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Abstract
This paper addresses the problem of registering a known structured 3D scene, typically a 3D scan, and its metric Structure-
from-Motion (SfM) counterpart. The proposed registration method relies on a prior plane segmentation of the 3D scan.
Alignment is carried out by solving either the point-to-plane assignment problem, should the SfM reconstruction be sparse, or
the plane-to-plane one in case of dense SfM. A Polynomial Sum-of-Squares optimization theory framework is employed for
identifying point-to-plane and plane-to-plane mismatches, i.e. outliers, with certainty. An inlier set maximization approach
within a Branch-and-Bound search scheme is adopted to iteratively build potential inlier sets and converge to the solution
satisfied by the largest number of assignments. Plane visibility conditions and vague camera locations may be incorporated for
better efficiency without sacrificing optimality. The registration problem is solved in two cases: (i) putative correspondences
(with possibly overwhelmingly many outliers) are provided as input and (ii) no initial correspondences are available. Our
approach yields outstanding results in terms of robustness and optimality.

Keywords 2D–3D registration · Structure-from-Motion · Polynomial Sum-of-Squares optimization

1 Introduction

The emergence of affordable 3D sensors and high quality
2D cameras has triggered a growing interest in combining
both imaging modalities. 3D sensors provide faithful 3D
scene models in the form of dense 3D point clouds while
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images are used to extract texture information. High qual-
ity 3D models with mapped texture can be obtained so long
as the 2D and 3D sensors are registered in a common ref-
erence frame. The two modalities are generally registered
off-line and the 2D and 3D sensors kept rigidly attached
during acquisition. Doing so, however, may prove imprac-
tical considering that suitable acquisition conditions for one
sensor may not be adequate for the other (e.g. lighting con-
ditions for cameras, surface orientation for 3D sensors, etc.).
Some application-specific requirements (e.g. camera on a
drone and a 3D scanner on a terrestrial vehicle) may alto-
gether prohibit the sensors to be rigidly attached. When the
2D and 3D sensors are free to move with respect to each
other, reliable methods for registering the twomodalities, i.e.
establishing inter-modality correspondences and estimating
the rigid transformation aligning their reference frames, are
highly desirable.

Structure-from-Motion (SfM) techniques compute 3D
point coordinates from pixel correspondences across images.
It is thus tempting to regard the problem of registering 3D
and 2D sensors as that of aligning two 3D point sets: one set
induced by the images and the other obtained from scanner
measurements. Registering 3D point clouds is a well-studied
problem.Most methods use the Iterative-Closest-Point (ICP)
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algorithm (or its variants) (Bartoli and Castellani 2012;
Fitzgibbon 2001; Rusinkiewicz and Levoy 2001) when the
correspondences between two 3D point sets are not known.
While ICP is a local method, Breuel (2003) investigated its
global version using the Branch-and-Bound (BnB) algorith-
mic paradigm in several settings, mostly focusing upon the
registration in 2Dcase. For 3Dpoint sets registration, Enqvist
et al. (2009) employed BnB to maximize the inlier set from
the given point-to-point correspondences. Similar works also
exist in the context of absolute pose estimation problem (Jurie
1999; Enqvist and Kahl 2008). A thorough insight about
globally optimal solutions for geometric reconstruction prob-
lems can be found in Kahl and Henrion (2007). Recent work
by Yang et al. (2013) (Go-ICP) provides a practical method
for retrieving the globally optimal solution to same-scale
point set registration. However, because SfM reconstructions
suffer from a scale ambiguity, methods devised for register-
ing same-scale data cannot be employed.

Most methods handling the scale ambiguity rely on
establishing correspondences either between the 3D mea-
surements obtained by both modalities or directly between
scanned data and images (Liu and Stamos 2005; Christy et al.
1999; Ferraz et al. 2014). The sought transformation param-
eters are then obtained by either minimizing the registration
loss function ormaximizing the consensus set of inliers. Note
that Random Sample Consensus (RANSAC) (Fischler and
Bolles 1981) is the most widely used method for finding
the set of maximum inliers. RANSAC, although not usu-
ally optimal, is a well established standard method for model
estimation in the case of large amounts of outliers. Key to its
success relies on its explicit inlier setmaximization approach.
Alternative approaches include robust estimation methods
that minimize a robust loss function, such as M-estimator.
Methods based on loss functionminimization aremore prone
to outliers than their inlier-set-maximization counterparts
(Bazin et al. 2013). Such methods may provide satisfactory
results onlywhen outliers are relatively few (Fraundorfer and
Scaramuzza 2012).

Some approaches exploit scene knowledge or the Man-
hattan World assumption. For instance, methods have been
devised based on line segment matching (Liu and Stamos
2005), target segmentation (Taneja et al. 2013), repeated pat-
terns detection (Schindler et al. 2008), mutual information
maximization (Mastin et al. 2009), and extended Chamfer
matching (Zhang andChen2014).Registrationmethods rely-
ing on establishing correspondences may be undermined by
unreliable visual feature descriptors. Alternative methods,
not establishing initial correspondences, have also been pro-
posed (Paudel et al. 2014; Du et al. 2007; Corsini et al. 2013;
Plotz andRoth 2015). Themethods in Paudel et al. (2014) and
Du et al. (2007) use variants of the ICP algorithm and hence
remain susceptible to partial scene overlap, scene occlusion,
and high levels of outliers. The one in Corsini et al. (2013)

employs a RANSAC-based inlier set maximization in which
the scale problem is handled by an extension of the 4-point
congruent sets algorithm. A recent approach presented in
Plotz and Roth (2015) computes the average gradient mag-
nitude over all lighting directions under Lambertian shading.
These gradients are then matched with the image gradient to
obtain a coarse 2D–3D registration.

As far as maximizing the set of inliers is concerned,
RANSAC is non-deterministic and provides no guarantee
with respect to the optimality of its solution. Globally opti-
mal inlier set maximization methods (Li 2009; Bazin et al.
2013) have recently been proposed for problems formu-
lated through linear equations. Extensions to problems with
nonlinear equations (Yang et al. 2014) is problem-specific,
difficult and may result in much more complicated (pos-
sibly numerically intractable) mathematical formulations.
Note that a variety of methods for solving systems of nonlin-
ear polynomial equations exist. Some are based on Gröbner
bases or homotopy continuation (Verschelde 1999; Habed
et al. 2012). Others use Polynomial Sum-of-Squares (SoS)
optimization (Schweighofer and Pinz 2008; Lasserre 2000;
Parrilo 2000; Olsson et al. 2006; Chandraker et al. 2007;
Chesi et al. 2002). However, such methods are dedicated to
solving outlier-free systems and dealing with outliers is car-
ried out through RANSAC.

In this paper, we address the problem of registering a 3D
scan and a set of images of a structured scene captured by cali-
brated cameras. Our assumption is that the scene is structured
in the sense that it can be segmented into, and represented
by, planes (or planar patches). Such representation is com-
pact (Borrmann et al. 2011) and can also be useful for scene
knowledge-based refinement methods (Tamaazousti et al.
2011). Theplane-based assumption is particularly validwhen
dealingwithman-made environments, including (but not lim-
ited to) Manhattan World, urban and indoor scenes that are
abundant with planes. In our approach, we seek the metric
transformation relating the scene planes and theSfM-induced
3D structure. The SfM structure may either be represented
by a sparse set of 3D points, obtained from sparse match-
ing across images, or by planes should a sufficiently dense
matching between images be obtained and the resulting point
cloud segmented. When the SfM 3D structure is a sparse set
of points, registration is carried out by establishing point-to-
plane correspondences. Point-to-plane registration methods
are known to performbetter than their point-to-point counter-
parts (Segal et al. 2009).When the SfM-induced 3D structure
consists of planes, registration is carried out by seekingplane-
to-plane correspondences.

We rely on the fact that, under metric ambiguity, both
point-to-plane and plane-to-plane assignments can be
expressed as seconddegree polynomials in scaled-quaternion
and translation parameters. Our approach aims at maximiz-
ing the set of inlier assignmentswith guaranteed optimality of
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the consensus set. The consensus set maximization methods
(Li 2009; Bazin et al. 2013) discussed above are not applica-
ble because of the nonlinearity of the problem at hand. In our
approach, we use the BnB algorithmic paradigm to explore
the scaled-quaternion and translation parameter space. As
in Li (2009) and Bazin et al. (2013), we rely on establish-
ing optimistic and pessimistic sets of inlier assignments for
pruning branches whose most optimistic sets are worse than
the best pessimistic one. Our contribution is threefold:

(i) We propose a novel modeling of the point-to-plane (pos-
sibly point-to-patch) and plane-to-plane correspondence
problems. Our modeling is based on a rigorous Sum-
of-Squares polynomial optimization theory and is used
to derive new conditions to identify, with certainty, mis-
matched correspondences within parameter bounds. Our
registration approach relies upon such conditions to build
optimistic inlier assignment sets for given parameter
bounds.

(ii) We introduce SfM-specific constraints in our modeling,
namely, a plane visibility criterion and optional vague
constraints on the positions of the camera.

(iii) Based on our modeling and constraints, we propose a
globally optimal registration algorithm that maximizes
the inlier set of either point-to-plane or plane-to-plane
assignments in presence of putative correspondences
along with its non-combinatorial counterpart in the
absence of such correspondences.

Our paper is organized as follows: Sect. 2 provides the
main results from polynomial SoS optimization theory that
we exploit in our registration approach. The BnB paradigm
is presented in Sect. 3. In Sect. 4, we present our working
hypotheses along with the assignment polynomials arising
in the point-to-plane and plane-to-plane alignment problems.
In Sect. 5, we derive polynomial SoS conditions for identify-
ing mismatches within given registration parameter bounds.
In sect. 6, we present our modeling of additional geometric
constraints to handle the scale ambiguity, to exploit vague
knowledge on camera locations, and to perform point-to-
patch rather than point-to-plane registration. Plane visibility,
vague camera locations, and (to a lesser extent) scaling are
rather SfM-specific constraints. These, and the point-to-patch
constraints, may be used to boost the search for mismatches.
This leads us to the statement of our main result that we
give in Sect. 7 along with the description of our BnB regis-
tration algorithm for point-to-plane (or point-to-patch) and
plane-to-plane registration. The discussion about our method
is presented in Sect. 8. The results of our experiments are
summarized and discussed in Sect. 9. Section 10 concludes
our work.

2 Polynomial Sum-of-Squares Theory

In this section, we present an overview of some important
results in Polynomial Sum-of-Squares optimization theory.
These results account for the main ingredients of our regis-
tration approach.

Definition 1 (SoS and PSD) Let R[x] be the ring of polyno-
mials in n variables, x = (x1, x2, . . . , xn), with real-valued
coefficients. A polynomial f (x) ∈ R[x] is

– Positive Semi-Definite (PSD) (or nonnegative) if f (x) ≥
0 for all x ∈ R

n ;
– Sum-of-Squares (SoS) if there exist polynomials fi (x) ∈
R[x] such that f (x) = ∑

i fi (x)2.

A SoS is obviously always PSD and the converse is generally
untrue.However,Hilbert (1888) proved that, for some classes
of polynomials including quadratic ones, a polynomial is
PSD if and only if it is SoS.Checkingwhether a polynomial is
PSD isNP-hard (though decidable)while checkingwhether a
polynomial is SoS is computationally tractable using Semi-
definite Programming (SDP) and employing the so-called
Gram matrix of the polynomial.

Definition 2 (Gram matrix Powers and Wörmann 1998)
Consider a polynomial f (x) ∈ R[x] of degree 2d. Let Zd(x)
be the vector of monomials of f (x) up to monomials of
degree d. The matrix G such that f (x) = Zd(x)ᵀGZd(x)
is a Gram matrix of f (x).

Theorem 1 (Choi et al. 1995; Powers and Wörmann 1998)
A polynomial f (x) ∈ R[x] of degree 2d is SoS if and only
if there exists a real symmetric positive semi-definite Gram
matrix of f (x).

Note that since odd-degree polynomials cannot be SoS, only
even-degree polynomials are concerned by such test. Check-
ing for the existence of a positive semi-definite Gram matrix
G boils down to solving a Linear Matrix Inequality (LMI)
feasibility problem. LMI feasibility can be efficiently solved
using the interior-point algorithm (Boyd and Vandenberghe
2004). Theorem 1 allows us to check whether a polynomial
f (x) is nonnegative for every x ∈ R

n . One is often interested
in checking whether f (x) is nonnegative in a semi-algebraic
set K defined by polynomials gi (x) ∈ R[x] such that

K = {x ∈ R
n : gi (x) ≥ 0, i = 1 . . .m}. (1)

This can be answered via the so-called Positivstellensatz
(Psatz) (Parrilo 2000). The Psatz states that f (x) is nonneg-
ative on K if and only if there exist SoS polynomials σv(x)
such that

f (x) =
∑

v∈{0,1}m
σv(x)g1(x)v1g2(x)v2 . . . gm(x)vm . (2)
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Exploiting Psatz is difficult and may turn numerically
intractable in practice because (2) requires 2m SoS σv poly-
nomials. Putinar (1993) provides amuch simpler Psatz under
Archimedean conditions on the so-called quadratic module.

A module is a well-studied algebraic structure, like a vec-
tor space, defined over a ring rather than a field. Let the
set of SoS polynomials be S[x] = {gi (x)}mi=1, defining the
semi-algebraic setK. Then, we are interested in the modules
defined over the semi-ring of S[x]. A semi-ring is an alge-
braic structure similar to a ring, but there is no requirement
of additive inverse of each element. Then, a subset of ring
R[x] is a module over S[x], if it is closed under addition
and scalar multiplication. In fact, the quadratic module is a
cone of sum-of-squares –which is also a module over S[x]–
defined as follows:

Definition 3 (QuadraticmoduleWagner 2009)Thequadratic
module M(g) = M(g1, . . . , gm) ⊂ R[x] of polynomials
g1(x), g2(x), …, gm(x) is the set

M(g) =
{

σ0(x) +
m∑

i=1

σi (x)gi (x) : each σi i s SoS

}

. (3)

Definition 4 (Archimedean Wagner 2009) The quadratic
module M(g) of polynomials g1(x), g2(x), …, gm(x) is
Archimedean if N − ||x||2 ∈ M(g) for some N ∈ N.

The term Archimedean can also be related to the
Archimedean property of ordered or normed groups, and
fields. Intuitively, it is the property of having no infinitely
large elements therefore ensuring an upper bound. This prop-
erty appears as AxiomV of Archimedes’ “On the Sphere and
Cylinder”. In our case, the norm of the variables defining
module M(g) is bounded by the upper bound

√
N for some

N ∈ N.

Theorem 2 (Putinar’s Positivstellensatz Putinar 1993)
Assume the quadratic module M(g) is Archimedean. If
f (x) > 0 on K (defined by (1)), then f (x) ∈ M(g).

In the special case of degree 2 polynomials, we further
relax the Putinar’s Positivstellensatz during positivity test.
This is carried our by using only positive scalar coefficients
instead of SoS polynomials, with the help of the following
lemma.

Lemma 1 (Finsler’s 1936/37) Let y be a vector, Q a symmet-
ric matrix, B a rectangular matrix—all real-valued and of
appropriate dimensions—and γ > 0 a scalar. The following
statements are equivalent:

(i) yᵀQ y > 0,∀y �= 0 : By = 0.
(ii) There exists γ : Q + γBᵀB > 0.

Finsler’s lemma allows to convert the problem of checking
the sign of a quadratic form over a subspace into solving a
LMI problem.

3 Branch-and-Bound Search

We perform the BnB search to obtain the parameter x ∈ R
n

that maximizes the consensus among a given set of polyno-
mials parametrized by x. While doing so, our BnB algorithm
performs a hierarchical discretization of the optimization
variables via a dynamically-built search-tree. The process
of hierarchical discretization is also know as branching. The
branching process explores the parameter spacewith the help
of the optimistic and pessimistic number of inliers for each
branch, seeking an ε-gap parameter interval containing the
globally optimal solution.

3.1 Dynamic Tree Construction

Every node of the dynamic tree represents a closed convex
subspace of the optimization variables. It is defined by the
lower and upper bounds of the variables in the form of two
vectors x and x in R

n , respectively. The lower and upper
bound entries xi and xi are such that xi ≤ xi for all i =
1, . . . , n. Thus a node is defined by the variable intervals
[x, x]. x ∈ [x, x] means that each entry xi of x is such that
xi ≤ xi ≤ xi .

Starting from a known interval, say B0 = [xini t , xini t ],
the tree is constructed by recursively dividing the interval
into two or more tighter intervals. If B0 is divided into
Bk, k = 1, . . . , p intervals, it must satisfy Bk ⊂ B0 for
all k = 1, . . . , p and B0 = B1 ∪ B2 . . . ∪ Bp.

We illustrate the tree construction process with an exam-
ple of two variables, say x = (x1, x2)T , scenario. Let a0 be
the first node representing the interval B0. The interval B0

is subdivided into smaller intervals by breaking each vari-
able bounds into two. Two variables, each with two bounds
produce four combinations of smaller intervals, which are
represented by first level nodes a1, a2, a3, and a4. The com-
plete tree construction process is then carried out through
similar branching in a recursive manner. Fig. 1(left) pro-
vides the graphical illustration of two levels of branching.
The nodes created in this fashion are dynamically stored in
a tree structure as shown in Fig. 1(right). In case of higher
dimensional search space, trees are constructed in a very sim-
ilar fashion. However, the number of branching per node can
vary as per convenience.

3.2 SearchMethod

The Branch-and-Bound algorithmic paradigm relies on find-
ing the optimistic and pessimistic number of inliers within
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Fig. 1 Left: hierarchical barnching in two dimensional space. The subspaces represented by nodes ai and ai j are the results of, respectively, the
first and second levels of branching. Right: results of two levels of branching represented as by a tree structure (Color figure online)

Fig. 2 Branch-and-Bound pruning based on bounds on the number of
inliers. Node a1 is pruned because its optimistic number of inliers is
smaller than the pessimistic number of inliers of node a4 (Color figure
online)

each interval of variables. Any local solution, obtained using
as a starting point a randomly picked sample from the given
interval, can serve to determine a pessimistic number of
inliers. Therefore, the most challenging part is to efficiently
determine a tight optimistic number of inliers. An efficient
method to estimate such optimistic number of inliers for our
registration problem is given in Sect. 7. Here, we discuss the
BnB process with an example while assuming that the opti-
mistic and pessimistic inliers can be estimated for any given
interval.

Consider the inliers measure η(x) ∈ N and η, η, respec-
tively, the pessimistic and optimistic numbers of inliers
estimated in [x, x]. We represent the node-specific bounds
using the subscript corresponding to that node. For the first
level nodes, the mapping of both bounds to the axis with
the number of inliers is shown in Fig. 2. One can observe
from this diagram that the pessimistic number of inliers of
node a4 is greater than the optimistic number of inliers of
a1 (i.e. η1 < η4). Therefore, the solution corresponding to
the maximum number of inliers cannot lie in the subspace
represented by node a1. As a result, a1 can be safely pruned.
In fact, if the pessimistic number of inliers of any node is
greater than the optimistic number of inliers of any other
node, then nodes with smaller optimistic number of inliers
can always be pruned. This process can be applied repeatedly
in a recursive manner until the globally optimal number of
inliers is reached. The algorithm terminates when the max-

imum number pessimistic inliers (obtained so far) becomes
equal to the maximum optimistic inliers among all remain-
ing nodes. The complete BnB process seeking the optimal
number of inliers η∗ is summarized in Algorithm 1. In our
case, we also return the parameter x∗ corresponding to η∗.

Algorithm 1 Branch-and-Bound Search
Input: B0 Output: η∗ := η(x∗)

Global variable: η
1: η = computePessimisticInliers(B0) � Intialization
2: η∗ = processNodeBnB(B0, η) � Recursive function

3: function processNodeBnB(B, η)
4: t = computePessimisticInliers(B)
5: t = computeOptimisticInliers(B)
6: if t > η then
7: η ← t � Inliers update
8: end if
9: if (t ≤ η) then � BnB stopping criteria
10: return η

11: else
12: (B1,B2, . . . ,Bk ) = divideBranches(B)
13: for i = 1, 2, . . . , k do
14: return processNodeBnB(Bi , η)
15: end for
16: end if
17: end function

4 Assignment Polynomials

In this paper, we consider a set of two or more calibrated
cameras observing a scene consisting of a set P of at least
four distinct planes in general positions. The scene has been
scanned by a 3D sensor and segmented into these planes.
A plane Π ∈ P is given by its normal 3-vector π and
signed distance to the origin d. We also consider the set
Y of seven or more points (lying on at least four distinct
scene planes) whose projections are matched across two
or more cameras. We distinguish two working hypotheses
depending on whether image correspondences are sparse or
dense:
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– when the set Y is sparse, the SfM-induced (Hartley and
Zisserman 2004) 3D points are likewise sparse. Each
reconstructed point is then represented by a y ∈ R

3 of
Cartesian coordinates;

– should Y be sufficiently dense, the SfM-induced point
cloud may further be segmented into a set of planes Pr .
Each such plane is represented by its normal 3-vector πr

and distance to the origin dr .

The coordinates of the SfM-reconstructed points and/or
planes and those of the scanned scene planes are represented
in two distinct reference frames. The two representations
of the scene also differ by a generally unknown scale
factor. Consequently, the transformation aligning the SfM-
reconstructed scene (whether represented by points or by
planes) and the scanned scene is represented by a 3 × 3
scaled-rotation matrix Q and a translation 3-vector t. A
quaternion representationwith no enforcement of unit quater-
nion q = ( z u v w )ᵀ is used to represent the scaled-rotation
matrix Q:

Q =
⎡

⎣
z2 + u2 − v2 − w2 2uv − 2wz 2uw + 2vz

2uv + 2wz z2 − u2 + v2 − w2 2vw − 2uz
2uw − 2vz 2vw + 2uz z2 − u2 − v2 + w2

⎤

⎦ .

Aligning the SfM and scanned representations consists in
finding Q and t that together map the 3D SfM-reconstructed
points, or alternatively the SfM-induced planes, to their cor-
responding planes in the scanned scene. The problem of find-
ing the correct matches between the 3D SfM-reconstructed
points and scanned planes is referred to as the “point-to-
plane” assignment problem. That of finding the correctmatch
between the SfM and scanned planes is referred to as the
plane-to-plane assignment problem. In both cases, the assign-
ments are described by polynomials in the unknown entries
of Q and t and which we denote by a vector x ∈ R

7 such that
x = (qᵀ, tᵀ)ᵀ.
Point-to-Plane Assignment Polynomials When relying on
point-to-plane assignments for registering the image and
scanner modalities, we consider A ⊂ Y × P as a set of
putative point-to-plane assignments (× refers to the carte-
sian product) and a = (Y ,Π) ∈ A is one such assignment.
The polynomial f a(x) in R[x] induced by a is given by:

f a(x) := πᵀ(Qy + t) − d. (4)

If x is the true registration parameter vector, then for every
correct assignment a ∈ A, f a(x) = 0. Note that the residual
of polynomial f a(x) is the orthogonal distance from point
Y to plane Π for the parameter x. Accounting for scan-
ning, reconstuction and round-off errors, this residual must
lie within a reasonable margin for an assignment to be con-
sidered an inlier. Given ξ ≥ 0, a sufficiently small predefined
distance threshold, inlier assignments ought to satisfy

| f a(x)| ≤ ξ where ξ ≥ 0. (5)

Note that ξ representing a geometric error, it is fairly easy to
set. We are interested in finding x that maximizes the number
of assignments by assessing the exact point-to-plane distance
measure.
Plane-to-Plane Assignment Polynomials When carrying out
plane-to-plane registration, the set of putative assignmentsA
represents a subset ofPr ×P . If the euclidean point Y relates
to the SfM reconstructed point Yr by yr = Qy + t, then the
Euclidean plane Π and reconstructed plane Πr are related
by,

[
πr

−dr

]

= δ

[
Qᵀ 0
tᵀ 1

] [
π

−d

]

, (6)

such that π
ᵀ
r yr − dr = π

ᵀ
r (Qy + t) − dr = 0 is satisfied.

Now, after introducing the quaternion terms, the assignment
a = (Πr ,Π) ∈ A can be described by a 4-vector of degree
2 polynomials

f a(x) := qᵀq
[

πr

−dr

]

+ δ

[
Qᵀ 0
tᵀ 1

] [
π

−d

]

(7)

Should x be the true registration parameter vector, all four
polynomials simultaneously vanish for some value of δ =
±1. Similar to (5), accounting for errors, an inlier assignment
must satisfy

| f ai (x)| ≤ ξ for i = 1, 2, 3, 4 (8)

where f a(x) = ( f a1 (x), f a2 (x), . . . , f a4 (x)). However, this
time, the residuals do not correspond to a geometric distance
but are rather of an algebraic nature. The threshold ξ in this
case is hard to set. Nevertheless, a useful threshold can gen-
erally be obtained empirically such as trial-and-error. The
work herein assumes such threshold is given.

5 Polynomial SoS Assignment Conditions

Our goal is to simultaneously estimate the registration param-
eters x and associated set of correct assignments. The
problem can be solved by considering either point-to-plane
or plane-to-plane assignments. Note, however, that we vol-
untarily do not distinguish between the cases in which the
initial setA is a point-to-plane putative assignments set from
that in which it is a plane-to-plane one. Unless stated other-
wise, f a(x) is always considered as a vector of polynomials
of appropriate dimension p: a 1-vector with p = 1 to rep-
resent the single polynomial (4) induced by a point-to-plane
putative assignment or, with p = 4, a 4-vector of polyno-
mials (7) induced by a plane-to-plane assignment. We use
f ai (x) to refer to the i th entry of f a(x), 1 ≤ i ≤ p.
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We may assume, for the sake of clarity of the exposition,
that, in the case of plane-to-plane assignments, the value of
δ = ±1 in (4) is known. It will be made clear, further in this
section (see Result 3), how the two cases are handled in our
method.

Our registration approach is based on the BnB algorithmic
paradigm and branching is carried out on the space of regis-
tration parameters x, as discussed in Sect. 3. At each iteration,
we are given parameter interval [x, x]. We probe this interval
for potentially correct assignments by attempting to solve,
for each assignment, the following problem:

Problem 1 For given a ∈ A and threshod ξ ≥ 0, is there a
vector x ∈ [x, x] such that | f ai (x)| ≤ ξ for all i = 1 . . . p?

In other words, through Problem 1, one would like to know
whether all polynomials in f a(x) are within the desired mar-
gin for some xwithin the considered bounds. The assignment
would then qualify as a potential inlier, i.e. a possibly correct
assignment, within these bounds. This is however difficult to
answer. One alternative is to consider the following problem:

Problem 2 For given a ∈ A and threshod ξ ≥ 0, is there a
polynomial f ai (x) in vector f a(x) satisfying | f ai (x)| > ξ for
every x ∈ [x, x]?

If the question of Problem 2 is answered in the affirma-
tive, the one of Problem 1 is answered in the negative: i.e.
there exists no x ∈ [x, x] with which | f ai (x)| ≤ ξ for all
i = 1, . . . , p. In such case, the assignment a is definitely an
outlier, i.e. incorrect assignment, within the bounds. Other-
wise, it is a potential inlier.

One can rely on Putinar’s Theorem 2 to solve Prob-
lem 2. To do so, assume we are given a set of polynomials
gk(x) whose quadratic module M(g) is Archimedean: if,
for a scalar λai such that −1 ≤ λai ≤ +1, the polynomial
λai f

a
i (x) > ξ for all x ∈ K = {x ∈ R

7 : gk(x) ≥ 0, k =
1 . . .m}, then λai f

a
i (x) ∈ M(g). Hence, SoS polynomials

σk(x) and scalar −1 ≤ λai ≤ +1 exist such that:

λai f
a
i (x) − ξ −

m∑

k=1

σk(x)gk(x) is SoS. (9)

Note that, in general, if (9) is satisfied, then λai f
a
i (x) may

not necessarily be positive in K since K could possibly be
empty. However, so long as K is not empty and σk(x) SoS
polynomials and scalar λai can be found, one is guaranteed
thatλai f

a
i (x) > ξ everywhere inK since

∑m
k=1 σk(x)gk(x) >

0 in K. Moreover, if −1 ≤ λai ≤ +1, then this guarantees
that either f ai (x) > ξ or − f ai (x) > ξ everywhere in K:
assignment a would be an outlier.

There are two main pending issues before one is able to
use (9). First, one needs to find a set of polynomials gk(x),

representative of the parameter intervals, whose quadratic
module M(g) is Archimedean. Second, it is so far unclear
how the σk(x) SoS polynomials can be found. Let us explore
now the first of these issues. Note that theArchimedean prop-
erty is a matter of representation and the quadratic module
of the set constructed from the linear interval constraints
xk − xk ≥ 0 and xk − xk ≥ 0 is not Archimedean. In the
following, we show that quadratic polynomial inequalities
derived from such bound constraints yield an Archimedean
quadratic module.

Proposition 1 Consider the polynomials gk(x) = (xk −
xk)(xk − xk), k = 1 . . . 7. The quadratic module M(g) of
these polynomials is Archimedean.

Proof As per Definition 4, for M(g) to qualify as
Archimedean, one ought to demonstrate that N−∑n

k=1 x
2
k ∈

M(g) for some N ∈ N. Definition 3 indicates that, for
N − ∑n

k=1 x
2
k to be in M(g) with the gk(x) polynomials

of this proposition, there must exist SoS polynomials σ0(x)
and σk(x), k = 1 . . . 7, such that

N −
n∑

k=1

x2k = σ0(x) +
7∑

k=1

σk(x)(xk − xk)(xk − xk). (10)

In particular, because σ0(x) must be SoS, the proof boils
down to establishing the existence of SoS σk(x), k = 1 . . . 7
that can turn σ0(x), of the form

σ0(x) = N −
7∑

k=1

x2k −
7∑

k=1

σk(x)(xk − xk)(xk − xk), (11)

into a SoS polynomial. The polynomialσ0(x) can be rewritten
as

σ0(x) = N −
7∑

k=1

(
x2k + σk(x)(xk − xk)(xk − xk)

)
. (12)

Let us first show that a PSD, not necessarily SoS,σ0(x) exists.
To do so, we thus seek σk(x), k = 1 . . . 7, for which there
exists N satisfying

N≥maxx

(
7∑

k=1

(
x2k + σk(x)(xk − xk)(xk − xk)

)
)

. (13)

Such N exists if the polynomial argument of max(.) is con-
cave. Observe that using zero-degree SoS polynomials σk
that are independent from x, i.e. nonnegative real scalars,
this polynomial is quadratic. Its expansion into

7∑

k=1

(
(1 − σk)x

2
k + σk(xk + xk)xk − σk xk xk

)
(14)
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shows that its Hessian matrix, H = diag((1 − σ1), (1 −
σ2), . . . , (1−σ7)), is diagonal. This polynomial is then con-
cave if H is negative-definite which happens for σk > 1 for
k = 1 . . . 7. This shows that N and nonnegative scalars (SoS)
σk , k = 1 . . . 7, do exist for σ0(x) to be PSD. Furthermore,
σk being scalars, σ0(x) is a quadratic polynomial. As dis-
cussed in Sect. 2, Hilbert (1888) showed that, for quadratic
polynomials, every PSD polynomial is SoS. �

Let us now consider the problem of checking whether
or not (9) is SoS when considering the polynomials gk(x),
k = 1 . . . 7 of Proposition 1. If so the assignment a is defi-
nitely an outlier within the bounds. If one knows beforehand
that λai f

a
i (x) − ξ must be positive, a sequence of σk(x) of

increasing degree can be used until a positivity certificate
is obtained. However, for the problem at hand, when a set
of σk(x) of some degree fails to deliver such certificate,
it is either because λai f

a
i (x) − ξ is indeed not positive or

the required degree for a positivity certificate has not been
reached. The good news here is that, within a BnB search, the
considered bound intervals [x, x] get smaller and we show in
the following that using nonnegative scalars σk rather than
SoS polynomials of higher degree suffices. To see this, con-
sider the following proposition:

Proposition 2 Let x̂ ∈ R
7 with known entries. The following

statements are equivalent

(i) λai f
a
i (x̂) − ξ > 0.

(ii) There exist SoS polynomials σk(x), k = 1 . . . 7:

λai f
a
i (x) − ξ +

7∑

k=1

(xk − x̂k)
2σk(x) > 0. (15)

If fa(x) is a polynomial of degree 2, nonnegative scalars
σk , instead of σk(x) for all k, is sufficient.

Proof (ii) �⇒ (i) is straightforward.
For (i) �⇒ (ii), since λai f

a
i (x) ∈ M(g), the SoS polynomial

of (9) can be expressed as,

σ0 = λai f
a
i (x) − ξ −

7∑

k=1

σk(x)gk(x),

= λai f
a
i (x) − ξ +

7∑

k=1

(xk − x̂k)
2σk(x). (16)

When f ai (x) is a polynomial of degree 2, let G f be the

Gram matrix of λai f
a
i (x) − ξ and Gx be that of

∑7
k=1(xk −

x̂k)2. These matrices are defined by: λai f
a
i (x) − ξ =

Z1(x)ᵀG f Z1(x) and
∑7

k=1(xk − x̂k)2 = Z1(x)ᵀGxZ1(x).
Note that Gx is PSD and can be written as Gx = UᵀU with
Ux̂ = 0. The Gram matrix of the polynomial in (15) is then

written as G f + Uᵀdiag(σ1, σ2, . . . , σ7)U. A direct applica-
tion of Lemma 1 is that the latter matrix is positive-definite
if and only if Z1(x̂)ᵀGfZ1(x̂) > 0. This, not only shows
(i) �⇒ (ii), but also provides their equivalence. �
Although, the equivalence can also be proven using one σ

instead of multiple σk for the case of degree 2 polynomials,
the Proposition 2 is only a proof that the outlier certificate
can definitely be obtained when the bounding intervals get
smaller during the BnB search. Since we are interested in
detecting outliers as early as possible, we suggest using mul-
tiple σk .

We now state the following preliminary result:

Result 3 (Preliminary) Let ξ ≥ 0 be a predefined threshod
distinguishing inliers from outliers. Consider two vectors x
and x in R7 whose respective entries xk and xk satisfy xk ≤
xk for k = 1 . . . 7. Let Kb be the set

Kb = {x ∈ R
7 : gk(x) := (xk − xk)(xk − xk) ≥ 0}, (17)

a ∈ A be either a point-to-plane or plane-to-plane putative
assignment, and f a(x) the vector of polynomials f ai (x), i =
1 . . . p, induced by this assignment [(4) for point-to-plane
and (7) for plane-to-plane].

If, for at least one of the polynomials f ai (x), a scalar−1 ≤
λai ≤ +1 and nonnegative scalars σk exist such that

λai f
a
i (x) − ξ −

7∑

k=1

gk(x)σk (18)

is SoS, then λai f
a
i (x) > ξ , hence | f ai (x)| > ξ , for every xk ≤

xk ≤ xk. In this case, assignment a is then guaranteed to
be an outlier (a point-to-plane or plane-to-plane mismatch)
within these bounds. Assignment a is a potential inlier only if
(18) is not SoS for any i = 1 . . . 4. Note that, in the case of a
plane-to-plane assignment a, the latter is deemed an outlier
only if (18) is found to be SoS for both values ±1 of δ in (7).

Furthermore, a consequence of Proposition 2 is that when
xk−xk tends towards zero, we are guaranteed that any outlier
within the bound is detected. Indeed, this can be seen by
noticing that when xk = xk = x̂k , polynomial (18) turns into
(15).

Whether (18) is SoS can be tested by converting it into its
corresponding Gram matrix LMI feasibility problem for the
λai and σk indeterminates. Both λai and σk appear in their
respective Gram matrices while searching for the SoS cer-
tificate of (18).Although the guarantee of identifying outliers
(using scalar multipliers σk)is demonstrated with a zero-gap
bound, in practice, outliers are detected very early in the
process. As demonstrated in our experiments, the ability to
detect outliers is improved with every size reduction of the
investigated bounds. It may be tempting to use higher degree
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σk(x) SoS polynomials to boost the process. However, this
is unnecessary and yields slower performances compared to
branching.

6 Semi-Algebraic Sets for Geometric
Constraints

Recall that our goal is to register a SfM-induced recon-
struction of points or planes and a plane-segmented scanned
scene. Unlike when dealing with 3D-3D registration, addi-
tional geometric constraints emanating from the cameras can
be exploited. Some may be implicit, such as plane visibility,
others, such as vague camera locations,may be obtained from
extra knowledge. In addition, when dealing with segmented
scanned scenes, one is given planar patches rather than infi-
nite planes. These patches can be used for point-to-patch in
lieu of point-to-plane registration to restrict the location of
theSfM-inducedpoints patches. In all cases, these constraints
are described by quadratic polynomial inequalities that may
augment the semi-algebraic set Kb derived from the bound
constraints. Indeed, adding new polynomial inequalities to
those inKb has no effect on the Archimedean property of its
quadratic module and Proposition 2 still holds. Note though
that some of the constraints presented herein, which we refer
to as “generic constraints”,may be exploited in both point-to-
plane and plane-to-plane registration. Others are applicable
only to point-to-plane registration.

6.1 Generic Constraints

Whether engaging in point-to-plane or plane-to-plane, extra-
knowledge about vague camera locations or scale informa-
tion can be used as additional registration constraints.
Camera Bounds A camera center C may lie within a box
delimited by six planes in the set Ψ = {Ψk}6k=1 defined by
their normal vectors ψk and signed distances dk , as illus-
trated in Fig. 3(left). Such information can be obtained from
application-specific knowledge (GPS, moving vehicle, etc.).
This knowledge can be used for further enforcing the search
for point-to-plane or plane-to-plane outliers and turns very
useful when no putative correspondences are initially known.
Consider the cartesian coordinate vector c of the camera cen-
ter and let

Kc = {x ∈ R
7 : hk(x) := (ψ

ᵀ
k (Qc + t) − dk)δk ≥ 0,

k = 1 . . . 6} (19)

where δk is the known sign, with respect to Φk , of any point
within the considered box. If hk(x) are positive, the camera
center is within the box. One can now test if λai f

a
i (x)−ξ > 0

whenever the camera center is in the box defined by Kc.

Quaternions and Scale In the absence of scale, quaternion
parameters demand that qᵀq = 1. When dealing with a
scaled scene, the rotation is represented by a scaled quater-
nion matrix and one can only enforce that qᵀq > 0. It
is understood that, in order to keep the problem numeri-
cally tractable via the Archimedean property, all registration
parameters need to be bounded. The scale of the scene is no
exception. When a better lower bound s > 0 on the scale s is
available, it is advised to enforce thatqᵀq ≥ s. This condition
does not appear in the set Kb and hence must be accounted
for. Assuming the entries xk , k = 1 . . . 4 of x correspond the
quaternion parameters, we consider the set

Kq =
{

x ∈ R
7 : q(x) := −s +

4∑

k=1

x2k ≥ 0

}

(20)

Furthermore, since both q and −q yield the same rotation
matrix, the initial lower bound of one of the quaternion
parametersmay arbitrarily be chosennonnegative. The rest of
the quaternion parameters may be initially bounded between
−√

s and
√
s where s is the upper bound of the scale.

6.2 Additional Point-to-Plane Geometric Constraints

In addition to camera bounds and scale constraints, other
constraints can be used when dealing specifically with point-
to-plane registration.
Patches Consider a plane Π , from the scanned scene, and
three or more planes Φk , not necessarily from the scene,
orthogonal to it. The Φk planes must be chosen such that
their intersection with Π defines a convex region on Π .
The set of points on Π within this convex region is a
patch. In practice, four such planes are adequate to represent
meaningful patches in man-made environments, as shown in
Fig. 3(middle). Each Φk is described by its normal vector φk

and signed distance dk . Let us denote by Φ the set {Φk}4k=1
and let δk = ±1 be the known sign, with respect to Φk ,
of a scanned point lying within the considered region. In the
point-to-patch case,we can then identify outliers by checking
whether point-to-plane f ai (x) of (4) is positive everywhere
within the bounds of x and in the set

KΦ
a = {x ∈ R

7 : pk(x) := (φ
ᵀ
k (Qy + t) − dk)δk ≥ 0,

k = 1 . . . 4} (21)

The polynomials in this set indicate the sign of the point Y ,
with coordinates y, with respect to each Φk .

Plane VisibilityConsider a point Y on a scene planeΠ . If this
point is imaged by two cameras, then these can only observe
the same side of the plane: the one on which the point lies,
as shown in Fig. 3(right). In order for the cameras to observe
the same side of the plane, their camera centers must lie on
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Fig. 3 Illustrations of camera bounds delimited by six planes (left) defining a bounding box, plane as a patch delimited by four planes (middle),
and plane visibility for two sets of cameras lying on two different sides (right) (Color figure online)

one side with respect to Π . Camera centers can easily be
obtained from the SfM-calculated camera matrices: they are
their right null space. Let Ck be the camera centers of n ≥ 2
cameras with cartesian coordinates ck . We define the setKδ

Π

such that

Kδ
Π = {x ∈ R

7 : vk(x) := (πᵀ(Qck + t) − d)δ ≥ 0,

k = 1 . . . n} (22)

where δ = ±1. We denote K+
Π the set Kδ

Π obtained using
δ = +1 andK−

Π otherwise. A given assignment a is a definite
outlier if fa(x) > 0 inK+

Π and inK−
Π (in addition to patch and

bounds conditions). Furthermore, planes for which v1(x) and
v2(x) (for two cameras 1 and 2) always have opposite signs
within the bounds of x cannot be assigned any points visible
in those cameras. This would indicate that the plane always
cuts the base-line of the two camera and cannot contain points
visible in both cameras. Testing this can be carried out by
checking, for δ = ±1, whether

{
∃σk : v1(x) − ∑7

k=1 gk(x)σk is SoS,

∃σk : −v2(x) − ∑7
k=1 gk(x)σk is SoS.

(23)

If for both values of δ, each polynomial in (23) is SoS, plane
Π shall not be considered for assigning SfM points emanat-
ing from those cameras.

7 Registration

The preliminary results in Result 3 apply to both point-
to-patch and plane-to-plane registration problems. Based
on these results and the semi-algebraic sets presented in
Sect. 6, we are now ready to state additional results for
point-to-plane, or rather plane-to-patch, and plane-to-plane
registration. These results along with those in Result 3 are

used in our BnB registration algorithm which is also pre-
sented in this Section.

Result 4 (Point-to-patch) Let ξ ≥ 0 be a predefined threshod
distinguishing inliers from outliers. Assume we are given a
putative point-to-plane assignment a = (Y ,Π) ∈ A, a patch
on Π delimited by the planes in the set Φ = {Φk}4k=1, lower
x and upper x bounds on the registration parameter vector
x, bounds s and s on the scale of the scene, and (optionally)
bounds defined by planesΨ = {Ψk}6k=1 on the location of the
camera centers of one (possibly more) camera. One would
like to know whether or not the SfM-reconstructed point Y
may lie onΠ , whileΠ is visible by the cameras observing Y ,
within the patchΦ with registration parameters in the bounds
x and x. In order to establish whether such assignment is
possible, we consider the set

K = {x ∈ R
7 : x ∈ Kb ∩ KΦ

a ∩ Kδ
Π ∩ Kc ∩ Kq) (24)

resulting from the intersection of all the sets defined by (17),
(21), (22), (19) and (20). If there exist a scalar −1 ≤ λa ≤
+1 and nonnegative scalars σk , σ ′

k , σ
′′
k , σ

′′′
k and σ such that

[considering f a(x) given by (4)]

λa f a(x) − ξ − ∑7
k=1 gk(x)σk − ∑4

k=1 pk(x)σ
′
k

−∑n
k=1 vk(x)σ ′′

k − ∑6
k=1 hk(x)σ

′′′
k − q(x)σ

(25)

is SOS, then | f a(x)| > ξ in K and the assignment a is a
definite outlier. It is a potential inlier otherwise.

Note that a point-to-planeversionof this results can simply
be obtained by not using KΦ

a to construct K.

Result 5 (Plane-to-plane)Let ξ ≥ 0 be a predefined threshod
distinguishing inliers from outliers. Assume we are given
a putative plane-to-plane assignment a = (Πr ,Π) ∈ A,
lower x and upper x bounds on the registration parameter
vector x, bounds s and s on the scale of the scene, and (option-
ally) bounds defined by planes Ψ = {Ψk}6k=1 on the location
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of the camera centers of one (possibly more) camera. One
would like to know whether or not the SfM-reconstructed
plane Πr may be aligned withΠ for registration parameters
in the bounds x and x. In order to establish whether such
assignment is possible, we consider the set

K = {x ∈ R
7 : x ∈ Kb ∩ Kc ∩ Kq) (26)

resulting from the intersection of all the sets defined by (17),
(19) and (20). If, for at least one polynomial f ai (x), i =
1 . . . 4, there exists a scalar−1 ≤ λai ≤ +1 and nonnegative
scalars σk , σ ′

k and σ such that

λai f
a
i (x) − ξ −

7∑

k=1

gk(x)σk −
6∑

k=1

hk(x)σ ′
k − q(x)σ (27)

is SOS, then | f ai (x)| > ξ in K and the assignment a is a
definite outlier. It is a potential inlier only if (27) is not SoS
for any i = 1 . . . 4.

Recall that SoS problems (25) and (27) in these results
can be solved as a LMI feasibility problem.

Our registration approach is based on Results 4 and 5 .
In the following, we use the term point-to-plane to refer to
both point-to-plane and point-to-patch assignments. Since
the goal of the BnB algorithm is to estimate the registration
parameters yielding the largest number of inliers, our algo-
rithm is provided either a set of putative point-to-plane or
plane-to-plane correspondences. In the absence of such cor-
respondences, we consider every SfM-induced point or plane
to be putatively assigned to all the planes (or patches) in the
scanned scene. A dynamically-built search tree, whose nodes
are registration parameter bounds, allows to explore the space
of parameters, as discussed in Sect. 3.

Optimistic Inliers Given a set of putative assignments and
the semi-algebraic set for parameter bounds, our algorithm
estimates the optimistic number of potential inliers η (and the
corresponding inlier set I) usingResults 4 and 5 , with appro-
priate additional semi-algebraic sets for generic constraints.
To qualify an assignment to be an inlier, we distinguish two
cases:

1. Putative point-to-plane (resp. plane-to-plane) correspon-
dences are provided: a point-to-plane (resp. plane-to-
plane) assignment qualifies as a potential inlier if (25)
(resp. 27) is not proven SoS for any polynomial in vector
f a(x) for the given assignment.

2. No putative correspondences are provided: all possi-
ble point-to-plane (resp. plane-to-plane) assignments are
tested. An assignment is considered a potential inlier if
(25) (resp. 27) is not proven SoS for any polynomial in
vector f a(x) of that assignment.

Now we summarize the process of estimating optimistic
number inliers in Algorithm 2.

Algorithm 2 Optimistic Inliers Estimation

Input: K,A Output: η, I
Initialization: I = A

1: for each a ∈ A do � Using (25) or (27)
2: if ∃ i ∈ {1, . . . , p}:
3: ∃ λai ∈ [−1,+1], λai f ai (x) > ξ,∀x ∈ K then
4: I = I − a
5: end if
6: end for
7: η = |I| � Number of inliers

Pessimistic Inliers A local refinement method is used to
obtain a pessimistic number of inliers η (and the correspond-
ing inlier set I) for each node. To maximize the pessimistic
number of inliers, a local method iteratively refines the reg-
istration parameters. The refinement process starts from the
mid-values of the registration parameter bounds. In order to
be representative of the node, it searches the optimal solution
within the investigated bounds. Given the set of optimistic
inlier assignments I (obtained from Algorithm 2) and the
semi-algebraic set Kb representing the bounds under con-
sideration, the algorithm iteratively updates the registration
parameters to:

x̂ = argmin
x∈Kb

∑

a∈I
|| f a(x)||2. (28)

The process of estimating the pessimistic number inliers is
given by Algorithm 3.

Algorithm 3 Pessimistic Inliers Estimation
Input: Kb, I Output: η, I
1: Obtain x̂ for Kb and I. � Using (28).

Initialization: I = Ø
2: for each a ∈ I do
3: if ∀ i ∈ {1, . . . , p}, | f ai (x̂)| ≤ ξ then
4: I = I ∪ a
5: end if
6: end for
7: η = |I| � Number of inliers

To summarize, the optimistic and pessimistic inliers are
obtained usign Algorithm 2 and Algorithm 3, respectively.
Then, the registration parameters yielding the largest number
of inliers are obtained using Algorithm 1. In our implemen-
tation, the qualified node is branched along its longest edge
resulting in two new nodes to be processed. The node cor-
responding to the maximum number of pessimistic inliers is
processed first.
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8 Discussion

In general, our method converges while the explored bounds
are still quite large. This suggests that incorporating ξ in the
SoS test plays a limited role and most of the time can by
ignored. What matters most is that potential inliers, as per
the local method’s measure, not to be considered outliers
by the SoS test. Without the threshold ξ , the SoS test is of
the form (dropping λ for the sake of the argument) f (x) −∑7

k=1 σk(xk − xk)(xk − xk) > 0 which, when true, means
f (x) >

∑7
k=1 σk(xk − xk)(xk − xk) for all x within bounds.

No assignment would be mistakenly considered as an out-
lier by the SoS test so long as

∑7
k=1 σk(xk−xk)(xk−xk) > ξ

for all xwithin the bounds. Note that
∑7

k=1 σk(xk −xk)(xk −
xk) is concave and its maximum is 1

4

∑7
k=1 σk(xk − xk)

2.
Therefore, the SoS test not considering ξ would be safe as
long as it produces no σk such that 14

∑7
k=1 σk(xk−xk)

2 < ξ .
Note that σk compensate the nonconvexities in f (x) and

are generally relatively large. Hence for the SoS test to be
unsafe when ξ is not included, the size of the bound-gap
(xk − xk)

2 for k = 1 . . . 7 must be very small. The algorithm
converges before reaching such small bound.

9 Experiments

We conducted experiments with seven different benchmark
real datasets shown in Fig. 4 whose details can be found in
Jensen et al. (2014) and Strecha et al. (2008). Both point-
to-plane (more precisely, point-to-patch) and plane-to-plane
registration methods have been tested. Our algorithm was
implemented inMATLAB2014b and the SoS problems were
solved using the LMI Control Toolbox.1 All experiments
were carried out on a 8GB RAM Pentium i7/3.40GHz.
The SfM reconstructions and segmented scene planes were
obtained using the openMVG Toolbox (Moulon et al. 2013)
and Hough Transform based plane detector (Borrmann et al.
2011). All the planes were extracted directly from the point
clouds using the source code provided in Hough Transform
Plane Detector (2015) with an accumulator designed in Bor-
rmann et al. (2011) to speed up the Hough Transform. For the
experiments with unknown scale of the reconstruction, the
initial bound on reconstruction scale was set to 0.2–5.0 (five
times in scale in both directions). Four different error mea-
surement metrics were defined to evaluate the registration
quality: the RMS 3D error on normalized point sets, errors
in rotation R, translation t, and scale s. For N experiments,

1 Our source code can be found at: www.dropbox.com/sh/
vvkeaf5fcaxwsyr/AACqTUJE3FTXeiPnFkCbOSSXa?dl=0.

these are defined as follows :

ΔR =
√
√
√
√ 1

3N

N∑

i=1

‖r∗i − r‖2, ΔT =
√
√
√
√ 1

N (‖t‖2)
N∑

i=1

‖t∗i − t‖2,

ΔS =
√
√
√
√ 1

N (s2)

N∑

i=1

(s∗
i − s)2,

where r is a vector obtained by stacking three rotation angles
in degrees. The estimated variables are represented with *
and variables without it are their ground truth.

Note that all SoS inlier/outlier tests have been carried out
with ξ = 0.

9.1 Point-to-Plane Registration

To perform point-to-plane registration, we selected only the
prominent planes from the Euclidean scene. This allowed us
to select more points while keeping the exhaustive combina-
tions between points and planes within practical limits. It is
important because, when a set of sparse points are selected
randomly, we wish to ensure that at least 7 points lying on
4 different planes are included. In this case, we conducted
two sets of experiments : one with and one without putative
point-to-plane correspondences.

9.1.1 Inlier Set Maximization with Correspondences

Themethod was first tested for known putative correspon-
dences where the synthetic inliers/outliers were generated
under real data setups. No bounds on cameras were used
in these experiments. To test robustness to outliers, we var-
ied the number of outliers up to 90% for Scene73 and
compared the results against the linear 12-point RANSAC.
In theory, only 7 point-to-plane assignments (at least of 4
different planes) are sufficient to estimate the similarity trans-
formation. Therefore, 7-point RANSAC is preferred over
12-point RANSAC, if an efficient minimal solver is avil-
able for 7 point-to-plane assignments. Up to our knowledge,
there exists no such minimal solver. Ideally, generic polyno-
mial solvers may also serve the purpose. But unfortunately,
our attempts with such solvers for minimal correspondences
case (7 equations, 7 variables, and 2 degree, form 7 point-
to-plane correspondences), computation timewas significant
enough to render this solution impractical within the frame-
work of RANSAC.

Figure 5 shows that our method consistently detects 21
inliers for every experiment while RANSAC fails to detect
the least number of required inliers starting from 45% of out-
liers. Note that the numbers of inliers reported here are true
positive inliers. Furthermore, our method does not detect any
false positive inliers. Figure 6 shows the errors in rotation,
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(a) (b)

(c) (d) (e)

(f) (g)

Fig. 4 Sample image and the segmented scene (shown in different colors for each plane) of seven different datasets. a Scene23, b Scene24, c
Scene27, d Scene29, e Scene73, f Fountain and g Herz-Jesu (Color figure online)

Fig. 5 Point-to-plane registration for Scene73 with correspondences and no camera bounds. Left: number of processed points and time taken for
various levels of outliers. Right: number of detected inliers using RANSAC and our method (Color figure online)

translation, and scale for the same scene with various lev-
els of outliers. The convergence graph of our method with
50% outliers is shown in Fig. 7 for Scene23, Scene73, and
Fountain whose quantitative results are shown in Table 1.
Figure 8 shows the evolution of the volume and the number
of nodes remaining to be processed for the first 50 iterations
on Scene23 with 50% outliers. The qualitative results for
scene73 are shown in Fig. 9.

Furthermore, we conducted experimetns with theminimal
solver of Ramalingam and Taguchi (2013) within RANSAC

while allowing it to run for as long as the proposed method
did. Note that the minimal solver Ramalingam and Taguchi
(2013) is designed for rigid body transformations. Therefore,
the reconstruction scale needs to be known beforehand. We
favored the solver of Ramalingam and Taguchi (2013) by
providing the exact ground truth scale. The experiments with
Ramalingam and Taguchi (2013) for Scene73 are reported
in Fig. 10. Observe that RANSAC with Ramalingam and
Taguchi (2013) achieves a success rate of 100% for outliers
upto 50%. The success rate then drops to 69% for 60% of
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Fig. 6 Point-to-plane registration for Scene73 with increasing number of outliers, with correspondences and no camera bounds. Left: error in
rotation. Middle: error in translation. Right: error in scale (Color figure online)

Fig. 7 Point-to-plane registration convergence graph for 50% outliers, with correspondences and no camera bounds. Left: Scene23. Middle:
Scene73. Right: Fountain (Color figure online)

Table 1 Point-to-plane registration with correspondences and no camera bounds: quantitative results obtained with 50% outliers

ΔR (degree) ΔT (%) ΔS (%) 3D error Time (s)

Scene23 0.785 1.75 0.21 0.0163 168.95

Scene73 1.263 4.63 1.68 0.0219 153.39

Fountain 0.524 1.21 0.53 0.0056 546.41

Fig. 8 Point-to-plane registration for Scene23 with correspondences, no camera bounds, and 50% outliers. Left: number of remaining nodes versus
search iterations. Right: number of remaining volume versus search iterations (Color figure online)
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Fig. 9 Point-to-plane registration for Scene73 with correspondences. Left: recovered point-to-plane correspondences with all the processed points
in red. Right: registration between reconstruction (in green) and the segmented scene (Color figure online)

Fig. 10 Left to right: errors in rotation, errors in translation, and number of detected inliers obtained by our method compared againstMinimal-Point
Ransac with known scale (Ramalingam and Taguchi 2013). Experiments conducted with Scene73 (Color figure online)

Fig. 11 Point-to-plane registration for Scene23. Left: number of iterations versus number of cameras. Right: Convergence graph for the case w/o
correspondences with three 1m-box bounded cameras (Color figure online)

outliers. All the experiments conducted with more than 70%
of outliers failed.

9.1.2 Inlier Set Maximization w/o Correspondences

In the absence of initial correspondences, each point was
assigned to all available planes. We conducted several exper-
iments with bounded cameras by changing the number of

bounded cameras and camera bounding box size. The num-
ber of iterations taken for these configurations are shown
in Fig. 11(left) for Scene23. The average time per itera-
tion is 1.15sec. In the same figure, we also provide the
number of iterations taken for the “with correspondences”
case with 50% outliers and 2m camera bounding boxes. The
case of a single bounded camera is equivalent to unbounded
cameras but bounded translation: plane visibility criterion
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Fig. 12 Point-to-plane registration for Scene23 without correspondences and three 1m-box bounded cameras (100 independent trials). Our method
versus randomly started scaled ICP (RS-ICP). Left: no. of inliers detected. Right: 3D RMS error (Color figure online)

(a) (b) (c)

(d) (e) (f)

Fig. 13 Point-to-plane registration results for Scene24. b, c Inputs, d point-to-plane registration and e, f texture projection. a Sample image, b
Segmented scene, c SfM reconstruction, d Registered pointsets, e Textured scene, top view and f Textured scene, side view (Color figure online)

cannot be used in this case. We recall that initial bounds on
all the registration parameters are indispensable to ensure
an Archimedean quadratic module of the constraints set
and hence for employing Putinar’s Psatz. Figure 11(right)
shows the convergence graph, using Scene23, obtained with
3 1m-box bounded cameras. It also shows how the resid-
ual error on the registration parameters varies with the
increase in the number of pessimistic inliers. The reported

box size is for a normalized scene size of about 10 meters.
In Fig. 12, we report the results obtained on Scene23 (with
3 1m-box bounded cameras) using our method and a ran-
domly started scaled ICP (RS-ICP) for 100 independent
trials. In each trial, the scaled ICP was started at randomly
picked registration parameter values satisfying bound and
visibility constraints. The results show that, unlike RS-ICP
which provides very large 3D errors, our method consis-
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Table 2 Point-to-plane registration without correspondences: quantitative results for seven different datasets

Scene Points Planes Recon. Rep. Camera Box Inlier ΔR ΔT (%) ΔS(%) 3D error Iter Time (s)

Scene23 90 8 2.08134 0.8373 3 2 m 41 3.4147 1.95 2.48 0.0619 482 599.738

Scene24 47 7 2.62791 0.8756 3 40 cm 31 0.9591 2.31 2.09 0.0424 81 51.572

Scene27 49 4 1.61906 0.8127 8 50 cm 20 2.5759 3.96 1.68 0.0131 133 141.837

Scene29 90 8 1.77408 0.9226 5 1 m 45 2.9995 5.41 2.41 0.081 209 277.351

Scene73 71 8 3.21913 0.8654 5 1 m 45 3.3463 4.78 2.73 0.0654 223 271.226

Fountain 29 7 0.81293 0.8495 4 40 cm 11 2.8639 3.18 4.74 0.0570 102 55.730

Herz-Jesu 129 5 2.08134 0.6402 8 40 cm 101 7.1958 4.02 1.99 0.0464 103 137.766

Table 3 Registration results using RISAG, Go-ICP and our method

Scene Method Time (s) ΔR ΔT (%) 3D error

Fountain RISAG 805.680 8.6825 14.08 0.3275

Go-ICP 529.415 0.7225 1.63 0.0348

Our method 55.730 2.8639 3.18 0.0570

Herz-Jesu RISAG 160.064 17.6378 5.70 0.1830

Go-ICP 31.254 3.2618 16.9 0.0725

Our method 137.766 7.1958 4.02 0.0464

tently detects the same number of inliers with the same 3D
error. Observe that the success rate of RS-ICP is only about
48%.

The results of our method for all scenes (with their cor-
responding configurations) are summarized in Table 2. In
the reported parameters, Points, Planes, Iter, and Inlier rep-
resent their numbers. “Recon.” is the quality of the SfM
reconstruction measured as the median reprojection error
in pixels while “Rep.” is the fraction of the scene points
represented by fitted planes. Observe that the registration
quality depends upon the reconstruction quality, representa-
tion factor, and the number and size of the camera boxes. For
a qualitative evaluation, the results obtained for Scene24 are
shown in Fig. 13 along with the registered point sets and tex-
tured scene [after further refinement using (Viola and Wells
1997)].

We also provide the results for two datasets obtained
using RISAG (Corsini et al. 2013), Go-ICP (Yang et al.
2013), and our method in Table 3. Our method was used
without correspondences in the setting given in Table 2.
Note that Go-ICP requires an Euclidean reconstruction,
which was obtained by upgrading the metric reconstruc-
tion using ground truth measurements. Comparison of these
methods may be unfair because each requires different ini-
tial conditions. Note that the poor performance of RISAG
could be due to its RANSAC-driven nature (we used 104

RANSAC iterations). Nevertheless, experiments with both
RISAG and Go-ICP were conducted in their favorable con-
ditions.

9.2 Plane-to-Plane Registration

In this section, we report the results that we have obtained
using our plane-to-plane registration method. The method
was tested without any putative correspondences provided,
i.e. plane-to-plane registration was carried out on the corre-
spondences obtained by assigning each reconstructed plane
to all available scene planes. Experiments with unknown
scale as well as without scale ambiguity were carried out.
Furthermore, no camerawas bounded for all the experiments.
The number of planes used for all the datasets are shown in
Table 4, where “num.Πr” and “num.Πe”, respectively, rep-
resent the number of reconstructed planes and scene planes.

9.2.1 Inlier Set Maximization with Unknown Scale

The quantitative results obtained for all seven datasets using
plane-to-plane registration with scale ambiguity are shown
in Table 4. Note that, despite a small number of reconstructed
and scene planes, our algorithm was still able to successfully
register the data. As expected, the number of search iterations
in this case are relatively high. This is due to the absence of
constraints from camera bounds. Despite a high number of
iterations, the processing time remains reasonable. This is
mainly due to the fact that the scenes are represented by
a small number of planes leading to a limited number of
exhaustive correspondences and hence a reduced number of
SoS tests in each iteration.

Convergence graphs for all seven datasets are shown in
Fig. 14. For these experiments, the remaining nodes and vol-
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Table 4 Plane-to-plane registration results, unknown reconstruction scale, and no camera bounds

Scene num.Πr num.Πe Rep. Inlier ΔR ΔT (%) ΔS(%) 3D error Iter Time (s)

Scene23 7 9 0.8736 4 0.8742 9.57 1.95 0.0350 552 486.1561

Scene24 6 10 0.9720 5 2.1486 6.63 3.20 0.0210 458 284.0396

Scene27 6 6 1.00 4 1.5867 3.53 1.23 0.0106 648 413.3966

Scene29 6 9 0.9372 6 1.5340 4.61 1.62 0.0195 437 370.6194

Scene73 9 8 0.8654 7 0.6335 3.00 0.86 0.0227 431 236.7101

Fountain 9 10 0.9824 5 0.3625 8.06 4.09 0.0534 411 381.1078

Herz-Jesu 5 9 0.89.86 5 2.674 11.38 4.35 0.0590 246 124.3724

(a) (b) (c) (d)

(e) (f) (g)

Fig. 14 Plane-to-plane registration convergence graphs for unknown reconstruction scale and no camera bounds. a Scene23, b Scene24, c Scene27,
d Scene29, e Scene73, f Fountain and g Herz-Jesu (Color figure online)

Fig. 15 Plane-to-plane registration with search iterations. Left: remaining nodes. Right: remaining volume (Color figure online)
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Fig. 16 Left to right: sample image, segmented scene, segmented reconstruction, and plane-to-plane-based registered point sets. (From top to
bottom: Scene23, Scene24, Scene27, Scene29, Scene73, Fountain, and Herz-Jesu) (Color figure online)
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Fig. 17 Texture mapping using plane-to-plane registration results. Left: Scene73. Right: Herz-Jesu (Color figure online)

Table 5 Plane-to-plane registration results, known reconstruction scale, and no camera bounds

Scene Inlier ΔR ΔT (%) 3D error Iter Time (s)

Scene23 4 4.2523 7.57 0.0568 46 48.2516

Scene24 5 2.6900 9.65 0.0571 57 30.0874

Scene27 4 1.5830 4.97 0.0093 72 57.3971

Scene29 6 0.4898 2.58 0.0171 102 99.4266

Scene73 7 0.9946 2.80 0.0206 36 45.7199

Fountain 4 1.3836 8.97 0.0139 33 53.4855

Herz-Jesu 4 0.8295 5.85 0.0982 90 77.7494

ume over the search iterations are shown in Fig. 15. It can be
observed that, when the nodes are not efficiently pruned (as
in for Scene29 after 300 iterations), the remaining search vol-
ume varies only slightly. However, as soon as the maximum
number of pessimistic inliers meets that of the optimistic
one, the optimal solution is obtained. Thereafter, no remain-
ing nodes/volume needs to be processed.

The qualitative results of plane-to-plane registration with
unknown scale and no camera bounds are shown in Fig. 16.
Among them, the texture mapping of two datasets, namely
Scene73 and Herz-Jesu, obtained after refinement using
mutual information maximization, are shown in Fig. 17.

9.2.2 Inlier Set Maximization with Known Scale

In many applications, two point sets are related by a rigid-
body transformation. These cases involve no discrepancy of
scale between the two point sets to be registered i.e. ‖q‖ = 1.
In fact, this registration problem is equivalent to that of 3D-
3D registration of structured same-scale point clouds that
can both be segmented into planes. The scale information
provides two advantages: (1) it reduces the initial bounds on
the entries of q; (2) it introduces an additional polynomial
‖q‖2 − 1 = 0 that must always be satisfied for the solution
bounds. In our experiments, the reconstruction scales were
set to their ground truth values.

The results obtained for known scale plane-to-plane reg-
istration are reported in Table 5. As expected, the number of
search iterations are significantly smaller than in the case of
unknown scale (refer to Table 4). Therefore, the registration
process is also faster. Although the same datasets were used
for both the cases of unknown and known scale, the sets of
inlier planes were found to be different in some cases. This
is because of the scale factor relaxation, which was restricted
in the latter.

10 Conclusion

We proposed a method for registering a 3D scan and a set of
images of a structured scene. The proposed approach is based
on the theory of polynomial SoS optimization. Our method
uses SoS registration conditions for point-to-plane as well
as plane-to-plane registration. The method presented in this
paper can incorporate various constraints emanating from
scene and camera knowledge (patch segmentation, camera
locations, plane visibility, scaling, etc.). Using Branch-and-
Bound and SoS theory, we devised a robust and optimal
method for inlier set maximization of either point-to-plane
or plane-to-plane correspondences. Although the problem
is nonlinear and combinatorial, our method has provided
outstanding results in terms of robustness and optimality.
In particular, the employed optimization framework has the
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potential to be efficiently applied to other nonlinear Com-
puter Vision problems.
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