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Abstract
Edge/structure-preserving operations for images aim to smooth imageswithout blurring the edges/structures.Many exemplary
edge-preserving filtering methods have recently been proposed to reduce the computational complexity and/or separate
structures of different scales. They normally adopt a user-selected scalemeasurement to control the detail smoothing.However,
natural photos contain objects of different sizes, which cannot be described by a single scale measurement. On the other
hand, contour analysis is closely related to edge-preserving filtering, and significant progress has recently been achieved.
Nevertheless, the majority of state-of-the-art filtering techniques have ignored the successes in this area. Inspired by the fact
that learning-based edge detectors significantly outperform traditional manually-designed detectors, this paper proposes a
learning-based edge-preserving filtering technique. It synergistically combines the differential operations in edge-preserving
filters with the effectiveness of the recent edge detectors for scale-aware filtering. Unlike previous filtering methods, the
proposedfilters can efficiently extract subjectivelymeaningful structures fromnatural scenes containingmultiple-scale objects.

Keywords Contour analysis · Edge-preserving filter · Structure-preserving filter · Scale-aware filter

1 Introduction

Edge/structure-preserving filtering1 has found widespread
employment in many computer vision and graphics tasks. It
is an image smoothing technique that removes low-contrast
details/textures, while maintaining sharp edges/image struc-
tures.

A broad category of edge-preserving filters is designed
with a specific filter kernel, to measure the distance between

1 The structure-preserving filtering can be considered as a special
design of edge-preserving filtering to deal with its limitation in handling
textures. In most cases, this paper adopts the phrase “edge-preserving”
for a broader concept.
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two pixels in a local region. The distance measurement is
then converted to give the confidence of an edge between
the two pixels, for edge-aware filtering. This category is
sensitive to noise/textures. Examples are anisotropic dif-
fusion (Perona and Malik 1990; Weickert 1999), bilateral
filters (BF) (Tomasi and Manduchi 1998), guided image
filters (GF) (He et al. 2013), and domain transform filters
(DTF) (Gastal and Oliveira 2011). Another category is pro-
posed to separate meaningful structures from textures by
utilizing local statistics, called structure-preserving filter-
ing. Representatives are relative total variation (RTV) (Xu
et al. 2012), bilateral texture filter (BTF) (Cho et al. 2014)
and rolling guidance filter (RGF) (Zhang et al. 2014). The
main challenge in this domain is to accurately include scale
measurement and propagation mechanism for filter design,
in order to distinguish sharp edges/image structures from
details/textures of various sizes. Designing a robust scale-
aware filter kernel is surprisingly difficult. There is no
“optimal” solution, because the detection of image edges
can only be evaluated in a subjective manner. Meanwhile,
numerical experiments, such as the Berkeley Segmentation
Dataset and Benchmark (BSDS500) (Arbelaez et al. 2011),
demonstrate that human subjects have various perceptions of
edges in the same image.
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On the other hand, significant progress has been achieved
over the past few years in machine learning. Unlike in stan-
dard image processing techniques, which use strictly static
program instructions, here a model is normally constructed
based on example inputs, and then used to generate pre-
dictions or decisions. The performance of a learning-based
edge-preserving image filter is thus likely to be closer to the
human visual system when the example inputs are obtained
based on an average agreement between a sufficient number
of human subjects. The SVM-based filter presented in Yang
et al. (2010) is the first learning-based bilateral filter. As a
Taylor series expansion of the Gaussian function can be used
to approximate the bilateral filters (Porikli 2008; Yang et al.
2010) learns a function that maps a feature vector consisting
of the exponentiation of the pixel intensity, the corresponding
Gaussian filtered response, and their products, to the cor-
responding exact bilateral filtered values from the training
image.

This study aims to develop image smoothingmethods that
canpreserve edges betweendifferent-sizedobjects/structures.
This presents a considerably more challenging problem.
Unlike the bilateral filter, it cannot be approximated using
a Taylor series expansion, and there is no ground-truth fil-
tered image available for training. Nevertheless, there are
sufficient hand-labeled segmentation datasets. For instance,
BSDS500 (Arbelaez et al. 2011) contains 12,000 hand-
labeled segmentations of 1000 Corel dataset images from
30 human subjects. Image segmentation and edge detection
are closely related to image smoothing techniques. They nor-
mally pre-smooth an image using a specific low-pass filter
for noise reduction.

Because the human visual system is capable of under-
standing semantically meaningful structures blended with
or formed by texture elements (Arnheim 1956), a “per-
fect” segmentation result (agreeing with human subjects)
obviously provides excellent guidance for scale-aware edge-
preserving filtering. However, it is difficult to obtain ideal
edges from real-life images that are of moderate complexity.
Traditional edge detectors rely on image gradients (followed
by non-maximal suppression). Unfortunately, many percep-
tive inessential textures often have large gradient values. As
a result, most state-of-the-art edge-preserving filters ignore
potential contributions from edge detectors. On the other
hand, it has recently been demonstrated that the perfor-
mance of learning-based edge detectors is approaching that
of human subjects (Dollár and Zitnick 2013, 2015).

This paper proposes a simple seamless combination of
the differential operations in filter design and learning-based
edge detection, to achieve fast scale-aware edge-preserving
filtering. We observed that a number of fast edge-preserving
filtering methods, including anisotropic diffusion (Perona
and Malik 1990), domain transform filters (Gastal and
Oliveira 2011), and recursive bilateral filters (RBF) (Yang

2012), operate on the differential structure of the input
image. They recursively smooth an image based on the sim-
ilarity between every pair of neighboring pixels, and are
referred to as anisotropic filters in this paper. These fil-
ters are naturally more sensitive to noise than others like
the bilateral filter (Tomasi and Manduchi 1998) or guided
image filter (He et al. 2013). They are also unable to sep-
arate meaningful structures from textures. However, their
computational complexity is comparatively low, as they can
be implemented recursively. Another significant advantage
is that they can be naturally combined with a state-of-the-
art learning-based edge classifier (Dollár and Zitnick 2015),
to encourage smoothing within regions until strong edges
are reached (Yang 2016). Furthermore, a variety of global
image filters, such as weighted least square (WLS) (Farb-
man et al. 2008) and relative total variation (Xu et al. 2012),
also operate on the differential structure of images. These
are generally more robust, but slower than anisotropic fil-
ters, because they optimize global object functions, and need
to solve a large linear system. Fortunately, Min et al. pro-
posed a fast approximation method (FGS) (Min et al. 2014),
which works in a similar manner to recursive filters, and
has a comparable computational efficiency andmemory con-
sumption. This type of global filter also allows the simple
incorporation of a learned edge detector. Such an edge clas-
sifier is trained using human-labeled contours. According
toArnheim (1956), “the overall structural features are the pri-
mary data of human perception, not the individual details.”
Learning-based edge detectors can thus robustly distinguish
the contours of different-sized objects by image noise and
textures.When integratedwith an anisotropicfilter or a global
filter, this enables robust structure extraction from natural
scenes containing objects of various scales, as demonstrated
in Fig. 1. The key reason for this ability is that the recursive
and global filter operate on the whole scan line/image and
the degree of smoothing is guided by the learned edge map
which is trained according to human perception. This make
our methods more effective than others which adopt fixed-
size kernels and/or low-level features. Figure 1a shows two
images containing both large scale (e.g., sky and meadow)
and small scale (e.g., animals) objects. Current state-of-
the-art edge-preserving filters cannot successfully separate
large-scale objects from small ones, as shown in Fig. 1b–f.
The proposed filtering technique does not suffer from this
limitation, as demonstrated in Fig. 1g. To summarize, we
make the following contributions.

– We reform several well-known filters, including the
domain transformfilter (Gastal andOliveira 2011), recur-
sive bilateral filter (Yang 2012), theweighted least square
filter (Farbman et al. 2008), and the relative total variation
filter (Xu et al. 2012). We analyze their inherent limita-
tions, and improve their performance significantly.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 1 Natural scenes, such as in a, contain objects of different sizes,
and structures of various scales. As a result, the state-of-the-art edge-
preserving filters are unlikely to obtain “optimal” smoothing results
without parameter adjustments, as shown in b–f. The default param-
eters included in the implementations published by the authors were
employed in this experiment. This study targets an efficient scale-
aware filtering solution, by integrating a fast edge-preserving filtering

technique with prior knowledge learned from human segmentation
results. Unlike previous filters, it can sufficiently suppress image vari-
ance/textures inside large objects, while maintaining the structures
of small objects, as shown in g. a Input, b GF (He et al. 2013), c
DTF (Gastal and Oliveira 2011), d L0S (Xu et al. 2011), e RTV (Xu
et al. 2012), f RGF (Zhang et al. 2014), g proposed

– The proposed methods are robust to natural scenes con-
taining objects of different sizes and structures of various
scales, and thus can successfully extract subjectively
meaningful structures from images containing multiple-
scale objects.

– Qualitative andquantitative experiments, including large-
scale texture removal, local edit propagation, image
retargeting, saliency detection, and stereo matching have
been conducted, demonstrating that our proposed meth-
ods perform favorably against state-of-the-art methods.

2 RelatedWork

2.1 Edge-Preserving Filtering

Themost popular edge-preserving filter is probably the bilat-
eral filter, introduced by Tomasi andManduchi (1998). It has
been applied to many computer vision and computer graph-
ics tasks, and a general overview of these applications can
be found in Paris et al. (2009). Let xi denote the color of
an image x at pixel i , and let yi denote the corresponding
filtered value,

yi =
∑

j∈Ωi
Gσs (|i − j |)Gσr (|xi − x j |)x j

∑
j∈Ωi

Gσs (|i − j |)Gσr (|xi − x j |) , (1)

where j is a pixel in the neighborhoodΩi of pixel i , and Gσs

and Gσr are the spatial and range filter kernels measuring the
spatial and range/color similarities, respectively. The param-
eter σs defines the size of the spatial neighborhood used to
filter a pixel, and σr controls how strongly an adjacent pixel
is down-weighted because of the color difference. A joint (or

cross) bilateral filter (Petschnigg et al. 2004; Eisemann and
Durand 2004) is the same as the bilateral filter, except that
its range filter kernel Gσr is computed from another image,
named the guidance image.

Brute-force implementations of the bilateral filter are slow
when the kernel is large. A number of techniques have been
proposed for fast bilateral filtering, based on quantization of
the spatial domain and/or range domain (Durand and Dorsey
2002; Pham and van Vliet 2005; Chen et al. 2007; Paris and
Durand 2009; Yang et al. 2009; Adams et al. 2009, 2010;
Gastal and Oliveira 2012). Other methods reduce the compu-
tational complexity using additional constraints on the spatial
filter kernel (Weiss 2006; Porikli 2008) or the range filter ker-
nel (Yang 2012).

Besides accelerating the bilateral filter, there also exist
efficient bilateral-filter-like techniques derived from ani-
sotropic diffusion (Perona and Malik 1990), weighted least
squares (Farbman et al. 2008), wavelets (Fattal 2009),
linear regression (He et al. 2013), local Laplacian pyra-
mids (Parisand et al. 2011), domain transforms (Gastal and
Oliveira 2011), and L0 smoothing (L0S) (Xu et al. 2011).

These edge-preserving filters have been broadly applied
in computer vision and graphics. However, they all focus on
a relatively small variance suppression, and are vulnerable
to textures. The proposed filtering technique differs, in that
it can distinguish meaningful structures from textures and
image noise.

2.2 Structure-Preserving Filtering

Traditional edge-preserving filtering techniques cannot dis-
tinguish textured regions from the major structures in an
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image. Popular structure-preserving techniques are based
on the total variation (TV) model (Rudin et al. 1992;
Chambolle and Darbon 2009). This uses L1 norm-based reg-
ularization constraints to enforce large-scale edges, and has
demonstrated the effective separation of structures from tex-
tures (Meyer 2001; Yin et al. 2005; Aujol et al. 2006). Xu
et al. (2012) proposed relative total variation measures for
better capturing the differences between textures and struc-
tures, and developed an optimization system to extract main
structures. Another model based on local extrema (LEX)
was proposed by Subr et al. (2009). This separates oscil-
lations from the structure layer by extrema extraction and
extrapolation. Alternatively, the use of superior similarity
metrics instead of traditional Euclidean distances, such as
geodesics (Criminisi et al. 2010) or diffusion (Farbman et al.
2010) distances, can enhance the performance of texture-
structure separation. Karacan et al. (2013) employed region
covariances (RCV) as patch descriptors, and leveraged the
repetition property of textures to capture the differences
between structures and textures. Cho et al. (2014) proposed
a bilateral texture filter, which also relies on a patch-based
analysis of texture features, and integrates its results into
the range filter kernel of the conventional bilateral filter.
Recently, some new total variation frameworks and nonlinear
filters (Gilboa 2014; Buades and Lisani 2016; Zeune et al.
2016) have been proposed for multi-scale texture analysis.
Structure-preserving filtering was typically slow before the
availability of the rolling guidance filter (Zhang et al. 2014).
Besides its efficiency, the work of Zhang et al. (2014) also
proposes a unique scalemeasure to control the level of details
during filtering. This scale measure is considerably useful
when manual adjustment is required.

2.3 Contour Detection

Edge/contour detection is a fundamental task in computer
vision and image processing. Traditional approaches, such
as the Sobel operator (Duda and Hart 1973), detect edges
by convolving the input image with local derivative filters.
The most popular edge detector, the Canny detector (Canny
1986), makes extensions by adding non-maximum suppres-
sion and hysteresis thresholding steps. These approaches
apply low-level interpolation of the image structures, and an
overview can be found in Ziou and Tabbone (1998). Recent
studies have focusing on utilizing machine learning tech-
niques. These either train an edge classifier based on local
image patches (Dollár et al. 2006; Lim et al. 2013; Ren and
Liefeng2012;Gupta et al. 2015;Dollár andZitnick 2013;Zit-
nick and Dollár 2014; Dollár and Zitnick 2015), or make use
of learning techniques for cue combination (Arbelaez et al.
2011; Zheng et al. 2007; Catanzaro et al. 2009; Zitnick and
Parikh 2012). Deep neural networks have also recently been
applied to edge detection (Kivinen et al. 2014), and domi-

nate the current leading methods (Bertasius et al. 2015a, b;
Xie and Tu 2015; Shen et al. 2015; Yang et al. 2016).

Traditional edge detectors rely on image gradients, while
many visually salient edges, such as texture edges, do not
correspond to image gradients. As a result, they are not
suitable for structure-preserving filtering. However, state-of-
the-art detectors (Dollár and Zitnick 2013, 2015) are learned
using human labeled segmentation results, including suf-
ficient texture edges. As a result, they contain useful and
accurate structural information, which can be adopted for
robust structure-preserving filtering.

3 Joint Contour Filtering

3.1 Anisotropic Filtering

Anisotropic diffusion is a traditional edge-aware filtering
technique (Perona and Malik 1990). It is modeled using
partial differential equations, and implemented as an iter-
ative process. The recently proposed domain transform
filter (Gastal and Oliveira 2011) and recursive bilateral fil-
ter (Yang 2012) are closely related to anisotropic diffusion,
and can achieve a real-time performance.

3.1.1 Domain Transform Filter

Given a one-dimensional (1D) signal, the DTF (Gastal and
Oliveira 2011) applies a distance-preserving transformation
to the signal. A perfect distance-preserving transformation
does not exist, but a simple approximation is given simply by
the sumof the spatial distances (e.g., one-pixel distances) and
color/intensity differences between every pair of pixels. Let
x denote the 1D input signal, and let t denote the transformed
signal,

ti = x0 +
i∑

j=1

1 + |x j − x j−1|. (2)

In practice, two additional parameters,σs andσr , are included
in Eq. (2) to adjust the amount of smoothness:

ti = x0 +
i∑

j=1

1 + σs

σr
|x j − x j−1|. (3)

As can be seen from Eq. (3), this transform operates on the
differential structure of the input signal, which is the same
as in anisotropic diffusion, but with much faster results. A
standard low-pass filter (e.g., Gaussian filter) with a kernel
defined by σs will be used to smooth the transformed signal
[Eq. (3)] without blurring the edges, and the final result is
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obtained by transforming the smoothed signal back to the
original domain.

3.1.2 Recursive Bilateral Filter

The recursive bilateral filter, presented in Yang (2012), is
also closely related to anisotropic diffusion. A traditional
bilateral filter has two Gaussian filter kernels, a spatial filter
kernel and a range filter kernel, as shown in Eq. (1). The spa-
tial filter kernel was reduced to a box filter in Weiss (2006)
and Porikli (2008), and the range filter kernel was reduced to
a polynomial range filter in Porikli (2008), in order to reduce
the computational complexity. The recursive bilateral filter,
presented in Yang (2012), employs a similar constraint. It
assumes that the range filter can be decomposed into a recur-
sive product (and that the spatial filter can be implemented
recursively, which is standard for most of the fast bilateral
filtering approaches).

Again, let x denote the 1D input signal of a causal recursive
system of order n, and let y denote the output. Then,

yi =
n−1∑

l=0

(al · xi−l) −
n∑

k=1

(bk · yi−k), (4)

where al and bk are coefficients designed for a specific recur-
sive filter. The RBF (Yang 2012) extends the above recursive
system for bilateral filtering by modifying the coefficients at
each pixel location:

anewl = Ri,i−l · al , (5)

bnewk = Ri,i−k · bk, (6)

where

Rk,i =
i−1∏

j=k

R j, j+1 = exp

(

−
∑i−1

j=k(x j − x j+1)
2

2σ 2
r

)

(7)

is the range filter kernel, and σr is a constant used to control
the intensity/color similarity measurement between pairs of
pixels. An anti-causal recursive filter of the same order is
required to compute responses from right to left. Note that
the normalization factor is omitted in Eqs. (5) and (6), as this
can be directly computed from the above equations by setting
each xi equal to one. Similarly to anisotropic diffusion and
the DTF, the RBF also operates on the differential structure
of the input signal, as can be seen from Eq. (7). These filters
are referred to as anisotropic filters in this paper. As with the
DTF (Gastal and Oliveira 2011) and RBF (Yang 2012), 2D
signals will be filtered using the 1D operations by performing
separate passes along each dimension of the signal. It is also
demonstrated in Gastal and Oliveira (2011) that artifact-free

(a) (b) (c)

(d)

Fig. 2 Direct use of the edge confidence as guidance may introduce
visible artifacts or over-smooth the image, as can be seen in d. c shows
that the combination of the edge confidence in b and the image gradients
can effectively suppress the potential artifacts resulting from incorrect
edge detection. a Input, b edge confidence, c proposed, d joint filtering
directly using b (w.r.t. different parameters)

filtered images can be obtained by performing filtering itera-
tively, and the filter kernel size (defined by σs and σr ) should
be reduced after every iteration to converge.

3.2 Scale-Aware Anisotropic Filtering

This anisotropic filters presented in Sect. 3.1 can be imple-
mented recursively, and thus the computational complexity
is relatively low. However, they are sensitive to image noise,
and cannot distinguish textures from structures. Available
solutions eithermanually design low-level visionmodels and
descriptors (Rudin et al. 1992; Xu et al. 2012; Karacan et al.
2013) to capture the differences between structures and tex-
tures, or simply adopt a texture scale parameter (Zhang et al.
2014). The performance of these filters is excellent when per-
fect parameters are employed. Nevertheless, natural photos
contain objects of different sizes and structures of various
scales, which are difficult to describe in terms of a unified
low-level feature. In contrast, it has already been demon-
strated in closely related research (such as on edge detection)
that high-level features learned from human-labeled data can
significantly outperform manually-designed features. This
section makes use of the state-of-the-art structured learn-
ing based edge classifier (Dollár and Zitnick 2013, 2015), to
achieve structure-preserving filtering while maintaining its
efficiency. The sufficient human-labeled training examples
from the BSDS500 benchmark (Arbelaez et al. 2011) enable
the proposed filtering technique to be robust for various tex-
ture scales.

The anisotropic filters presented in Sect. 3.1 accumulate
the image gradients in order to measure the distance between
two pixels, as can be seen from Eqs. (3) and (7). However,
it is clear that texture edges do not correspond to image gra-
dients. A straightforward learning-based solution is to train
a deep learning architecture to map a local patch to a “per-
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Fig. 3 The integration of anisotropic filters with an edge detector can
successfully remove textures, except for small-scale textures around the
edges, as can be seen in b–c. A simple and robust solution is to remove
these textures by using a rolling guidance filter (Zhang et al. 2014) in
advance, as demonstrated in d. However, this will be relatively slow.
To improve the efficiency, this study instead uses the differential struc-

ture of the median filtered image to smooth the original input image, as
shown in g–h. The yellow ellipses will be discussed in the text. a Input,
b 1 Iter., c 10 Iter., d Zhang et al. (2014)+2 Iter. e 1 Iter. (MF), f 2 Iter.
(MF), g our cDTF, h our cRBF, i pixel values (on the red channel), j
edge confidence, k image gradients (Color figure online)

fect” image gradient value, so that it is low inside of a region
and high around texture edges. However, this solution will
be slow. A simpler but much faster solution is thus adopted
in this work. By taking advantage of the inherent structure
in edges in a local patch, Dollár and Zitnick (2015) proposes
a generalized structured learning approach for edge classi-
fication. This has been demonstrated to be highly robust to
textures, as well as very efficient. A direct solution to struc-
ture smoothing is to employ the edge confidence computed
from Dollár and Zitnick (2015) as the guidance image in the
DTF and the range filter in RBF, to smooth the input image.
This type of filter is called a joint/cross (bilateral) filter in
the literature (Petschnigg et al. 2004; Eisemann and Durand
2004). Specifically, let f j denote the confidence of an edge
at pixel j . Then, Eqs. (3) and (7) are modified as follows to
suppress gradients (resulting from textures) inside a region:

ti = x0 +
i∑

j=1

1 + σs

σr
· f j , (8)

Rk,i = exp

(

−
∑i−1

j=k f 2j
2σ 2

r

)

. (9)

This is an effective solution given a perfect edge classifier,
which does not exist in practice. This may introduce visible
artifacts or over-smooth the image, as shown in Fig. 2d.

This paper proposes the use of edge confidence to adjust
the original distance measure in DTF and the range filter in
RBF:

ti = x0 +
i∑

j=1

1 + σs

σr
· f j |x j − x j−1|, (10)

Rk,i = exp

(

−
∑i−1

j=k f j (x j − x j+1)
2

2σ 2
r

)

. (11)

The combination of the edge confidence and the image gra-
dient can effectively suppress the potential artifacts resulting
from incorrect edge detection.Because that ourmethods inte-
grate the edge/contour map for joint filtering, we refer to the
proposed filters as joint contour DTF and RBF (cDTF and
cRBF).

The gray curves in Fig. 3k represent the original image
gradients of the red and green rows in Fig. 3a, respectively.
Traditional anisotropic filters are vulnerable to textures in

123



International Journal of Computer Vision (2018) 126:1245–1265 1251

these two rows. The red curves in Fig. 3j represent the edge
confidence detected from these two rows, respectively. The
peaks in the two red curves correspond to the edges of the
red and green rows in Fig. 3a. The edge confidence is used to
suppress the image gradients inside the textured regions, and
enable texture removal according to Eqs. (10) and (11). The
red curves in Fig. 3k represent the modified image gradients,
which correspond to the f j |x j − x j−1| values in Eq. (10).
Note that the variance of the image gradients inside the tex-
tured regions has been significantly suppressed, and thus the
resulting anisotropic filter can successfully remove most of
the textures (e.g., the hat), as can be seen in Fig. 3b and the
red curves in (i). A new edge confidence can be obtained
from the filtered image, and used to further suppress the tex-
tures.

The proposed edge-preserving filtering technique itera-
tively computes edge confidence using a learning-based edge
classifier, and applies this to suppress the textures until con-
vergence is achieved. As in Gastal and Oliveira (2011), the
filter kernels (determined by σs and σr in Eq. 10) are itera-
tively reduced (by half), in order to guarantee convergence.
Figure 3c presents the filtered image after 10 iterations. This
shows that most of the visible textures are removed. The
green, blue, and purple lines in the first rowof Fig. 3i–k corre-
spond to the pixel intensities, edge confidencemeasurements,
and updated image gradients of the red row in (a) after 2, 3,
and 10 iterations, respectively. This shows that the proposed
filter converges rapidly (after only around three iterations).

3.2.1 Suppressing Small-Scale Textures and Structures

The filters presented in Eqs. (10) and (11) cannot sufficiently
remove small-scale textures around highly-confident edges,
as shown in the close-ups below Fig. 3b, c. This is because
of the imperfect confidence measurements around a textured
edge. As shown in the yellow ellipse in Fig. 3k, large image
gradients around texture edges cannot be effectively sup-
pressed, even after a large number of iterations. As a result,
the original pixel values will be preserved, as can be seen
from the yellow ellipse in Fig. 3i. Applying a small median
filter to the input image cannot significantly affect the edge
confidence around highly-confident edges, as can be seen in
the blue andpurple lines inFig. 3j.However, this is very effec-
tive for removing textures around edges, as demonstrated in
Fig. 3e–f and the blue and purple lines in the second row
of Fig. 3i, k (see the values around the two yellow ellipses).
Nevertheless, a median filter will, of course, remove thin-
structured objects, as shown in the close-ups under Fig. 3e,
f. Let xMF denote the median filter result for the input sig-
nal x . In this study, only xMF is used to compute the image
gradients in Eqs. (10) and (11). Let

RMF
k,i = exp

⎛

⎜
⎝−

∑i−1
j=k f j

(
xMF
j − xMF

j+1

)2

2σ 2
r

⎞

⎟
⎠ . (12)

Then, the proposed cDTFand cRBFare computed as follows:

ti = x0 +
i∑

j=1

1 + σs

σr
f j |xMF

j − xMF
j−1|, (13)

yi =
n−1∑

l=0

(RMF
i,i−l · al · xi−l) −

n∑

k=1

(RMF
i,i−k · bk · yi−k). (14)

Figure 3g, h present the images filtered using the proposed
cDTF [Eq. (13)] and cRBF [Eq. (14)]. They both successfully
remove the textures in Fig. 3a–c, while better preserving the
details around thin-structured objects.An alternative solution
is to directly apply the rolling guidance filter (Zhang et al.
2014) to the input image to remove the small-scale textures,
and the result is presented in Fig. 3d. However, this method
will be relatively slow.

Meanwhile, some applications are desired to generate a
multi-scale representation. In this case, the median filter can
serve as a scale selector, similarly to the other initial blurring
operators employed in the previous structure-preserving fil-
ters (Zhang et al. 2014; Cho et al. 2014), and its size σm
should be adjusted according to the scale of structures to be
removed (see Figs. 4 and 18). For the other experiments, we
set σm = 2 as a constant. The values of σm , σs , and σr will
be reduced by half after every iteration, in order to guaran-
tee convergence, and convergence will typically be achieved
after as few as two iterations, as described in Sect. 5.1.

3.3 Scale-Aware Global Image Smoothing

Low-level image processing operations are often formulated
as the minimization of an energy function comprising the
data and prior terms,

E = Edata + λ · Eprior , (15)

where λ controls the relative importance of the two parts.
A general data fidelity term for local appearance adjust-
ment (Dani et al. 2004; Lischinski et al. 2006) can be
expressed as

Edata =
∑

p∈Ω

(sp − u p)
2, (16)

where sp is the output editing label, and u p denotes an
exemplary input label. Ω represents the entire image in
image filtering, while for interactive editings such as col-
orization, image matting, and tone adjustment, Ω represents
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(a) (b) (c)

(d) (e) (f)

Fig. 4 Different median filter (MF) sizes σm will affect the texture
removal result around edges. a Input, b edge map, c without MF, dMF
(σm = 1), eMF (σm = 2), fMF (σm = 4)

the user-drawn stroke set. Sophisticated data terms have
also been designed to better deal with complex spatially-
varying images or sparse user inputs, such as the all-pairs
constraint (An and Pellacini 2008) and the GaussianMixture
Model (GMM) (Xu et al. 2013). This work focuses on the
simplest L2 norm data termwhich is defined only on individ-
ual pixels. As a result, there is a trivial solution in which the
output label is strictly equal to the input. A simple prior is to
enforce the smoothness of the output image, and some rep-
resentative methods are the weighted least square (Farbman
et al. 2008) and relative total variation (Xu et al. 2012).

3.3.1 Weighted Least Square

The smoothness constraint of the WLS filter is adap-
tively enforced using a spatially varying weighting function
wp,q(g), defined on a guidance image g:

EWLS
prior =

∑

q∈N(p)

wp,q(g)(sp − sq)
2, (17)

where N is the four- or eight-neighbor system, and wp,q

represents the affinity between two pixels p and q, and is
typically defined as a Gaussian with standard deviation σr :

(a) (b) (c)

(d) (e) (f)

Fig. 5 The affinity map of the WLS filter computed by the Euclidean
distance of pixel values is vulnerable to textures, as shown in b. A
cleaner affinity map is obtained in c by combining learned edges, and
this can effectively remove textures. a Input edge, b Euclidean distance,
c edge-adaptive distance, d input image, e result using (b), f result using
(c)

wp,q(g) = exp
(
−(gp − gq)

2/2σ 2
r

)
. (18)

The similarity measurement has an important effect on the
performance of the WLS filter. It is originally designed
on the Euclidean distance (Farbman et al. 2008) between
pixel values, and is further improved by using the diffu-
sion distance (Donoho et al. 2006; Farbman et al. 2010),
which better accounts for the global distribution of pixels in
their feature space. As was pointed out in the previous sec-
tions, learning-based methods have demonstrated significant
advantages over manually designed low-level vision mod-
els and descriptors. Thus, the integration of a higher level
of image understanding into low-level image operators is
promising. Based on this observation, we introduce the idea
of using the learned edge confidence to define the similar-
ity measurement, and we refer to this as the edge-adaptive
distance:

wp,q(g) = exp
(
− f p(gp − gq)

2/2σ 2
r

)
. (19)

Figure 5 illustrates the affinity map calculated by
∑

q∈N(p)
wp,q(g) at each pixel location p. As can be seen fromFig. 5b,
The affinity computed using the Euclidean distance of pixel
values suffers when it comes to textures. Figure 5c shows
the refined affinity, using (a). Note that the refined affinity is
often high everywhere except for at salient edges, which not
only allows the removal of perceptive inessential textures,
but also facilitate the propagation of sparse user inputs for
interactive image editing, such as colorization (see Fig. 10
for an example).

3.3.2 Relative Total Variation

The RTVmeasurement is proposed in order to better capture
the differences between textures and structures. It is based on
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the observation that amajor structural edge in a local window
contributes more gradients in similar directions than textures
with complex patterns do. The definition of RTV is

ERTV
prior = Gσs ∗ |∂x S|

|Gσs ∗ ∂x S| + ε
+ Gσs ∗ |∂y S|

|Gσs ∗ ∂y S| + ε
, (20)

where ∂(·) is the discrete gradient operator, ∗ is the convo-
lution operator, and Gσs is a Gaussian filter with standard
deviation σs . The division in Eq. (20) is to be understood
element-wise, and ε is a small positive number inserted to
avoid division by zero. The RTV measure does not require
prior texture information, and can also remove non-uniform
and multiple-scale textures. Essentially, the RTV measure
penalizes all textures with scales smaller than that corre-
sponding to σs . Thus, the inherent limitation of RTV is that it
cannot remove large-scale textures without blurring small-
scale structures. Based on the previous success of integrating
learned edges into edge-preserving filters, we propose joint
contour RTV (cRTV),which allows the efficient extraction of
subjectively meaningful structures from natural scenes con-
taining multiple-scale textures. The formula for cRTV is as
follows:

EcRT V
prior = Gσs ∗ |∂x S|

f · |Gσs ∗ ∂x S| + ε
+ Gσs ∗ |∂y S|

f · |Gσs ∗ ∂y S| + ε
. (21)

An example is presented in Fig. 6, to demonstrate the
limitations of the original RTV. Figure 6a shows a road sur-
face covered with textures of various scales. Variation maps
with different scale parameters are shown in the first row. A
small (σs = 3) windowed variation measure is not sufficient
to remove large-scale textures on the ground, as shown in
(b). This phenomenon is alleviated when the window size
is increased (σs = 8 and σs = 15). However, small-scale
objects, such as pedestrians, become blurred, as shown in (c)
and (d). On the contrary, the proposed cRTV can effectively
removemulti-scale textures using a small σs , as shown in (e).

The proposed framework is summarized in Algorithm 1.

Algorithm 1: Joint Contour Filtering
Input: image I , iterations niter , parameters φ = {σr, σs, λ}
Output: texture filtered image J

1 J 0 ← I
2 for t = 1 to niter do
3 Mt ← median blurring of J t−1

4 Et ← edge detecting of J t−1

5 J t ← joint filtering of J t−1 using Mt and Et as guidance
6 φ ← 0.5 × φ

7 end

4 Applications

4.1 Large-Scale Texture Removal

Several methods (Xu et al. 2012; Karacan et al. 2013; Zhang
et al. 2014; Cho et al. 2014) have recently been proposed
for extracting meaningful structures from highly-textured
images. This facilitates subsequent imagemanipulation oper-
ations, including visual abstraction, detail enhancement,
and scene understanding. These methods typically focus
on removing small-scale textures, and achieve an excellent
performance in this scenario. Nevertheless, few methods
deal effectively with large-scale textures. Large-scale tex-
ture removal is challenging, especially when there are severe
variations inside the textured regions, as shown in Fig. 7a.
Figure 7b–d present the intermediate results of the proposed
cRTV filter. Our cRTV filter iteratively updates the struc-
ture image and edge map. Empirically, between three and
five iterations are sufficient to suppress textures. We employ
four iterations in our experiments, which is the same as in
the original RTV (Xu et al. 2012). Figure 7e–f show that
our method is helpful for the image segmentation task when
the state-of-the-art method, MCG (Arbeláez et al. 2014),
fails. Figure 8 visually compares cRTV with state-of-the-art
structure-preserving filters. The proposed method performs
favorably against the others, which either cannot remove
large-scale textures sufficiently or blur salient structures.

4.2 Local Edit Propagation

Many image and video processing methods are performed
with the assistance of user strokes, such as colorization (Dani
et al. 2004), tone adjustment (Lischinski et al. 2006), mat-
ting (Levin et al. 2006), intrinsic decomposition (Bousseau
et al. 2009), and white balance correction (Boyadzhiev et al.
2012). Such methods are intended to perform spatially-
variant editing by propagating user-guided information with-
out crossing prominent edges. This section validates the
benefits of employing an edge-adaptive distance in the place
of the classical Euclidean distance (Farbman et al. 2008) or
diffusion distance (Farbman et al. 2010) in the framework
of the WLS filter. We show that there exist practical sce-
narios in which an edge-adaptive distance can significantly
improve the editing results compared with traditional dis-
tance measures. Figure 9 demonstrates the performance of
these three distance measures. The goal is to select different
regions, and apply editing effects individually. These two
images are challenging, because they either have significant
variations inside a region, or contain different objects sharing
similar appearances. The performance for the Euclidean and
diffusion distance is unsatisfactory in these two cases, while
our method generates visually pleasing results. The editing
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(a) (b) (c) (d) (e)

Fig. 6 Comparison of RTV and the proposed cRTV. The spatial param-
eter σs in Eqs. (20) and (21) controls the window size for computing
the windowed variations, as shown in the first row. As shown in b–
d, a small value of σs is not sufficient to remove large-scale textures,

while a large value blurs salient structures. In contrast, cRTV enables
the extraction of subjectively meaningful structures using a small σs . a
Image and edge map, b RTV, σs = 3, c RTV, σs = 8, d RTV, σs = 15,
e our cRTV, σs = 3

(a) (b) (c) (d) (e) (f)

Fig. 7 Large-scale structure–texture separation is challenging, espe-
cially when there are severe variations inside the textured region such
as in a. The proposed cRTV filter iteratively updates the structure image
and edge map. Empirically, between three and five iterations are suffi-
cient to suppress textures, as shown inb–d. e, f show theMCG(Arbeláez

et al. 2014) segmentation results on the original image and our filtered
image, respectively. Our method removes textures effectively, and is
helpful for extracting more accurate segments. a Input, b 1st Iter., c 2nd
Iter. d Final output, eMCG (Arbeláez et al. 2014) on the original image,
fMCG (Arbeláez et al. 2014) on our filtered image

results for the first image were obtained in Kyprianidis and
Döllner (2008) and Kyprianidis and Kang (2011).

Figure 10 presents the colorization results for two chal-
lenging images, where the classical methods (Dani et al.

2004; Fattal 2009)2 and the WLS filter with the Euclidean
or diffusion distance fail. The first image contains very
sparse color strokes, and the second has a complicated fore-

2 The implementations with the default parameters published by the
authors were employed.
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(a) (b) (c) (d) (e) (f)

Fig. 8 Visual comparison with state-of-the-art structure-preserving fil-
ters for large-scale texture removal. Parameters: RCV (Karacan et al.
2013)(σs = 0.5, k = 31, M1), BTF (Cho et al. 2014)(k = 15, niter =
3), RGF (Zhang et al. 2014)(σs = 15, σr = 0.1), RTV (Xu et al.

2012)(σs = 25, λ = 0.04), and cRTV(σs = 25, λ = 0.04). a Input, b
RCV (Karacan et al. 2013), b BTF (Cho et al. 2014), c RGF (Zhang
et al. 2014), d RTV (Xu et al. 2012), e our cRTV

ground/background. As discussed in Sect. 3.3.1, a clean
affinity map can be obtained when integrating the learned
edges into the affinity measurement. This affinity map is
often high everywhere apart from salient edges, and thus
our method facilitates the propagation of sparse inputs on
complex images.

4.3 Image Retargeting

The seam carving method proposed in Avidan and Shamir
(2007) resizes an image by taking its content into account.
It uses a gradient-based energy function to measure the rel-
ative importance of each pixel. As described throughout this
paper, natural scenes often have high gradient values on
inessential textures, so that the seam carving method may
generate unsatisfactory results. Content-aware image editing
is also related to saliency detection, which will be analyzed
in detail in Sect. 4.4. This section provides visual results
for the application of image retargeting. Figure 11 shows a

beach photograph that has high gradient values on the sand,
and thus the entire sand region in the resized image is pre-
served using the original seam carving method. In contrast,
our cRBF and cWLS remove the textured area effectively,
and deliver superior resized images.

4.4 Saliency Detection

The quantitative evaluation of image filtering is difficult,
and thus the state-of-the-art methods (Xu et al. 2011, 2012;
Zhang et al. 2014) provide only a visual evaluation. In
this section, we propose evaluating the improvement over
the state-of-the-art saliency detection algorithm numerically,
where the original image is preprocessed by state-of-the-
art filters. We use the ECSSD (Yan et al. 2013) dataset,
which is challenging, and the minimum barrier saliency
(MBS) detection algorithm (Zhang et al. 2015), which is
both fast and accurate. Saliency detection aims to locate out-
standing objects/regions in images, which is closely related
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(a) (b) (c) (d) (e)

Fig. 9 Comparison of three distance measures in the framework of the
WLSfilter for local edit propagation. These two images either have large
variations in the same region or contain different objects sharing similar
appearances, which are difficult to process with conventional distance

measures. a Input, bEuclidean distance (Lischinski et al. 2006), c diffu-
sion distance (Farbman et al. 2010), d edge-adaptive distance, e editing
results

(a) (b) (c) (d) (e) (f) (g)

Fig. 10 Two difficult colorization cases. The first image shows an
example with sparse color strokes, and the second contains a com-
plex foreground/background. We compare two classical methods (Dani
et al. 2004; Fattal 2009) with theWLS filter with three different distance
measures. The methods of Dani et al. (2004), Fattal (2009) and the two
conventional distance measures for the WLS filter produce results with

artifacts, while our method enables the propagation of sparse inputs
on complex images. The result obtained by cRBF is also displayed. a
Input, b Dani et al. (2004), c Fattal (2009), d Euclidean (Lischinski
et al. 2006), e Diffusion (Farbman et al. 2010), f cWLS, f cRBF (Color
figure online)

to selective perception in the human vision system. One
common challenge in saliency detection is when the fore-
ground/background contains salient/complex patterns, as
shown in Fig. 12. Structure-preserving filters effectively
abstract undesirable details while maintaining relevant struc-
tures, which is beneficial for this task. The precision-recall
curves that evaluate the overall performance of a saliency
detection method are illustrated in Fig. 13. Note that the

proposed filter consistently outperforms the state-of-the-art
filters (Xu et al. 2011, 2012; Zhang et al. 2014). The corre-
sponding mean absolute errors (MAE) (Perazzi et al. 2012)
and weighted-F-measure scores (WFM) (Margolin et al.
2014) are presented inTable 1,which shows that the proposed
filter has the lowest error rate and the highest weighted-F-
measure score. We have also combined the proposed method
with a more recent edge detector (Yang et al. 2016), and
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(a) (b) (c)

Fig. 11 Seam carving results. Top to bottom: input image, filtered
image using cRBF and cWLS, eliminated seams, and the resized output
images. a Original input, b our cRBF, c our cWLS

the performance is illustrated in the last row of Table 1. The
saliency detection accuracy is significantly further improved,
which verifies that ourmethod can directly integrate progress
in edge detection, and could have broader benefits in other
applications.

4.5 StereoMatching

A local stereo matching algorithm generally performs (sub-
sets of) the following four steps: cost volume computation,
cost aggregation, disparity computation (winner-takes-all),
and disparity refinement. The work of Yoon and Kweon
(2006) is the first to employ an edge-preserving filter (i.e.,
BF) to perform cost aggregation. The basic idea of this tech-
nique is to transfer the structural information in the guidance
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MBS [79]
MBS + L0S [66]
MBS + RTV [68]
MBS + RGF [80]
MBS + Our cDTF (with [23])
MBS + Our cDTF (with [70])
MBS + Our cRTV (with [70])

Fig. 13 Precision-recall curves for saliency detection. Note that pre-
processing using structure-preserving filters can outperform the original
MBS method on average, and the proposed filter significantly outper-
forms the others

image to the cost volume, in order to aggregate the cost with-
out crossing edges. However, the guidance image may con-
tain textures, which are not desired to be transferred. Thus, an
edge-preserving filter that is robust to textures can be helpful.

Table 2 presents the results of several edge-preserving fil-
ters on theMiddlebury benchmark. It can be seen that the pro-
posed method outperforms the traditional edge-preserving
filters.

5 Analysis

We have presented techniques to address two important
problems in image filtering. Namely, that edge-preserving
filtering (DTF, RBF, and WLS) is vulnerable to textures,

(a) (b) (c) (d) (e) (f) (g)

Fig. 12 Structure-preserving filtering for saliency detection. Com-
plex background patterns hamper the state-of-the-art method (Zhang
et al. 2015) in locating salient objects. Structure-preserving filters
effectively abstract unnecessary details, which is beneficial for this

task. a Input, b MBS, c MBS+L0S, d MBS+RGF, e MBS+RTV,
fMBS+cDTF (Dollár and Zitnick 2013), gMBS+cDTF (Yang et al.
2016)

123



1258 International Journal of Computer Vision (2018) 126:1245–1265

Table 1 Quantitative evaluation of the state-of-the-art filters using the minimum barrier saliency (MBS) detection method (Zhang et al.
2015) on the ECSSD (Yan et al. 2013) dataset. The proposed filter has the lowest error and the highest weighted-F-measure score
accuracy

Method MAE ↓ WFM ↑
MBS (Zhang et al. 2015) 0.1707 0.5612

MBS+L0S (Xu et al. 2011) 0.1674 0.5668

MBS+RTV (Xu et al. 2012) 0.1660 0.5630

MBS+RGF (Zhang et al. 2014) 0.1698 0.5606

MBS+Our cDTF (with Dollár and Zitnick 2013) 0.1578 0.5846

MBS+Our cDTF (with Yang et al. 2016) 0.1402 0.6278

MBS+Our cRTV (with Yang et al. 2016) 0.1339 0.6339

Our method can directly integrate recent progress in edge detection, such as Yang et al. (2016), and significantly further improve saliency detection

Table 2 Stereo matching

Method Tsukuba Venus Teddy Cones Avg.Error

Non All Disc Non All Disc Non All Disc Non All Disc

BF (Yoon and Kweon 2006) 1.38 1.85 6.90 0.71 1.19 6.13 7.88 13.3 18.6 3.97 9.79 8.26 6.67

GF (Rhemann et al. 2011) 1.51 1.85 7.61 0.20 0.39 2.42 6.16 11.8 16.0 2.71 8.24 7.66 5.55

RBF (Yang 2012) 1.85 2.51 7.45 0.35 0.88 3.01 6.28 12.1 14.3 2.80 8.91 7.79 5.68

Our cRBF 1.80 2.14 6.86 0.29 0.50 2.42 5.90 11.3 14.3 2.48 7.82 7.10 5.25

Quantitative evaluation of the performance of several edge-preserving filters on the Middlebury benchmark. Parameters for cRBF: σs = 0.02,
σr = 0.03

and structure-preserving filtering (RTV) is hampered by
multiple-scale objects. Figure 14 visually compares the
proposed cRBF method with the state-of-the-art filters
under default/constant parameter settings. The adoption of
a learning-based edge detection technique (Dollár and Zit-
nick 2015) enables the proposed filters to be robust to natural
scenes containing objects of different sizes and structures of
various scales.

The computational cost for the proposed filtering tech-
nique resides in the adopted edge detector (Dollár andZitnick
2015), the anisotropic filter [DTF (Gastal andOliveira 2011),
RBF (Yang 2012), FGS (Min et al. 2014)], and themedian fil-
ter (Weiss 2006; Perreault and Hbert 2007; Yang et al. 2015).
These can all run in real-time, and thus thewhole pipelinewill
be fast if the number of iterations is low. In practice, a down-
sample version is sufficient for both the edge detector (Dollár
and Zitnick 2015) and the median filter when the image res-
olution is relatively large (e.g., 1megapixel). As a result, the
computational cost mainly resides in the adopted anisotropic
filter, which operates on the full-resolution input images. The
computational complexity of the adopted anisotropic filters
(DTF, RBF, and FGS) is independent of the filter kernel size.
These filter a 2D image by performing alternative horizontal
and vertical 1D filtering, and the number of arithmetic oper-
ations required for each pixel is also considerably low. For
example, the DTF and RBF use two multiplication opera-
tions at every pixel location to filter a 1D signal, and the FGS

uses six. Note that the computational complexity of the pro-
posed filters and the RGF (Zhang et al. 2014) is much lower
than for the other structure-preserving filters. However, RGF
bears the same limitation as RTV, in that it is not suitable
for images that contain various structure scales, as shown in
Fig. 15. On the other hand, the RGF can be more efficient
than ours on the GPU since the recursive computation is not
fully parallelized compared to the pixel-wise operations.

5.1 Convergence Analysis

In this study, we used the BSDS500 benchmark (Arbelaez
et al. 2011) to analyze the convergence problem. Similarly
to Gastal and Oliveira (2011), the filtered result obtained
after n iterations is evaluated by comparing it with the result
obtained for the same image after 15 iterations, which can be
considered as artifact-free practically. We use the structural
similarity (SSIM) index (Wang et al. 2004), as recommended
by Gastal and Oliveira (2011), to perform a numerical com-
parison, because SSIM provides an image-qualitymetric that
is consistent with human perception.

Figure 16 illustrates the similarity measured for vari-
ous numbers of filtering iterations. The curves represent the
maximum errors obtained on the BSDS500 dataset for the
parameters σs ∈ {0.01, 0.05, 0.1, 0.2, 0.4, 0.6}, σr ∈ {0.01,
0.05, 0.1, 0.2, 0.3, 0.4, 0.5}, λ ∈ {10, 100, 500, 1000, 5000,
10000} (for cWLS), and λ ∈ {0.01, 0.05, 0.1, 0.15, 0.2} (for
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(a) (b) (c) (d) (e) (f) (g)

Fig. 14 Visual comparison with the state-of-the-art structure-
preserving filters under constant/default parameter settings. Unlike the
state-of-the-art filters, the proposed filter is more robust to various
object scales, owing to the adoption of a learning-based edge detec-
tion technique (Dollár and Zitnick 2015). Parameters: LEX (Subr et al.
2009) (kernel size: 3 × 3), RTV (Xu et al. 2012) (σs = 3, λ = 0.01),

RCV (Karacan et al. 2013) (σ = 0.2, k = 9, M1), BTF (Cho et al.
2014) (k = 3, niter = 3), RGF (Zhang et al. 2014) (σs = 3, σr = 0.1),
and cRBF (σs = 0.15, σr = 0.015). a Input, b LEX (Subr et al. 2009),
c RTV (Xu et al. 2012), d RCV (Karacan et al. 2013), e BTF (Cho et al.
2014), f RGF (Zhang et al. 2014), g our cRBF

cRTV), which is sufficient to cover all practical cases. As
can be seen, it is safe to stop after only two iterations,3 as
the SSIM values computed from the filtered images after two
iterations are close to or higher than 0.98.

5.2 Analysis of Parameters

Most edge-preserving filters have two important free param-
eters: the range parameter and the spatial parameter.4 For

3 Experiments conducted in this study use two iterations, except for
the large-scale texture removal task in Sect. 4.1, which requires more
iterations to smooth large-scale highly-textured images.
4 Please note that when a spatial parameter is a fractional number, it
represents the percentage of width/height of the image.

example, σr is the range parameter of the DTF, RBF, and
WLS, and σs is the spatial parameter of the DTF, RBF, and
RTV. In general, the range parameter controls the simpli-
fication level based on color differences/edge confidence,
and the spatial parameter determines the scale of texture
to be removed. Although the proposed methods are mainly
designed to be robust to various object scales, as shown in
Fig. 14, they can be easily extended to generate a multi-scale
representation via different spatial parameters. This subsec-
tion presents a parameter study in the two respects described
above.

Figure 17 illustrates the effects of employing our cDTF,
cRBF, and cWLS methods with different range parameter
values. Note that the increasing the range parameter results
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(a)

(b) (c) (e)(d)

Fig. 15 The RGF (Zhang et al. 2014) and proposed cDTF and cRBF
methods are significantly faster than the others. RGF requires an
estimate of the structure scale, and can effectively smooth out the cor-
responding textures. However, it is not suitable for scenes containing
objects/structures of multiple scales, as can be seen from c to e. It either

fails to sufficiently remove textures in a large-scale object, or blurs
small-scale objects, whereas our proposed filter does not have this lim-
itation, as demonstrated in b. a Input {σs , σr } = {3, 0.05}. {σs , σr } =
{6, 0.05}. {σs , σr } = {9, 0.05}, b our cDTF, c {σs , σr } = {3, 0.15}, d
{σs , σr } = {6, 0.15}, e {σs , σr } = {9, 0.15}
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Fig. 16 Convergence analysis. Similarity measured using SSIM
between the filtered images and their “ideal” results as a function of
numbers of iterations. a cDTF, b cRBF, c cWLS, d cRTV

in ahierarchyof image simplifications, and at each smoothing
level the structures that contain outstanding colors are well
preserved.

Figure 18 illustrates the effects of employing our cDTF
method with different spatial parameter values. A simpli-
fication hierarchy of discs of various sizes is produced by
employing different spatial parameters. The size of median
filter σm is determined by σs . Similarly to other initial blur-
ring operators (e.g., Gaussian filter and box filter) in previous
work (Zhang et al. 2014; Cho et al. 2014), the median filter
can be served as a scale selector that determines the scale
of texture to be removed. Specifically, in the RGF (Zhang
et al. 2014), the first iteration of joint bilateral filtering uses

Fig. 17 The effects of the range parameters. From left to right: input,
results using small range parameters, results using large range param-
eters. From top to bottom: cDTF (σs = 0.3, σr = 0.1, 0.2), cRBF
(σs = 0.5, σr = 0.1, 0.4), cWLS (λ = 1000, σr = 0.02, 0.04)

a constant guidance image which is identical to Gaussian
smoothing. In each iteration of the BTF (Cho et al. 2014),
a texture-free guidance image is first obtained using the box
filter. As discussed in Cho et al. (2014), the basic require-
ment of this procedure is to have the image texture properly
smoothed out so that even a structure-preserving smoothing
technique may be employed here (see Fig. 3d for an exam-
ple). However, we use a simple median filter to achieve this
goal in the light of simplicity and efficiency.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 18 The effects of spatial parameters. A simplification hierarchy
of discs of various sizes is generated via different spatial parame-
ters. From top to bottom and from left to right: input image, RGF
(σr = 0.1, σs = 15, 25, 50, 200), input edge map, cDTF (σr =

0.04, σs = 0.08, 0.15, 0.3, 0.6, σm = 8, 15, 30, 60). a Input, b RGF
(σs = 15), c RGF (σs = 25), d RGF (σs = 50), e RGF (σs = 200),
f edge map, g our cDTF (σs = 0.08), h our cDTF (σs = 0.15), i our
cDTF (σs = 0.30), j our cDTF (σs = 0.60)

5.3 Analysis of Different Edge Detectors

The edge detector (Dollár and Zitnick 2013) takes an image
patch as input, and predicts the local edge confidence via
random forest classifiers. Although the learned classifiers
are better able to distinguish “true” edges from textures,
they may fail in regions of low contrast, owing to a lack
of global reasoning. On the contrary, state-of-the-art edge
detectors (Kivinen et al. 2014; Bertasius et al. 2015a, b; Shen
et al. 2015; Xie and Tu 2015; Yang et al. 2016) rely on deep
learning techniques, which can learn hierarchical features
ranging from local to global.

Figure 19 presents two examples that contain low-contrast
regions. Note that the faint edges are difficult to recognize
through a local patch, but are easier to infer from the whole
image (Fig. 19a). Thus, the estimated edge map of the global
method (Yang et al. 2016) (Fig. 19c) is more accurate than
that of the local one (Dollár and Zitnick 2013) (Fig. 19b).
Figure 19d, e show the results of the proposed cRTV filter
for the input edgemaps in (b) and (c), respectively. Of course,
an accurate edge map is helpful for producing a sharp filtered
image (Fig. 19e). However, when the edge detector fails in
low-contrast regions, the filtered image (Fig. 19d) will be
blurred in those regions, in a similar manner as for other
methods (Xu et al. 2012; Zhang et al. 2014; Cho et al. 2014)
(Fig. 19f–h) that rely on color differences.

5.4 Comparison of Proposed Filters

The smoothing framework ofWLS optimizes a global objec-
tive that provides more advantages than the recursive filters
DTF and RBF. And it is also possible to incorporate a recur-

sive filter into such a framework to deal with complex cases.
In this section, we conduct an experiment on image col-
orization, using imprecise user scribbles to demonstrate the
differences between the proposed filters. Recall that the orig-
inal data term of WLS defined in Eq. (16) enforces a hard
constraint with respect to the given observation, through a
per-pixel cost function. However, this assumption may be
violated in applicationswhere the input data is inaccurate. An
and Pellacini (2008) proposed using the aggregated data
term to handle erroneous input data in several image editing
applications. However, the all-pairs constraint in An and Pel-
lacini (2008) requires solving a dense linear system, which is
computationally expensive. A similar but more efficient data
aggregation mechanism is discussed in Xu et al. (2009), Min
et al. (2014), and is formulated as follows:

Edata =
∑

p∈Ω

⎛

⎝
∑

q∈ND(p)

cp,q(g)(sp − uq)
2

⎞

⎠, (22)

where ND represents a set of neighbors used to aggre-
gate the input data. In contrast to the smooth prior defined
in the N4/N8 neighbors method, in the case of ND(p) it
is recommended to use more neighbors to integrate large
supports. Here, cp,q is defined as an edge-preserving fil-
ter kernel, e.g., the bilateral filter kernel exp(−(p − q)2/

2δ2s − (gp − gq)2/2δ2r ), and it determines the contribution
of each neighbor. Combining the smooth term with Eq. (17),
the final image is obtained by solving the following linear
system (Farbman et al. 2008; Min et al. 2014):

(D + λL)s = Cu, (23)
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 19 Filtering results on low-contrast images. a Note that the faint
edges are difficult to recognize via a local patch, but are easier to infer
through the whole image. b, c Thus, the edge detector (Yang et al. 2016)
that takes advantage of global reasoning is more accurate than the local
one (Dollár and Zitnick 2013). d, h Of course, an accurate edge map is
helpful for producing a sharp filtered image. However, when the edge

detector fails in low-contrast regions, the filtered image will be blurred
in those areas, similarly to other methods that rely on color differences.
a Input, b edge map (Dollár and Zitnick 2013), c edge map (Yang
et al. 2016), d ours with (b), e ours with (c), f RTV (Xu et al. 2012), g
BTF (Cho et al. 2014), h RGF (Zhang et al. 2014) (Color figure online)

where L is a five-point/nine-point spatially inhomogeneous
Laplacian matrix, C is a kernel matrix whose nonzero ele-
ments are given by the weights cp,q , and D is a diagonal
matrix whose diagonal values are the sum of the weights
∑

q∈ND(p) cp,q . The un-normalized bilateral filteringCu and
the sum of bilateral weights D can be efficiently computed
using an O(N ) bilateral filter, such as the RBF. Specifically,
the two terms are computed by solving the recursive system
defined in Eq. (4) twice, with the input imageu and a constant
all-ones image, respectively. If cp,q is a normalized bilateral
kernel (e.g., DTF), then

∑
q∈ND(p) cp,q = 1 (i.e., D is an

identity matrix), and Cu is the exact smoothed input data. In
this case, Eq. (23) becomes

(I + λL)s = Cu. (24)

Compared with the original WLS (Farbman et al. 2008) sys-
tem (I + λL)s = u, we can easily see that Eq. (24) just
represents two successive smoothing operations on the input
signal u,

s = (I + λL)−1 (C) u. (25)

In comparison with the hard data constraint, the pre-
smoothed soft constraint is more robust against errors that
may exist in the given observation. In fact, any edge-
preserving filter or hybrid of such filters can be iteratively
applied to Eq. 25. Figure 20 presents a colorization exam-
ple where the colors of the input scribbles are imprecise. We
apply the proposed cDTF, cRBF, and cWLS methods itera-

tively to handle this case. As can be seen from Fig. 20, the
recursive approaches (d, g) do not deal with imprecise inputs
effectively compared with the global one (b, c), and require
more iterations (e, h) to obtain competitive results (An and
Pellacini 2008; Min et al. 2014). In contrast, the recursive fil-
ters can be directly applied to the global framework (Eq. 25)
to achieve a better performance (f, i).

6 Conclusion

In this paper, an efficient scale-aware edge-preserving fil-
tering framework has been proposed. Unlike the current
state-of-the-art filters, which use low-level vision features
to design the filter kernel, the proposed technique is devel-
oped based on a higher-level understanding of the image
structures. The integration of edge models trained from
human-labeled datasets enables the proposed filters to bet-
ter preserve structured edges that can be detected by the
human visual system. As a result, it is more robust to
objects/structures of different sizes/scales.

The proposed technique cannot be directly applied to other
edge-preserving filters, such as the guided filter (He et al.
2013), and most of the quantization-based fast bilateral fil-
ters (Durand and Dorsey 2002; Pham and van Vliet 2005;
Chen et al. 2007; Paris and Durand 2009; Yang et al. 2009;
Adams et al. 2009, 2010; Gastal and Oliveira 2012). Such
filters do not rely on recursive operations thus may be more
suitable for GPU parallelization. Figure 21a–d shows that the
guided filter is vulnerable to textures when a constant filter

123



International Journal of Computer Vision (2018) 126:1245–1265 1263

(a) (b) (c)

(d) (e) (f)

(i)(g) (h)

Fig. 20 Colorization with imprecise color scribbles. Iteratively apply-
ing an edge-preserving filter is helpful for handling imprecise inputs.
However, the recursive filters cRBF and cDTF are not as effective as
the cWLS, and require more iterations to obtain competitive results.
In contrast, the recursive filters can be directly applied in Eq. (25) to
obtain a better performance. a Input, b cWLS after 2 iter., c cWLS after
10 iter., d cRBF after 2 iter., e cRBF after 10 iter., f cRBF+cWLS., g
cDTF after 2 iter., h cDTF after 10 iter., i cDTF+cWLS (Color figure
online)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 21 Limitations. The guided filter is not effective for removing
textures, as can be seen in b–d. The proposed technique can be adjusted
for integration with a guided filter, but the quality will be lower than
for anisotropic filters (e.g., the recursive bilateral filter in h). a Input, b
r = 4, ε = 0.22, c r = 10, ε = 0.52 guided filter (He et al. 2013), d
r = 20, ε = 0.92, e Conf., f Min Conf., g Conf.+GF, h our cRBF

kernel is employed. A simple extension is to adjust the edge
confidence to adaptively control the guided filter kernel, so
that a small kernel will be used around edges. Figure 21e–f
present the edge confidence before and after minimum filter-
ing, and Fig. 21g shows the guided filtered image obtained
using an adaptive kernel based on the edge confidence in

(f). This outperforms the original guided filter in terms of
suppressing textures, while remaining capable of maintain-
ing the most salient structure edges. However, the quality is
obviously lower than that achieved with the integration of an
anisotropic filter, as shown in Fig. 21h. A generalized exten-
sion for other edge-preserving filters will be investigated in
the future.
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