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Abstract
This paper presents an approach for answering fill-in-the-blank multiple choice questions from the Visual Madlibs dataset.
Instead of generic and commonly used representations trained on the ImageNet classification task, our approach employs a
combination of networks trained for specialized tasks such as scene recognition, person activity classification, and attribute
prediction. We also present a method for localizing phrases from candidate answers in order to provide spatial support for
feature extraction. We map each of these features, together with candidate answers, to a joint embedding space through
normalized canonical correlation analysis (nCCA). Finally, we solve an optimization problem to learn to combine scores
from nCCA models trained on multiple cues to select the best answer. Extensive experimental results show a significant
improvement over the previous state of the art and confirm that answering questions from a wide range of types benefits from
examining a variety of image cues and carefully choosing the spatial support for feature extraction.

Keywords Visual question answering · Cue integration · Region phrase correspondence · Computer vision · Language

1 Introduction

For any artificially intelligent agent that can live in the phys-
ical world, interacting with the world and communicating
with humans are essential abilities. To acquire these abili-
ties, we need to train agents on open-ended tasks that involve
visual analysis and language understanding. Visual Question
Answering (VQA) (Antol et al. 2015) has recently been pro-
posed as such a task. In VQA, language understanding is
necessary to determine the intent of a question and generate
or evaluate multiple putative answers, while visual analy-
sis focuses on learning to extract useful information from
the images. Even when the question has a pre-determined
form, the answer strongly depends on the visual informa-
tion which might be derived from either the whole image
or from some specific image region. Moreover, specialized
knowledge beyond the available image pixel content might
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be necessary. For instance, consider a simple question about
the position of an object: the answer could involve the over-
all scene (e.g., it is in the kitchen), other reference objects
(e.g., it is on the table), their appearance (e.g., it is against the
blue wall), details about people (e.g., it is in the girl’s hand),
activities (e.g., it is floating in water) or even understanding
of time and causality (e.g., it is falling and about to land on
the ground).

To date, a number of diverse solutions for VQA have been
proposed, as surveyed in Sect. 2. An essential component of
these methods consists of extracting features from images
and questions, which are then combined by different algo-
rithms to produce or select the correct answer. A majority of
the work has focused on improving such algorithms, while
the effect of input features has been ignored: all the exist-
ing approaches use a single image representation computed
by a deep Convolutional Neural Network (CNN), e.g. VGG-
Net (Simonyan and Zisserman 2014), GoogLeNet (Szegedy
et al. 2015) or ResNet (He et al. 2016) trained on the Ima-
geNet dataset (Russakovsky et al. 2015).While these arewith
no doubt powerful representations for a plethora of tasks, it is
hard to believe that a generic feature trained on a limited num-
ber of object classes can have sufficiently broad coverage and
fine-grained discriminative power needed to answer a wide
variety of visual questions. We believe that to truly under-
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stand an image and answer questions about it, it is necessary
to leverage a rich set of visual cues from different sources,
and to consider both global and local information. Driven by
this belief, in this paper, we propose methods to represent the
images with multiple predicted cues and introduce a learning
approach to combine them for solvingmultiple-choice fill-in-
the-blank style questions from theVisualMadlibs dataset (Yu
et al. 2015).

The Visual Madlibs dataset consists of twelve different
types of targeted image descriptions that have been collected
by using fill-in-the-blank templates. For every description
type, a multiple choice answering task has been defined
where the sentence prompt takes on the role of a question,
while four possible sentence completions are provided as
answer options with only one considered to be correct (or
most appropriate). Examples are shown in Fig. 1. Types 1–5
are based on high-level content of the whole image, namely
predicting the scene, the emotion evoked by the image, likely
past and future events, and the most interesting aspects of the
image. Types 6-8 are based on characteristics of a specified
human subject, 9 is based on the interaction of a specified
human and a specified object, while 10–12 are based on char-
acteristics of a specified object. The person or object boxes
that question types 6–12 focus on are provided as part of the
question. By choosing this setting for VQA, we simplify the
overall problem as we do not have to infer the question type
from provided text and we can thus focus on measuring the
relevance of different visual cues for answering various types
of questions.

As baseline features, we consider the generic fc7 features
from aVGG-16 trained for object classification on ImageNet
and extracted from the whole image. To improve upon this
representation, we learn other classification models on spe-
cializeddatasets and thenuse them to extract “domain expert”
features from different image regions as well as from the
whole images. More specifically, we employ a scene predic-
tion network trained on the MIT Places dataset (Zhou et al.
2014), person action networks trained on the Human Pose
MPII (Pishchulin et al. 2014) and Humans Interacting with
Common Objects (HICO) (Chao et al. 2015) datasets, a per-
son attribute network and an object color network trained on
the Flickr30K Entities dataset (Plummer et al. 2017).

Together with the question types, Fig. 1 also shows which
combination of cues is used in each case. Note that the need
to attend specific image regions is because certain question
types provide ground truth bounding boxes of interest with
the question, or because for other questions without provided
boxes, the putative answers mention persons and objects. As
an example, consider the Interestingness question in Fig. 1
(question type 3). Two of the candidate answers for the most
interesting aspect of this image are the girl and firefight-
ers. In order to score these answers, we need to determine
whether they actually exist in the image and localize the cor-

responding entities, if possible. To this end, we utilize an
automatic bounding box selection scheme which starts with
candidate boxes produced by state of the art person and object
detectors (Liu et al. 2015; Ren et al. 2015b) and scores them
using a region-phrase model trained on the Flickr30K Enti-
ties dataset (Plummer et al. 2017). The highest-scoring region
for a phrase contained in an answer provides spatial support
for feature extraction, and the region-phrase scores are also
used as a component of the overall answer score. On the other
hand, if persons or objects appear in the image but they are
neither localized by the question nor named in any of the
answers (see question type 1 and 2) we simply consider the
image as a whole.

Each classification model used by us for feature extrac-
tion is able to predict a large vocabulary of semantically
meaningful terms from an image: close to 200 scene cat-
egories, 1000 actions and person-object interactions, 300
person attribute terms, and 11 colors. Figure 2 shows four
question types from Fig. 1 and the answer predicted by our
system, as well as the intermediate predictions of our scene,
action, attribute, and color feature networks. The outputs of
these networks are semantically interpretable and can help
to understand why our system succeeds or fails on particular
questions.We can observe that in the Scene question example
of Fig. 2, the top scene label predictions from our Places net-
work (train-station-platform, train-railway, railroad-track)
are very similar to the correct answer (train station). For the
Person’sActivity question, our action network cannot predict
the correct activity (carrying a chair) even though it corre-
sponds to an existing class; nevertheless, it is able to predict
a sufficiently close class (carry-suitcases) and enable our
image-text embedding method to select the correct answer.

To compute the compatibility between eachof our network
outputs and a candidate answer sentence or phrase, we train a
normalized Canonical Correlation Analysis (nCCA) (Gong
et al. 2014) model which maps the visual and textual features
to a joint embedding space, such thatmatching input pairs are
mapped close together.More specifically, we train one nCCA
model per cue, and in order to linearly combine scores from
different nCCA models we solve an optimization problem
that learns the best set of cue-specific weights.

Our high-level approach is described in Sect. 3. All the
information about the used cues are provided in Sect. 4, while
the automatic bounding box selection scheme for localized
feature extraction is explained in Sect. 5. The details of our
score combination scheme is in Sect. 6. Section 7 presents
our experimental results, which show that usingmultiple fea-
tures helps to improve accuracyon all the consideredquestion
types. Our results are state of the art, outperforming the orig-
inalMadlibs baseline (Yu et al. 2015), as well as a concurrent
method (Mokarian et al. 2016).

A preliminary version of this work has appeared in
BMVC (Tommasi et al. 2016). The journal version includes
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Fig. 1 The Visual Madlibs dataset consists of 12 types of questions
with fixed prompts, each concerned with the entire image (types 1–
5), a specified person (types 6–9), or a specified object (types 9–12).
For types 6–12, ground truth boxes of specified entities are provided
as part of the question and are shown in yellow. Each question comes
with four candidate answers, and only one (colored green, with a tick)
is considered to be correct. To answer these varied questions, we use
features computed on the whole image (ImageNet, Places), on person

boxes (ImageNet, HICO/MPII Action, Attribute) and on object boxes
(ImageNet, Color). Details of the individual cues are given in Sect. 4.
For each question type, circles mark the cues that are used by our final
combination method. White circles indicate that the respective cues
were computed on automatically selected person and object boxes, as
no ground truth boxes were provided as part of the question. All the
examples here come from the Hard question-answering setting (see
Sect. 2) (Color figure online)

(1) a more detailed description of the different cues used
for each question type, (2) a statistical analysis of the cov-
erage our cues provide for different types of Visual Madlibs
questions (Sect. 7.1) (3) a principled scheme to learn an opti-
mal weighted combination of multiple features, (4) extensive
qualitative examples to better illustrate each part of the pro-
posed approach, (5) a study on learning across tasks: we

investigate the effect of training embedding models over
multiple joint question types (Sects. 7.5) and of training the
model on one question type but testing it on a different one
(Sects. 7.4).

The Visual Madlibs dataset project webpage has been
updated with the validation set created for our experi-
ments: http://tamaraberg.com/visualmadlibs/. The deep net-
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Fig. 2 Examples of four questions correctly answered by our system,
along with intermediate predictions from our cue-specific deep net-
works. For each question, three top-scoring labels from the relevant
networks are shown along the bottom. For the Future question, our

method automatically selects the person and phone bounding boxes
(shown with dashed lines), while for the Person’s Activity and Object’s
Attribute questions, bounding boxes are provided (solid yellow) (Color
figure online)

work models used to predict various features are available at
http://vision.cs.illinois.edu/go/madlibs_models.html.

2 RelatedWork

Visual Question Answering In the task of Visual Ques-
tion Answering (VQA), natural-language questions about an
image are posed to a system, and the system is expected to
reply with a short text answer. This task extends standard
detection, classification, and image captioning, requiring
techniques for multi-modal and knowledge-based reason-
ing for visual understanding. Initially proposed as a “Visual
Turing Test” (Geman et al. 2015), the VQA format has
been enthusiastically embraced as the basis for a num-
ber of tailored datasets and benchmarks. The DAQUAR
dataset (Malinowski and Fritz 2014) is restricted to indoor
scenes, while a number of more general datasets are based
on MSCOCO images (Lin et al. 2014), including COCO-
QA (Ren et al. 2015a), Baidu-FM-IQA (Gao et al. 2015),
VQA (Antol et al. 2015), Visual7W (Zhu et al. 2016) and
Visual Madlibs (Yu et al. 2015). Question-answer pairs can
be generated automatically by NLP tools (Ren et al. 2015a),

or created by human workers (Gao et al. 2015; Antol et al.
2015; Zhu et al. 2016; Yu et al. 2015).

Assessing the quality of automatically generated free-
form answers is not straightforward and in most of the cases,
it reduces to evaluating the predicted probability distribution
on a fixed output space made by the 1000 most common
answers of the used dataset (Fukui et al. 2016; Andreas et al.
2016b;Yang et al. 2016; Saito et al. 2017;Wang et al. 2017b).
Alternatively, several VQA benchmarks are provided with
a multiple-choice setting where performance can be easily
measured as the percentage of correctly answered questions.

Among automatic methods for VQA, many combine
CNNs and Long Short-Term Memory (LSTM) networks to
encode the questions and output the answer (Gao et al.
2015; Malinowski et al. 2015; Andreas et al. 2016a). Recent
approaches also emphasize the need for attention mecha-
nisms for text-guided analysis of images. Such attention
mechanisms can be learned, or hard-coded. Attention can be
learned by using networks that predict which regions of the
image are useful (Xu andSaenko 2015;Yang et al. 2016; Shih
et al. 2016) and then extracting features from those regions.
Hard-coded mechanisms take as input the image regions that
need to be attended (Zhu et al. 2016; Ilievski et al. 2016).
Some works also use co-attention models that exploit image
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regions together with word, phrase, and sentences (Wang
et al. 2017b) or high-level concepts (Yu et al. 2017). In con-
trast to these works, our method first ranks which regions of
the image are useful to the question at hand using a retrieval
model, and then passes on features extracted from the useful
regions to the nCCA embedding models, which select the
most correct answer.

Fill-In-The-Blank Questions Instead of asking explicit
questions, e.g., starting with who, what, where, when, why,
which (Zhu et al. 2016), we can ask systems to fill in incom-
plete phraseswithin declarative sentences. This is the strategy
behind Visual Madlibs. As stated in the Introduction and
shown in Fig. 1, Visual Madlibs questions come in twelve
distinct types, some with provided regions of interest. The
fact that each question has a well-defined type and structure
that is known a priorimakes the Visual Madlibs a more con-
trolled task than general VQA, enabling us to reason up front
about the types of features and processing needed to answer
a given question. At the same time, due to the broad coverage
and diversity of these question types, we can expect the cues
that are useful for solving Visual Madlibs to also be useful
for general VQA.

Visual Madlibs consists of 360,001 targeted natural lan-
guage descriptions for 10,738 MSCOCO images, and fill-
in-the-blank multiple choice questions are automatically
derived from these descriptions. For each description type,
the number of questions ranges between 4600 and 7500 and
the descriptions contain more than 3 words on average. This
makes Visual Madlibs notably different from VQA (Antol
et al. 2015) andCOCO-QA (Ren et al. 2015a) datasets, which
still have amulti-choice answer setting but themajority of the
answers contain a singleword (see Zhu et al. (2016), Table 1).
An additional unique characteristic of Visual Madlibs is in
the choice of the distractor (incorrect) answers, which have
two levels of difficulty: Easy and Hard. In the Easy case, the
distractors are chosen randomly,while for theHard case, they
are selected from the descriptions of images containing the
same objects as the test image, with similar number of words
as the correct answer, but not sharing with it any non-stop
words.

Existing methods for answering Madlibs questions
(Mallya and Lazebnik 2016; Mokarian et al. 2016; Yu et al.
2015) have mainly used Canonical Correlation Analysis
(CCA) (Hardoon et al. 2004; Hotelling 1936) and normal-
ized CCA (nCCA) (Gong et al. 2014) to create a multi-modal
embedding where the compatibility of each putative answer
with the image is evaluated. Mokarian et al. (2016) have pro-
posed CNN+ LSTM models trained on Visual Madlibs, but
these were not as accurate as CCA. The same authors have
also shown that the fill-in-the-blank task benefits from a rich
image representation obtained by detecting several overlap-
ping image regions, potentially containing different objects,
and then average-pooling the CNN features extracted from

them. This representation is able to cover the abundance of
image details better than standard whole-image features, but
it uses the same kind of descriptor at all image locations.
In Sect. 7.3, we will demonstrate that our approach of using
multiple specialized descriptors outperforms (Mokarian et al.
2016).

Integrating External Knowledge Sources Understanding
images and answering visual questions often requires het-
erogeneous prior information that can range from common-
sense to encyclopedic knowledge. To cover this need, some
works integrate different knowledge sources either by lever-
aging training data with a rich set of different labels, or by
exploiting textual or semantic resources such as DBpedia
(Auer et al. 2007), ConceptNet (Liu and Singh 2004) and
WebChild (Tandon et al. 2014).

The approach adoptedbyZhuet al. (2015) learns aMarkov
Random Field model on scene categories, attributes, and
affordance labels over images from the SUN database (Xiao
et al. 2010). While this approach is quite powerful on the
image side, the lack of natural language integration limits
the set of possible questions that may be asked.

ThemethodofWuet al. (2016a) starts frommultiple labels
predicted from images and uses them to query DBpedia.
The obtained textual paragraphs are then coded as a fea-
ture through Doc2Vec (Le and Mikolov 2014) and used to
generate answers through an LSTM. A more sophisticated
technique is proposed by Wang et al. (2017a) for an image
question task that involves only answers about common-
sense knowledge: the information extracted from images
and knowledge-based resources is stored as a graph of inter-
linked RDF triples (Lassila and Swick 1999) and an LSTM is
used tomap the free-form text questions to queries that can be
used to search the knowledge base. The answer is then pro-
vided directly as the result of this search, avoiding any limita-
tions on the vocabulary that would otherwise be constrained
by the words in the training set. Though quite interesting,
both these approaches still rely on ImageNet-trained features,
missing the variety of visual cues that can be obtained from
networks tuned on tasks other than object classification.

As explained in the Introduction, our own approach to
integrating external knowledge relies on training “expert”
networks on specialized datasets for scenes, actions and
attributes. As one of the components of our approach, we
use the CNN action models developed in our ECCV 2016
paper (Mallya and Lazebnik 2016), where we applied these
models to Person Activity and Person-Object Relationship
questions (types 7 and 9) only.

3 Overview of the Approach

To tackle multiple-choice fill-in-the-blank question answer-
ing, we need amodel that is able to evaluate the compatibility
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of each available answer choice (a1, . . . , aN ) with the image
and question pair (I , q). This necessitates a cross-modal sim-
ilarity function that can produce a score s(I , q, a) taking
into consideration global (whole image to whole answer)
and local (image region to phrase) correspondences, as well
as multiple visual cues. Our model has three main compo-
nents: the image representation, the text representation, and
a formulation for the cross-modal joint space and scoring
function.

Representing the images We introduce several feature
types that depend on the question q and possibly on the spe-
cific answer choice a. This dependence is made explicit by
choosing how to localize the feature extraction (where to
compute the features) and which features to extract. Broadly
speaking, we have the following four types of features, each
represented by networks described detail in Sect. 4.

– Global image cues For all question types, we extract fea-
tures from the whole image using our VGG ImageNet
and Places networks (see Sect. 4 for details).

– Cues from automatically selected boxes Question types
3–5 (Interestingness, Past, and Future) do not come with
any ground truth person or object boxes, but people and
objects are often mentioned in candidate answers (see
examples in Fig. 1 and statistics in Sect. 7.1). We parse
the candidate answers for mentioned entities and attempt
to localize them using the procedure described in Sect. 5.
Having found the best matching image region(s) for each
mentioned entity, we extract specific features depending
on the nature of the entity. In particular, for people, we
extract bounding box ImageNet features as well as action
and attribute features, and for objects, we extract bound-
ing box ImageNet features only.

– Cues from provided person boxes When dealing with
person-centric questions (Types 6–9), we extract features
from the person bounding box provided with the ques-
tion. These include generic ImageNet features as well as
features from our action and attribute networks

– Cues from provided object boxes For object-centric ques-
tions (Types 9–12), we extract features from the object
bounding box provided with the question using our Ima-
geNet and color networks.

As is clear from the above, question types 6–12, by con-
struction of the Madlibs dataset, come with target object and
person bounding boxes. For these question types, we did not
compare performance of automatically detected vs. provided
ground truth bounding boxes. Such an experiment was per-
formed in (Yu et al. 2015) using boxes detected by RCNN
and did not show any significant difference in the perfor-
mance for multiple-choice question answering. Their result
indicates that detectors such as RCNN or improved meth-
ods (Ren et al. 2015b; Liu et al. 2015) give good enough

object localizations for the purposes of our end task. A small
change in the region from which features are extracted does
not have a significant impact on the final question answering
accuracy. On the other hand, question types 3–5 represent a
more challenging case in that no target bounding boxes are
provided and we will address this case at length in Sect. 5.

Representing the answers Compared to our visual rep-
resentation, our text representation is quite elementary. We
employ the 300-dimensional word2vec embedding trained
on the Google News dataset (Mikolov et al. 2013). Candidate
answers are represented as the average of word2vec vectors
over all the words. We represent out-of-vocabulary words
using the null vector, and do not encode question prompts
as they are identical for all questions of the same type (e.g.,
“the place is...”). Even in the cases where the prompt contain
image-specific words (i.e.objects in Person-Object Relation-
ship and Object’s Affordance questions), adding them to
the answers’ representation do not introduce discriminative
information, on the contrary, preliminary experiments indi-
cated that they contribute to make the answers more similar
to each other reducing the correct answer selection perfor-
mance.

Cross-modal embedding and scoring function To learn a
mapping from image and text features into a joint embedding
space, we adopt normalized Canonical Correlation Analysis
(nCCA) (Gong et al. 2014). For each question type, we obtain
one ormore nCCAscores for one ormore cues corresponding
to that type, and then form the final score as a linear combi-
nation of the individual scores with learned weights. Our cue
combination and weight learning approaches are described
in Sect. 6. Note that in the rest of the paper, any references
to CCA models refers to nCCA models, unless otherwise
specified.

4 Cue-Specific Models

This section provides details of our cue-specific networks.
For a complete summary of which networks are used for
which question types, refer back to Fig. 1.

ImageNet network For all question types, we use the out-
put of the VGG-16 network (Simonyan and Zisserman 2014)
trained on 1000 ImageNet categories as our baseline global
feature.Weobtain a 4096-dimensional feature vector by aver-
aging fc7 activations over 10 crops from the whole image.
The same network is also used to extract features from image
regions: in this case we indicate that it is a local cue, by spec-
ifying in the following tables and figures that it originates
from a Person or Object bounding box.

Places network We also use a global scene feature for
each question type, derived from the Places VGG-16 net-
work (Zhou et al. 2014). The MIT Places dataset contains
about 2.5 million images belonging to 205 different scene
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categories. As with the baseline network, the Places net-
work gives us 4096-dimensional fc7 features averaged over
10 crops.

HICO/MPII Person action networks To represent per-
son boxes for question types 3–9, we start by passing the
boxes resized to 224 × 224 px as input to the generic Ima-
geNet network. In order to obtain a more specialized and
informative representation, we also use action prediction
networks trained on two of the largest currently available
human action image datasets: HICO (Chao et al. 2015) and
the MPII (Pishchulin et al. 2014). HICO has 600 labels
for different human-object interactions, e.g.ride-bicycle or
repair-bicycle; the objects involved in the actions belong to
the 80 annotated categories of the MSCOCO dataset (Lin
et al. 2014). The MPII dataset has 393 categories, which
include interactions with objects as well as solo human activ-
ities such as walking and running.

We employ the CNN architecture introduced in our pre-
vious work (Mallya and Lazebnik 2016), which currently
holds state of the art classification accuracy on both the action
datasets. This architecture is based on VGG-16 and it fuses
information from a person bounding box and from the whole
image. At training time it uses multiple instance learning to
account for lack of per-person labels on theHICOdataset and
a weighted loss to deal with unbalanced class distributions
on both HICO andMPII. The model uses a weighted logistic
loss in whichmistakes on positive examples are weighted ten
times more than the mistakes on negative examples, in order
to offset the lack of balance in the dataset.

At test time, the network of Mallya and Lazebnik (2016)
needs a person bounding box to provide a region of interest
for feature extraction. For question types 6–9, these boxes are
given in the ground truth. For question types 3–5, no boxes
are given, so we use the automatic bounding box selection
procedure that will be described in Sect. 5. In case ofmultiple
people in an image, we run the network independently on
each person and then average-pool the features. In case no
person boxes are detected, we use the whole image as the
region of interest.

Figure 3 presents some examples of class predictions of
the action networks. For various versions of our cue combina-
tion strategies, as described in Sect. 6, we will use either the
fc7 activations of this network or the class prediction logits
(inputs to the final sigmoid/softmax layer).

Person attribute network For question types 3–9, along-
sidegeneric ImageNet features and activity features described
above, we also extract high-level features based on a rich
vocabulary of describable person attributes. To create such a
vocabulary, we mine the Flickr30K Entities dataset (Plum-
mer et al. 2017) for noun phrases that refer to people and
occur at least 50 times in the training est. This results in
302 phrases that cover references to gender (man, woman),
age (baby, elderly man), clothing (man in blue shirt, woman

in black dress), appearance (Asian man, brunette woman),
multiple people (two men, group of people), and more. An
important advantage of our person attribute vocabulary is that
it is an order of magnitude larger than those of other exist-
ing datasets (Sudowe et al. 2015; Bourdev et al. 2011). On
the down side, attributes referring to males (e.g.man, boy,
guy, etc.) occur twice as often as those referring to females
(e.g.woman, girl, lady, etc.), and the overall class distribution
is highly unbalanced (i.e., there are a few labels with many
examples and many classes with just a few examples each).

We train a Fast-RCNN VGG-16 network (Girshick 2015)
to predict our 302 attribute labels based on person bounding
boxes (in case of group attributes, the ground truth boxes con-
tainmultiple people). To compensate for unbalanced training
samples, just as for the action networks, we use a weighted
logistic loss that penalizes mistakes on positive examples
ten times more than on negative examples. Unlike our action
prediction network, our attribute network does not use global
image context (we found that attribute predictions are much
more highly localized and tend to be confused by outside
context) and it predicts group attributes given a box with
multiple people (such boxes naturally exist in the Flickr30K
Entities annotations). As our labels are derived from natural
language phrases, we manually grouped and ignored predic-
tions on labels which could be simultaneously true but are
not annotated in the dataset. For example, if a bounding box
is referred to as he,man in blue shirt, older man, or bald man,
related labels such as {man, gentleman, guy,man in hard hat,
asian man} might also be true. Essentially, the presence of a
label such as he does not conclusively indicate the absence
of all other labels, such as guy, however it does indicate the
absence of she, or woman. We manually created four such
label groups representing man, woman, boy, and girl. If a
label belongs to a given group, labels from all other groups
can be safely considered as negatives, while labels within a
group can be ignored while computing the training loss.

To give a quantitative idea of the accuracy of our person
attribute prediction, the mAP of our network on the phrases
of the Flickr30k test set that occur at least 50 (resp. 10) times
is 21.98% (resp. 17.04%). We observe the following APs for
some frequent phrases: man-53.8%, woman-51.3%, couple-
35.4%, crowd-36.1%. It should be noted that these numbers
likely underestimate the accuracy of our model. For one,
they are based on exact matches and do not take synonyms
into account. Moreover, there is a significant sparsity prob-
lem in the annotations, as numerous attribute phrases may be
applicable to any person box but only a few are mentioned
in captions. Qualitatively, the attribute labels output by our
network are typically very appropriate, as can be seen from
example predictions in Fig. 3.

At test time, to obtain person bounding boxes from which
to extract attribute features, we follow the same procedure
as for the action networks described above. In case of mul-
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Fig. 3 Top three predicted person actions (Act.) and attributes (Attr.)
for a few sample images. In the case of multiple people in an image, we
specify the actions and attributes for specific boxes (underlined with the

color of the box) as well as attributes for the whole image (Attr. Image).
In the last row of images we show cases where action and attribute
recognition fails (Color figure online)

tiple people boxes, the outputs of the attribute network are
average-pooled. As with the action models, either the inputs
to the final sigmoid/softmax layer or the fc7 activations can
be used for the downstream question answering task (refer
to Sects. 6 and 7 for details).

Color network As described in Sect. 3, we extract object-
specific cues for automatically detected boxes on question

types 3–5 (Interestingness, Past, Future), as well as for pro-
vided focus boxes for question types 9–12. For all of those
object boxes, just as for person boxes in question types 3-
9, we extract generic ImageNet features from the bounding
boxes. To complement these, we would also like to have a
representation of object attributes analogous to our repre-
sentation of person attributes. However, it is much harder
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The boat is
• white
• green 
• blue
• dirty

The bears are 
• brown
• yellow
• black  
• gray

The umbrellas are
• varying shades of blue
• black on the inside 
• black and somewhat small
• pink pa�erned with whales

Top  Color Predic�on : green Top Color Predic�on : blue Top Color Predic�on : black

The motorcycle is 
• racing
• chrome
• golden  
• small

The umbrella is
• green 
• open 
• yellow 
• blue

The cell phone is
• silver  
• white
• black
• compact

Top  Color Predic�on : yellow Top Color Predic�on : gray Top Color Predic�on : green

Fig. 4 Examples of Object’s Attribute questions with the top predic-
tion of our Color network underneath. Even if the color mentioned in
the answer is not among the ones predicted by our model, it can still

be relevant (second row, first two images). The bottom right image is a
failure case where the predicted color leads to the wrong answer (Color
figure online)

to obtain training examples for a large vocabulary of pre-
dictable attributes for non-human entities. Therefore, we
restrict ourselves to color, which is visually salient and fre-
quently mentioned in Visual Madlibs descriptions, and is not
capturedwell by networks trained for category-level recogni-
tion (Plummer et al. 2017). We follow Plummer et al. (2017)
and fine-tune a Fast-RCNN VGG-16 network to predict one
of 11 colors that occur at least 1000 times in the Flickr30K
Entities training set: black, red, blue, white, green, yellow,
brown, orange, pink, gray, purple. This network is trained
with a one-vs-all softmax loss. The training is performed on
non-person phrases to prevent confusion with color terms
that refer to race. For our color feature representation we use

the 4096-dimensional fc7 activation values extracted from
the object bounding box.

Quantitative evaluation of a color network similar to ours
can be found in Plummer et al. (2017). The examples in
Fig. 4 provide a qualitative illustration of the color network
outputs and indicate how color predictions may be helpful
for answering Object’s Attribute Visual Madlibs questions.

Note that we extract color features only from provided
object boxes for questions 9–12. For questions 3–5, color is
mentioned farmore rarely in candidate answers; furthermore,
automatically detected object boxes are much more noisy
than person boxes making the color cues correspondingly
unreliable.
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5 Image Region Selection

Madlibs questions on Interestingness, Past, and Future do not
provide a target image region. Consider the Future example
in Fig. 2,where each of the four candidate answersmentions a
person and an object: she put down the cat, the bride dropped
the bouquet, and so on. In order to pick the right choice,
we need to select the best supporting regions for each of
the entity mentions (she, cat, bride, bouquet) and use the
respective matching scores as well as the features extracted
from the selected regions as part of our overall image-to-
answer scoring function.

We first parse all answers with the Stanford parser (Socher
et al. 2013) and use pre-defined vocabularies to identify noun
phrase (NP) chunks referring to a person or to an object.
Then we apply the following region selection mechanisms
for mentioned people and objects, respectively.

Person Box We first detect people in an image using the
Faster-RCNN detector (Ren et al. 2015b) with the default
confidence threshold of 0.8. We discard all detected boxes
with height or width less than 50 pixels since we find exper-
imentally that these mainly contain noise and fragments. We
also consider the smallest box containing all detected people,
to account for cues originating from multiple people. Given
the image and an answer, we attempt to select the box that
best corresponds to the person mention in the answer. To this
end, we train a Person CCA model on the val + test set of
Flickr30k Entities using person phrases (represented by aver-
age of word2vec) and person box features (302-dimensional
vectors of predictions from our person attribute network of
Sect. 4). As a lot of answer choices in the Madlibs dataset
refer to people by pronouns or collective nouns such as he,
she, they, couple, we augmented the training set by replac-
ing person phrases as appropriate. For example, for phrases
such as {man, boy, guy, male, young boy, young man, little
boy}, we added training samples in which these phrases are
replaced by he (and the same for she). Similarly, additional
examples were created by replacing {people, crowd, crowd
of people, group of people, group of men, group of women,
group of children}, etc., with they, and {twomen, twowomen,
two people} with couple.

Given the trained Person CCA model, we compute the
score for each person phrase from the candidate answer and
each candidate person box from the image, and select the
single highest-scoring box. A few example selections are
shown in Fig. 5. In case no words referring to people are
found in a choice, all person boxes are selected.1 The selected
box provides spatial support for extracting person action and
attribute cues introduced in Sect. 4; in turn, these features,
together with entire candidate answers (as opposed to just the

1 Note that the images of the Visual Madlibs dataset are sampled from
the MSCOCO dataset (Lin et al. 2014) to contain at least one person.

person phrases), are used to train cue-specific CCA models
as will be explained in the next section. The score of the
Person CCA model for the selected box will also be used in
a trained combination with the cue-specific CCA scores.

Object Box We localize objects using the Single Shot
MultiBox Detector (SSD) (Liu et al. 2015) that has been
trained on the 80 MSCOCO object categories. SSD is
currently the state of the art for detection in speed and
accuracy. For each Visual Madlibs image, we consider the
top 200 detections as object candidates and use the Object
CCA model created for the phrase localization approach
of (Plummer et al. 2017) to select the boxes corresponding
to objects named in the sentences. This model is trained on
the Flickr30k Entities dataset over Fast-RCNN fc7 features
and average of word2vec features.We use the simplest model
from that work, not including size or color terms. The top-
scoring box from the image is used to extract object VGG
features as will be explained in Sect. 6.

Figure 6 shows a few examples of object selection in
action. As can be seen from the failure cases in the bottom
row, object boxes selected byourmethod are less reliable than
selected people boxes, since detection accuracies for general
objects are much lower than for people and object boxes tend
to be smaller. Therefore, instead of defining an object selec-
tion score based on the single highest-scoring region-phrase
combination, as in the case of people above, we define a col-
lective object score that will be used in the cue combination
method of Sect. 6. Inspired by a kernel for matching sets
of local features (Lyu 2005), we take all of the N = 200
object boxes from the image and the M object phrases from
the answer and then combine their CCA matching scores as
follows:

K (image, answer) =
1

N

1

M

N∑

i=1

M∑

j=1

{cos_similarity(boxi , phrase j )}r , (1)

where the parameter r assigns more relative weight to box-
phrase pairs with higher similarity. We use r = 5 in our
implementation.

6 Cue Combination

As described in Sect. 4, we extract several types of features
from the images, aiming to capture multiple visual aspects
relevant for different question types. How can we combine
all these cues to obtain a single score s(I , q, a) for each
question, image and candidate answer?

The simplest combination technique is to concatenate
4096-dimensional fc7 features produced by each of our net-
works. In practice, due to the dimensionality of the resulting
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The girl le� The bride and groom cut 
their wedding cake

The girl stood wai�ng for 
the return ball

A man purchases fruit 
from a fruit stand

The man enjoyed his meal She was doing some work They kept talking A woman finishes ea�ng a donut

Fig. 5 Examples of selected person boxes based on person phrases.
The person phrases are highlighted in red font and the corresponding
selected boxes are also colored red. The yellow boxes are discarded
either because they do not match the person mentioned in the phrase
or because they are below the size threshold. In the third example from

the left in the top row, CCA selects the overall box, thus all the person-
specific boxes are colored red with the exception of the top right one
which is discarded as it is below the size threshold. The last two images
in the second row are failure cases (Color figure online)

The dog runs back away A woman closed a laptop He held the racket She ate the pizza

They ate the cake She li�ed the spoon She dropped the bo�le the boy blew out the candles 

Fig. 6 Examples of selected object boxes based on object phrases (in red font). The red boxes are the top-scoring ones according to the object CCA
model, while all the yellow boxes have lower scores. The top row presents correctly detected objects, while the bottom row shows failure cases
(Color figure online)
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representation, we can only do this for a pair of networks,
obtaining 8192-dimensional features. In our system, we
mainly use this technique when we want to combine our
baseline global ImageNet network with one other cue.

To combine more than two features, we can stack lower-
dimensional class prediction vectors (logits, or values before
the final sigmoid/softmax layer). In particular, to characterize
people, we concatenate the class predictions of HICO,MPII,
and attribute networks, producing a compact feature vector
of 1295 dimensions.

To enable even more complex cue integration, we learn
CCA models on small subsets of cues and linearly combine
their scoreswith learnedweights. The following is a complete
list of the individual CCA models used for our full ensemble
approach:

– Baseline + Places CCA trained on concatenated fc7
features from global ImageNet- and Places-trained net-
works. This is used for all question types.

– Baseline + Person Box ImageNet CCA trained on con-
catenated fc7 features from ImageNet network applied
to the whole image and person box. This cue is used for
question types 3–5 (on automatically selected boxes) and
6–9 (on ground truth boxes). The reason for concatenat-
ing the global and person box features is tomake sure that
the resulting model is at least as strong as the baseline.
The same reasoning applies to the other person-specific
and object-specific models below.

– HICO + MPII + Person Attribute CCA trained on con-
catenated logit scores from HICO, MPII, and Attribute
networks. Used for question types 3–9.

– Person selection score Person box selection score from
the PersonCCAmodel of Sect. 5. Used for question types
3–5.

– Object selection score Scores from the Object CCA
model of Sect. 5 combined using Eq. (1). Used for ques-
tion types 3–5.

– Baseline+Object Box ImageNet CCA trained on con-
catenated fc7 features from the ImageNet network
applied to the whole image and object box. Used for
question types 3–5 (on automatically selected boxes) and
9–12 (on ground truth boxes).

– Baseline+Object Box Color CCA trained on concate-
nated fc7 features from the ImageNet network applied to
the whole image and color network applied to the object
box. Used for question types 9–12.

To learn the combination weights, we divide the Visual
Madlibs training set into an 80% training subset and a 20%
validation subset. From the training subset, we learn the indi-
vidual CCA models above using respective features and text

descriptions.2 For the validation set, we create three Easy and
three Hard distractors for each correct description by follow-
ing the same rules originally applied to create the test set (Yu
et al. 2015).

For a particular question type, let s j indicate the CCA
score obtained on the validation sample (I , q, a)when using
the j th model. We can then combine scores from all CCA
models applicable to this question type as S = ∑

j w
j s j .

Let Si denote the combined score for each candidate answer
ai for the considered sample, and i∗ the index of the correct
choice. We define the following convex loss:

L(S) = max{1 − Si∗ + max
i �=i∗

{Si }, 0} . (2)

This formulation assigns zero penalty when the score of the
correct answer is larger by at least 1 than the scores of all the
wrong choices. Otherwise, the loss is linearly proportional
to the difference between the score of the correct answer and
the maximum among the scores of the other choices. Over
all the k = 1, . . . , K validation samples, we solve

min
w

K∑

k=1

L(S)k subject to ‖w‖1 ≤ 1 , w j ≥ 0 , (3)

where the constraints specify that theweights for each feature
should be positive, and the L1-norm condition can be seen as
a form of regularization which induces a sparse solution and
allows an easy interpretation of the role of each cue. Alterna-
tively,we tried using theL2-normand obtained slightly lower
final performance. One large advantage of using the L1 norm
is that the assigned weights provide good interpretability of
the relevance of cues, as will be seen in Table 3. We imple-
mented the optimization process by using the algorithm of
Duchi et al. (2008).

For a test question of a given type, we compute all the
applicable CCA scores, combine them with the learned
weights for that question type, and choose the answer with
the highest combined score:

a∗
i = argmax

i
{Si } = argmax

i

⎧
⎨

⎩
∑

j

w j s ji

⎫
⎬

⎭ . (4)

7 Experiments

In Sect. 7.1, to motivate our selection of cues for different
questions, we examine the frequencies of cue-specific words
in answers for each question type. In Sect. 7.2, we proceed to

2 TheMadlibs training set contains only the correct image descriptions,
not the incorrect distractor choices.
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Fig. 7 Madlibs coverage (blue): indicates which percentage of the
Visual Madlibs sentences mentions at least one of the Places (205
classes), action (HICO, 600 classes), attribute (302 classes), MSCOCO
object (80 classes) and color (11 classes) categories. Category list cov-

erage (red): indicates which percentage of the category list is named at
least once in the Visual Madlibs sentences. Both the coverage evalua-
tions are performed by starting from the ground truth correct answers
of the Visual Madlibs training set (Color figure online)

a detailed analysis of the multiple-choice answer task when
using each cue separately. Finally, in Sect. 7.3we evaluate the
performance of the combined system. A further analysis of
our approach in cross-tasks settings is presented in Sects. 7.4
and 7.5 where we discuss the effect of learning CCA embed-
dings over multiple joint question types and of testing the
embedding on a different question type with respect to that
used in training.

7.1 Cue-Specific Category Statistics

Given the lists of 205 Places scene categories, 600 HICO
action categories, 302 attribute categories, 80 MSCOCO
object categories, and 11 color categories, we can compute
the following statistics for ground truth correct answers from
the training set (i.e., accurate descriptions) of each Visual
Madlibs question type:

– Madlibs coverage = (number of answers thatmention at
least one of the categories) / (total number of answers);

– Category list coverage = (number of categories named
at least once in the answers) / (total number of categories).

When counting the occurrences of the HICO actions, we
consider past tense, continuous (-ing) and third person (-s)
forms of the verbs. We also augment the MSCOCO object
vocabulary with several word variants (e.g. bicycle, bike etc.)
and singular/plural forms for all the objects.

Figure 7 shows the resulting statistics. Not surprisingly,
Places categories have the best coverage on Scene questions:
about 37% of the Visual Madlibs Scene answers mention
one out of 50% of the Places categories. Beyond that, about
25% of Person’s Location answers mention one of 40% of

the Places categories, and about 5% of Object’s Location
answers mention one of 30% of these categories.

HICO action categories give the best coverage for Person-
Object Relationship, Object’s Affordance, and Person’s
Activity questions. Attribute classes play an important role
for Interestingness, Past, Future, Person’s Attribute, and Per-
son’s Activity questions. However, no more than about 50%
(resp. 60%) of HICO Action (resp. Attribute) categories are
mentioned in answers of any single given type.

By contrast, more than 70% of the MSCOCO objects
appear in all the question types and 100% of the Object
related answers (question types 9–12) mention one of the
MSCOCO categories. This is not surprising, since the Visual
Madlibs dataset was created on top of MSCOCO images.
Objects are also often mentioned by Interestingness, Past,
Future and Person’s Action answers, but are rare in all the
remaining cases.

Finally, Color categories play the most important role for
Object’s Attribute questions: over 50% of answers for that
question type mention a color, and 100% of the color names
are mentioned. While a majority of the color names are also
mentioned in all the other question types except for Person-
Object Relationship andObject’s Affordance, the percentage
of answers that actually mention a color is negligible.

This analysis support a preliminary selection of the cues
to use in each case. Since actions, attributes, objects and their
colors are not named in the answers of the Scene and Emo-
tion question types, the visual appearance of a person/object
instance in the images would not have any matching textual
information. Similarly, the sparse presenceof person attribute
mentioned in the Object related question (types 10–12) indi-
cate that people are rarely pointed out in the answers.Without
a phrase that explicitly refers to an object/person instance we
do not have a reasonable spatial support to extract local fea-
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tures, thus we decided to avoid them. Finally object colors
provide only a limited amount of information due to their
low coverage and to avoid further noise introduced by the
object localization it makes sense to include them only when
the object bounding box is provided with the question (types
9–12).

7.2 Single-Cue Results

This section analyzes the performance of our individual cues
listed in Sect. 6. The results are presented in Table 1: each
question type is considered separately in the experiments
but to ease the discussion we organized the questions on
the basis of their visual focus: whole image (types 1–5, A),
person-specific (types 6–9, B) and object-specific (types 10–
12, C). The leftmost column shows the accuracy obtained
with the baseline whole-image ImageNet fc7 feature. The
subsequent columns show the performance obtained by con-
catenating this feature with the fc7 feature of each of our
individual cue-specific network (as explained in Sect. 6, the
reason for always combining individual cues with the base-
line is to make sure they never get worse performance).

Whole-Image Questions As shown in Table 1(A), using
the Places features for Scene questions helps to improve per-
formance over the ImageNet baseline. Emotion questions are
rather difficult to answer but we can observe some improve-
ment by adding Place features as well. We did not attempt
to use person- or object-based features for the Scene and
Emotion questions since the analysis of Sect. 7.1 indicated a
negligible frequency of person- and object-related words in
the respective answers.

On the other hand, for Future, Past, and Interestingness
questions, people and objects play an important role, hence
we attempt to detect them in images as described in Sect. 5.
From the selected person boxes we extract fc7 features from
four different networks: the generic ImageNet network, the
HICO and MPII Action networks, and the Attribute network
trained on Flickr30K Entities. All of them give an improve-
ment over the whole-image baseline, with the Attribute
features showing the best performance in most cases. From
the object regions we extract localized ImageNet features
which also produce some improvement over thewhole-image
baseline in four out of six cases. Since, according to Fig. 7,
color is mentioned in only a tiny fraction of answers to the
whole-image questions, we do not include it here.

Person Questions For questions about specified people,
Table 1(B) reports results with features extracted from the
provided ground truth person box. Not surprisingly, Attribute
features give the biggest improvement for Attribute ques-
tions, and HICO Action features give the biggest improve-
ment for Person’s Activity and Person-Object Relationship
questions (recall that HICO classes correspond to interac-
tions between people and MSCOCO objects). For the latter

question type, the ground truth object region is also pro-
vided; by extracting the ImageNet and Color features from
the object box we obtain accuracy lower than that of the
HICO representation but still higher than that of the whole-
image baseline. Finally, for Person Location questions, the
global Places featureswork the best. This question asks about
the place where the person is, i.e. the environment around
him/her. Thus, visual information from the image part outside
the person bounding box is more helpful than the localized
information inside the person box which capture more the
person appearance rather than the appearance of the sur-
rounding location.

Object Questions For questions about specified objects,
Table 1(C) reports results with features extracted from the
provided ground truth object box. We can see that Color
featureswork best forObject’sAttribute questions, ImageNet
features work best for Object’s Affordance questions, and
Places features work best for Object’s Location questions.

7.3 Multi-Cue Results

Table 2 shows the results obtained by integrating multiple
cues in a variety of ways. We exclude Scene and Emotion
questions from the subsequent analysis: based on Fig. 7, very
few of their answers involve persons and objects, thus, our
final cue combination for these question types is simply the
concatenation of ImageNet and Places as shown in Table 1.

For ease of comparison, the first and second columns of
Table 2 repeat the baseline and highest results from Table 1.
The subsequent columns show performance obtained with
other cue combinations. The Label Combination columns of
Table 2 show the results of concatenating the class predic-
tion vectors from the HICO andMPII networks, and from all
three person-centric networks (HICO + MPII + Attribute).
For HICO+MPII, we observe a small drop in performance
over the single best cue on whole-image questions (i.e., in
Interesting, Past, Future rows) and location-related questions
(Person’s Location and Person-Object Relation), probably
owing to the reduced feature dimension and loss of global
contextual information as compared to the 8192-dimensional
fc7 combination feature. On the other hand, HICO + MPII
produces results comparable with the best fc7 cue for the
Person’s Activity question while being much more compact
(993 vs. 8192 dimensions). By adding the attribute labels
(HICO+MPII+Attribute column), we further improve per-
formance, particularly on the Person’s Attribute question.

Recall from Sect. 5 that for Interestingness, Past, and
Future questions, we perform focus region selection and
compute Person and Object scores measuring the compat-
ibility of person and object mentions in answers with the
selected regions. These scores also provide some useful
signal for choosing the correct answer, so we use the pro-
cedure of Sect. 6 to learn to combine each of them with the
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Table 4 Comparison of our
CCA ensemble multi cue
method against Mokarian et al.
(2016)

Distr. type Question type CCA ensemble [Mokarian et al. (2016)]

Easy (A) (3) Interesting 82.34 78.20

(4) Past 85.91 80.80

(5) Future 86.63 81.10

(B) (6) Person’s attribute 68.68 56.00

(7) Person’s activity 88.43 83.00

(8) Person’s location 86.28 84.30

(9) Person-object relation 77.08 75.30

(C) (10) object’s attribute 59.62 62.40

(11) Object’s affordance 87.21 83.30

(12) Object’s position 69.71 77.50

Average 79.19 76.19

Hard (A) (3) Interesting 57.92 54.20

(4) Past 61.33 54.60

(5) Future 62.73 56.10

(B) (6) Person’s attribute 56.38 44.20

(7) Person’s activity 71.68 65.50

(8) Person’s Location 66.66 65.20

(9) Person-object relation 57.92 55.70

(C) (10) Object’s attribute 54.73 45.70

(11) Object’s affordance 67.69 63.60

(12) Object’s position 58.16 56.30

Average 61.52 56.11

The best result of each row is highlighted in italic

scores from the HICO + MPII + Attribute CCA model. For
these two-cue problems, the learning procedure assigns a
high weight to the combined action and attribute represen-
tation (wH ICO+MPI I+Attribute ≥ 0.9) and a small one to
the Person and Object scores (wPerson/Obj . Selection ≤ 0.1).
The resulting accuracies are reported in columns labeled
“+Person Score” and “+Object Score” of Table 2, and they
show small but consistent accuracy improvements over the
HICO + MPII + Attribute model, particularly for the hard
questions.

The last column of Table 2 gives the performance of the
full ensemble score using all the CCA models applicable
to a given question type (refer back to Sect. 6 for the list of
models).We report both the results obtained using the L1 reg-
ularized weights according to Eq. (3) and its variant based on
L2 regularization. The accuracies are similar in both cases,
with the L1 casemarginally better on average. Using L1 how-
ever allows for better understanding the role of each cue: the
per-cue weights for each question type are shown in Table 3.
Generally, the most informative cues for each question type
get assigned higher weights (e.g.HICO + MPII + Attribute
features get high weights for Person’s Activity and Person’s
Attribute questions, but not for Person’s Location questions).
From the “Average” row of Table 2, we can observe an
improvement of about 1.5% in accuracy with respect to the

single best cue and about 6% with respect to the baseline for
both the Easy and Hard cases.

Todate, the strongest competing systemonVisualMadlibs
is that of Mokarian et al. (2016). We benchmark our CCA
Ensemble method against their results in Table 4 and show
that we outperform their approach with an average accu-
racy improvement of 3 and 5 percentage points on the easy
and hard distractor cases, respectively. Our CCA Ensemble
results are superior to theirs on every question type except
for easy Object Attribute and Object Location questions. For
both these questions,we exploit the ground truth object boxes
while themethod in (Mokarian et al. 2016) pool features over
multiple regions. It is also relevant to note that in our experi-
ments,we set aside a portion of the training data for validation
while the method in (Mokarian et al. 2016) exploits nCCA
models learned on the entire Visual Madlibs training sam-
ples.

Finally, Fig. 8 shows answer choices selected with indi-
vidual cues for the same questions that were originally shown
in Fig. 1, while Fig. 9 shows a few failure cases.

7.4 Learning Shared Embedding Spaces

In all the experiments considered so far, we learned a CCA
embedding space per question type and per cue. However,
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Fig. 8 Examples of answers selected using each individual cue as well
as the full ensemble method. The first ImageNet column corresponds
to the baseline feature (B.), while the following columns correspond
to “B. + X” features following the same order as in Table 1. Check

marks specify that the correct answer has been selected when using the
corresponding column feature for multi-choice answering. The crosses
indicate instead a wrong selected answer

the questions can be easily grouped on the basis of their
main visual focus (whole image, persons, and objects) and
it is worthwhile to evaluate the performance on the multi-
choice question answering task using shared embedding
spaces obtained from each group. This setting allows us to
increase the amount of available training data for each model
while making them more robust to question variability.

For each cue, we grouped the training data of question
types 1–5 on whole image to define a joint embedding space
for group (A), types 6–9 on persons to define a joint embed-

ding space for group (B) and types 10–12 on objects to
define a joint embedding space for group (C). At test time,
these models were used to assess the suitability of putative
answers by obtaining one set of scores for each cue. Finally
the cue combination procedure is applied in two ways: either
by exploiting the new embedding spaces instead of the origi-
nal ones (group) or by adding the score produced by the new
embedding spaces to the original ones (combined). In this last
case, we actually deal with a doubled number of cues. The
final CCA Ensemble results are collected in Table 5, where
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Table 5 Results of multiple cue
combination obtained with CCA
Ensemble when the CCA
models are either trained on
separate questions or trained on
the combination of several
question types. The first column,
separate, reports results from
Table 2. The score produced by
the shared CCA models can be
substituted (group) or added
(combined) together with those
obtained from separate
questions. Here, we indicate in
italic font all the results that are
equal or higher than the
corresponding reference from
separate questions

Distr. type Question type CCA ensemble

Separate Group Combined

Easy (A) (3) Interesting 82.34 82.85 83.40

(4) Past 85.91 86.70 86.36

(5) Future 86.63 87.42 87.68

(B) (6) Per. attribute 68.68 51.38 68.46

(7) Per. activity 88.43 87.83 88.85

(8) Per. location 86.28 84.47 86.76

(9) Per.-Obj. relation 77.08 77.91 77.97

(C) (10) Object’s attribute 59.62 54.91 59.67

(11) Obj. affordance 87.21 86.65 85.84

(12) Obj. position 69.71 64.46 64.31

Average 79.19 76.46 79.93

Hard (A) (3) Interesting 57.92 58.90 58.17

(4) Past 61.33 58.60 61.86

(5) Future 62.73 62.47 63.42

(B) (6) Per. attribute 56.38 35.96 56.43

(7) Per. activity 71.68 70.87 72.02

(8) Per. location 66.66 60.55 66.78

(9) Per.-Obj. relation 57.92 56.33 57.97

(C) (10) Obj. attribute 54.73 50.82 54.73

(11) Obj. affordance 67.69 47.05 52.12

(12) Obj. position 58.16 53.46 53.55

Average 61.52 55.50 59.71

Fig. 9 Failure cases for four multi-choice question types from the Hard question-answering setting. Examples in the left column involve relatively
rare concepts like “unusual outfit” and “arranging the pizza,” while examples on the right are visually subtle or ambiguous. The crosses indicate a
wrong selected answer

the first column also reports as reference the final results of
Table 2 obtained with embedding spaces learned on separate
question types. From the accuracy values, we can conclude
that learning shared models is beneficial when the question
types are quite similar (as in group A) but it is less help-
ful in case of higher variability among the question types

(group B and C). In particular, among the question types
10–12, Object’s Affordance and Object’s Position appear
to be the most specific question types that do not derive
any benefit from sharing information amongst each other
and with the Object’s Attribute question. The overall effect
of question variability becomes less evident when separate
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Table 6 Transfer learning
results obtained by training and
testing CCA models on different
question types. For the
experiments in the top table we
used the combined cue
HICO + MPII + Attr., while for
the bottom table we used
B + Places. Note that when
training on the Person Location
question and testing on the
Scene question, the obtained
performance is higher than
training and testing on Scene for
the Easy distractor case

Distr type Question type Test

(3) Interesting (4) Past (5) Future

Train Easy (3) Interesting 79.94 77.67 77.39

(4) Past 79.23 84.09 82.78

(5) Future 78.19 83.38 84.97

Hard (3) Interesting 55.37 52.68 52.38

(4) Past 54.50 58.17 56.46

(5) Future 54.23 57.03 59.98

Distr. type Question type Test

(1) Scene (8) Per. Loc. (12) Obj. Pos.

Train Easy (1) Scene 89.04 83.68 52.39

(8) Per. Loc 90.14 85.70 56.61

(12) Obj. Pos. 82.76 79.92 69.41

Hard (1) Scene 73.22 63.16 38.25

(8) Per. Loc. 72.71 66.66 43.03

(12) Obj. Pos 59.27 55.46 69.41

The best result of each row is highlighted in italic

and group model are combined together in the CCA Ensem-
ble.

7.5 Transferring Learned Embedding Spaces

A further test on the robustness of the learned CCA embed-
ding spaces for multiple-choice question answering can be
done by evaluating how transferable they are across several
question types without additional training. This can be ana-
lyzed by testing a CCA model on a different question type
with respect to that onwhich it was originally learned.We ran
extensive experiments on this setting by using the cues that
produced the best result on the data of each training question
and using it on all the other questions as test. As expected, the
accuracy in this cross-task setting decreases with respect to
the standard casewith training and testing data from the same
question type, and the performance drop depends on the ques-
tion similarity. This effect is clearly visible in Table 6 where
we provide examples for this setting which involve whole
image questions and on location related question: despite the
drop, the cross-task recognition rate is still much better than
random, indicating a good robustness of the models. Surpris-
ingly, a model trained on Person Location (type 8) performs
better than the standard model on Scene (type 1) questions,
probably because the trained embedding space learns for a
slightly harder task and is more discriminative.

8 Conclusions

We have shown that features representing different types
of image content are helpful for answering multiple choice

questions, confirming that external knowledge can be suc-
cessfully transferred to the this task through the use of deep
networks trained on specialized datasets. Further, through
the use of an ensemble of CCA models, we have created a
system that beats the previous state of the art on the Visual
Madlibs dataset.

A detailed analysis of our approach has shown where fur-
ther work would be beneficial. Person and object localization
may be improved by a better interpretation of the sentences
that does not focus only on separate entities, but understands
their relationships and translates them into spatial constraints
to guide region selection and feature extraction. And, of
course, training joint image-text models that can better deal
with rare and unusual inputs remains an important open prob-
lem, as exemplified by the questions in the left column of
Fig. 9.

In the future, besides testing our approach on other inter-
esting question types currently not covered by the Madlibs
dataset (e.g. Persons’ emotion, person–person relation), we
are also interested in extending the study of multi-cue inte-
gration strategies tomore open-ended and generalVQA tasks
that do not rely on pre-specified question templates. As done
here, we can start from simple feature concatenation tomerge
visual representations for different cues before model learn-
ing. A related idea has been recently exploited in (Saito et al.
2017) where the concatenated features are obtained from net-
works characterized by different architectures but all trained
on ImageNet. This approach can be easily adjusted to use our
various domain expert network features and extend existing
VQA methods like those in (Wu et al. 2016b; Wang et al.
2017b).
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