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Abstract
The locations of the fiducial facial landmark points around facial components and facial contour capture the rigid and non-rigid
facial deformations due to head movements and facial expressions. They are hence important for various facial analysis tasks.
Many facial landmark detection algorithms have been developed to automatically detect those key points over the years, and
in this paper, we perform an extensive review of them. We classify the facial landmark detection algorithms into three major
categories: holistic methods, Constrained Local Model (CLM) methods, and the regression-based methods. They differ in
the ways to utilize the facial appearance and shape information. The holistic methods explicitly build models to represent
the global facial appearance and shape information. The CLMs explicitly leverage the global shape model but build the local
appearance models. The regression based methods implicitly capture facial shape and appearance information. For algorithms
within each category, we discuss their underlying theories as well as their differences. We also compare their performances on
both controlled and in the wild benchmark datasets, under varying facial expressions, head poses, and occlusion. Based on the
evaluations, we point out their respective strengths and weaknesses. There is also a separate section to review the latest deep
learning based algorithms. The survey also includes a listing of the benchmark databases and existing software. Finally, we
identify future research directions, including combining methods in different categories to leverage their respective strengths
to solve landmark detection “in-the-wild”.

Keywords Facial landmark detection · Face alignment · Survey

1 Introduction

The face plays an important role in visual communication. By
looking at the face, human can automatically extract many
nonverbal messages, such as humans’ identity, intent, and
emotion. In computer vision, to automatically extract those
facial information, the localization of the fiducial facial key
points (Fig. 1) is usually a key step and many facial analy-
sis methods are built up on the accurate detection of those
landmark points. For example, facial expression recognition
(Pantic and Rothkrantz 2000) and head pose estimation algo-
rithms (Murphy-Chutorian and Trivedi 2009) may heavily
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rely on the facial shape information provided by the land-
mark locations. The facial landmark points around eyes can
provide the initial guess of the pupil center positions for eye
detection and eye gaze tracking (Hansen and Ji 2010). For
facial recognition, the landmark locations on 2D image are
usually combined with 3D head model to “frontalize” the
face and help reduce the significant within-subject varia-
tions to improve recognition accuracy (Taigman et al. 2014).
The facial information gained through the facial landmark
locations can provide important information for human and
computer interaction, entertainment, security surveillance,
and medical applications.

Facial landmark detection algorithms aim to automati-
cally identify the locations of the facial key landmark points
on facial images or videos. Those key points are either the
dominant points describing the unique location of a facial
component (e.g., eye corner) or an interpolated point con-
necting those dominant points around the facial components
and facial contour. Formally, given a facial image denoted as
I, a landmark detection algorithm predicts the locations of
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Fig. 1 a Facial landmarks defining the face shape. b Sample images
(Belhumeur et al. 2013) with annotated facial landmarks

D landmarks x = {x1, y1, x2, y2, ..., xD, yD}, where x. and
y. resentment the image coordinates of the facial landmarks.

Facial landmark detection is challenging for several rea-
sons. First, facial appearance changes significantly across
subjects under different facial expressions and head poses.
Second, the environmental conditions such as the illumi-
nation would affect the appearance of the faces on the
facial images. Third, facial occlusion by other objects or
self-occlusion due to extreme head poses would lead to
incomplete facial appearance information.

Over the past few decades, there have been significant
developments of the facial landmark detection algorithms.
The early works focus on the less challenging facial images
without the aforementioned facial variations. Later, the facial
landmark detection algorithms aim to handle several vari-
ations within certain categories, and the facial images are
usually collected with “controlled” conditions. For exam-
ple, in “controlled” conditions, the facial poses and facial
expressions can only be in certain categories. More recently,
the research focuses on the challenging “in-the-wild” con-
ditions, in which facial images can undergo arbitrary facial
expressions, head poses, illumination, facial occlusions, etc.
In general, there is still a lack of a robust method that can
handle all those variations.

Facial landmarkdetection algorithms canbe classified into
three major categories: the holistic methods, theConstrained
Local Model (CLM) methods, and regression-based meth-
ods, depending on how they model the facial appearance and
facial shape patterns. The facial appearance refers to the dis-
tinctive pixel intensity patterns around the facial landmarks or
in thewhole face region, while face shape patterns refer to the
patterns of the face shapes as defined by the landmark loca-
tions and their spatial relationships. As summarized in Table
1, the holistic methods explicitly model the holistic facial
appearance and global facial shape patterns. CLMs rely on
the explicit local facial appearance and explicit global facial
shape patterns. Thes regression-basedmethods use holistic or
local appearance information and theymay embed the global
facial shape patterns implicitly for joint landmark detection.
In general, the regression-based methods show better perfor-
mances recently (details will be discussed later). Note that,

some recent methods combine the deep learning models and
global 3D shapemodels for detection and they are outside the
scope of the three major categories. They will be discussed
in detail in Sect. 4.3.

The remaining parts of the paper are organized as fol-
lows. In Sects. 2, 3, and 4, we discuss methods in the three
major categories: the holisticmethods, theConstrainedLocal
Model methods, and the regression-based methods. Section
4.3 is dedicated to the review of the recent deep learning
based methods. In Sect. 5, we discus the relationships among
methods in the three major categories. In Sect. 6, we discuss
the limitations of the existing algorithms in “in-the-wild”
conditions and some advanced algorithms that are specif-
ically designed to handle those challenges. In Sect. 7, we
discuss related topics, such as face detection, facial land-
mark tracking, and 3D facial landmark detection. In Sect. 8,
we discuss facial landmark annotations, the popular facial
landmark detection databases, software, and the evaluation
of the leading algorithms. Finally, we summarize the paper
in Sect. 9, where we point out future directions.

2 Holistic Methods

Holisticmethods explicitly leverage theholistic facial appear-
ance information as well as the global facial shape patterns
for facial landmark detection (Fig. 2). In the following, we
first introduce the classic holisticmethod: theActiveAppear-
ance Model (AAM) (Cootes et al. 2001). Then, we introduce
its several extensions.

2.1 Active Appearance Model

The Active Appearance Model (AAM)1 was introduced by
Taylor and Cootes Edwards et al. (1998) and Cootes et al.
(2001). It is a statistical model that fits the facial images with
a small number of coefficients, controlling both the facial
appearance and shape variations. Duringmodel construction,
AAM builds the global facial shape model and the holis-
tic facial appearance model sequentially based on Principal
Component Analysis (PCA). During detection, it identifies
the landmark locations by fitting the learned appearance and
shape models to the testing images.

There are a few steps for AAM to construct the appear-
ance and shape models, given the training facial images with
landmark annotations, denoted as {Ii , xi }Ni=1, where N is the
number of training images. First, ProcrustesAnalysis (Gower
1975) is applied to register all the training facial shapes.
It removes the affine transformation (c, θ, tc, tr denote the
scale, rotation and translation parameters) of each face shape
xi and generates the normalized training facial shapes x′

i .

1 In this paper, we refer Active Appearance Model to the model, inde-
pendent of the fitting algorithms.
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Table 1 Comparison of the major facial landmark detection algorithms

Algorithms Appearance Shape Performance Speed

Holistic method Whole face Explicit Poor generalization/good Slow/fast

Constrained Local Method (CLM) Local patch Explicit Good Slow/fast

Regression-based method Local patch/whole face Implicit Good/very good Fast/very fast

Training image Shape free textures

Appearance
model

Shape
model

Fig. 2 Holistic model

Second, given the normalized training facial shapes {x′
i }Ni=1,

PCA is applied to learn the mean shape s0 and orthonormal
bases {sn}Ks

n=1 that capture the shape variations, where Ks is
the number of bases (Fig. 3). Given the learned facial shape
bases {sn}Ks

n=0, a normalized facial shapex′ canbe represented
using the shape coefficients p = {pn}Ks

n=1:

x′ = s0 +
Ks∑

n=1

pn ∗ sn . (1)

Third, to learn the appearance model, image wrapping is
applied to register the image to the mean shape and generate
the shape normalized facial image, denoted as Ii (W(x′

i )),
where W(.) indicates the wrapping operation. Then, PCA
is applied again on the shape normalized facial images
{Ii (W(x′

i ))}Ni=1 to generate a mean appearance A0 and Ka

appearance bases A = {Am}Ka
m=1, as shown in Fig. 4. Given

the appearance model A = {Am}Ka
m=0, each shape normal-

ized facial image can be represented using the appearance
coefficients λ = {λm}Ka

m=1.

I(W(x′)) = A0 +
Ka∑

m=1

λmAm (2)

An optional third model may be applied to learn the cor-
relations among the shape coefficients p and appearance
coefficients λ.

In landmark detection, AAM finds the shape and appear-
ance coefficients p and λ, as well as the affine transformation
parameters {c, θ , tc, tr } that best fit the testing image, which
determine the landmark locations:

Fig. 3 Learned shape variations using AAM model, adapted from
Cootes et al. (2001)

Fig. 4 Learned appearancevariations usingAAM,adapted fromCootes
et al. (2001)

x = cR2d(θ)

(
s0 +

Ks∑

n=1

pn ∗ sn

)
+ t . (3)

Here, R2d(θ) denotes the rotation matrix, and t = {tc, tr }. To
simplify the notation, in the following the shape coefficients
would include both PCA coefficients and affine transforma-
tion parameters.

In general, the fitting procedure can be formulated by
minimizing the distance between the reconstructed images
A0 + ∑Ka

m=1 λmAm and the shape normalized testing image
I(W(p)). The difference is usually referred to as the error
image, denoted as ΔA:

ΔA(λ,p) = Diff

(
A0 +

Ka∑

m=1

λmAm, I(W(p))

)
(4)

λ∗,p∗ = argmin
λ,p

ΔA(λ,p) (5)

In the conventional AAM (Edwards et al. 1998; Cootes et al.
2001), model coefficients are estimated by iterative calcula-
tion of the error image based on the currentmodel coefficients
and model coefficient update prediction based on the error
image.

2.2 Fitting Algorithms

Most of the holistic methods focus on improving the fitting
algorithms, which involve solving Eq. (5). They can be clas-
sified into the analytic fitting methods and learning-based
fitting methods.
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2.2.1 Analytic Fitting Methods

The analytic fitting methods formulate AAM fitting problem
as a nonlinear optimization problem and solve it analytically.
In particular, the algorithm searches the best set of shape
and appearance coefficients p, λ that minimize the difference
between reconstructed image and the testing image with a
nonlinear least squares formulation:

p̃, λ̃ = argmin
p,λ

∥∥∥∥∥A0 +
M∑

m

λmAm − I(W(p))

∥∥∥∥∥

2

2

. (6)

Here, A0 + ∑M
m λmAm represents the reconstructed face in

the shape normalized frame depending on the shape and
appearance coefficients, and the whole objective function
represents the reconstruction error.

One natural way to solve the optimization problem is
to use the Gaussian-Newton methods. However, since the
Jacobin and Hessian matrix for both p and λ need to
be calculated for each iteration (Jones and Poggio 1998),
the fitting procedure is usually very slow. To address this
problem, Baker and Matthews proposed a series of algo-
rithms, among which the Project Out Inverse Compositional
algorithm (POIC) (Matthews andBaker 2004) and the Simul-
taneous Inverse Compositional (SIC) algorithm (Baker et al.
2002) are two popular works. In POIC (Matthews and Baker
2004), the errors are projected into space spanned by the
appearance eigenvectors {Am}Ka

m=1, and its orthogonal com-
plement space. The shape coefficients are firstly searched
in the appearance space, and the appearance coefficients
are then searched in the orthogonal space, given the shape
coefficients. In SIC (Baker et al. 2002), the appearance and
shape coefficients are estimated jointly with gradient descent
algorithm. Compared to POIC, SIC is more computation-
ally intensive, but generalizes better than POIC (Gross et al.
2005).

Recently, more advanced analytic fitting methods only
estimate the shape coefficients, which fully determine the
landmark locations as in Eq. (3). For example, in Alabort-I-
Medina and Zafeiriou (2014), the Bayesian Active Appear-
ance Model formulates AAM as a probabilistic PCA prob-
lem. It treats the texture coefficients as hidden variables and
marginalizes them out to solve for the shape coefficients:

p̃ = argmax
p

lnp(p) = argmax
p

ln
∫

λ

p(p|λ)p(λ)dλ. (7)

But exactly integrating out λ can be computationally expen-
sive. To alleviate this problem, in Tzimiropoulos and Pantic
(2013), Tzimiropoulos and Pantic proposed the fast-SIC
algorithm and the fast-forward algorithm. In both algorithms,
the appearance coefficient updates Δλ are represented in

terms of the shape coefficient updates Δp, and they are
plugged into the nonlinear least square formulation, which
is then directly minimized to solve for Δp. Different from
Alabort-I-Medina and Zafeiriou (2014), Tzimiropoulos and
Pantic (2013) follows a deterministic approach.

2.2.2 Learning-Based Fitting Methods

Instead of directly solving thefitting problemanalytically, the
learning-based fitting methods learn to predict the shape and
appearance coefficients from the image appearances. They
canbe further classified into linear regression fittingmethods,
nonlinear regression fitting methods, and other learning-
based fitting methods.

Linear regression fittingmethods The linear regression fit-
ting methods assume that there is linear relationship between
model coefficient updates and the error image ΔA(λ,p) or
image features I(λ,p). They learn linear regression function
for the prediction, which follows the conventional AAM as
illustrated in the previous section.

ΔA(λ,p) or I(λ,p)
Linear Regression−−−−−−−−−−→ Δλ,Δp (8)

They therefore estimate the model coefficients by iteratively
estimating the model coefficient updates, and add them to
the currently estimated coefficients for the prediction in the
next iteration. For example, in Donner et al. (2006), Canon-
ical Correlation Analysis (CCA) is applied to model the
correlation between the error image and the model coeffi-
cient updates. It then learns the linear regression function
to map the canonical projections of the error image to the
coefficient updates. Similarly, in Direct Appearance Model
(Hou et al. 2001), linear model is applied to directly predict
the shape coefficient updates from the principal components
of the error images. The linear regression fitting methods
usually differ in the used image features, linear regression
models, and whether to go to a different feature space to
learn the mapping (Donner et al. 2006; Hou et al. 2001).

Nonlinear regression fitting methods The linear regres-
sion fitting methods assume that the relationship between
features and the error image as shown in Eq. (4) around the
true solution of model coefficients are close to quadratic,
which ensures that an iterative procedure with linear updates
and adaptive step sizes would lead to convergence. However,
this linear assumption is only true when the initialization is
around the true solution which makes the linear regression
fitting methods sensitive to the initialization. To tackle this
problem, the nonlinear regression fittingmethods use nonlin-
earmodels to learn the relationship among the image features
and the model coefficient updates:

ΔA(λ,p) or I(λ,p)
Nonlinear Regression−−−−−−−−−−−→ Δλ,Δp (9)
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For example, in Saragih and Goecke (2007), boosting algo-
rithm is proposed to predict the coefficient updates from the
appearance. It combines a set of weak learners to form a
strong regressor, and the weak learners are developed based
on the Haar-like features and the one-dimensional decision
stump. The strong nonlinear regressor can be considered as
an additive piecewise function. In Tresadern et al. (2010),
Tresadern et al. compared the linear and nonlinear regression
algorithms. The used nonlinear regression algorithms include
the additive piecewise function developed with boosting
algorithm in Saragih and Goecke (2007) and the Relevance
Vector Machine (Williams et al. 2005). They empirically
showed that nonlinear regression method is better at the first
few iterations to avoid the local minima, while linear regres-
sion is better when the estimation is close to the true solution.

2.2.3 Discussion: Analytic Fitting Methods Versus
Learning-Based Fitting Methods

Compared to the analytic fitting methods solved with gradi-
ent descent algorithmwith explicit calculation of the Hessian
and Jacobian matrices, the learning-based fitting methods
use constant linear or nonlinear regression functions to
approximate the steepest descent direction. As a result, the
learning-basedfittingmethods are generally fast but theymay
not be accurate. The analytic methods do not need train-
ing images, while the fitting methods do. The learning-based
fitting methods usually use a third PCA to learn the joint cor-
relations among the shape and appearance coefficients and
further reduce the number of unknown coefficients, while
the analytic fitting methods usually do not. But, for the ana-
lytic fitting methods, the interaction among appearance and
shape coefficients can be embedded in the joint fitting objec-
tive function as in Eq. (6). The learned correlation between
shape and appearance coefficients can reduce the number
of parameters. Such learned correlation may not generalize
well to different images. The joint estimation of shape and
appearance coefficients using Eq. (6) can be more accurate.
But they are more difficult.

2.3 Other Extensions

2.3.1 Feature Representation

There are other extensions of the conventional AAM meth-
ods. One particular direction is to improve the feature
representations. It is well known that the AAM model has
limited generalization ability and it has difficulty fitting the
unseen face variations (e.g. across subjects, illumination, par-
tial occlusion, etc.) (Gross et al. 2004, 2005). This limitation
is partially due to the usage of raw pixel intensity as features.
To tackle this problem, some algorithms use more robust
image features. For example, in Hu et al. (2003), instead of

using the raw pixel intensity, the wavelet features are used
to model the facial appearance. In addition, only the local
appearance information is used to improve the robustness
to partial occlusion and illumination. In Jiao et al. (2003),
GaborwaveletwithGaussianMixturemodel is used tomodel
the local image appearance, which enables fast local point
search. Both methods improve the performances of the con-
ventional AAM method.

2.3.2 Ensemble of AAMModels

A single AAM model inherently assumes linearity in face
shape and appearance variation. Realizing this limitation,
some methods utilize ensemble models to improve the per-
formance. For example, in Patrick Sauer and Taylor (2011),
sequential regression AAM model is proposed, which trains
a serials of AAMs for sequential model fitting in a cascaded
manner. AAM in the early stage takes into account of the
large variations (e.g. pose), while those in the later stage
fit to the small variations. In this work, both independent
ensemble AAMs and coupled sequential AAMs are used.
The independent ensemble AAMs use independently per-
turbed model coefficients with different settings, while the
coupled ensemble AAMs apply the learned prediction model
in the first few levels to generate the perturbed training data
in the later level. Both boosting regression and random forest
regressions are utilized to predict the model updates. Similar
to the coupled ensemble AAMs in Patrick Sauer and Taylor
(2011) and Saragih and Gocke (2009), AAM fitting problem
is formulated as an optimization problemwith stochastic gra-
dient descent solution. It leads to an approximated algorithm
that iteratively learns the linear prediction model from the
training data with perturbed model coefficients at the first
iteration, and then updates the model coefficients for training
data to be used in the next iteration following a cascadedman-
ner. Different from Patrick Sauer and Taylor (2011), Saragih
and Gocke (2009) uses different subsets of training data in
different stages to escape from the local minima.

3 Constrained Local Methods

As shown in Fig. 5, the CLM methods (Cristinacce and
Cootes 2006;Saragih et al. 2011) infer the landmark locations
x based on the global facial shape patterns as well as the inde-
pendent local appearance information around each landmark,
which is easier to capture andmore robust to illumination and
occlusion, comparing to the holistic appearance.
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Local appearance model
detect each landmark
independently

Global face shape model
captures the face shape
varia�ons to refine the
local detec�on results

Facial image Facial landmark
detec�on results

Fig. 5 Constrained local method

3.1 Problem Formulation

In general, CLM can be formulated either as a determinis-
tic or probabilistic method. In the deterministic view point,
CLMs (Cristinacce andCootes 2006; Saragih et al. 2011) find
the landmarks by minimizing the misalignment error subject
to the shape patterns:

x̃ = argmin
x

Q(x) +
D∑

d=1

Dd(xd , I) (10)

Here, xd represents the positions of different landmarks in
x. Dd(xd , I) represents the local confidence score around
xd . Q(x) represents a regularization term to penalize the
infeasible or anti-anthropology face shapes in a global sense.
The intuition is that we want to find the best set of landmark
locations that have strong independent local support for each
landmark and satisfy the global shape constraint.

The shape regularization can be applied to the shape coef-
ficients p. If we denote the regularization term asQp(p), Eq.
(10) becomes:

p̃ = argmin
p

Qp(p) +
D∑

d=1

Dd(xd(p), I) (11)

Here, each landmark location xd is determined by p as in Eq.
(3).

In the probabilistic view point, CLM can be interpreted as
maximizing the product of the prior probability of the facial
shape patterns p(x; η) of all points and the local appearance
likelihoods p(xd |I; θd) of each point:

x̃ = argmax
x

p(x; η)

D∏

d=1

p(xd |I; θd) (12)

Similar to the deterministic formulation, the prior can also
be applied to the shape coefficients p, and Eq. (12) becomes:

p̃ = argmax
p

p(p; ηp)

D∏

d=1

p(xd(p)|I; θd). (13)

For both the deterministic and the probabilistic CLMs,
there are two major components. The first component is
the local appearance model embedded in Dd(xd , I) or
p(xd |I; θd) in Eqs. (10–13). The second component refers
to the facial shape pattern constraints either applied to the
shape model coefficients p or the shape x itself, as penalty
terms or probabilistic prior distributions. The two compo-
nents are usually learned separately during training and they
are combined to infer landmark locations during landmark
detection. In the following, we will discuss each component,
and how to combine them for landmark detection.

3.2 Local Appearance Model

The local appearance model assigns confidence score
Dd(xd , I) or probability p(xd |I; θd) that the landmark with
index d is located at a specific pixel location xd based on
the local appearance information around xd of image I. The
local appearance models can be categorized into classifier-
based local appearance models and the regression-based
local appearance models.

3.2.1 Classifier-Based Local Appearance Model

The classifier-based local appearance model trains binary
classifier to distinguish the positive patches that are centered
at the ground truth locations and the negative patches that
are far away from the ground truth locations. During detec-
tion, the classifier can be applied to different pixel locations
to generate the confidence scores Dd(xd , I) or probabili-
ties p(xd |I; θd) through voting. Different image features and
classifiers are used. For example, in the original CLM work
(Cristinacce and Cootes 2006) and FPLL (Zhu and Ramanan
2012), template based method is used to construct the clas-
sifier. The original CLM uses the raw image patch, while
FPLL uses the HOG feature descriptor. In Belhumeur et al.
(2011, 2013), SIFT feature descriptor and SVM classifier
are used to learn the appearance model. In Cristinacce and
Cootes (2007), Gentle Boost classifier is used. One issue
with the classifier-based local appearance model is that it
is unclear which feature representation and classifier to use.
Even though SIFT and HOG features and SVM classifier are
the popular choice, there is some work (Wu and Ji 2015) that
learns the features using the deep learning methods, and it is
shown that the learned features are comparable to HOG and
SIFT.

3.2.2 Regression-Based Local Appearance Model

During training, the goal of the regression-based local
appearance model is to predict the displacement vector
Δx∗

d = x∗
d − x , which is the difference between any pixel

location x and the ground truth landmark location x∗
d from
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Fig. 6 Regression-based local appearance model (Cootes et al. 2012)

the local appearance information around x using the regres-
sion models. During detection, the regression model can be
applied to patches at different locations x in a region of inter-
est to predictΔxd , which can be added to the current location
to calculate xd .

Regression : I(x) → Δxd (14)

xd = x + Δxd; (15)

Predictions from multiple patches can be merged to calcu-
late the final prediction of the confidence score or probability
through voting (Fig. 6). Different image features and regres-
sion models are used. In Cristinacce and Cootes (2007),
Cristinacce and Cootes proposed to use the Gentleboost
as the regression function. In Cootes’s later work (2012),
he extended the method and used the random forests as
the regressor, which shows better performance. In Valstar
et al. (2010), Adaboost feature selection method is com-
bined with SVM regressor to learn the regression function.
In Smithk et al. (2014), nonparametric appearance model
is used for location voting based on the contextual features
around the landmark. Similar to the classifier-based meth-
ods, it’s unclear which feature and regression function to
use. It is empirically shown in Martinez et al. (2013) that
the LBP features are better than the Haar features and LPQ
descriptor. Another issue is that since the regression-based
local appearance model performs one-step prediction. The
prediction may not be accurate if the current positions are far
away from the true target.

3.2.3 Discussion: Local Appearance Model

There are several issues related to the local appearance
model. First, there exists accuracy-robustness tradeoffs. For
example, a large local patch is more robust, while it is less
accurate for precise landmark localization. A small patch
with more distinctive appearance information would lead to
more accurate detection results. To tackle this problem, some
algorithms (Ren et al. 2014) combine the large patch and
small patch for estimation and adapt the sizes of the patches
or searching regions across iterations.

Second, it is unclear which approach to follow, among the
classifier-based methods and the regression-based methods.
One advantageof the regression-based approach is that it only
needs to calculate the features and predict the displacement
vectors for a few sample patches in testing. It ismore efficient
than the classifier-based approach that scans all the pixel
locations in the region of interest. It is empirically shown in
Cristinacce and Cootes (2007) that the Gentleboost regressor
as a regression-based appearance model is better than the
Gentleboost classifier as a classifier-based local appearance
model.

3.3 Face ShapeModels

The face shape model captures the spatial relationships
among facial landmarks, which constrain and refine the land-
mark location search. In general, they can be classified into
deterministic face shape models and probabilistic face shape
models.

3.3.1 Deterministic Face Shape Models

The deterministic face shape models utilize deterministic
models to capture the face shape patterns. They assign low
fitting errors to the feasible face shapes and penalize infea-
sible face shapes. For example, Active shape model (ASM)
(Cootes et al. 1995) is the most popular and conventional
face shape model. It learns the linear subspaces of the train-
ing face shapes using Principal Component Analysis as in
Eq. (1). The face can be evaluated by the fitness to the sub-
spaces. It has been used both in the holistic AAM method
and the CLM methods. Since one linear ASM may not be
effective to model the global face shape variations, in Le
et al. (2012), two levels of ASMs are constructed. One level
of ASMs are used to capture the shape patterns of each facial
component independently, and the other level of ASM is
used for modeling the joint spatial relationships among facial
components. Zhu and Ramanan (2012) built pose-dependent
tree structure face shape model to capture the local nonlin-
ear shape patterns, in which each landmark is represented as
a tree node. Improving upon (Zhu and Ramanan 2012), the
method inHsu et al. (2015) builds two levels of tree structured
models focusing on different numbers of landmark points on
imageswith different resolutions. InBaltrušaitis et al. (2012),
instead of using the 2D facial shape models, Baltrusaitis et
al. proposed to embed the facial shape patterns into a 3D
facial deformable model to handle pose variations. During
detection, both the 3D model coefficients and the head pose
parameters are jointly estimated for landmark detection. This
method, however, requires to learn 3D deformable model,
and to estimate head pose. 3D landmark detection will be
further discussed in Sect. 7.3.
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3.3.2 Probabilistic Face Shape Models

The probabilistic face shape models capture the facial shape
patterns in a probabilisticmanner. They assign high probabil-
ities to face shapes that satisfy the anthropological constraint
learned from training data and low probabilities to other
infeasible face shapes. The early probabilistic face shape
model is the switching model proposed in Tong et al. (2007).
It can automatically switch the states of facial components
(e.g. mouth open and close) to handle different facial expres-
sions. In Valstar et al. (2010) and Martinez et al. (2013),
a generative Boosted Regression and graph Models based
method (BoRMaN) constructed based on the Markov Ran-
dom Field is proposed. Each node in the MRF corresponds
to the relative positions of three points, and the MRF as a
whole canmodel the joint relationships among all landmarks.
In Belhumeur et al. (2011, 2013), the authors proposed a
non-parametric probabilistic face shape model with opti-
mization strategy to fit the facial images. In Wu et al. (2013)
and Wu and Ji (2015), the authors proposed a discriminative
deep face shape model based on the Restricted Boltzmann
Machine model. It explicitly handles face pose and expres-
sion variation, by decoupling the face shapes into head pose
related part and expression related part. Compared to the
other probabilistic face shape models, it can better handle
facial expressions and poses within a unified model.

3.3.3 Discussion: Face Shape Model

Despite of the recent developments of the face shape model,
its construction is still an unsolved problem. There is a lack
of a unified shape model that can capture all natural facial
shape variations (some methods will be discussed in Sect. 6
). In addition, it’s time-consuming to generate the facial land-
mark annotations under different facial shape variations, and
more complex model requires more data to train. For exam-
ple, due to facial occlusion, complete landmark annotation
is infeasible on the self-occluded profile faces.

3.4 Landmark Point Detection via Optimization

Given the local appearance models and the face shape mod-
els described above, CLMs combine them for detection using
Eqs. (10), (11), (12) or (12). This is a non-trivial task, since
the analytic representation of the local appearance model
is usually not directly computable from the local appear-
ance model and the whole objective function is usually
non-convex. To solve this problem, there are two sets of
approaches, including the iterative methods and the joint
optimization methods.

Algorithm 1: Iterative methods
Data: The initial searching regions

Ω(1) = {Ω(1)
1 ,Ω

(1)
2 , ...,Ω

(1)
D } for all D landmarks.

Result: The detected landmark locations x or the shape
coefficients p that determine the landmark locations.

1 for t=1 until convergence do
2 Within the searching region Ω

(t)
d , detect each facial landmark

point independently using the local appearance models, and
treat them as the measurementsmt .

3 Refine the measurementsm jointly with the face shape model
constraint, and output the estimated locations xt or shape
coefficients pt .

4 Modify each searching region Ω
(t+1)
d to be around currently

estimated landmark location.

3.4.1 Iterative Methods

The iterative methods decompose the optimization problem
into two steps: landmark detection by local appearancemodel
and location refinement by the shape model. They occur
alternately until the estimation converges. Specifically, it esti-
mates the optimal landmark positions that best fit the local
appearance models for each landmark in the local region
independently, and then refines them jointly with the face
shape model. The detailed algorithm is shown in Algorithm
1. There are a few algorithms (Cristinacce and Cootes 2006,
2007; Cootes et al. 2012; Valstar et al. 2010; Martinez et al.
2013; Wu et al. 2013, 2014) that follow the iterative frame-
work. Those methods differ in the used local appearance
models and facial shape models, and we have discussed their
particular techniques in the above sections.

3.4.2 Joint Optimization Methods

Different from the iterative methods, the joint optimization
methods aim to perform joint inference. The challenge is
that they have to find a way to represent the detection results
from independent local point detectors and combine them
with the face shape model for joint inference. To tackle this
problem, in Saragih et al. (2011), the independent detection
results are represented with Kernel Dense Estimation (KDE)
and the optimization problem is solved with EM algorithm
subject to the shape constraint, which treats the true land-
mark location as hidden variables. It also discusses some
other methods to represent the local detection results, such
as using the Isotropic Gaussian Model (Cootes et al. 1995),
the Anisotropic Gaussian Model (Nickels and Hutchinson
2002), and Gaussian Mixture Model (Gu and Kanade 2008).
In the Consensus of exemplars work (Belhumeur et al. 2011,
2013), in a Bayesian formulation, the local detector is com-
bined with the nonparametric global model. Because of the
special probabilistic formulation, the objective function can
be optimized in a “brutal-force”waywith RANSAC strategy.
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There are also algorithms that simplify the shape model
to use efficient inference methods. For example, in Zhu and
Ramanan (2012), due to the usage of simple tree structure
face shape model, dynamic programming can be applied to
solve the optimization problem efficiently. In Cristinacce and
Cootes (2004), by converting the objective function into a lin-
ear programming problem, Nelder-Meade simplexmethod is
applied to solve the optimization problem.

3.4.3 Discussion: Optimization

The iterative methods and joint optimization methods have
their own benefits and disadvantages. On one hand, the iter-
ative methods are generally more efficient, but it may fail
into the local minima due to the iterative procedure. On the
other hand, the joint optimization methods are usually more
difficult to solve and are computationally expensive.

Note that, as shown in Eqs. (10), (11), (12) or (12), in
CLM, we would either infer the exact landmark locations x
or the shape coefficients that can fully determine the land-
mark locations (e.g. shape coefficients p when using ASM
as the face shape model as in Eq. 3). There is a dilemma. On
one hand, since small shape model errors may lead to large
landmark detection errors, directly predicting the landmark
locationsmay be a better choice. On the other hand, it may be
easier to design the cost function for the model coefficients
than the shapes. For example, in ASM (Cootes et al. 1995),
it is relatively easier to set up the range for the model coeffi-
cients while it is difficult to directly set the constraint for the
face shapes.

4 Regression-BasedMethods

The regression-based methods directly learn the mapping
from image appearance to the landmark locations. Differ-
ent from the Holistic Methods and Constrained Local Model
methods, they usually do not explicitly build any global face
shape model. Instead, the face shape constraints may be
implicitly embedded. In general, the regression-based meth-
ods can be classified intodirect regressionmethods, cascaded
regression methods, and deep-learning based regression
methods. Direct regression methods predict the landmarks
in one iteration without any initialization, while the cas-
caded regression methods perform cascaded prediction and
they usually require initial landmark locations. The deep-
learning based methods follow either the direct regression or
the cascaded regression. Since they use unique deep learning
methods, we discuss them separately.

4.1 Direct RegressionMethods

The direct regression methods learn the direct mapping
from the image appearance to the facial landmark locations
without any initialization of landmark locations. They are
typically carried out in one step. They can be further classi-
fied into local approaches and global approaches. The local
approaches use image patches, while the global approaches
use the holistic facial appearance.

Local approaches The local approaches sample different
patches from the face region, and build structured regres-
sion models to predict the displacement vectors (target face
shape to the locations of the extracted patches), which can
be added to the current patch location to produce all land-
mark locations jointly. The final facial landmark locations
can be calculated bymerging the prediction results frommul-
tiple sampled patches. Note that, this is different from the
regression-based local appearance model that predicts each
point independently (Sect. 3.2.2), while the local approaches
here predict the updates for all points simultaneously. For
example, in Dantone et al. (2012), conditional regression
forests are used to learn the mapping from randomly sam-
pled patches in the face region to the face shape updates. In
addition, several head pose dependent models are built and
they are combined together for detection. Similarly, privi-
leged information-based conditional random forests model
(Yang and Patras 2013) uses additional facial attributes (e.g.
head pose, gender, etc.) to train regression forests to predict
the face shape updates. Different from Dantone et al. (2012)
which merges the prediction from different pose-dependent
models, in testing, it predicts the attributes first and then per-
forms attribute dependent landmark location estimation. In
this case, the landmark prediction accuracy will be affected
by attribute prediction. One issue with the local regression
methods is that the independent local patchesmay not convey
enough information for global shape estimation. In addition,
for images with occlusion, the randomly sampled patches
may lead to bad estimations.

Global approaches The global approaches learn the map-
ping from the global facial image to landmark locations
directly. Different from the local approaches, the holistic face
conveys more information for landmark detection. But, the
mapping from the global facial appearance to the landmark
locations is more difficult to learn, since the global facial
appearance has significant variations, and they are more sus-
ceptible to facial occlusion. The leading approaches (Sun
et al. 2013; Zhang et al. 2014) all use the deep learning meth-
ods to learn the mapping, which we will discuss in details in
Sect. 4.3. Note that, since the global approaches directly pre-
dict landmark locations, they are different from the holistic
methods in Sect. 2 that construct the shape and appearance
models and predict the model coefficients.
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Algorithm 2: Cascaded regression detection

1 Initialize the landmark locations x0 (e.g. mean face).
2 for t=1, 2, ..., T or convergence do
3 Update the landmark locations, given the image and the

current landmark location.

ft : I, xt−1 → Δxt

xt = xt−1 + Δxt

4 Output the estimated landmark locations xT .

Itera�on 1 Itera�on noitaretI2 t

Fig. 7 Cascaded regression methods

4.2 Cascaded RegressionMethods

In contrast to the direct regression methods that perform
one-step prediction, the cascaded regression methods start
from an initial guess of the facial landmark locations (e.g.
mean face), and they gradually update the landmark loca-
tions across stageswith different regression functions learned
for different stages (Fig. 7). Specifically, in training, in
each stage, regression models are applied to learn the map-
ping between shape-indexed image appearances (e.g., local
appearance extracted based on the currently estimated land-
mark locations) to the shape updates. The learnedmodel from
the early stage will be used to update the training data for the
training in the next stage. During testing, the learned regres-
sion models are sequentially applied to update the shapes
across iterations. Algorithm 2 summarizes the detection pro-
cess.

Different shape-indexed image appearance and regression
models are used. For example, in Cao et al. (2014), the author
proposed the shape-indexed pixel intensity features which
are the pixel intensity differences between pairs of pixels
whose locations are defined by their relative positions to the
current shape. In Ren et al. (2014), the author proposed to
learn discriminative binary features by the regression forests
for each landmark independently. Then, the binary features
from all landmarks are concatenated and a linear regression
function is used to learn the joint mapping from appearance
to the global shape updates. In Kazemi and Sullivan (2014),
ensemble of regression trees are used as regression models
for face alignment. By modifying the objective function, the
algorithmcanuse training imageswith partially labeled facial
landmark locations.

Among different cascaded regression methods, the Super-
visedDescentMethod (SDM) inXiong andDe la Torre Frade
(2013) achieves promising performances. It formulates face
alignment as a nonlinear least squares problem. In particu-
lar, assuming the appearance features (e.g. SIFT) of the local
patches around the true landmark locations x∗ are denoted as
Φ(I(x∗)), the goal of landmark detection is to estimate the
location updates δx starting from an initial shape x0, so that
the feature distance is minimized:

δx̃ = argmin
δx

f (x0 + δx)

= argmin
δx

‖Φ(I(x∗)) − Φ(I(x0 + δx))‖22
(16)

By applying the second order Taylor expansionwithNewton-
type method, the shape updates are calculated:

f (x0 + δx) ≈ f (x0) + J f (x0)T δx − 1

2
δxTH f (x0)δx (17)

δx = −H f (x0)−1J f (x0)

= −2H f (x0)−1JTΦ(Φ(I(x0)) − Φ(I(x∗))) (18)

To directly calculate δx analytically is difficult, since it
requires the calculation of the Jacobin and Hessian matrix
for different x0. Therefore, supervised descentmethod is pro-
posed to learn the descent direction with regression method.
It is then simplified as the cascaded regression method with
linear regression function, which can predict the landmark
location updates from shape-indexed local appearance.

R = −2H f (x0)−1JTΦ (19)

b ≈ 2H f (x0)−1JTΦΦ(I(x∗)) (20)

δx = RΦ(I(x0)) + b (21)

The regression functions are different for different iterations,
but they ignore different possible starting shape x0 within one
iteration.

There are some other variations of the cascaded regression
methods. For example, in Asthana et al. (2014), instead of
learning the regression functions in a cascaded manner (the
later level depends on the former level), a parallel learning
method is proposed, so that the later level only needs the
statistic information from the previous level. Based on the
parallel learning framework, it’s possible to incrementally
update the model parameters in each level by adding a few
more training samples, which achieves fast training.

The cascaded regression methods are more effective than
the direct regression since they follow the coarse-to-fine strat-
egy. The regression functions in the early stage can focus on
the large variations while the regression functions in the later
stage may focus on the fine search.
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However, for cascaded regression methods, it is unclear
how to generate the initial landmark locations. The popular
choice is to use the mean face, which may be sub-optimal
for images with large head poses. To tackle this problem,
there are some hybrid methods that use the direct regres-
sion methods to generate the initial estimation for cascaded
regression methods. For example, in Zhang et al. (2014), a
model based on auto-encoder is proposed. It first performs
direct regression on down-sampled lower-resolution images,
and then refines the prediction in a cascaded manner with
higher resolution images. In Zhu et al. (2015), a coarse to
fine searching strategy is employed and the initial face shape
is continuously updated based on the estimation from last
stage. Therefore, a more close-to-solution initialization will
be generated and fine facial landmark detection results are
easier to get.

Another issue about the cascaded regressionmethod is that
the algorithms apply a fixed number of cascaded prediction,
and there is no way to judge the quality of landmark pre-
diction and adapt the necessary cascaded stages for different
testing images. In this case, it is possible that the prediction
is already trapped in a local minima while the iteration con-
tinues. It is also possible that the prediction is already close
to the optimum after a few stages. In the existing methods
(Ren et al. 2014), it is only shown that the cascaded regres-
sion methods can improve the performance over different
cascaded stages, but it doesn’t know when to stop.

4.3 Deep Learning BasedMethods

Recently, deep learning methods become popular tools for
computer vision problems. For facial landmark detection and
tracking, there is a trend to shift from traditional methods to
deep learning based methods. In the early work (Wu et al.
2013), the deep boltzmann machine model, which is a prob-
abilistic deep model, was used to capture the facial shape
variations due to poses and expressions for facial landmark
detection and tracking. More recently, the Convolutional
Neural Network (CNN) models become the dominate deep
learning models for facial landmark detections, and most of
them follow the global direct regression framework or cas-
caded regression framework. Those methods can be broadly
classified into pure-learning methods and hybrid methods.
The pure-learning methods directly predict the facial land-
mark locations, while the hybrid methods combine deep
learning methods with computer vision projection model for
prediction.

Pure-learning methods Methods in this category use the
powerful CNNmodels to directly predict the landmark loca-
tions from facial images. Sun et al. (2013) is the early work
and it predicts five facial key points in a cascaded manner.
In the first level, it applies a CNN model with four convolu-
tion layers (Fig. 8) to predict the landmark locations given

Fig. 8 CNN model structure, adapted from Sun et al. (2013)

the facial image determined by the face bounding box. Then,
several shallow networks refine each individual point locally.

Ever since then, there are several improvements over (Sun
et al. 2013) in two directions. In the first direction, Zhang
et al. (2014, 2016) and Ranjan et al. (2016) leverage multi-
task learning idea to improve the performance. The intuition
is that multiple tasks could share the same representation and
their joint relationships would improve the performances of
individual tasks. For example, in Zhang et al. (2014, 2016),
multi-task learning is combined with CNN model to jointly
predict facial landmarks, facial head pose, facial attributes
etc.A similarmulti-taskCNN framework is proposed inRan-
jan et al. (2016) to jointly perform face detection, landmark
localization, pose estimation, and gender recognition. Differ-
ent fromZhang et al. (2014, 2016), it combines features from
multiple convolutional layers to leverage both the coarse and
fine feature representations.

In the second direction, someworks improve the cascaded
procedure of method (Sun et al. 2013). For example, in Zhou
et al. (2013), similar cascaded CNN model is constructed to
predictmanymore points (68 landmarks instead of 5). It starts
from the prediction of all 68 points and gradually decouples
the prediction into local facial components. In Zhang et al.
(2014), the deep auto-encoder model is used to perform the
same cascaded landmark search. In Trigeorgis et al. (2016),
instead of training multiple networks in a cascaded man-
ner, Trigeorgis et. al trained a deep convolutional Recurrent
NeuralNetwork (RNN) for end-to-end facial landmarkdetec-
tion to mimic the cascaded behavior. The cascaded stage is
embedded into the different time slices of RNN.

Hybrid deep methods The hybrid deep methods combine
theCNNwith 3Dvision, such as the projectionmodel and 3D
deformable shape model (Fig. 9). Instead of directly predict-
ing the 2D facial landmark locations, they predict 3D shape
deformable model coefficients and the head poses. Then, the
2D landmark locations can be determined through the com-
puter vision projection model. For example, in Zhu et al.
(2016), a dense 3D face shape model is construct. Then, an
iterative cascaded regression framework and deepCNNmod-
els are used to update the coefficients of 3D face shape and
pose parameters. In each iteration, to incorporate the cur-
rently estimated 3D parameters, the 3D shape is projected
to 2D using the vision projection model and the 2D shape
is used as additional input of the CNN model for regression
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Fig. 9 3D face model and its projection based on the head pose param-
eters (i.e. pitch, yaw, roll angles)

prediction. Similarly, in Jourabloo and Liu (2016), in a cas-
caded manner, the whole facial appearance is used in the
first cascaded CNNmodel to predict the updates of 3D shape
parameters and pose, while the local patches are used in the
later cascaded CNN models to refine the landmarks.

Compared to the pure-learning methods, the 3D shape
deformable model and pose parameters of the hybrid meth-
ods are more compact ways to represent the 2D landmark
locations. Therefore, there are fewer parameters to estimate
in CNN and shape constraint can be explicitly embedded in
the prediction. Furthermore, due to the introduction of 3D
pose parameters, they can better handle pose variations.

Table 22 summarizes the CNN structures of the leading
methods. We list their numbers of convolutional layers, the
numbers of fully connected layer, whether a 3D model is
used, and whether the cascaded method is used. For the cas-
caded methods, if different model structures are used for
different layers, we only list the model in the first level.
As can be seen, the models proposed for facial landmark
detection usually contain around four convolutional layers
and one fully connected layer. The model complexity is on
par with the deep models used for other related face anal-
ysis tasks, such as head pose estimation (Patacchiola and
Cangelosi 2017), age and gender estimation (Levi and Hass-
ncer 2015), and facial expression recognition (Lopes et al.
2017), which usually have similar or smaller numbers of
convolutional layers. For the face recognition problem, the
CNN models are usually more complex with more convo-
lutional layers (e.g. eight layers) and fully connected layers
(Sun et al. 2015; Schroff et al. 2015; Taigman et al. 2014).
It is in part due to the fact that there is much more train-
ing data (e.g., 10M+, 100M+ images) for face recognition
comparing to the data set used for facial landmark detections
(e.g., 20K+ images) (Ranjan et al. 2016). It is still an open

2 ForRanjan et al. (2016),we list the landmark predictionmodel instead
of the multi-task prediction model for fair comparison.

question whether adding more data would improve the per-
formances of facial landmark detection. Another promising
direction is to leverage the multi-task learning idea to jointly
predict related tasks (e.g., landmark detection, pose, age and
gender) with a deeper model to boost the performances for
all tasks (Ranjan et al. 2016).

4.4 Discussion: Regression-BasedMethods

Among different regression methods, cascaded regression
method achieves better results than direct regression. Cas-
caded regression with deep learning can further improve the
performance. One issue for the regression-based methods is
that since they learn the mapping from the facial appearance
within the face bounding box region to the landmarks, they
may be sensitive to the used face detector and the quality
of the face bounding box. Because the size and location of
the initial face is determined by the face bounding box, algo-
rithms trained with one face detector may not work well if
a different biased face detector is used in testing. This issue
has been studied in Sagonas et al. (2016).

Even though we mentioned that the regression-based
methods do not explicitly build the facial shape model, the
facial shape patterns are usually implicitly embedded. In par-
ticular, since the regression-based methods predict all the
facial landmark locations jointly, the structured information
as well as the shape constraint are implicitly learned through
the process.

5 Discussions: Relationships Among
Methods in ThreeMajor Categories

In the previous three sections, we discussed the facial land-
mark detectionmethods in threemajor categories: the holistic
methods, the Constrained Local Model (CLM) methods, and
the regression-based methods as summarized in Fig. 10.
There exist similarities and relationships among the three
major approaches.

First, both the holistic methods and CLMs would cap-
ture the global facial shape patterns using the explicitly
constructed facial shape models, which are usually shared
between them. CLMs improve over the holistic methods in
that they use the local appearance around landmarks instead
of the holistic facial appearance. The motivation is that it’s
more difficult to model the holistic facial appearances, and
the local image patches are more robust to illumination
changes and facial occlusion compared to the holistic appear-
ance models.

Second, the regression-based methods, especially for the
cascaded regression methods (Xiong and De la Torre Frade
2013) share similar intuitions as the holistic AAM (Baker
et al. 2002; Saragih and Gocke 2009). For example, both of
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Table 2 CNN model structures of the leading methods

Methods # convolutional layer # fully connected layer, # features 3D model Cascaded method

Sun et al. (2013) 4 1 (120) N Y

Zhang et al. (2014) 4 1 (100) N N

Ranjan et al. (2016) 5 + Dim. reduction 1 (3072) N N

Zhou et al. 2013 4 1 (120) N Y

Zhu et al. (2016) 4 2 (256, 234) Y Y

Jourabloo and Liu (2016) 3 1 (150) Y Y

Holis�c methods
(Sec. 2)

Basic model – AAM (Sec. 2.1)

Fi�ng algorithm (Sec. 2.2)
Analy�c fi�ng methods (Sec. 2.2.1)

Learning based fi�ng methods (Sec. 2.2.2)

Other extensions (Sec. 2.3)
Feature representa�on (Sec. 2.3.1)

Model construc�on (Sec. 2.3.2)

Constrained Local
methods (Sec. 3)

General formula�ons (Sec. 3.1)

Local appearance model
(Sec. 3.2)

Face shape model (Sec. 3.3)

Classifier based local appearance models (Sec. 3.2.1)

Detec�on by op�miza�on
(Sec. 3.4)

Regression based local appearance models (Sec. 3.2.2)

Determinis�c face shape models (Sec. 3.3.1)

Probabilis�c face shape models (Sec. 3.3.2)

Itera�ve es�ma�on methods (Sec. 3.4.1)

Joint op�miza�on methods (Sec. 3.4.2)

Regression based
landmark detec�on
methods (Sec. 4)

Direct regression (Sec. 4.1)

Cascaded regression (Sec. 4.2)

Deep learning based methods (Sec. 4.3)

Facial landmark
detec�on methods

Fig. 10 Major categories of facial landmark detection algorithms

them estimate the landmarks by fitting the appearance and
they all can be formulated as a nonlinear least squares prob-
lem as shown in Eqs. (6) and (16). However, the holistic
methods predict the 2D shape and appearance model coef-
ficients by fitting the holistic appearance model, while the
cascaded regression methods predict the landmarks directly
by fitting the local appearances without explicit 2D shape
model. The fitting problem of holistic methods can be solved
with learning-based approaches or analytically as discussed
in Sect. 2.2, while all the cascaded regression methods per-
form estimation by learning.While the learning-based fitting
methods for holistic models usually use the same model
for coefficient updates in an iterative manner, the cascaded
regressionmethods learn different regressionmodels in a cas-
caded manner. The AAM model (Saragih and Gocke 2009)
discussed in Sect. 2.3.2 as one particular type of holistic
method is very similar to the Supervised Descent Methods
(SDM) (Xiong and De la Torre Frade 2013) as one particular
type of the cascaded regression method. Both train cascaded

models to learn the mapping from shape-indexed features to
shape (coefficient) updates. The trained model in the cur-
rent cascaded stage will modify the training data to train the
regression model in the next state. While the former holistic
method fits the holistic appearance and predicts the model
coefficients, SDM fits the local appearance and predicts the
landmark locations.

Third, there are similarities among the regression-based
local appearance model used in CLM in Sect. 3.2.2 and the
regression-basedmethods in Sect. 4. Both of them predict the
location updates from an initial guess of the landmark loca-
tions. The former approach predicts each landmark location
independently, while the later approach predicts them jointly,
so that shape constraint can be embedded implicitly. The for-
mer approach usually performs one-step prediction with the
same regression model, while the later approach can apply
different regression functions in a cascaded manner.

Fourth, compared to the holistic methods and constrained
local methods, the regression-based methods may be more
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promising. The regression-basedmethods bypass the explicit
face shape modeling and embed the face shape pattern
constraint implicitly. The regression-based methods directly
predict the landmarks, instead of the model coefficients as in
the holistic methods and someCLMs. Directly predicting the
shape usually can achieve better accuracy since small model
coefficient errors may lead to large landmark errors.

6 Facial Landmark Detection “in-the-wild”

Most of the aforementioned algorithms focus on facial
images in “controlled conditions” without significant vari-
ations. However, in real world, the facial images would
undergo varying facial expressions, head poses, illumina-
tions, facial occlusion etc., which are generally referred to as
“in-the-wild” conditions. Some of the aforementioned algo-
rithmsmay be able to handle those variations implicitly (e.g.,
deep learning based methods), while some others may fail.
In this section, we focus on algorithms that are explicitly
designed to handle those challenging conditions.

6.1 Head Poses

Significant head pose (e.g. profile face) is one of the major
cause of the failure of the facial landmark detection algo-
rithms (Fig. 11). There are a few difficulties. First, the 3D
rigid head movement affects the 2D facial appearance and
face shape. There would be significant facial appearance and
shape variations caused by different head poses. Traditional
shape models such as the PCA-based shape model used in
AAM and ASM can no longer model the large facial shape
variations since they are linear in nature and large facial pose
shape variation is non-linear. Second, large head pose may
lead to self-occlusion. Due to the missing of the facial land-
mark points, some facial landmark detection algorithms may
not be directly applicable. Third, there is limited training
data with large head poses, and it may need extra efforts to
annotate the head pose labels to train the algorithms.

To handle large head poses, one direction is to train pose
dependent models, and these methods differ in the detection
procedures (Yan et al. 2003; Cootes et al. 2000; Zhu and
Ramanan 2012; Dantone et al. 2012). They either select the
best model or merge the results from all models. There are
two ways to select the model. The first way is to estimate
the head poses using existing head pose estimation methods.
For example, in the early work (Yan et al. 2003), multiple
pose dependent AAM models are built in training and the
model is selected from the multi-view face detector during
testing. In Yu et al. (2013), the head pose is first estimated
based on the detection of a few facial key points. Then, head
pose dependent fitting algorithm is applied to further refine
the landmark detection results using the selected posemodel.

Fig. 11 Facial images (Gross et al. 2010) with different head poses

The head pose can also be selected based on the confidence
scores using different pose dependent models. For example,
in the early work (Cootes et al. 2000), three AAM models
are built for faces in different head poses (e.g. left profile,
frontal, and right profile) during training. During detection,
the result with the smallest fitting error is considered as the
final output. In Zhu and Ramanan (2012), multiple models
are built for each discrete head pose and the best fit during
testing is outputted as the final result.

The algorithms that select the best head pose dependent
modelwould fail, if themodel is not selected correctly. There-
fore, it may be better to merge the results from different pose
dependent models. For example, in Dantone et al. (2012), a
probabilistic head pose estimator is trained and the facial
landmark detection results from different pose dependent
models are merged through Bayesian integration.

More recently, there are a few algorithms that build one
unified model to handle all head poses. For example, in Wu
and Ji (2015), self-occlusion caused by large head poses
is considered as the general facial occlusion, and a unified
model is proposed to handle facial occlusion, which explic-
itly predicts the landmark occlusion along with the landmark
locations. In Xiong and la Torre (2015), landmark detection
follows the cascaded iterative procedure and the pose depen-
dent model is automatically selected based on the estimation
from the last iteration. In Zhu et al. (2016) and Jourabloo
and Liu (2016), Convolutional Neural Network (CNN) is
combined with 3D deformable facial shape model to jointly
estimate the head pose and facial landmarks on images with
large head poses, following the cascaded regression frame-
work. In summary, methods handling head poses include
pose dependent shape models, unified pose models, and pose
invariant features. They all have their strengths and weak-
nesses. It depends on the applications to choose which one
to follow. Also, for some applications, it may be best to com-
bine different types of methods.

6.2 Occlusion

Facial occlusion is another cause of the failure of the facial
landmark detection algorithms. Facial occlusion could be
caused by objects or self-occlusion due to large head poses.
Figure 12 shows facial images with object occlusion. Some
images in Fig. 11 also contain facial occlusion. There are a
few difficulties to handle facial occlusions. First, the algo-
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Fig. 12 Facial images (Burgos-Artizzu et al. 2013)with different occlu-
sions

rithm should rely more on the facial parts without occlusion
than the part with occlusion. However, it’s difficult to predict
which facial part or which facial landmarks are occluded.
Second, since arbitrary facial part could be occluded by
objects with arbitrary appearances and shapes, the facial
landmark detection algorithms should be flexible enough
to handle different cases (e.g. mouth may be occluded by
mask or nose may be occluded by hand). Third, the occlu-
sion region is usually locally consistent (e.g. it is unlikely that
every other point is occluded), but it is difficult to embed this
property as a constraint for occlusion prediction and land-
mark detection.

Due to these difficulties, there is limitedwork that can han-
dle occlusion. Most of the current algorithms build occlusion
dependentmodels by assuming that some parts of the face are
occluded, and merge those models for detection. For exam-
ple, in Burgos-Artizzu et al. (2013), face is divided into nine
parts and it is assumed that only one part is not occluded.
Therefore, the facial appearance information from one par-
ticular part is utilized to predict the facial landmark locations
and facial occlusions for all parts. The predictions from all
nine parts are merged together based on the predicted facial
occlusion probability for each part. Similarly, it is assumed
in Yu et al. (2014) that a few manually pre-designed regions
(e.g. one facial component) are occluded, and different mod-
els are trained for prediction based on the non-occluded parts.

The aforementioned occlusion dependent models may be
sub-optimal, since they assume that a fewpre-defined regions
are occluded, while the facial occlusion could be arbitrary.
Therefore, those algorithms may not cover all rich and com-
plex occlusion cases in real world scenario. Another issue
related to the aforementioned methods is that the limited
facial appearance information from one part of the face (e.g.
from the mouth region) maybe insufficient for the predic-
tion of the facial landmarks in the whole face region. To
alleviate this problem, some algorithms handle facial occlu-
sion in a unified framework. For example, in Ghiasi and
Fowlkes (2014), a probabilistic model is proposed to predict
the facial landmark locations by jointly modeling the local
facial appearance around each facial landmark, the landmark
visibility for each landmark, occlusion pattern, and hidden
states of facial components. It jointly predicts the landmark
locations and landmark occlusions through inference in the
probabilistic model. In Wu and Ji (2015), a constrained cas-

Fig. 13 Facial images (Kanade et al. 2000; Lucey et al. 2010) with
different facial expressions. a surprised, b sadness, c disgust, d anger,
e happy and f fear

caded regression model is proposed to iteratively predict the
facial landmark locations and landmark visibility probabil-
ities, based on local appearance around currently predicted
landmark points iteratively. For landmark visibility predic-
tion, it gradually updates the landmark visibility probabilities
and it explicitly adds occlusion patterns as a constraint in
the prediction. For landmark location prediction, it assigns
weights to facial appearance around different facial land-
marks based on their landmark visibility probabilities, so
that the algorithm relies more on the local appearance from
visible landmarks than that fromoccluded landmarks. Differ-
ent from Ghiasi and Fowlkes (2014), the model can handle
facial occlusion caused by both object occlusion and large
head poses.

6.3 Facial Expression

Facial expression would lead to non-rigid facial motions
which would affect facial landmark detection and track-
ing. For example, as shown in Fig. 13, the six basic facial
expressions, including happy, surprise, sadness, angry, fear
and disgust, would cause the changes of facial appearance
and shape. In more natural conditions, facial images would
undergo more spontaneous facial expressions other than the
six basic expressions. Generally speaking, recent facial land-
mark detection algorithms have been able to handle facial
expressions to some extent.

Even though most algorithms handle facial expressions
implicitly, there are some algorithms that are explicitly
designed to handle significant facial expression variations.
For example, in Tong et al. (2007), a hierarchical dynamic
probabilistic model is proposed, which can automatically
switch between specific states of the facial components
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caused by different facial expressions. Due to the corre-
lation between facial expression and facial shape, some
algorithms also perform joint facial expression and facial
landmark detection. For example, in Li et al. (2013), a
dynamic bayesian network model is proposed to model the
dependencies among facial action units, facial expressions,
and face shapes for joint facial behavior analysis and facial
landmark tracking. It shows that exploiting the joint rela-
tionships and interactions improves the performances of both
facial expression recognition and facial landmark detection.
Similarly, in Wu and Ji (2016), a constrained joint cascaded
regression framework is proposed for simultaneous facial
action unit recognition and facial landmark detection. It first
learns the joint relationships among facial action units and
facial shapes, and then uses the relationship as a constraint to
iteratively update the action unit activation probabilities and
landmark locations in a cascaded iterative manner.

There are also some works that handle both facial expres-
sion and head pose variations simultaneously for facial
landmark detection. For example, in Perakis et al. (2013)
and Baltrušaitis et al. (2012), 3D facemodels are used to han-
dle facial expression and pose variations. Baltrušaitis et al.
(2012) can predict both the landmarks and the head poses. In
Wuet al. (2013) andWuand Ji (2015), the face shapemodel is
constructed to handle the variations due to facial expression
changes. The model decouples the face shape into expres-
sion related parts and head pose related parts. In Zhao et al.
(2014), not only the facial landmark locations, but also the
expression and pose are estimated jointly in a cascaded man-
ner with Random Forests model. In addition, in each cascade
level, the poses and expressions are firstly updated and they
are used further for the estimation of facial landmarks. InWu
et al. (2014), a hierarchical probabilisticmodel is proposed to
automatically exploit the relationships among facial expres-
sion, head pose, and facial shape changes of different facial
components for facial landmark detection. Some multi-task
deep learning methods discussed in Sect. 4.3 also can be
included in this category.

7 Related Topics

7.1 Face Detection for Facial Landmark Detection

It is usually assumed that face is already detected and given
for most of the existing facial landmark detection algorithms.
The detected face would provide the initial guess of the face
location and face scale. However, there are some issues. First,
face detection is still an unsolved problem and it would fail
especially on images with large variations. The failure of
the face detection would directly lead to the failure of most
facial landmark detection algorithms. Second, facial land-
mark detection accuracy may be significantly affected by the

face detectors accuracy. For example, in the regression-based
methods, the initial shape is generated by placing the mean
shape in the center of the face bounding box, where the scale
is also estimated from the bounding box. In CLM, the initial
regions of interest for each independent local point detector
are determined by the face bounding box. Third, to ensure
real-time facial landmark detection, fast face detector is usu-
ally preferred.

The most popular face detector has been the Viola-Jones
face detector (VJ) (Viola and Jones 2001). The usage of the
integral image and the adaboost learning ensures both fast
computation and effective face detection. The part-based
approaches (Heisele et al. 2007; Felzenszwalb et al. 2010;
Mathias et al. 2014) use a slightly different framework. They
consider the face as a object consisting of several parts with
spatial constraints. More recently, the region-based convo-
lutional neural networks (RCNN) methods (Girshick et al.
2014; Girshick 2015; Ren et al. 2015) have been used for
face detection. They are based on a region proposal compo-
nentwhich identifies the possible face regions and a detection
component, which further refines the proposal regions for
face detection. Generally, the RCNN based methods are
more accurate especially for images with large pose, illumi-
nation, occlusion variations. However, their computational
costs (about 5 frame/second with GPU) are much higher than
the traditional face detectors which provide real-time detec-
tion. A more detailed study and survey of the face detection
algorithms can be found in Zhang and Zhang (2010).

There are some algorithms that perform joint face detec-
tion and landmark localization. For example, in Zhu and
Ramanan (2012), deformable part model is applied to jointly
perform face detection, face alignment and head pose estima-
tion. In Shen et al. (2013), face detection and face alignment
are formulated as an image retrieval problem. Similarly, In
Chen et al. (2014), face detection and face alignment are per-
formed jointly in a cascaded regression framework. The face
shape is iteratively updated and the bounding box would be
rejected if the confidence based on the current face shape is
less than a threshold.

7.2 Facial Landmark Tracking

Facial landmark detection algorithms are generally designed
to handle individual facial images, and they can be extended
to handle facial image sequences or video. The simplest way
is tracking by detection, where facial landmark detection is
applied. However, methods in this category ignore the depen-
dency and temporal smoothness among consecutive frames,
which are sub-optimal.

There are three types of works that perform facial land-
mark tracking by leveraging the temporal relationship:
tracker based independent tracking methods, joint tracking
methods, and probabilistic graphical model based methods.
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The tracker based independent tracking methods (Bourel
et al. 2000; Tong et al. 2007; Wu et al. 2013) perform
facial landmark tracking on the individual points based on
the general object trackers, such as the Kalman Filter and
Kanade–Lucas–Tomasti tracker (KLT). In each frame, the
face shape model is applied to restrict the independently
tracked points, so that the face shape in each frame satis-
fies the face shape pattern constraint (Bourel et al. 2000;
Tong et al. 2007;Wu et al. 2013). The joint tracking methods
perform facial landmark points update jointly, and they ini-
tialize the model parameters or landmark locations based on
the information from the last frame. For example, in Ahlberg
(2002), AAM model coefficients estimated in the last frame
are used to initialize the model coefficients in the current
frame. In the cascaded regression framework (Xiong and
De la Torre Frade 2013), the tracked facial landmark loca-
tions in the last frame are used to determine the location
and size of the initial facial shape for the cascaded regres-
sion in the current frame. Since detection and tracking are
initialized differently (detection uses face bounding box to
determine the face size and location, while it uses landmark
locations in the last frame in tracking), themethod needs train
different sets of regression functions for detection and track-
ing. The probabilistic graphical model based methods build
dynamic models to jointly embed the spatial and temporal
relationships among facial landmark points for facial land-
mark tracking. For example, Markov Random Field (MRF)
model is used in Cosar and Cetin (2011), and Dynamic
Bayesian Network is used in Li et al. (2013). The dynamic
probabilistic models capture both the temporal coherence as
well as shape dependencies among landmark points. More
evaluation and review about facial landmark tracking can be
found here (Chrysos et al. 2017).

7.3 3D Facial Landmark Detection

3D facial landmark detection algorithms detect the 3D facial
landmark locations. The existing works can be classified into
2D-data based methods using 2D images and 3D-data based
methods using 3D face scan data.

Given the limited information, the detection of the 3D
facial landmark locations from 2D image is a ill-posed prob-
lem. To solve this issue, existing methods either leverage 3D
training data or a pre-trained 3D facial shapemodel and com-
bine them with machine learning. For example, in Tulyakov
and Sebe (2015), Tulyakov and Sebe extended the cascaded
regressionmethod from 2D to 3D by adding the prediction of
the depth information. The method directly learns the regres-
sors to predict the 3D facial landmark locations from 2D
image given 3D training data. Since 3D data is difficult to
generate, some algorithms learn a 3D facial shape model
instead with limited training data. For example, in Gou et al.
(2016), 2D facial landmarks are firstly detected using the

cascaded regression method, and they are combined with a
3D deformable model to determine the face pose and coef-
ficients of the deformable model, based on which they can
then recover the positions of the 3D landmark points. Sim-
ilarly, in Jeni et al. (2015), cascaded regression method is
used to predict both dense 2D facial landmarks and their vis-
ibilities. An iterative method is then applied to fit the 2D
shape to a pre-trained dense 3D model to estimate the 3D
model parameters. There are some methods that use both
3D deformable model and 3D training data. For example,
in Jourabloo and Liu (2015), cascaded regression method is
used to estimate the 3D model coefficients and pose param-
eters from 2D images, which determine both the 2D and the
3D facial landmark locations.

There are a few algorithms that perform 3D facial land-
mark detection on 3D face scan. For example, in Papazov
et al. (2015), eight 3D facial landmark locations are esti-
mated. The algorithm first uses two 3D local shape descrip-
tors, including the shape index feature and the spin image
to generate landmark location candidates for each landmark.
Then the final landmark locations are selected by fitting the
3D face model. Similarly, in Liang et al. (2013), 17 dom-
inate landmarks are firstly detected on 3D face scan using
their particular geometric properties. Then, a 3D template is
matched to the testing face to estimate the 3D locations of
20 landmarks. In Papazov et al. (2015), dense 3D features
are estimated from the 3D point cloud generated with depth
sensor. In particular, a triangular surface patch descriptor is
designed to select and match the training patches to the ran-
domly generated patches from the testing image. Then, the
associated 3D face shapes of the training patches are used to
vote the 3D shape of the testing image.

Compared to the 2D facial landmark detection, 3D facial
landmark detection is still new. There is lack of a large 3D
face database with abundant 3D annotations. Compared to
largely available 2D images, 3D face scans are difficult to
obtain. Labeling 3D facial landmarks on 2D images or 3D
face scan are usually more difficult than 2D landmarks.

Fig. 14 Facial landmark annotations. Images are adapted from https://
www.bioid.com/About/BioID-Face-Database, Sagonas et al. (2013)
and Le et al. (2012). a 20 points, b 68 points and c 194 points
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8 Databases and Evaluations

8.1 Landmark Annotations

Facial landmark annotations refer to the manual annotations
of the groundtruth facial landmark locations on facial images.
There are usually two types of facial landmarks: the facial key
points and interpolated landmarks. The facial key points are
the dominant landmarks on face, such as the eye corners, nose
tip, mouth corners, etc. They possess unique local appear-
ance/shape patterns. The interpolated landmark points either
describe the facial contour or connect the key points (Fig. 14).
In the early research, only sparse key landmark points are
annotated and detected (Fig. 14a). Recently, more points are
annotated in the new databases (Fig. 14b, c). For example, in
BioID, 20 landmarks are annotated, while there are 68 and
194 landmarks annotated in ibug and Helen databases.

There are some issues with the existing landmark anno-
tations. First, the landmark annotations are inherently bias
and they are inconsistent across databases. As a result, it’s
difficult to combine multiple databases for evaluations. The
annotation inconsistency also exists for individual landmark
annotation. For example, for the annotation of eye corners,
some databases tend to provide annotation within the eye
region, while the others may annotate the point outside the
eye region. To solve this issue, in Smith and Zhang (2014),
a method is proposed to combine databases with different
facial landmark annotations. It generates a union of land-
mark annotations by transferring the landmark annotations
from source database to target database.

The second issue is that manual annotation is a time-
consuming process. There are some works improving the
annotation process. In Feng et al. (2015), 3D face scan
and projection models are used to generate the synthetic
2D facial landmarks and corresponding landmark annota-
tions. The synthetic images are then combined with real
images to train the facial landmark detector. In Sagonas
et al. (2013a), an iterative semi-automatic landmark anno-
tation method is proposed. A facial landmark detector is
initially trained with a small number of training data, and
it is used to fit new testing images, which are selected by
user to retrain the detector. Similarly, in Tong et al. (2012), a
semi-supervised facial landmark annotation method is pro-
posed. Even though the aforementioned methods improve
the facial landmark annotation process, the annotation is still
time-consuming and expensive. Overall, the existing training
images anddatabasesmay still not be adequate for some land-
mark detection algorithms, such as the deep learning based
methods. Finally, to scale up annotation to large datasets,
online crowd-sourcing such as Amazon Mechanical Turk
may be a potential method for facial landmark annotation.

8.2 Databases

There are two types of databases: databases collected under
the “controlled” conditions or databases with “in-the-wild”
images. See Table 3 for the summary.

8.2.1 Databases Under “Controlled” Conditions

Databases under “controlled” conditions refer to databases
with videos/images collected indoor with certain restrictions
(e.g. pre-defined expressions, head poses etc.).

– BioID (https://www.bioid.com/About/BioID-Face-Data
base): The data set contains 1521 gray scale indoor
images with a resolution of 384 × 286 from 23 sub-
jects. Images are taken under different illuminations and
backgrounds. Subjects may show moderate expression
variations. It contains landmark annotations of 20 points.

– AR (Martínez and Benavente 1998): The set contains
4000 frontal color images of 126 people with expres-
sions, illumination, and facial occlusions (e.g. sun glasses
and scarf). 22 landmark annotations are provided (http://
personalpages.manchester.ac.uk/staff/timothy.f.cootes/
data/tarfd_markup/tarfd_markup.html).

– Extended YaleB (Georghiades et al. 2001): The extended
Yale Face database B contains 16,128 images of 28 sub-
jects under 9 poses and 64 illumination conditions. The
database provides original images, the cropped facial
images, and three annotated landmarks.

– FERET (Phillips et al. 1997): The Facial Recognition
Technology (FERET) database contains 14,051 gray
scale facial images, covering about 20 discrete head poses
that differ in yaw angles. Frontal faces also have illumi-
nation and facial expression variations. 11 landmarks on
selected profile faces are provided by Wu and Ji (2015).

– CK/CK+ (Kanade et al. 2000; Lucey et al. 2010): The
Cohn-Kanade AU-coded expression database (CK) con-
tains 486 (593 in CK+) video sequences of frontal faces
from 97+ subjects with 6 basic expressions, including
happy, surprised, sadness, disgust, fear and anger. The
videos start from the neural expression and go to apex.
CK+ is an extended version of CK database. It includes
both posed and spontaneous expressions.AAMlandmark
tracking results are provided by the database.

– Multi-PIE database (Gross et al. 2010): The Multi-PIE
face database contains more than 750,000 images of 337
subjects. The facial images are takenunder 15viewpoints
and 19 illumination conditions. A few facial expressions
are included, such as neutral, smile, surprise, squint, dis-
gust, and scream. 68 or 39 facial landmarks are annotated,
depending on the head poses.

– XM2VTSDB(Messer et al. 1999):TheExtendedM2VTS
database contains videos of 295 subjects with speech and
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Table 3 Summary of the databases

Databases Video (v)/image (i) Gray (g)/color (c) Amount of data Variations Number of landmark points

BioID (https://www.bioid.
com/About/BioID-Face-
Database)

i g 1521 e, i 20

AR (Martínez and
Benavente 1998)

i c 4000+ e, i, o 22 (http://personalpages.
manchester.ac.uk/staff/
timothy.f.cootes/data/
tarfd_markup/
tarfd_markup.html)

Extended YaleB
(Georghiades et al. 2001)

i g 16128 i, p 3

FERET (Phillips et al.
1997)

i g 14501 e, i, p 11 (Wu and Ji 2015)

CK/CK+ (Kanade et al.
2000; Lucey et al. 2010)

v g&c 486 (593) e 68

MultiPIE (Gross et al. 2010) i c 750,000 e, i, p 68 or 39

XM2VTSDB (Messer et al.
1999)

i c 1180 p 68 (Sagonas et al. 2013)

FRGC v2 (Phillips et al.
2005)

i c 50,000 e, i 68 (Sagonas et al. 2013)

BU-4DFE (Yin et al. 2008) i c 3000 e 68 (Tulyakov and Sebe
2015)

AFLW (Koestinger et al.
2011)

i c 25,000 (e, i, o, p) 21

LFPW (Belhumeur et al.
2013)

i c 1432 (e, i, o, p) 29 (68) (Sagonas et al.
2013)

Helen (Le et al. 2012) i c 2330 (e, i, o, p) 168 (68) (Sagonas et al.
2013)

AFW (Zhu and Ramanan
2012)

i c 205 (e, i, o), p 6 (68) (Sagonas et al. 2013)

ibug300 (Sagonas et al.
2013)

i c 135 e, i, o, p 68

ibug300-VW (Shen et al.
2015)

v c 114 (e, i, o, p) 68

COFW (Burgos-Artizzu
et al. 2013)

i c 1852 (e, i, p), o 29

We use the following notations to represent different variations. e: expression, i: illumination, o: occlusion, p: pose. “(.)” represents moder-
ate/spontaneous variations

rotation head movements. 3D head model of each sub-
ject is also provided. 68 facial landmark annotations are
provided by Sagonas et al. (2013).

– FRGC v2 (Phillips et al. 2005): The Face Recogni-
tion Grand Challenge (FRGC) database contains 50,000
facial images from 4,003 subject sessions with different
lighting conditions and two facial expressions (smile and
neutral). 3D images acquired by special sensor (Minolta
Vivid 900/910) consisting of both range and texture
images are also provided. 68 facial landmark annotations
on selected images are provided by Sagonas et al. (2013).

– BU-4DFE (Yin et al. 2008): The Binghamton Univer-
sity 4D Facial Expression database (BU-4DFE) contains
2D and 3D videos for six prototypic facial expressions

(e.g., anger, disgust, happiness, fear, sadness, and sur-
prise) from 101 subjects (58 female and 43 male). There
are approximately 60k+ images. 68 2D and 3D facial
landmark annotations on selected images are provided
by Tulyakov and Sebe (2015).

8.2.2 “In-the-wild” Databases

Recently, researchers focus on developing more robust and
effective algorithms to handle facial landmark detection in
real day-life situations. To evaluate the algorithms in those
conditions, a few “in-the-wild” databases are collected from
the webs, such as Flicks, facebook etc. They contain all sorts
of variations, including head pose, facial expression, illumi-
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nation, ethnicity, occlusion, etc. They aremuchmore difficult
than images with “controlled” conditions. Those databases
are listed as follows:

– AFLW (Koestinger et al. 2011): The Annotated Facial
Landmark in the Wild (AFLW) database contains about
25K images. The annotations include up to 21 landmarks
based on their visibility.

– LFPW (Belhumeur et al. 2013): The Labeled Face
Parts in the Wild (LFPW) database contains 1432 facial
images. Since only the URLs are provided, some images
are no longer available. 29 landmark annotations are
provided by the original database. Re-annotations of 68
facial landmarks for 1132 training images and 300 testing
images are provided by Sagonas et al. (2013).

– Helen database (Le et al. 2012): The Helen database con-
tains 2330 high resolution images with dense 194 facial
landmark annotations. Re-annotations of 68 landmarks
are also provided by Sagonas et al. (2013).

– AFW (Zhu and Ramanan 2012): The Annotated Faces
in the Wild (AFW) database contains about 205 images
with relatively larger pose variations than the other “in-
the-wild” databases. 6 facial landmark annotations are
provided by the database, and re-annotations of 68 land-
marks are provided by Sagonas et al. (2013).

– Ibug 300-W (Sagonas et al. 2013, b): The ibug dataset
from 300 faces in the Wild (300-W) database 3 is the
most challenging database so far with significant varia-
tions. It only contains 135 images with annotations of 68
landmarks.

– Ibug 300-VW (Shen et al. 2015): The 300 Video in the
Wild (300) database contains 114 video sequences for
three different scenarios from easy to difficult. 68 facial
landmark annotations are provided.

– COFW (Burgos-Artizzu et al. 2013): The Caltech
Occluded Faces in the Wild (COFW) database contains
images with significant occlusions. There are 1345 train-
ing images and 507 testing images. There are annotations
of 29 landmark locations and landmark occlusions.

8.3 Evaluation and Discussion

8.3.1 Evaluation Criteria

Facial landmark detection and tracking algorithms output
the facial landmark locations in the facial images or videos.
The accuracy is evaluated by comparing the detected land-
mark locations to the groundtruth facial landmark locations.

3 Ibug 300-W database contains public available training images and
private testing images. The training images include the annotations of
public available databases and several newly collected images. Here,
we name the newly collected images as Ibug 300-W database.

In particular, if we denote the detected and groundtruth
landmark locations for landmark i as di = {dx,i , dy,i } and
gi = {gx,i , gy,i }, the detection error for the ith point is:

errori = ‖di − gi‖2 (22)

One issue with the above criteria is that the error could
change significantly for faces with different sizes. To handle
this issue, there are several ways to normalize the error. The
inter-ocular distance is themost popular criteria. Ifwedenote
the left and right pupil centers as gle and gre, we can calculate
the normalized error as follows:

norm_errori = ‖di − gi‖2
‖gle − gre‖2 (23)

Besides the inter-ocular distance, someworks (Sagonas et al.
2013a) may choose the distance between outer eye corners
as a normalization constant. For particular images, such as
images with extreme head poses (≥ 60◦) or occlusion (e.g.,
Figs. 11, 12), the eyes may not be visible. Therefore, some
other normalization constants, such as the face size from the
face bounding box (Zhu and Ramanan 2012) or the distance
between outer eye corner and outer mouth corner (same side
of the face) (Wu and Ji 2015) can be used as the normalization
constants.

To accumulate the errors of multiple landmarks for one
image, the average normalized errors are used:

norm_error_image = 1

N

N∑

i

‖di − gi‖2
‖gle − gre‖2 (24)

Fig. 15 Comparison of the cumulative distribution curves of several
algorithms: SDM (Xiong and De la Torre Frade 2013), Discriminative
deep model (Wu and Ji 2015), Consensus of exemplars (Belhumeur
et al. 2013), AAM in the wild (Tzimiropoulos and Pantic 2013), and
FPLL (Zhu and Ramanan 2012) on LFPW databases (Belhumeur et al.
2013). Figure is adapted from Wu and Ji (2015)
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Table 4 Accuracy comparison of leading algorithms

Databases # points Methods Type Normalized error

BU-4DFE (Yin et al.
2008)

68 (Tulyakov and
Sebe 2015)

One millisecond face alignment (Kazemi and
Sullivan 2014)

R 5.22 (Tulyakov and Sebe
2015)

3D regression (Tulyakov and Sebe 2015) R 5.15*

AFLW (Koestinger
et al. 2011)

21 Explicit shape regression (Cao et al. 2014) R 8.24 (Zhu et al. 2016) (fs)

RCPR (Burgos-Artizzu et al. 2013) R 7.85 (Zhu et al. 2016) (fs)

SDM (Xiong and De la Torre Frade 2013) R 6.55 (Zhu et al. 2016) (fs)

3DDFA (Zhu et al. 2016) DR 5.32* (fs)

HyperFace (Ranjan et al. 2016) DR 4.26* (fs)

AFW (Zhu and
Ramanan 2012)

5 Explicit shape regression (Cao et al. 2014) R 10.4 (Zhang et al. 2014)

RCPR (Burgos-Artizzu et al. 2013) R 9.3 (Zhang et al. 2014)

SDM (Xiong and De la Torre Frade 2013) R 8.8 (Zhang et al. 2014)

TCDCN (Zhang et al. 2014) DR 8.2*

LFPW (Belhumeur
et al. 2013)

29 Consensus of exemplars (Belhumeur et al.
2013)

C 3.99 (Cao et al. 2014)

Robust facial landmark detection (Wu and Ji
2015)

R 3.93*

One millisecond face alignment (Kazemi and
Sullivan 2014)

R 3.8*

RCPR (Burgos-Artizzu et al. 2013) R 3.50*

SDM (Xiong and De la Torre Frade 2013) R 3.47*

Explicit shape regression (Cao et al. 2014) R 3.43*

Face alignment 3000 fps (Ren et al. 2014) R 3.35*

68 FPLL (Zhu and Ramanan 2012) C 8.29 (Zhu et al. 2015)

DRMF (Asthana et al. 2013) C 6.57 (Zhu et al. 2015)

RCPR (Burgos-Artizzu et al. 2013) R 6.56 (Zhu et al. 2015)

Gaussian-Newton DPM (Tzimiropoulos and
Pantic 2014)

C 5.92 (Zhu et al. 2015)

SDM (Xiong and De la Torre Frade 2013) R 5.67 (Zhu et al. 2015)

CFAN (Zhang et al. 2014) DR 5.44 (Zhu et al. 2015)

CFSS (Zhu et al. 2015) R 4.87*

Helen (Le et al.
2012)

68 FPLL (Zhu and Ramanan 2012) C 8.166 (Zhu et al. 2015)

DRMF (Asthana et al. 2013) C 6.70 (Zhu et al. 2015)

RCPR (Burgos-Artizzu et al. 2013) R 5.93 (Zhu et al. 2015)

Gaussian-Newton DPM (Tzimiropoulos and
Pantic 2014)

C 5.69 (Zhu et al. 2015)

CFAN (Zhang et al. 2014) DR 5.53 (Zhu et al. 2015)

SDM (Xiong and De la Torre Frade 2013) R 5.50 (Zhu et al. 2015)

CFSS (Zhu et al. 2015) R 4.63*

194 Stasm(ASM) (Milborrow and Nicolls 2008) C 11.1 (Le et al. 2012)

Component-based ASM (Le et al. 2012) C 9.1*

RCPR (Burgos-Artizzu et al. 2013) R 6.50*

SDM (Xiong and De la Torre Frade 2013) R 5.85 (Ren et al. 2014)

Explicit shape regression (Cao et al. 2014) R 5.7*

Robust facial landmark detection (Wu and Ji
2015)

R 5.49*

Face alignment 3000 fps (Ren et al. 2014) R 5.41*
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Table 4 continued

Databases # points Methods Type Normalized error

One millisecond face alignment (Kazemi and
Sullivan 2014)

R 4.9*

CFSS (Zhu et al. 2015) R 4.74*

Ibug 300-W
(Sagonas et al.
2013,b)

68 FPLL (Zhu and Ramanan 2012) C 10.20 (Zhu et al. 2015)

DRMF (Asthana et al. 2013) C 9.22 (Zhu et al. 2015)

RCPR (Burgos-Artizzu et al. 2013) R 8.35 (Zhu et al. 2015)

CFAN (Zhang et al. 2014) DR 7.69 (Fan and Zhou 2016)

Explicit shape regression (Cao et al. 2014) R 7.58 (Ren et al. 2014)

SDM (Xiong and De la Torre Frade 2013) R 7.52 (Ren et al. 2014)

One millisecond face alignment (Kazemi and
Sullivan 2014)

R 6.4 (Zhu et al. 2015)

Face alignment 3000 fps (Ren et al. 2014) R 6.32*

3DDFA (Zhu et al. 2016) DR 6.31*

CFSS (Zhu et al. 2015) R 5.76*

TCDCN (Zhang et al. 2014) DR 5.54 (Fan and Zhou 2016)

Types: H: holistic methods, C: constrained local methods, R: regression based methods, DR: deep learning based regression methods. The number
provided by the original paper is marked as “*”. The error normalized by face size is indicated as “fs”

Table 5 Efficiency comparison of leading algorithms

Methods Type # points fps

TCDCN (Zhang et al. 2014) DR 5 58

HyperFace (Ranjan et al. 2016) DR 21 5

Consensus of exemplars (Belhumeur et al. 2013) C 29 1 (Ren et al. 2014)

3DDFA (Zhu et al. 2016) DR 68 13

CFAN (Zhang et al. 2014) DR 68 40

CFSS (Zhu et al. 2015) R 68 25

SDM (Xiong and De la Torre Frade 2013) R 68 30

3D Regression (Tulyakov and Sebe 2015) R 68 111

Explicit shape regression (Cao et al. 2014) R 87 345

RCPR (Burgos-Artizzu et al. 2013) R 194 6

One millisecond face alignment (Kazemi and Sullivan 2014) R 194 1000

Face alignment 3000 fps (Ren et al. 2014) R 194 200/1500

Types: H: holistic methods, C: constrained local methods, R: regression based methods, DR: deep learning based regression methods

To calculate the performances on multiple images, the mean
error or the cumulative distribution error are used. Themean
error calculates the mean of the normalized errors of multi-
ple images. The cumulative distribution error calculates the
percentages of images that lie under certain thresholds (see
Fig. 15).

To evaluate the efficiency, the number of processed frames
is used. Normally, facial landmark detection algorithms are
evaluated on regular PC (e.g., laptop) without powerful GPU
or parallel computing implementation etc.

8.3.2 Evaluation of Existing Algorithms

In Table 4, we list the performances of leading algorithms on
the benchmark databases, their categories and the landmark
detection errors. In Fig. 15, we show the cumulative distri-
bution curves of some algorithms on LFPW dtabase. Note
that, in this paper, we focus on the reported results from the
existing literatures. There are additional detailed references
Chrysos et al. (2017), Sagonas et al. (2016) and Shen et al.
(2015) that provide original evaluations by running the soft-
ware and implementations of known algorithms on different
databases.
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Table 6 Summary of the academic software

Methods Detection (d) or
tracking (t)

Realtime (y) or
not (n)

Source code (sc)
or binary code
(bc)

Number of points Links

Stasm (ASM) (Milborrow
and Nicolls 2008)

d y sc 77 http://www.milbo.users.
sonic.net/stasm/

DeMoLib (AAM, ASM
etc.)

d sc http://staff.estem-uc.edu.
au/roland/research/
demolib-home/

Generic AAM
(Tzimiropoulos et al.
2012)

d n sc 68 http://ibug.doc.ic.ac.uk/
resources/aoms-generic-
face-alignment/

AAM in the
wild (Tzimiropoulos and
Pantic 2013)

d n sc 68 http://ibug.doc.ic.ac.uk/
resources/fitting-aams-
wild-iccv-2013/

FPLL (Zhu and Ramanan
2012)

d n sc 68 or 39 http://www.ics.uci.edu/
~xzhu/face/

Pose-free (Yu et al. 2013) d n bc 66 http://www.research.
rutgers.edu/~xiangyu/
face_align.html

Flandmark (Uřičář et al.
2012)

d y sc 8 http://cmp.felk.cvut.cz/
~uricamic/flandmark/

BoRMaN (Valstar et al.
2010), LEAR (Martinez
et al. 2013)

d n bc 20 http://ibug.doc.ic.ac.uk/
resources/facial-point-
detector-2010/

DRMF (Asthana et al.
2013)

d n bc 66 http://ibug.doc.ic.ac.uk/
resources/drmf-matlab-
code-cvpr-2013/;

SDM (Xiong and De la
Torre Frade 2013)

d & t y bc 49 http://www.humansensing.
cs.cmu.edu/intraface/
index.php

Face alignment 3000 fps
(Ren et al. 2014)

d y sc 68 https://github.com/jwyang/
face-alignment

RCPR (Burgos-Artizzu
et al. 2013)

d&t y sc 29 http://www.vision.caltech.
edu/xpburgos/ICCV13/

One millisecond face
alignment (Kazemi and
Sullivan 2014)

d y sc 194 http://www.csc.kth.se/
~vahidk/face_ert.html

CNN (Sun et al. 2013) d y bc 5 http://mmlab.ie.cuhk.edu.
hk/archive/
CNN_FacePoint.htm

Incremental face alignment
(Asthana et al. 2014)

d&t y bc 49 http://ibug.doc.ic.ac.uk/
resources/chehra-tracker-
cvpr-2014/

Conditional regression
forest (Dantone et al.
2012)

d sc 10 http://www.dantone.me/
projects-2/facial-feature-
detection/

CLMZ (OpenFace)
(Baltrušaitis et al. 2012)

d&t y sc 49 https://github.com/
TadasBaltrusaitis/
OpenFace/

CCNF (Baltrusaitis et al.
2014)

d y sc 30 https://www.cl.cam.ac.uk/
~tb346/res/ccnf.html
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Table 7 Summary of the commercial software

Methods Detection (d) or tracking (t) Realtime (y) or not (n) Trial version Number of points Links

Face++ d y y 83/25/5 http://www.faceplusplus.
com/demo-landmark/

Betaface d n y 101 http://betaface.com/wpa/
index.php/demo-gallery

Lambda Labs d y y 6 https://lambdal.com/face-
recognition-api#src

Visage d&t y y 51 http://visagetechnologies.
com/products-and-
services/visagesdk/

LUXAND d&t y y 66 https://www.luxand.com/
facesdk/

The trial version refers to the free evaluation/download without full access/functionalities

There are several observations. First, generally, the regres-
sion based methods achieve much better performances than
the holistic methods and the constrained local model meth-
ods, especially on images with significant variations (e.g.,
ibug 300-w). Second, deep learning based regression meth-
ods (e.g., Zhang et al. 2014) are the leading techniques and
they achieve the state-of-the-art performances on several
databases. Third, the performances of the same algorithm are
different across database, but the rank of multiple algorithms
is generally consistent.

The efficiencies of leading algorithms are shown in Table
5. Note that, the computational speeds of different algorithms
are reported from their original papers and their evaluation
methods may vary. For example, they have different imple-
mentation choices (matlab vs. C++), and they run on different
computers. Some algorithms may only report the processing
time by excluding the image loading time etc. Generally,
we can see that the traditional cascaded regression methods
(Kazemi and Sullivan 2014; Ren et al. 2014) are faster than
the other methods.

The results shown here are generally consistent with the
findings in Chrysos et al. (2017) and Sagonas et al. (2016).
In Chrysos et al. (2017), it shows that the one millisecond
face alignment (Kazemi and Sullivan 2014), the Supervised
Descent method (Xiong and De la Torre Frade 2013), and
CFSS (Zhu et al. 2015) are good options considering both
the speed and accuracy.

8.4 Software

In Tables 6 and 7, we list a few academic software and
commercial software. The academic software refers to the
implementations of the existing methods with paper publi-
cations. The commercial software is usually only available in
a limited sense. For commercial software, visage SDKcovers
many applications, including facial landmark detection, head

pose estimation, and facial expression recognition, which is
a good option.

9 Conclusion

In this paper, we reviewed the facial landmark detection algo-
rithms in three major categories: the holistic methods, the
constrained local methods, and the regression-based meth-
ods. In addition, we specifically discussed a few recent
algorithms that try to handle facial landmark detection “in-
the-wild” under different variations caused by head poses,
facial expressions, facial occlusion etc. Furthermore, we dis-
cussed the popular benchmark databases, performances of
leading algorithms and a few existing software.

There are still a few open questions about facial land-
mark detection. First, the current facial landmark detec-
tion and tracking algorithms still have problems on facial
images under challenging “in-the-wild” conditions, includ-
ing extreme head poses, facial occlusion, strong illumination,
etc. The existing algorithms focus on solving one or a few
conditions. There is still lack of a facial landmark detec-
tion and tracking algorithm that can handle all those cases.
Second, there is a lack of a large facial image database that
covers all different conditions with facial landmark anno-
tations, which may significantly speed up the development
of the algorithms. The existing databases only cover a few
conditions (e.g. head poses and expressions). Third, facial
landmark detection still heavily relies on the face detec-
tion accuracy, which may still fail in certain conditions.
Fourth, the computational cost for some landmark detection
and tracking algorithms is still high. The facial landmark
detection and tracking algorithms should meet the real-time
processing requirement.

There are a few future research directions. First, since
there are similarities as well as unique properties about the
methods in three major approaches, it would be beneficial to
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have a hybrid approach that combines all three approaches.
For example, it would be interesting to see how and whether
the appearance and shape models used in holistic methods
and CLM can help the regression based methods. It is also
interesting to study whether the analytic solutions used for
the holistic methods can be applied to solve the cascaded
regression at each stage, since they share similar object
functions as discussed in Sect. 5. Vice versa, the cascaded
regression idea may be applied to the holistic methods to
predict the model coefficients in a cascaded manner. Second,
currently, the dynamic information is utilized in a limited
sense. The facial motion information should be combined
with the facial appearance and facial shape for facial land-
mark tracking. For example, it would be interesting to see
how and whether the dynamic features would help facial
landmark tracking. Landmark tracking with facial structure
information is also an interesting direction. Third, since there
are relationships among facial landmark detection and other
facial behavior analysis tasks, including head pose estimation
and facial expression recognition, their interactions should be
utilized for joint analysis. By leveraging their dependencies,
we can incorporate the computer vision projection models
and improve the performances for all tasks. Finally, to fully
exploit the power of deep learning, a large annotated database
of millions of images under different conditions is needed.
Annotation of such a large image requires a hybrid anno-
tation methods, including human annotation, online crowd
sourcing, and automatic annotation algorithms.
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