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Abstract
The problem of visual question answering (VQA) is of significant importance both as a challenging research question and for
the rich set of applications it enables. In this context, however, inherent structure in our world and bias in our language tend to
be a simpler signal for learning than visual modalities, resulting in VQA models that ignore visual information, leading to an
inflated sense of their capability. We propose to counter these language priors for the task of VQA and make vision (the V in
VQA) matter! Specifically, we balance the popular VQA dataset (Antol et al., in: ICCV, 2015) by collecting complementary
images such that every question in our balanced dataset is associated with not just a single image, but rather a pair of similar
images that result in two different answers to the question. Our dataset is by constructionmore balanced than the original VQA
dataset and has approximately twice the number of image-question pairs. Our complete balanced dataset is publicly available
at http://visualqa.org/ as part of the 2nd iteration of the VQA Dataset and Challenge (VQA v2.0). We further benchmark a
number of state-of-art VQAmodels on our balanced dataset. All models perform significantly worse on our balanced dataset,
suggesting that these models have indeed learned to exploit language priors. This finding provides the first concrete empirical
evidence for what seems to be a qualitative sense among practitioners. We also present interesting insights from analysis
of the participant entries in VQA Challenge 2017, organized by us on the proposed VQA v2.0 dataset. The results of the
challenge were announced in the 2nd VQA Challenge Workshop at the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) 2017. Finally, our data collection protocol for identifying complementary images enables us to develop
a novel interpretable model, which in addition to providing an answer to the given (image, question) pair, also provides a
counter-example based explanation. Specifically, it identifies an image that is similar to the original image, but it believes has
a different answer to the same question. This can help in building trust for machines among their users.
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1 Introduction

Language and vision problems such as image captioning
(Fang et al. 2015; Chen and Zitnick 2015; Donahue et al.
2015; Karpathy and Fei-Fei 2015; Vinyals et al. 2015;
Kiros et al. 2015; Mao et al. 2014) and visual question
answering (VQA) (Antol et al. 2015; Malinowski and Fritz
2014; Malinowski et al. 2015; Gao et al. 2015; Ren et al.
2015) have gained popularity in recent years as the com-
puter vision research community is progressing beyond
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Who is wearing glasses? Where is the child si�ng?

Is the umbrella upside down? How many children are in the bed?

womanman armsfridge

noyes 12

Fig. 1 Examples from our balanced VQA v2.0 dataset

“bucketed” recognition and towards solving multi-modal
problems.

The complex compositional structure of language makes
problems at the intersection of vision and language challeng-
ing. But recent works (Devlin et al. 2015; Zhang et al. 2016;
Zhou et al. 2015; Jabri et al. 2016; Kafle and Kanan 2016b;
Agrawal et al. 2016) have pointed out that language also
provides a strong prior that can result in good superficial
performance, without the underlying models truly under-
standing the visual content.

This phenomenon has been observed in image caption-
ing (Devlin et al. 2015) as well as visual question answering
(Zhang et al. 2016; Zhou et al. 2015; Jabri et al. 2016; Kafle
and Kanan 2016b; Agrawal et al. 2016). For instance, in the
VQA (Antol et al. 2015) dataset, the most common sport
answer “tennis” is the correct answer for 41% of the ques-
tions starting with “What sport is”, and “2” is the correct
answer for 39% of the questions starting with “How many”.
Moreover, (Zhang et al. 2016) points out a particular ‘visual
priming bias’ in the VQA dataset—specifically, subjects saw
an image while asking questions about it. Thus, people only
ask the question “Is there a clock tower in the picture?” on
images actually containing clock towers. As one particularly
perverse example—for questions in the VQA dataset start-
ing with the n-gram “Do you see a …”, blindly answering
“yes” without reading the rest of the question or looking at
the associated image results in a VQA accuracy of 87%!

Such language priors are not specific to VQAdataset from
(Antol et al. 2015), but are also present in otherVQAdatasets.
For example, in another popularVQAdatasetVisual7W(Zhu
et al. 2016), a question-only baseline achieves an accuracy of
46.2%, while the baseline question + image model achieves
52.1%. So, models are able to achieve good accuracy using
only language information and without even looking at the
image, and visual information is only making slight relative
improvement compared to the question-only baseline.

Hence, these language priors can give a false impres-
sion that machines are making progress towards the goal of
understanding images correctly when they are only exploit-

ing language priors to achieve high accuracy. This can hinder
progress in pushing state of art in the computer vision aspects
of multi-modal AI (Torralba and Efros 2011; Zhang et al.
2016).

In this work, we propose to counter these language biases
and elevate the role of image understanding in VQA. In order
to accomplish this goal, we collect a balanced VQA dataset
with significantly reduced language biases. Specifically, we
create a balanced VQA dataset in the following way—given
an (image, question, answer) triplet (I , Q, A) from the VQA
dataset, we ask a human subject to identify an image I ′ that
is similar to I but results in the answer to the question Q to
become A′ (which is different from A). Examples from our
balanced dataset are shown in Fig. 1. More random examples
can be seen in Fig. 2 and on the project website.1

Our hypothesis is that this balanced dataset will force
VQA models to focus on visual information. After all, when
a question Q has two different answers (A and A′) for two
different images (I and I ′ respectively), the onlyway to know
the right answer is by looking at the image. Language-only
models have simply no basis for differentiating between the
two cases—(Q, I ) and (Q, I ′), and by construction must
get one wrong. We believe that this construction will also
prevent language+vision models from achieving high accu-
racy by exploiting language priors, enabling VQA evaluation
protocols to more accurately reflect progress in image under-
standing.

Our balanced VQA dataset is also particularly difficult
because the picked complementary image I ′ is close to the
original image I in the semantic (fc7) space of VGGNet
(Simonyan and Zisserman 2015) features. Therefore, VQA
models will need to understand the subtle differences
between the two images to predict the answers to both the
images correctly.

Note that simply ensuring that the answer distribution
P(A) is uniform across the dataset would not accomplish
the goal of alleviating language biases discussed above. This
is because language models exploit the correlation between
question n-grams and the answers, e.g. questions starting
with “Is there a clock” has the answer “yes” 98% of the
time, and questions starting with “Is the man standing” has
the answer “no” 69% of the time. What we need is not just
higher entropy in P(A) across the dataset, but higher entropy
in P(A|Q) so that image I must play a role in determining
A. This motivates our balancing on a per-question level.

Our complete balanceddataset contains approximately1.1
Million (image, question) pairs—almost double the size of
the VQA (Antol et al. 2015) dataset—with approximately
13 Million associated answers on the ∼200 k images from
COCO (Lin et al. 2014). We believe this balanced VQA
dataset is a better dataset to benchmark VQA approaches,

1 http://visualqa.org/.
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Fig. 2 Random examples from our proposed balanced VQA v2.0 dataset. Each question has two similar images with different answers to the
question

and is publicly available for download on the project web-
site.

Finally, our data collection protocol enables us to develop
a counter-example based explanation modality. We propose
a novel model that not only answers questions about images,
but also ‘explains’ its answer to an image-question pair by

providing “hard negatives” i.e., examples of images that it
believes are similar to the image at hand, but it believes have
different answers to the question. Such an explanationmodal-
ity will allow users of the VQA model to establish greater
trust in the model and identify its oncoming failures.
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Our main contributions are as follows:

1. We balance the existing VQA v1.0 dataset (Antol et al.
2015) by collecting complementary images such that
almost every question in our balanced dataset is asso-
ciated with not just a single image, but rather a pair of
similar images that result in two different answers to the
question. The result is amore balancedVQAv2.0 dataset,
which is also approximately twice the size of the VQA
v1.0 dataset.

2. We evaluate state-of-art VQA models (with publicly
available code) on our balanced VQA v2.0 dataset, and
show that models trained on the existing ‘unbalanced’
VQA v1.0 dataset perform poorly on our new balanced
VQA v2.0 dataset. This finding confirms our hypothesis
that these models have been exploiting language priors in
the existingVQAv1.0 dataset to achieve higher accuracy.

3. We organized the VQA Challenge 2017 on the proposed
VQA v2.0 dataset. The results were announced in the
2nd VQA Challenge Workshop at the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR)
2017. In this work, we analyze the challenge entries for
various factors such as statistical significance, sensitiv-
ity to subtle changes in images, compositionality, effect
of priors, etc., and present interesting insights into the
results.

4. Finally, our data collection protocol for identifying com-
plementary scenes enables us to develop a novel inter-
pretable model, which in addition to answering questions
about images, also provides a counter-example based
explanation—it retrieves images that it believes are simi-
lar to the original image but have different answers to the
question. Such explanations can help in building trust for
machines among their users.

2 RelatedWork

2.1 Visual Question Answering

A number of recent works have proposed visual question
answering datasets (Antol et al. 2015; Krishna et al. 2016;
Malinowski and Fritz 2014; Ren et al. 2015; Gao et al. 2015;
Yu et al. 2015; Tapaswi et al. 2016; Shin et al. 2016) and
models (Fukui et al. 2016; Lu et al. 2016; Andreas et al.
2016; Xiong et al. 2016; Lu et al. 2015; Malinowski et al.
2015; Zhang et al. 2016; Yang et al. 2016; Xu and Saenko
2016; Wang et al. 2015; Shih et al. 2016; Kim et al. 2016;
Noh and Han 2016; Ilievski et al. 2016; Wu et al. 2016; Saito
et al. 2016; Kafle and Kanan 2016a). Our work builds on
top of the VQA dataset from (Antol et al. 2015), which is
one of the most widely used VQA datasets. We reduce the
language biases present in this popular dataset, resulting in

a dataset that is more balanced and about twice the size of
the VQA dataset. We benchmark one ‘baseline’ VQAmodel
(Lu et al. 2015), one attention-based VQA model (Lu et al.
2016), and the winning model from the VQA Real Open
Ended Challenge 2016 (Fukui et al. 2016) on our balanced
VQA dataset, and compare them to a language-only model.

2.2 Data Balancing and Augmentation

At a high level, our work may be viewed as constructing a
more rigorous evaluation protocol by collecting ‘hard nega-
tives’. In that spirit, it is similar to the work of Hodosh and
Hockenmaier (2016), who created a binary forced-choice
image captioning task, where a machine must choose to
caption an image with one of two similar captions. To com-
pare, (Hodosh and Hockenmaier 2016) implemented hand-
designed rules to create two similar captions for images,
while we create a novel annotation interface to collect two
similar images for questions in VQA.

Perhaps themost relevant to ourwork is that of Zhang et al.
(2016), who study this goal of balancing VQA in a fairly
restricted setting—binary (yes/no) questions on abstract
scenes made from clipart [part of the VQA abstract scenes
dataset (Antol et al. 2015)]. Using clipart allows Zhang et
al. to ask human annotators to “change the clipart scene such
that the answer to the question changes”. Unfortunately, such
fine-grained editing of image content is simply not possible
in real images. The novelty of our work over Zhang et al. is
the proposed complementary image data collection interface,
application to real images, extension to all questions (not just
binary ones), benchmarking of state-of-art VQA models on
the balanced dataset, and finally the novel VQA model with
counter-example based explanations.

2.3 Models with Explanation

A number of recent works have proposed mechanisms for
generating ‘explanations’ (Hendricks et al. 2016; Selvaraju
et al. 2016; Zhou et al. 2015; Goyal et al. 2016; Ribeiro et al.
2016) for the predictions made by deep learning models,
which are typically ‘black-box’ and non-interpretable. (Hen-
dricks et al. 2016) generates a natural language explanation
(sentence) for image categories. (Selvaraju et al. 2016; Zhou
et al. 2015; Goyal et al. 2016; Ribeiro et al. 2016) provide
‘visual explanations’ or spatial maps overlaid on images to
highlight the regions that themodel focused onwhile making
its predictions. In this work, we introduce a third explanation
modality: counter-examples, instances the themodel believes
are close to but not belonging to the category predicted by
the model.

Closest to our counter-example explanation work is the
work by Berg and Belhumeur (2013) for fine-grained bird
classification. They identify features which best show the
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Fig. 3 A snapshot of our Amazon Mechanical Turk (AMT) interface
to collect complementary images

difference between two similar classes, exemplify this differ-
ence using example images and identify the regions in these
images to show the distinguishing features. Other example-
based explanation works include (Doersch et al. 2012) which
finds most distinctive visual elements for each class repre-
sented by clusters of imagepatches and (KohandLiang2017)
which identifies training examplesmost responsible for a pre-
diction.

3 Dataset

We build on top of the VQA dataset introduced by Antol
et al. (2015). VQA real images dataset contains just over
204K images from COCO (Lin et al. 2014), 614 K free-form
natural language questions (3 questions per image), and over
6 million free-form (but concise) answers (10 answers per
question). While this dataset has spurred significant progress
in VQA domain, as discussed earlier, it has strong language
biases.

Our key idea to counter this language bias is the follow-
ing—for every (image, question, answer) triplet (I , Q, A) in
the VQA dataset, our goal is to identify an image I ′ that
is similar to I , but results in the answer to the question
Q to become A′ (which is different from A). We built an
annotation interface (shown in Fig. 3) to collect such com-
plementary images on Amazon Mechanical Turk (AMT).
AMT workers are shown 24 nearest-neighbor images of I ,
the question Q, and the answer A, and asked to pick an image
I ′ from the list of 24 images for which Q “makes sense” and
the answer to Q is not A.

To capture “question makes sense”, we explained to the
workers (and conducted qualification tests to make sure that
they understood) that any premise assumed in the question
must hold true for the image they select. For instance, the
question “What is the woman doing?” assumes that a woman
is present and can be seen in the image. It does notmake sense
to ask this question on an imagewithout awoman visible in it.

We compute the 24 nearest neighbors by first representing
each image with the activations from the penultimate (‘fc7’)

layer of a deep Convolutional Neural Network (CNN)—in
particular VGGNet (Simonyan and Zisserman 2015)—and
then using �2-distances to compute neighbors.

After the complementary images are collected, we con-
duct a second round of data annotation to collect answers on
these new images. Specifically, we show the picked image
I ′ with the question Q to 10 new AMT workers, and collect
10 ground truth answers (similar to (Antol et al. 2015)). The
most common answer among the 10 is the new answer A′.

This two-stage data collection process finally results in
pairs of complementary images I and I ′ that are semantically
similar, but have different answers A and A′ respectively to
the same question Q. Since I and I ′ are semantically similar,
a VQA model will have to understand the subtle differences
between I and I ′ to provide the right answer to both images.
Example complementary images are shown in Figs. 1, 2, and
on the project website.

Note that sometimes it may not be possible to pick one of
the 24 neighbors as a complementary image. This is because
either (1) the question does not make sense for any of the 24
images (e.g. the question is ‘what is the woman doing?’ and
none of the neighboring images contain a woman), or (2) the
question is applicable to some neighboring images, but the
answer to the question is still A (same as the original image
I ). In such cases, our data collection interface allowed AMT
workers to select “not possible”.

We analyzed the data annotated with “not possible” selec-
tion by AMT workers and found that this typically happens
when (1) the object being talked about in the question is too
small in the original image and thus the nearest neighbor
images, while globally similar, do not necessarily contain
the object resulting in the question not making sense, or (2)
when the concept in the question is rare (e.g., when work-
ers are asked to pick an image such that the answer to the
question “What color is the banana?” is NOT “yellow”).

In total, such “not possible” selections make up 22%
of all the questions in the VQA dataset. We believe that a
more sophisticated interface that allowed workers to scroll
through many more than 24 neighboring images could pos-
sibly reduce this fraction. But, (1) it will likely still not be 0
(there may be no image in COCO where the answer to “is
the woman flying?” is NOT “no”), and (2) the task would
be significantly more cumbersome for workers, making the
data collection significantly more expensive.

We collected complementary images and the correspond-
ing new answers for all of train, val and test splits of
the VQA dataset. AMT workers picked “not possible” for
approximately 135 K total questions. In total, we collected
approximately 195 K complementary images for train, 93 K
complementary images for val, and 191 K complementary
images for test set. In addition, we augment the test set with
∼18K additional (question, image) pairs to provide addi-
tional means to detect anomalous trends on the test data.
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Fig. 4 Distribution of answers per question type for a random sample of 60 K questions from the (unbalanced) VQA v1.0 dataset (Antol et al.
2015) (top) and from our proposed balanced VQA v2.0 dataset (bottom)

Hence, our complete balanced dataset contains more than
443 K train, 214 K val and 453 K test (question, image)
pairs. Following VQA v1.0 dataset (Antol et al. 2015), we
divide our test set into 4 splits: test-dev, test-standard, test-
challenge and test-reserve. For more details, please refer to
(Antol et al. 2015). Our complete balanced dataset is publicly
available for download.

We use the publicly released VQA evaluation script in
our experiments. The evaluation metric uses 10 ground-
truth answers for each question to compute VQA accuracies.
As described above, we collected 10 answers for every
complementary image and its corresponding question to be
consistent with the VQA dataset (Antol et al. 2015). Note
that while unlikely, it is possible that the majority vote of the
10 new answers may not match the intended answer of the

person picking the image either due to inter-human disagree-
ment, or if the worker selecting the complementary image
simply made a mistake. We find this to be the case—i.e., A
to be the same as A′—for about 9% of our questions.

Figure 4 compares the distribution of answers per quest-
ion-type in our balanced VQA v2.0 dataset with the (unbal-
anced) VQA v1.0 dataset (Antol et al. 2015). We notice
several interesting trends. First, binary questions (e.g. “is
the”, “is this”, “is there”, “are”, “does”) have a significantly
more balanced distribution over “yes” and “no” answers in
our balanced dataset compared to unbalanced VQA dataset.
“baseball” is now slightly more popular than “tennis” under
“what sport”, and more importantly, overall “baseball” and
“tennis” dominate less in the answer distribution. Several
other sports like “frisbee”, “skiing”, “soccer”, “skateboard-
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ing”, “snowboard” and “surfing” are more visible in the
answer distribution in the balanced dataset, suggesting that it
contains heavier tails. Similar trends can be seen across the
board with colors, animals, numbers, etc. Quantitatively, we
find that the entropy of answer distributions averaged across
various question types (weighted by frequency of question
types) increases by 56%after balancing, confirming the heav-
ier tails in the answer distribution.

As the statistics show, while our balanced dataset is not
perfectly balanced, it is significantly more balanced than the
original VQA v1.0 dataset. The resultant impact of this bal-
ancing on performance of state-of-the-art VQA models is
discussed in the next section.

4 Benchmarking Existing VQAModels

Our first approach to training a VQA model that empha-
sizes the visual information over language-priors-alone is to
re-train the existing state-of-art VQAmodels [with code pub-
licly available (Lu et al. 2015; Andreas et al. 2016; Lu et al.
2016; Fukui et al. 2016)] on our new balanced VQA dataset.
Our hypothesis is that simply training a model to answer
questions correctly on our balanced dataset will already
encourage themodel to focusmore on the visual signal, since
the language signal alone has been impoverished. We exper-
iment with the following models:

Deeper LSTMQuestion + norm Image (d-LSTM+n-I) (Lu
et al. 2015) This was the VQA model introduced in Antol
et al. (2015) together with the dataset. It uses a CNN embed-
ding of the image, a Long-Short Term Memory (LSTM)
embedding of the question, combines these two embeddings
via a point-wise multiplication, followed by a multi-layer
perceptron classifier to predict a probability distribution over
1000 most frequent answers in the training dataset.

Neural Module Networks (NMN) (Andreas et al. 2016)
This is a compositional VQA model which dynamically ini-
tiates a different network architecture for each test example
based on the linguistic substructure of the question using
neural “modules”, which are specialized for subtasks such
as recognizing dogs, classifying colors, etc.

Hierarchical Co-attention (HieCoAtt) (Lu et al. 2016)
This is an attention-based VQA model that ‘co-attends’ to
both the image and the question to predict an answer. Specif-
ically, it models the question (and consequently the image
via the co-attention mechanism) in a hierarchical fashion: at
the word-level, phrase-level and entire question-level. These
levels are combined recursively to produce a distribution over
the 1000 most frequent answers.

MultimodalCompactBilinearPooling (MCB) (Fukui et al.
2016) This is the winning entry on the real images track of
the VQA Challenge 2016. This model uses a multimodal
compact bilinear pooling mechanism to attend over image

Table 1 Performance of VQA models when trained/tested on unbal-
anced/balanced VQA datasets

Approach UU UB BhalfB BB

Prior 27.38 24.04 24.04 24.04

Language-only 48.21 41.40 41.47 43.01

d-LSTM+n-I (Lu et al. 2015) 54.40 47.56 49.23 51.62

NMN (Andreas et al. 2016) 54.83 47.97 49.52 51.62

HieCoAtt (Lu et al. 2016) 57.09 50.31 51.88 54.57

MCB (Fukui et al. 2016) 60.36 54.22 56.08 59.14

UB stands for training on Unbalanced VQA v1.0 train and testing on
Balanced VQA v2.0 val datasets. UU, BhalfB and BB are defined anal-
ogously

features and combine the attended image features with lan-
guage features. These combined features are then passed
through a fully-connected layer to predict a probability dis-
tribution over the 3000 most frequent answers. It should be
noted that MCB uses image features from a more powerful
CNN architecture ResNet (He et al. 2016) while the previous
three models use image features from VGGNet (Simonyan
and Zisserman 2015).

Baselines To put the accuracies of these models in per-
spective, we compare to the following baselines: Prior:
Predicting the most common answer in the training set, for
all test questions. The most common answer is “yes” in
both the unbalanced and balanced sets. Language-only: This
language-only baseline has a similar architecture as Deeper
LSTM Question + norm Image (Lu et al. 2015) except that
it only accepts the question as input and does not utilize any
visual information. Comparing VQA models to language-
only ablations quantifies to what extent VQA models have
succeeded in leveraging the image to answer the questions.

The results are shown in Table 1 when models are trained
on train set and evaluated on val set. For fair comparison of
accuracies with original (unbalanced) dataset (VQA v1.0),
we create a balanced train set which is of similar size as VQA
v1.0 train set (referred to asBhalf in table). For benchmarking,
we also report results using the full balanced train set.

We see that the current state-of-art VQA models trained
on (unbalanced) VQA v1.0 train set perform significantly
worse when evaluated on our balanced VQA v2.0 val set,
compared to evaluating on the unbalanced VQA v1.0 val set
(i.e., comparing UB to UU respectively in the table). This
finding confirms our hypothesis that existing models have
learned severe language biases present in the train set, result-
ing in a reduced ability to answer questions correctly when
the same question has different answers on different images.
When these models are trained on our balanced VQA v2.0
train set, their performance improves (compare UB to BhalfB
in the table). Further, when models are trained on complete
VQA v2.0 train set (∼twice the size of VQA v1.0 train set),
the accuracy improves by 2–3% (compare BhalfB to BB).
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This increase in accuracy suggests that current VQA models
are data starved, and would benefit from even larger VQA
datasets.

As the absolute numbers in the table suggest, there is
significant room for improvement in building visual under-
standing models that can extract detailed information from
images and leverage this information to answer free-form
natural language questions about images accurately. As
expected from the construction of this balanced dataset, the
question-only approach performs significantly worse on the
balanced dataset compared to the unbalanced dataset, again
confirming the language-bias in the VQA v1.0 dataset, and
its successful alleviation (though not elimination) in our pro-
posed balanced VQA v2.0 dataset.

Note that in addition to the lack of language bias, visual
reasoning is also challenging on the balanced dataset since
there are pairs of images very similar to each other in image
representations learned by CNNs, but with different answers
to the same question. To be successful, VQAmodels need to
understand the subtle differences in these images.

The paired construction of our dataset allows us to ana-
lyze the performance of VQAmodels in unique ways. Given
the prediction of a VQA model, we can count the number of
questions where both complementary images (I ,I ′) received
correct answer predictions for the corresponding question
Q, or both received identical (correct or incorrect) answer
predictions, or both received different answer predictions.
For the HieCoAtt (Lu et al. 2016) model, when trained on
the unbalanced VQA v1.0 dataset, 13.5% of the pairs were
answered correctly, 59.9% of the pairs had identical predic-
tions, and 40.1% of the pairs had different predictions. In
comparison, when trained on balanced VQA v2.0 dataset,
the same model answered 17.7% of the pairs correctly, a
4.2% increase in performance! Moreover, it predicts iden-
tical answers for 10.5% fewer pairs (49.4%). This shows
that by training on balanced dataset, this VQA model has
learned to tell the difference between two otherwise similar
images.However, significant roomfor improvement remains.
The VQA model still can not tell the difference between
two images that have a noticeable difference—a difference
enough to result in the two images having different ground
truth answers for the same question asked by humans.

To benchmark models on VQA v2.0 dataset, we also train
these models on VQA v2.0 train+val and report results on
VQA v2.0 test-standard in Table 2. Papers reporting results
on VQA v2.0 dataset are suggested to report test-standard
accuracies and compare their methods’ accuracies with accu-
racies reported in Table 2.

4.1 Analysis of Accuracies for Different Answer Types

We further analyze the accuracy breakdown over answer
types for Multimodal Compact Bilinear Pooling (MCB)

(Fukui et al. 2016),HierarchicalCo-attention (HieCoAtt) (Lu
et al. 2016) and Neural Module Networks (NMN) (Andreas
et al. 2016) models.

The results are shown in Table 3. First, we immediately
notice that the accuracy for the answer-type “yes/no” drops
significantly from UU to UB (∼ 10.8% for MCB, ∼ 12.4%
for HieCoAtt and ∼ 12.2% for NMN). This suggests that
these VQA models are really exploiting language biases for
“yes/no” type questions, which leads to high accuracy on
unbalanced val set because the unbalanced val set also con-
tains these biases. But performance drops significantly when
tested on the balanced val set which has significantly reduced
biases.

Second, we note that for all three state-of-art VQA mod-
els, the largest source of improvement from UB to BhalfB is
the “yes/no” answer-type (∼ 4.5% for MCB, ∼ 3.3% for
HieCoAtt and ∼ 4.2% for NMN) and the “number” answer-
type (∼ 3% for MCB, ∼ 2% for HieCoAtt and and ∼ 2.5%
for NMN).

This trend is particularly interesting since the “yes/no”
and “number” answer-types are the ones where exist-
ing approaches have shown minimal improvements. For
instance, in the results announced at the VQA Real Open
Ended Challenge 2016, the accuracy gap between the top-4
approaches is a mere 0.15% in “yes/no” answer-type cate-
gory (and a gap of 3.48% among the top-10 approaches).
Similarly, “number” answer-type accuracies only vary by
1.51% and 2.64% respectively. The primary differences
between current generation of state-of-art approaches seem
to come from the “other” answer-type where accuracies vary
by 7.03% and 10.58% among the top-4 and top-10 entries.

This finding suggests that language priors present in the
unbalanced VQA dataset (particularly in the “yes/no” and
“number” answer-type questions) lead to similar accuracies
for all state-of-art VQA models, rendering vastly different
models virtually indistinguishable from each other (in terms
of their accuracies for these answer-types). Benchmarking
these different VQA models on our balanced dataset (with
reduced language priors) may finally allow us to distin-
guish between ‘good’ models (ones that encode the ‘right’
inductive biases for this task, such as attention-based or com-
positional models) from others that are simply high-capacity
models tuning themselves to the biases in the dataset.

5 VQA Challenge 2017

Following VQA v1.0, we have not released the test set
annotations publicly. We have set up an evaluation server
on EvalAI2 where researchers can upload their models’
predictions and evaluate their performance. To encourage,

2 https://evalai.cloudcv.org/.
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Table 2 Performance of VQA
models when trained on VQA
v2.0 train+val and tested on
VQA v2.0 test-standard dataset

Approach All Yes/no Number Other

Prior 25.98 61.20 00.36 01.17

Language-only 44.26 67.01 31.55 27.37

d-LSTM+n-I (Lu et al. 2015) 54.22 73.46 35.18 41.83

MCB (Fukui et al. 2016) 62.27 78.82 38.28 53.36

Table 3 Accuracy breakdown
over answer types for MCB
(Fukui et al. 2016), HieCoAtt
(Lu et al. 2016) and NMN
(Andreas et al. 2016) models
when trained/tested on
unbalanced/balanced VQA
datasets

Approach Ans type UU UB BhalfB BB

MCB (Fukui et al. 2016) Yes/no 81.20 70.40 74.89 77.37

Number 34.80 31.61 34.69 36.66

Other 51.19 47.90 47.43 51.23

All 60.36 54.22 56.08 59.14

HieCoAtt (Lu et al. 2016) Yes/no 79.99 67.62 70.93 71.80

Number 34.83 32.12 34.07 36.53

Other 45.55 41.96 42.11 46.25

All 57.09 50.31 51.88 54.57

NMN (Andreas et al. 2016) Yes/no 80.39 68.21 72.45 73.38

Number 33.45 30.00 32.53 33.23

Other 41.07 37.33 36.57 39.93

All 54.83 47.97 49.52 51.62

UB stands for training on Unbalanced VQA v1.0 train and testing on Balanced VQA v2.0 val datasets. UU,
BhalfB and BB are defined analogously

Fig. 5 A snapshot of leaderboard of VQA Challenge 2017

systematically track, and benchmark research in this area,
we organized the VQA Challenge 2017 on the proposed
VQA v2.0 dataset. The results were announced in the 2nd
VQAChallengeWorkshop3 at the IEEEConference onCom-
puterVision andPatternRecognition (CVPR)2017. Formore

3 http://visualqa.org/workshop_2017.html.

Fig. 6 Challenge accuracies for top-20 teams, including a single best
model fromVQAChallenge 2016—MCB (Fukui et al. 2016) trained on
VQA v2.0 dataset (green bar) added to the challenge by us for compar-
ison. We also show the accuracy of MCB model when trained on VQA
v1.0 dataset (black horizontal line) for reference (Color figure online)

details, please see the challenge page.4 A screenshot of the
leaderboard has been shown in Fig. 5. We further analyze
the challenge entries and present interesting insights into the
results below.

4 http://visualqa.org/challenge_2017.html.
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Fig. 7 Challenge accuracies for top-20 teams, where statistically sim-
ilar teams have been grouped together (shown in same color) (Color
figure online)

5.1 Analysis

5.1.1 Overall progress from VQA Challenge 2016.

Figure 6 shows the challenge accuracies for top-20 teams
which participated in the 2017 challenge. The green bar cor-
responds to the MCB (Fukui et al. 2016) model5—the single
best model of the challenge winning entry from VQA Chal-
lenge 2016, benchmarked by us on VQA v2 after retraining.
As we can see, there is a significant improvement in the per-
formance compared to the MCB model, with an absolute
improvement of about 7%. It is worth noting that 19 teams
in the VQA Challenge 2017 outperformed this MCB bench-
mark. Note that the performance of the MCB model trained
on VQA v1 is only 57.05% (denoted by black solid line). So,
training on balanced data improves the performance of the
model by 5.28%.

5.1.2 Statistical Significance of the Results

In order to determine whether performance of teams are
statistically significantly different fromone another, we boot-
strapped samples from predictions 5000 times and report
statistical significance at 95% confidence. Figure 7 shows
grouping of teams where teams which are statistically simi-
lar to each other have been grouped together (shown in same
color). We can see that the challenge winner is statistically
significantly different from everyone else. The team at the
2nd rank is statistically similar to 3rd team and is better than
rest of the teams. And so on.

5 Note that this entry is a single model and does not use pretrained word
embeddings and data augmentation unlike the winning entry in VQA
Challenge 2016whichwas an ensemble of 7 suchMCBmodels, andwas
trained with pretrained Glove (Pennington et al. 2014) embeddings and
data augmentation from Visual Genome dataset (Krishna et al. 2016).
These three factors lead to a 2–3% increase in performance.

Fig. 8 Distribution of test set based on how many teams out of top-
10 are able to correctly answer the question. The first bin (shown in
blue) shows the percentage of questions which none of the top 10 teams
answered correctly. The last bin (shown in green) shows the percentage
of questions which all of the top 10 teams answered correctly (Color
figure online)

Fig. 9 Visualization of difficult questions whose ground-truth answers
are not among the top-1000 ground-truth answers in the training set.
Hence, themodels which use classification over these top-1000 answers
can not answer these questions correctly. (Best viewed after zooming
in.)

5.1.3 Easy and Difficult Questions

We also analyze if there are certain questions which none
of the top 10 teams could answer, and if there are certain
questions which all top 10 teams were able to answer. In
Fig. 8, the x-axis shows the number of teams out of top 10
that were able to correctly answer certain questions, and the
y-axis shows the percentage of questions they could correctly
answer. The first bin (shown in blue) shows the percentage
of questions which none of the top 10 teams answered cor-
rectly, hence these are ‘difficult’ questions. This means that
85.3% of questions could be answered correctly by at least
onemethod out of top 10. The last bin (shown in green) shows
the percentage of questions which all of the top 10 teams got
right, hence these are ‘easy’ questions.

Note that the set of difficult questions also includes those
questions whose ground-truth answers are not in top K most
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Fig. 10 Left: Visualization of difficult questions whose ground-truth
answers are among the top-1000 ground-truth answers in the training
set. Right: Easy questions which are correctly answered by all top-10
teams. (Best viewed after zooming in.)

commonanswers from the training set.Hence,methods using
classification over top K (= 1000, typically) answers, would
not be able to get those questions correct. We found that half
of these difficult questions are the questions whose answers
are not in top 1000 answers. The visualization in Fig. 9 shows
such questions. The innermost arc contains the first word of
the question, the next arc contains the 2nd word and so on.
It is interesting to note that most of these questions are OCR
questions, some are fine grained recognition and other are
open-ended such as “Why ... ”. These trends are similar to
those from the VQA Challenge 2016, showing that progress
towards models that can answer such questions still remains
to be made. We also qualitatively examine the difficult ques-
tions whose answers are in the top 1000 answers, and see
how they differ from easy questions. In Fig. 10, we observe
that difficult questions containmore countingquestionswhile
easy questions contain more binary questions.

5.1.4 Rankings Based on Answer Types

Wefurther analyze the teams’ performance based ondifferent
answer types—“yes/no”, “number” and “other”. Interest-
ingly, we observe that the team at 4th rank outperforms all
other teams for “number” questions. This is probably because
this entry is an ensemble of various models, one of which is
trained only on “number” questions. The winner team per-
forms the best for “yes/no” and “other” questions.

5.1.5 Are Models Sensitive to Subtle Changes in Images?

Recall that the VQA v2.0 dataset has 2 images with the
same question but different answers and these complemen-
tary images are similar to each other. Such a dataset allows
us to probe if the models are sensitive to subtle changes in
images. We analyze the following: (1) if the model produces
different predictions for the complementary images given the

Fig. 11 Percentage of questions for which the model’s predictions are
different for complementary images. For an MCB model trained on
VQA v1.0, the performance on this metric is 45%, as shown by black
horizontal line

Fig. 12 Percentage of complementary pairs for which the model’s pre-
dictions are accurate. For an MCB model trained on VQA v1.0, the
performance on this metric is 32.4%, as shown by black horizontal line

question, and (2) if the model produces accurate predictions
for (both) the complementary images.

In Fig. 11, we show the percentage of questions for which
the model’s predictions are different for complementary
images. Most teams predict different answers for about 60%
of the pairs. There is not much variation across the teams.
Comparing MCB model’s predictions with the same model
trained on VQA v1.0 dataset (for which the predictions are
different for 45% of the complementary pairs), we observe
an improvement of 16.5% on this metric. Clearly, training
models on the balanced set makes them more sensitive to
subtle changes in images.

To check if the model predicts accurate answers for the
complementary images, we use a stricter accuracy metric
proposed in (Zhang et al. 2016). Under this metric, if the
model predicts correct answers for both images, it gets one
point. Otherwise, it gets zero points. The results have been
shown in Fig. 12. We can see that the top teams get about
50% of the pairs correct. More interestingly, certain teams
change their ranks on this metric (highlighted in blue), e.g.
the team ‘VQAMachine’ outperforms the two teams that
have higher overall accuracies. Comparing the accuracy of
the MCB model under this pairwise metric, we observe that
training on VQA v2.0 as compared to VQA v1.0 leads to a
gain of about 11%.

123



International Journal of Computer Vision (2019) 127:398–414 409

Fig. 13 Accuracy of top-20 teams on all test questions (shown in red)
and on ‘Non-1-Prior‘ questions, i.e. test questions whose ground-truth
answers are not in top-1 most common answers for the corresponding
question type in training set (shown in blue) (Color figure online)

5.1.6 Are VQAModels Driven by Priors?

It has been shown by recent studies (e.g. Zhang et al. 2016;
Agrawal et al. 2016, 2017) that today’s VQA models are
heavily driven by superficial correlations in training data. So
it is interesting to ask—howmuchare theVQAmodels driven
by priors in training data? In order to answer this question,we
compute the accuracy over those questions whose answers
are not popular answers for the question n-gram in the train-
ing data. Therefore, inspired by Agrawal et al. (2018), we
create 2 subsets of the VQA v2.0 test set by filtering out the
test questions whose ground-truth answers are among top-1
or top-2 answers for the corresponding question type (e.g.,
“howmuch ... ”, “what are the people ... ”, etc.) in the training
set. For more details, please refer to (Agrawal et al. 2018).
In Fig. 13, we show (in blue) the accuracies of all entries for
those test questions whose ground-truth answers are not in
top-1 most common answers for the corresponding question
type in training set. When compared to the accuracies on all
test questions (shown in red), we can see that the performance
drops by 4–6%. Extending this setting to evaluate the models
on those test questions whose ground-truth answers are not
among the top-2 most common answers per question type in
training set, we observe a drop of 14–16% in performance
as compared to the accuracies on all test questions. We also
observe that the relative ranks for some of the teams change
for both these subsets of the test set. Hence, we conclude that
all of the challenge entries are significantly driven by priors;
some more than others.

5.1.7 Are VQAModels Compositional?

We further evaluate how good these models are in answering
test questions which are compositionally novel compared to
the training set. We define compositionally novel test ques-
tions as those (question, answer) pairs which are unseen
in the training set but all the concepts in these (question,
answer) pairs have been seen in the training set. For exam-

Fig. 14 Accuracy of top-20 teams on all test questions (shown in
red) and on compositionally novel test questions, i.e. those (question,
answer) pairs which are unseen in the training set but all the concepts in
these (question, answer) pairs have been seen in the training set (shown
in blue) (Color figure online)

ple, given the QA pairs (“What color is the plate?”, “green”)
and (“What color are stop lights?”, “red”) in the training set,
a test instance (“What is the color of the plate?”, “red”) is
compositionally novel. Following (Agrawal et al. 2017), we
created a subset of the VQA v2.0 test set only containing
compositionally novel test questions relative to the training
set. In Fig. 14, we plot the accuracies of all teams on this
subset of the test set (shown in blue). Compared to the accu-
racies on the complete test set, we observe a drop of 11–13%
in performance for all models. Again, we see that the rank-
ings for some teams change on this compositionally novel test
set. Hence we conclude that all challenge entries are poor at
dealing with compositionality in VQA, and the ability to deal
with compositionality is not directly correlated with VQA v2
test set accuracy.

5.1.8 Trends in VQA v2.0 as Compared to v1.0.

Finally, we analyze the trends in VQA Challenge 2017 and
compare them to those in VQA Challenge 2016. In VQA
Challenge 2016, the “yes/no” accuracy was saturated (e.g.,
difference between “yes/no” accuracies of top-4 teams was
only 0.15%), there was moderate difference in accuracy
of “number” questions (the corresponding difference was
1.51%), and most discriminating were the “other” questions
(the difference was 7.03%). On the other hand, in VQAChal-
lenge 2017, both “yes/no” and “number” questions were
crucial in determining the winner team. The correspond-
ing differences among top-4 teams are 3.47% and 3.19%
respectively,which are significantly better than those inVQA
Challenge 2016. For “other” questions, the difference is
0.75%. Hence, VQA v2.0 dataset provides the opportunity
to make better progress in “yes/no” and “number” questions
which were previously saturated in VQA v1.0 dataset.
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5.2 Take-Aways

Based on the analysis of challenge entries, (oral and poster)
presentations by challenge participants at the VQA Work-
shop at CVPR 2017 and descriptions of challenge entries,6

weprovide somepromisingdirections belowwhich tend to be
useful while building VQA models. We believe these direc-
tions might be helpful in promoting future research in VQA.

– AResNet (He et al. 2016) model trained for image classi-
fication is a better image feature extractor (i.e., improves
the performance) for the task of VQA than a VGG
(Simonyan and Zisserman 2015)model trained for image
classification.

– Using pretrained GloVe (Pennington et al. 2014) word
embeddings and thenfine-tuningwithVQA loss provides
better question features (i.e., improves the performance)
than learning word embeddings from scratch for VQA
task.

– Using additional (Image, Question, Answer) data from
other VQA datasets such as Visual Genome (Krishna
et al. 2016) helps in improving the performance.

– Using attention over object bounding boxes in the image
is better than attention over equally spaced grids (Ander-
son et al. 2018).

– Various bilinear pooling approaches such as compact
(Fukui et al. 2016), low-rank (Kim et al. 2017), factorized
(Yu et al. 2017), etc. for combining visual and language
features are helpful.

– Co-attention over images and questions i.e., guiding
attention over question words using image features and
attention over image regions using question features,
benefits both image and question attention mechanisms
individually.

– Supervision for attention over images seems to improve
the attention mechanism as well as VQA performance.

– Training separate modules for different types of ques-
tions such as number and yes/no questions also seems to
improve the performance of these questions.

– (Teney et al. 2018) presents various other tips and tricks
which work well for the task of VQA, for instance: sig-
moid outputs (instead of softmax), soft training targets,
gated tanh activations, answer embeddings initialized
using GloVe and Google Images, large mini-batches, and
smart shuffling of training data.

5.3 Discussion

As we have seen in Sect. 5.1, current VQA models are still
significantly driven by priors. In this subsection, we provide
a brief discussion on some ways to tackle this problem and to

6 http://www.visualqa.org/roe_2017.html.

build more generic models. We also briefly summarize some
recent works which have taken first steps in tackling these
problems. In our views, there are three possible ways:

1. Remove Biases from theDataset Our balancedVQAv2.0
dataset is an effort in this direction. However, we balance
each question individually. So, certain kinds of biases
such as answers given a question type may still exist,
however significantly reduced compared to theVQAv1.0
dataset as shown in Fig. 4.

2. Adding Inductive Biases in the Models to prevent them
from relying on biases in the training data and to
encourage visual grounding. For example, GVQAmodel
proposed in Agrawal et al. (2018) explicitly disentan-
gles the recognition of visual concepts present in the
image from the identification of plausible answer space
for a given question. As shown in Agrawal et al. (2018),
such models are less prone to exploiting the priors in
the dataset. Another such example is the inductive bias
in modular networks (e.g., NMN Andreas et al. 2016,
N2NMN Hu et al. 2017) which learn various submod-
ules for different subtasks (such as recognizing dogs,
classifying colors, etc.), and dynamically combine these
submodules to instantiate a different network architecture
for each test question based on the questions linguistic
substructure.

3. Better Evaluation Protocols Another way to encour-
age researchers to develop more general models is to
have evaluation protocols that explicitly reward ground-
ing and generality. For example, a new split of VQA
dataset called VQA under Changing Priors (VQA-CP)
proposed in Agrawal et al. (2018) stress tests VQAmod-
els for visual grounding by having different distributions
of answers given the question type in train and test. Sim-
ilarly, there are compositionally novel splits of VQA
dataset (C-VQA Agrawal et al. 2017) and the CLEVR
dataset (Johnson et al. 2017) to test VQA models for
compositionality. In terms of accuracy metric, (Kafle and
Kanan 2017) proposed various accuracymetrics forVQA
to analyze performance of VQAmodels on rare answers.

6 Counter-Example Explanations

We propose a new explanation modality: counter-examples.
We propose a model that when asked a question about an
image, not only provides an answer, but also provides exam-
ple images that are similar to the input image but the model
believes have different answers to the input question. This
would instill trust in the user that the model does in fact
‘understand’ the concept being asked about. For instance, for
a question “What color is the fire-hydrant?” a VQA model
may be perceived as more trustworthy if in addition to saying
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“red”, it also adds “unlike this” and shows an example image
containing a fire-hydrant that is not red.7

6.1 Model

Concretely, at test time, our “negative explanation” or
“counter-example explanation”model functions in two steps.
In the first step, similar to a conventional VQAmodel, it takes
in an (image, question) pair (Q, I ) as input and predicts an
answer Apred . In the second step, it uses this predicted answer
Apred along with the question Q to retrieve an image that is
similar to I but has a different answer than Apred to the
question Q. To ensure similarity, the model picks one of K
nearest neighbor images of I , IN N = {I1, I2, ..., IK } as the
counter-example.

Howmaywe find these “negative explanations”?Oneway
of picking the counter-example from IN N is to follow the
classical “hard negative mining” strategy popular in com-
puter vision. Specifically, simply pick the image that has the
lowest P(Apred |Q, Ii )where i ∈ 1, 2, ..., K .We compare to
this strong baseline. While this ensures that P(Apred |Q, Ii )
is low for Ii , it does not ensure that the Q “makes sense” for
Ii . Thus, when trying to find a negative explanation for “Q:
What is thewoman doing?A: Playing tennis”, this “hard neg-
ative mining” strategy might pick an image without a woman
in it, which would make for a confusing and non-meaningful
explanation to show to a user, if the goal is to convince them
that the model has understood the question. One could add a
component of question relevance (Ray et al. 2016) to identify
better counter-examples.

Instead, we take advantage of our balanced data collection
mechanism to directly train for identifying a good counter-
example.Note that the I ′ picked byhumans is a good counter-
example, by definition. Q is relevant to I ′ (since workers
were asked to ensure it was), I ′ has a different answer A′
than A (the original answer), and I ′ is similar to I . Thus, we
have supervised training data where I ′ is a counter-example
from IN N (K = 24) for question Q and answer A. We train
a model that learns to provide negative or counter-example
explanations from this supervised data.

To summarize, during test time, our model does two
things: first it answers the question (similar to a conven-
tional VQA model), and second, it explains its answer via
a counter-example. For the first step, it is given as input an
image I and a question Q, and it outputs a predicted answer
Apred . For the second (explaining) step, it is given as input
the question Q, an answer to be explained A,8 and a set IN N

7 It could easily also convey what color it thinks the fire-hydrant is in
the counter-example. We will explore this in future work.
8 In practice, this answer to be explained would be the answer pre-
dicted by the first step Apred . However, we only have access to negative
explanation annotations from humans for the ground-truth answer

from which the model has to identify the counter-example.
At training time, the model is given image I , the question
Q, and the corresponding ground-truth answer A to learn to
answer questions. It is also given Q, A, I ′ (human-picked),
IN N (I ′ ∈ IN N ) to learn to explain.

Our model architecture contains two heads on top of a
shared base ‘trunk’—one head for answering the question
and the other head for providing an explanation. Specifically,
our model consists of three major components:
1. Shared Base: The first component of our model is learn-
ing representations of images and questions. It is a 2-channel
network that takes in an image CNN embedding as input in
one branch, question LSTM embedding as input in another
branch, and combines the two embeddings by a point-wise
multiplication. This gives us a joint QI embedding, sim-
ilar to the model in Lu et al. (2015). The second and
third components—the answering model and the explaining
model—take in this joint QI embedding as input, and there-
fore can be considered as two heads over this first shared
component. A total of 25 images—the original image I and
24 candidate images {I1, I2, ..., I24} are passed through this
shared component of the network.
2. Answering Head: The second component is learning to
answer questions. Similar to (Lu et al. 2015), it consists of
a fully-connected layer fed into a softmax that predicts the
probability distribution over answers given the QI embed-
ding. Only the QI embedding corresponding to the original
image I is passed through this component and result in a
cross-entropy loss.
3. Explaining Head: The third component is learning to
explain an answer A via a counter-example image. It is
a 2-channel network which linearly transforms the joint
QI embedding (output from the first component) and the
answer to be explained A (provided as input)9 into a com-
mon embedding space. It computes an inner product of these
2 embeddings resulting in a scalar number for each image in
IN N (also provided as input, from which a counter-example
is to be picked). These K inner-product values for K candi-
date images are then passed through a fully connected layer
to generate K scores S(Ii ), where i ∈ {1, 2, ..., K }. The K
candidate images {I1, I2, ..., IK } are then sorted according to

Footnote 8 continued
A to the question. Providing A to the explanation module also helps in
evaluating the two steps of answering and explaining separately.
9 Note that in theory, one could provide Apred as input during train-
ing instead of A. After all, this matches the expected use case scenario
at test time. However, this alternate setup (where Apred is provided as
input instead of A) leads to a peculiar and unnatural explanation training
goal—specifically, the explanation head will still be learning to explain
A since that is the answer for which we collected negative explana-
tion human annotations. It is simply unnatural to build that model that
answers a question with Apred but learn to explain a different answer A!
Note that this is an interesting scenario where the current push towards
“end-to-end” training for everything breaks down.
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Fig. 15 Three counter-example or negative explanations (right three
columns) generated by our model, along with the input image (left), the
input question Q and the predicted answer A

these scores S(Ii ) as being most to least likely of being good
counter-examples or negative explanations. This component
is trained with pairwise hinge ranking losses that encour-
age S(I ′) − S(Ii ) > M − ε, Ii ∈ {I1, I2, ..., IK } \ {I ′},
i.e. the score of the human picked image I ′ is encouraged
to be higher than all other candidate images by a desired
margin of M (a hyperparameter) and a slack of ε. This
is of course the classical ‘constraint form’ of the pairwise
hinge ranking loss, and weminimize the standard expression

max
(
0, M − (

S(I ′) − S(Ii )
))
. The combined loss function

for the shared component is

L = − log P(A|I , Q)

+ λ
∑
i

max
(
0, M − (

S(I ′) − S(Ii )
))

(1)

where, the first term is the cross-entropy loss (for training the
answering module) on (I , Q), the second term is the sum of
pairwise hinge losses that encourage the explaining model to
give high score to image I ′ (picked by humans) than other
Ii s in IN N , and λ is the trade-off weight parameter between
the two losses.

6.2 Results

Figure 15 shows qualitative examples of negative expla-
nations produced by our model. We see the original image
I , the question asked Q, the answer Apred predicted by the
VQA head in our model, and top three negative explana-
tions produced by the explanation head. We see that most of
these explanations are sensible and reasonable—the images
are similar to I but with answers that are different from those
predicted for I .

For quantitative evaluation, we compare our model with a
number of baselines: Random: Sorting the candidate images
in IN N randomly. That is, a random image from IN N is picked
as the most likely counter-example. Distance: Sorting the
candidate images in increasing order of their distance from
the original image I . That is, the image from IN N most sim-
ilar to I is picked as the most likely counter-example. VQA
Model: Using a VQA model’s probability for the predicted
answer to sort the candidate images in ascending order of

Table 4 Negative or counter-example explanation performance of our
model compared to strong baselines

Recall@1 Recall@5 Mean

Random 4.22 20.79 12.51

Distance 9.64 42.84 8.95

VQA (Antol et al. 2015) 4.53 21.65 12.42

Ours 12.23 46.70 8.12

P(A|Q, Ii ). That is, the image from IN N least likely to have
A as the answer to Q is picked as the most likely counter-
example.

Note that while I ′—the image picked by humans—is
a good counter-example, it is not necessarily the unique
(or even the “best”) counter-example. Humans were simply
asked to pick any imagewhere Qmakes sense and the answer
is not A. There was no natural criteria to convey to humans to
pick the “best” one—it is not clear what “best” would mean
in the first place. To provide robustness to this potential ambi-
guity in the counter-example chosen by humans, we evaluate
our approach using the following metrics: (1) recall@k i.e.,
how often the human picked I ′ is among the top-k in the
sorted list of Ii s in IN N our model produces (higher is bet-
ter), and (2) mean rank of human picked image (lower is
better).

In Table 4, we can see that our explanation model signifi-
cantly outperforms the random baseline, as well as the VQA
(Antol et al. 2015)model. Interestingly, the strongest baseline
is Distance. While our approach (statistically significantly)
outperforms it, it is clear that identifying an image that is a
counter-example to I from among I ’s nearest neighbors is a
challenging task. Again, this suggests that visual understand-
ing models that can extract meaningful details from images
still remain elusive.

7 Conclusion

To summarize, in this paper we address the strong lan-
guage priors for the task of visual question answering and
elevate the role of image understanding required to be suc-
cessful on this task. We develop a novel data-collection
interface to ‘balance’ the popular VQA dataset (Antol et al.
2015) by collecting ‘complementary’ images. For every
question in the dataset, we have two complementary images
that look similar, but have different answers to the ques-
tion.

This effort results in VQA v2.0 dataset that is not only
more balanced than the original VQA v1.0 dataset by con-
struction, but also is about twice the size. We find both
qualitatively and quantitatively that the ‘tails’ of the answer
distribution are heavier in this balanced dataset, which
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reduces the strong language priors that may be exploited by
models. Our complete balanced dataset is publicly available
at http://visualqa.org/ as part of the 2nd iteration of the visual
question answering Dataset and Challenge (VQA v2.0).

We benchmark a number of (near) state-of-art VQAmod-
els on our balanced dataset and find that testing them on
this balanced dataset results in a significant drop in per-
formance, confirming our hypothesis that these models had
indeed exploited language biases. We also present interest-
ing insights from analysis of the participant entries in VQA
Challenge 2017, organized on VQA v2.0 dataset.

Finally, our framework around complementary images
enables us to develop a novel explainable model—when
asked a question about an image, our model not only returns
an answer, but also produces a list of similar images that it
considers ‘counter-examples’, i.e. where the answer is not
the same as the predicted response. Producing such expla-
nations may enable a user to build a better mental model of
what the system considers a response tomean, and ultimately
build trust.
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