscopic scene flow computation for 3D motion
understanding. IJCV, 95(1), 29-51.

Werbos, P. J. (1990). Backpropagation through time: What it does and
how to do it. Proceedings of IEEE, 78(10), 1550-1560.

Xu, C., & Corso, J. J. (2016). Libsvx: A supervoxel library and
benchmark for early video processing. International Journal of
Computer Vision, 119(3), 272-290.

Zhang, D., Javed, O., & Shah, M. (2013). Video object segmentation
through spatially accurate and temporally dense extraction of pri-
mary object regions. In CVPR.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer



	Learning to Segment Moving Objects
	Abstract
	1 Introduction
	2 Related Work
	3 Learning to Segment Moving Objects in Videos
	4 Motion Pattern Network
	4.1 Network Architecture
	4.2 Training with Synthetic Data
	4.3 Detecting Motion Patterns

	5 ConvGRU Visual Memory Module
	5.1 Bidirectional Processing
	5.2 Training

	6 Experiments
	6.1 Datasets and Evaluation
	6.2 Implementation Details
	6.3 Motion Pattern Network
	6.3.1 Influence of Input Modalities
	6.3.2 Effect of the Flow Quality
	6.3.3 Training on Real Videos

	6.4 Video Object Segmentation Framework
	6.4.1 Ablation Study
	6.4.2 Influence of the Motion Network

	6.5 Comparison to the State-of-the-Art
	6.6 ConvGRU Visualization

	7 Conclusion
	Acknowledgements
	References




