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Abstract
Online two-dimensional (2D) multi-object tracking (MOT) is a challenging task when the objects of interest have similar
appearances. In that case, the motion of objects is another helpful cue for tracking and discriminating multiple objects.
However, when using a single moving camera for online 2DMOT, observable motion cues are contaminated by global camera
movements and, thus, are not always predictable. To deal with unexpected camera motion, we propose a new data association
method that effectively exploits structural constraints in the presence of large camera motion. In addition, to reduce incorrect
associations with mis-detections and false positives, we develop a novel event aggregation method to integrate assignment
costs computed by structural constraints. We also utilize structural constraints to track missing objects when they are re-
detected again. By doing this, identities of the missing objects can be retained continuously. Experimental results validated
the effectiveness of the proposed data association algorithm under unexpected camera motions. In addition, tracking results
on a large number of benchmark datasets demonstrated that the proposed MOT algorithm performs robustly and favorably
against various online methods in terms of several quantitative metrics, and that its performance is comparable to offline
methods.
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1 Introduction

Multi-object tracking (MOT) aims to estimate object trajecto-
ries according to the identities in image sequences. Recently,
thanks to the advances in object detectors (Wang et al.
2015; Dollar et al. 2014), numerous tracking-by-detection
approaches have been developed for MOT. In this type of
approach, target objects are detected first and tracking algo-
rithms estimate their trajectories using the detection results.
Tracking-by-detection methods can be broadly categorized
into online and offline (batch or semi-batch) tracking meth-
ods. OfflineMOTmethods generally utilize detection results
from past and future frames. Tracklets are first generated by
linking individual detections in a number of frames and then
iteratively associated to construct long trajectories of objects
in the entire sequence or in a time-slidingwindowwith a tem-
poral delay (e.g., Xing et al. 2009; Pirsiavash et al. 2011). On
the other hand, online MOT algorithms estimate object tra-
jectories using only the detections from the current as well
as past frames (e.g., Breitenstein et al. 2011), and they are
more applicable to real-time applications such as advanced
driving assistant systems and robot navigation.
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InMOT, object appearances are used as important cues for
data association, which solves the assignment problems of
detections to detections, detections to tracklets, and tracklets
to tracklets. However, appearance cues alone are not suffi-
cient to discriminate multiple objects, especially for tracking
objects with similar appearances (e.g., pedestrians, faces,
and vehicles). For that reason, tracking-by-detectionmethods
typically exploit motion as well as appearance cues, and use
certain (e.g., linear or turn) models to describe the object
movements. However, for online two-dimensional (2D)
MOT in scenes acquired from moving cameras, observable
motion cues are complicated by global camera movements
and are not always smooth or predictable. Even when the
individual object motion model is updated with consecutive
detections, it is not reliable enough to predict the next location
of an object when the camera moves severely. The situa-
tion becomes worse when objects are not correctly detected
since, without correct detections, object motion models can-
not be properly updated to take camera motion into account.
Furthermore, self-motion information alone is not discrimi-
native enough to disambiguate between objects and uncertain
detections. To handle the aforementioned problems, we pro-
pose to utilize the structural constraint information between
objects, which is represented by the relative positions and
velocity differences between objects. This constraint infor-
mation is robust under the unexpected global camera motion,
and provides more discriminative motion cues to reduce
mis-matches. While significant advances in batch (or semi-
online) trackers have been made (e.g., Yang and Nevatia
2014; Milan et al. 2014; Kim et al. 2015; Choi 2015), online
MOT using structural constraints from detection results has
not yet been explored much.

In this paper, we propose a new data association method
for effectively exploiting the structural constraints between
objects for online 2D MOT, which considers unexpected
global camera motions as well as ambiguities caused by
the uncertain detections (e.g., false positives and negatives).
In this work, we consider the unexpected global camera
motions caused by translationalmotion, pitchmotion, or yaw
motion of a camera, which are very commonwhen we record
video sequences by using a camera equipped on a moving
platform. Using the structural constraints, we introduce a
new cost function, which takes global camera motion into
account to associate multiple objects. In addition, to reduce
the assignment ambiguities caused by false negatives and
positives, as shown in Fig. 1, we propose an event aggre-
gation method, which fuses data association costs along the
assignment event.

The proposed MOT framework consists of two data asso-
ciation steps. In the first step, by using the proposed structural
constraint event aggregation method, we robustly estimate
continuously tracked objects where structural constraints are
sufficiently reliable because of the consecutive updates at

each frame even under large global camera motions or fluc-
tuations. In the second step, we infer and recover the missing
objects between frames to alleviate the problems of mis-
detection from detectors. Using the structural constraints of
objects between frames, we can re-track the missing ones
from the tracked objects in the first step.

Some preliminary results of this work are presented in
Yoon et al. (2016). In this paper, we describe and analyze
the proposed structural constraint event aggregation algo-
rithm in depth. We reorganize the main body of the paper
with intensive modifications to describe each of MOT mod-
ules in detail. In addition, we propose the data association
solution, which estimates the assignments between objects
and detections in a more exhaustive manner. To validate the
effectiveness of the proposed data association algorithm, we
present additional quantitative and qualitative evaluations.

2 RelatedWork

We introduce representative MOT algorithms that focus on
motion models, which can be categorized based on the types
of used motion models: independent motion or structural
motion as considered in thiswork. In addition,we also review
the closely related data association algorithms that are used
for the MOT problems.

Numerous MOT methods directly utilize the first- or the
second-order independent motion models to locate objects
(Kim et al. 2012; Bae and Yoon 2014). Takala et al. (2007)
propose to measure the directional smoothness and speed of
each object based on the current location and the past trajec-
tory to trackmultiple objects. InYang andNevatia (2012), the
nonlinear motion patterns of each object and the entry/exit
maps are trained by exploiting past and future object trajec-
tories. In Breitenstein et al. (2011), object velocities are used
to construct confidence maps of future trajectories for track-
ing. However, those 2D independent motion models do not
work properly under unpredictable camera motions, espe-
cially when the tracking methods do not exploit the visual
information from future frames.

We review relatedMOTmethods that utilize the structural
motion constraints. Pellegrini et al. (2009) and Leal-Taixé
et al. (2011) use social force models that consider pairwise
motion (such as attraction and repulsion) and visual odom-
etry to obtain 3D motion information for tracking multiple
objects. Different from the proposed online 2D MOT algo-
rithm, this method requires 3D information to project objects
and detections on the top-view plane for association. In addi-
tion, this method does not consider scenes with large camera
motion. Grabner et al. (2010) exploit the relative distance
between feature points for single object tracking and reduce
trackingdrifts causedbydrastic appearance changes. InDuan
et al. (2012), a mutual relation model is proposed to reduce
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Fig. 1 An example of structural constraint ambiguity: The tracked
objects and their correct detections are represented by the red and the
yellow boxes, respectively. The overlap ratio costs of the ground truth

assignment (bottom left) and the incorrect assignment (bottom right)
based on the structural constraint are similar because of mis-detections
and multiple false-positive detections (Color figure online)

tracking errors when the target objects undergo appearance
changes. To reduce ambiguities caused by similar appear-
ances in MOT, Zhang and van der Maaten (2013) utilize
motion constraints between objects alongwith object appear-
ancemodels with structured support vectormachines. Unlike
the aforementioned methods in Grabner et al. (2010), Duan
et al. (2012), Zhang and van der Maaten (2013), our method
exploits structural constraints to solve the online 2D MOT
problem with a frame-by-frame data association that assigns
objects to correct detections. Yang and Nevatia (2014) use a
conditional random field model for MOT in which the unary
and binary terms are based on linear and smooth motion
to associate past and future tracklets in sliding windows.
Recently, Yoon et al. (2015) develop a method based on
structural spatial information of relative moving objects to
handle large camera motion. This method basically assumes
that the camera motion is small and smooth such that at
least a few objects are well predicted and tracked by linear
motion models. Therefore, when the object motion predic-
tion fails because of large camera motions, the method is not
able to track objects with the structural information. Differ-
ent from the aforementioned methods, the proposed method
effectively dealswith large and abrupt cameramotions by uti-
lizing anchor assignments, and alleviates ambiguities caused
by mis-detections and false positives by applying the event
aggregation algorithm.

Recently, data association methods commonly used in
radar and sonar target tracking have been applied to vision-
basedmulti-object tracking. Among them,multiple hypothe-
sis tracking (MHT) and probabilistic data association (JPDA)
methods perform robustly and accurately in tracking multi-

ple targets using radar or sonar sensors (Bar-Shalom and Li
1995; Blackman and Popoli 1999). Kim et al. (2015) modify
the MHT method by effectively utilizing the visual appear-
ance information and achieved the state-of-the-art results.
The MHT method constructs object trajectories by consid-
ering all possible data associations throughout the given
frames. Therefore, it can effectively reduce the incorrect
matching between objects and detections. However, it is dif-
ficult to apply the MHT method to online tracking problems
because it requires the future frame information as men-
tioned above. Rezatofighi et al. (2015, 2016) propose an
algorithm to significantly reduce the computational com-
plexity of JPDA to make it 10 times faster while producing
comparable performance. Other data association approaches
for the vision-based MOT can be found in Betke and Wu
(2016) including the network flow based data association
(Wu and Betke 2016).

Similar to the JPDA and MHT methods, our algo-
rithm considers all possible assignments between objects
and detections at each frame (although the MHT method
prunes and merges possible associations). However, unlike
the data association methods proposed in Kim et al. (2015),
Rezatofighi et al. (2015), we incorporate the structural con-
straints into the data association framework to deal with
large camera motions and uncertain detections. To effec-
tively utilize constraint information, we design new data
association cost functions and introduce the event aggre-
gation method, which can resolve ambiguities caused by
uncertain detections (e.g., false positives and false negatives).
Since the proposed data association method is different from
the JPDA method, we cannot utilize the fast solution from
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Rezatofighi et al. (2015). Hence, we propose two fast solu-
tions to solve the proposed data association with structural
constraint costs.

3 Online Multi-object Tracking with
Structural Constraints

3.1 Problem Formulation

The trajectory of an object is represented by a sequence of
states denoting the position, velocity, and size of an object
in the image plane with time. We denote a state vector of
the target i at frame t as sit = [xit , yit , ẋ it , ẏit , wi

t , h
i
t ]�, where

(xit , y
i
t ) represents the position, (ẋ it , ẏ

i
t ) represents the 2D

velocity, and (wi
t , h

i
t ) represents the size, respectively, and

the set of the target states at frame t as St (sit ∈ St ) with its
index set as i ∈ It � {1, ..., N }. To deal with large camera
motion, we utilize a structural constraint information, which
is described by the location and velocity difference between
two objects as

ei, jt = [χ i, j
t , ξ

i, j
t , χ̇

i, j
t , ξ̇

i, j
t ]�

= [xit − x j
t , yit − y j

t , ẋ it − ẋ j
t , ẏit − ẏ j

t ]�.
(1)

Here, (χ̇ i, j
t , ξ̇

i, j
t ) denotes the velocity difference to consider

objects moving with different tendencies. The set of struc-
tural constraints for the object i is represented by E i

t =
{ei, jt |∀ j ∈ It }, and the set of all structural constraints at
frame t is denoted by Et = {E i

t |∀i ∈ It }. We denote a detec-
tion k at frame t as dkt = [xkd,t , y

k
d,t , w

k
d,t , h

k
d,t ]� and the set

of detections at frame t used for MOT as Dt (dkt ∈ Dt ) with
its index set as k ∈ Kt � {0, 1, ..., K }, where 0 is included
to stand for mis-detected objects. Without loss of generality,
we remove the time index t for simplicity in the following
sections.

The MOT task can be considered as a data associa-
tion problem, which finds the correct assignments between
objects and detections. In this paper, we define the assign-
ment event as

A = {ai,k |i ∈ I, k ∈ K}. (2)

Here, ai,k = {0, 1}; when the detection k is assigned to the
object i , the assignment is denoted by {ai,k = 1}. Otherwise,
it is denoted by {ai,k = 0}. The assignment event satisfies the
following two conditions that (1) each detection is assigned
to at most one object and (2) each object is assigned at most
one detection.

In the data association, dissimilarity costs between objects
and detections are computed, and then the data association
cost is obtained by summing the dissimilarity costs based on
an assignment event. The best assignment event is estimated

by selecting one of candidate assignment events that has the
minimumdata association cost. In this process, to achieve the
robust data association under large camera motion, we incor-
porate the structural constraints E into the data association
cost function as follows.

Â = argmin
A

C(A,S, E,D),

s.t.
∑

i∈I
k �=0

ai,k ≤ 1 ∧
∑

k∈K
ai,k = 1 ∧

∑

i∈I
ai,0 ≤ |I|, (3)

where ai,0 stands for the case ofmis-detected objects. Hence,
the sum of ai,0 along i is equal to the number of objects, |I|,
when all objects are mis-detected. We solve the data associ-
ation in (3) via the structural constraint event aggregation in
Sect. 4 and the structural constraint object recovery in Sect. 5.

3.2 ProposedMOT Framework

Similar to other online MOT methods, the main part of
the proposed MOT framework is also the data association
module that finds the best assignments between objects and
detections in each frame. In this work, we adopt a two-
step data association method to utilize structural constraints
more efficiently and effectively. The proposed data associa-
tion consists of two parts, i.e., the structural constraint event
aggregation (SCEA) and structural constraint object recovery
(SCOR).

When new detections come, the SCEA estimates the
assignments between well-tracked objects and detections as
shown in the second block of Fig. 2. Here, the well-tracked
objects are the objects that are detected and tracked at the
previous frame. We denote the set of well-tracked objects,
Sw, by

st ∈ Sw, i ∈ Iw, (4)

where Iw denotes the set of well-tracked object indices. The
structural constraints for thewell-tracked object i are denoted
by

Ew = {E i
w|∀i ∈ Iw}, where E i

w = {ei, j |∀ j ∈ Iw}. (5)

After we find the best matches between well-tracked
objects and detections via the SCEA method, the SCOR
module finds the assignments between missing objects and
unassigned detections using the updated positions of the
well-tracked objects and structural constraints between the
well-tracked objects and the missing objects as show in the
third block of Fig. 2. We denote the set of missing objects,
Sm , by

st ∈ Sm, i ∈ Im, (6)
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Fig. 2 Proposed online MOT framework with two-step frame-by-frame data association (Algorithm 1). Each step utilizes a different type of objects
and structural constraints

Fig. 3 An example of a structural constraint cost based on the assign-
ment event An in which a1,1 = a2,2 = a3,3 = 1 and the other
assignments are set to 0. In the first row, object 1 is assigned to detec-
tion 1, and the position of object 1 is moved to the position of detection
1. Afterward, the positions of the other objects are determined by the

structural constraint. Then, we compute the cost of An based on the
anchor assignment a1,1 = 1. By changing this anchor assignment, we
obtain three different costs, although they have the same assignment
event

where Im denotes the set of missing object indices. The
structural constraints between the missing object i and other
well-tracked objects are denoted by

Em = {E i
m |∀i ∈ Im}, where E i

m = {ei, j |∀ j ∈ Iw}. (7)

After we obtain the assignment events via the data asso-
ciation, we update the states of objects and their structural
constrains with assigned detections. In the object termina-
tion, the objects that are not assigned with any detection
for a certain frame are classified and removed, and their
corresponding structural constraints are also removed. Not-
assigned detections are used to initialize new objects in the
object initialization. After initialization, their structural con-
straints are also initialized with the well-tracked objects. The
proposed MOT conducts the aforementioned procedures at
each frame. detail from Sects. 4–6.

4 Structural Constraint Event Aggregation
(SCEA)

In this section, we introduce the SCEA, which exploits the
structural constraint information based on assignment events.
One simple example of the SCEA method based on the
n-th assignment event An is illustrated in Fig. 3. The over-
all procedure of the SCEA method considering all possible
assignment events is also demonstrated in Fig. 4.

4.1 Structural Constraint Cost

To deal with unexpected global motions caused by transla-
tional motion, pitch motion, or yaw motion of a camera, we
first select one assignment, ai,k = 1 from A as an anchor
assignment, and then we make the center position of the cor-
responding object i coincide with that of detection k. On the
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Fig. 4 The overall framework of the structural constraint event aggre-
gation (Algorithms 2 and 3). The tracked objects and their detections are
represented by red boxes and blue boxes, respectively. The blue boxes
with the dash line are false positive detections. The green lines connect-
ing the objects denote the structural constraints. Black boxes represent
assignments. d0 stands for the case of mis-detections. As shown in this
figure, in the anchor assignment a2,2 of object 2 and detection 2, we
move object 2 to align its center location with that of detection 2. Then,
in the structural constraint cost computation, we compute the assign-

ment costs of other objects and detections based on their structural
constraints. From the different anchor assignments, the structural con-
straint costs for the same assignment event are computed. For instance,
the costs of the assignment event (a1,0 = a2,2 = a3,3 = 1) are obtained
from the anchor assignments a2,2 = 1 and a3,3 = 1, respectively. The
event aggregation fuses these structural constraint costs having the same
assignment event but with different anchor assignments. + represents
the summation of the structural constraint costs (Color figure online)

Algorithm 1: Online MOT via Structural Constraint
Data Association.
Data: tracked objects Sw , structural constraints of tracked

objects Ew , mis-detected objects Sm , structural constraints
between tracked objects and mis-detected objects Em ,
detections D

Result: Trajectories of the targets
1 for video frame f do
2 Step 1: Structural constraint event aggregation
3 · Aw = SCEA(Sw, Ew,D); (Section 4: Algorithm 2 or

Algorithm 3)
4 · Sw := {si = dk |ai,k = 1,∀i ∈ Iw,∀k ∈ K};
5 Step 2: Structural constraint object recovery
6 · Am = SCOR(Sm , Em ,Sw, D̃); (Section 5)
7 · A = Aw ∪ Am ;
8 Step 3: Update
9 · Update Sw and Sm via object management (Section 6.1)

10 · Update Ew and Em Structural constraint update (Section 6.2)
11 · Current tracking result:

Sw = {si |ai,k = 1,∀i ∈ Iw ∪ Im ,∀k ∈ K}.
12 end

basis of the anchor assignment and the structural constraint,
we determine the positions of other objects, as illustrated in
Fig. 3. By doing this, we prevent the structural constraint cost
from incurring the large prediction error caused by the global
camera motion, and all motion costs in the data association
are computed based on the structural constraints ignoring
objects’ own motion information. On the basis of this con-
cept, we formulate the proposed structural constraint cost
function that consists of an anchor cost and linked costs. Note

that in the SCEA, we only consider well-tracked objects and
their notation are described in (4) and (5). With those nota-
tions, the structural constraint cost function is formulated as

C(A,Sw, Ew,D)|ai,k = ai,k Ωi,k +
∑

j∈Iw
j �=i

∑

q∈K
q �=k

a j,q Θ
j,q
i,k ,

(8)

where the subscripts i and k denote the indices for costs com-
puted based on the anchor assignment ai,k , and the anchor
cost is computed by

Ωi,k = Fs(si ,dk) + Fa(si ,dk). (9)

Here, we do not consier the motion cost but utilize the size
and appearance costs as

Fs(si ,dk) = − ln

(
1 − |hi − hkd |

2(hi + hkd)
− |wi − wk

d |
2(wi + wk

d)

)
,

Fa(si ,dk) = − ln
B∑

b=1

√
pb(si )pb(dk), (10)

where (wi , hi ) and (wk
d , h

k
d) denote width and height of

object i and detection k, respectively. In addition, pn(si ) and
pn(dk) denote their histogram information, respectively. b is
the bin index and B is the number of bins. On the basis of
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the anchor position, we calculate the linked cost based on the
structural constraints, formulated by

Θ
j,q
i,k =

{
Fs(s j ,dq )+Fa(s j ,dq )+Fc(s j , e j,i ,dk ,dq ) if q �= 0
τ if q = 0

,

(11)

Fc(s j , e j,i ,dk ,dq ) = − ln

(
area

(
B(s j,k )∩B(dq )

)

area(B(s j,k )∪B(dq ))

)
,

s j,k = [xkd , ykd , 0, 0]� + [χ j,i , υ j,i , w j , h j ]�.

(12)

In (11), we empirically set the cost τ to a non-negative value
(e.g., 4 in this work) for the case of mis-detected objects, d0.
In (12), we determine the position of object j by the anchor
position (i.e., the position of detection k) and the structural
constraint e j,i . The cost function Fc(·) is computed by using
the overlap ratio (Everingham et al. 2010) of the the detection
bounding box and ground truth. The reason for using differ-
ent metrics is that the overlap ratio compensates bias errors
caused by object sizes and is less sensitive to the distance
error.

4.2 Event Aggregation

On the basis of the different anchor assignments, we obtain
different costs owing to the different sizes of detections
and detection noises even if the assignment event A is the
same. Hence, we aggregate all the costs that have the same
assignment event but different anchor assignments. Com-
pared to conventional one-to-one matching process for the
data association, as shown in Fig. 1, this process signif-
icantly reduces ambiguity caused by false positives near
objects, mis-detections, and constraint errors since we can
measure the cost of each assignment event several times
according to the number of corresponding anchor assign-
ments, as described in Fig. 4. With (8), the event aggregation
process is formulated by

C(A,Sw, Ew,D) = 1

Δ

∑

i∈I

∑

k∈K
ai,k=1

C(A,Sw, Ew,D)|ai,k ,Δ

=
∑

i∈I,k∈K
ai,k, (13)

where Δ denotes the normalization term that is equal to the
number of anchor assignments selected from the assignment
event A. Finally, we select the best assignment event Aw

having the minimum aggregated cost as

Aw = argmin
A

C(A,Sw, Ew,D), A ⊂ Aall. (14)

Here, Aall denotes all possible assignment events.
WithAw, we preliminary update the well-tracked objects

with an assigned detection by ŝi = dk if ai,k = 1. These

updated object states are used to find the missing objects
with the structural constraints via the SCOR in Sect. 5.

4.3 Solution for the SCEA

The computational cost for the JPDA method grows sig-
nificantly as the number of objects and detections increase
because the number of possible assignment events also
increase substantially. To address this issue, the fast JPDA
method have been recently proposed (Rezatofighi et al.
2015). However, it does not incorporate the structural con-
straints and the event aggregation into data association. In
this work, we design two effectivemethods, i.e., partitioning-
based and exhaustive combinatorial enumeration methods,
to compute the best assignment events between objects and
detections.

4.3.1 Solution Based on Simple Partitioning

The partitioning-based solver is simple and intuitive, and
it consists of two steps, i.e., gating and partitioning as
shown in Fig. 5. First, we adopt the simple gating technique
(Bar-Shalom and Li 1995) before conducting the structural
constraint event aggregation. This method is widely used
in the MOT literature. Note that since we consider large
motion changes of objects in this work, we set the gate size
large enough.We roughly remove the negligible assignments
based on two conditions as
(
‖pi − pkd‖ <

√
(wi )2 + (hi )2

)
∧

(
exp

(
− Fs(si ,dk)

)
> τs

)
, (15)

where pi and pkd represent the position of object i and detec-
tion k, respectively, and (wi , hi ) denotes the size of object i .
We empirically set τs = 0.7. If the above conditions are sat-
isfied, ai,k = 1. Otherwise, the assignment is set to ai,k = 0,
and this assignment is not considered for tracking at the
current frame. Second, the partitioning method constructs
subgroups to handle a large number of objects and detections,
as shown in Fig. 5. The assignments of objects and detections
in different partitions are set to ai,k = 0. For partition p, we
generate all possible assignment eventsAp ⊂ Ap

all based on
the condition in (3). The SCEAmethod is carried out for each
partition. The final assignment events are then obtained by
merging the best assignment events from all partitions. In this
work, we empirically set the maximum number of objects in
each partition to 5. The number of partitions is determined
by P = �the number of objects/5, and we then make the par-
titions possibly to have the same number of objects. Here,
we use the center locations from K-means clustering for a
partitioning condition. As shown in Fig. 5, P centers are
obtained from K-means clustering, and the objects located
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Fig. 5 Gating and partitioning methods for assignment event reduc-
tion: The gating and the partitioning reduce the number of assignment
events. Gray circles represent the assignment regions reduced by the
gating. The objects are grouped based on the K-means clustering The

numbers represent group indices.When objects in different groups have
the same detection as the second group and the third group, the detec-
tion can be duplicately allocated in the partitioning. Therefore, true
associations can be located together

Algorithm 2: SCEA based on partitioning.
Data: well-tracked objects Sw , structural constraints Ew ,

detections D
Result: assignment event Aw

1 begin
2 Step 1: Partitioning (Section 4.3.1)
3 · Removing negligible assignments by using the gating

technique ((15)).
4 · Dividing objects, structural constraints, and detections into

subgroups S p
w ⊂ Sw , D p ⊂ D by partitioning (Fig. 5).

5 · Generating all possible assignment events Ap
all of each

partition from S p
w and D p based on the index sets (I p

w,Kp)

and the condition in (3).
6 Step 2: Aggregating assignment event costs ((14))
7 Aw = φ;
8 for p = 1 : P do
9 C(Ap,S p

w, Ew,D p) =
1

Δ

∑

i∈I p
w,k∈Kp

ai,k=1

(
ai,kΩi,k +

∑

j∈I p
w

j �=i

∑

q∈Kp

q �=k

a j,qΘ
j,q
i,k

)
,

10 Δ = ∑
ai,k∈Ap ai,k ,

Âp = argmin
Ap

(
C(Ap,S p

w, Ew,D p)
)
, Ap ⊂ Ap

all;

11 Aw := Aw ∪ Âp;
12 end
13 end
14 return Aw

close to each K-means center are then clustered in the same
partition. Note that when objects in different groups have the
same detection after gating as the second group and the third
group in Fig. 5, the detection can be duplicately allocated
in the partitioning. Therefore, true associations are located
together. The main steps of the proposed partitioning method
are summarized in Algorithm 2.

4.3.2 Solution Based on Exhaustive Combinatorial
Enumeration

Different from the partitioning method described above, we
can consider all possible combinations of the objects. The

subgroup generated by the K-means clustering-based par-
titioning can be considered as one specific case among all
possible combinations. When we make each subgroup con-
sisting of c objects, the number of all possible combinations
G is obtained by the binomial coefficient as

G =
(|I|

c

)
= |I|!

c!(|I| − c)! , (16)

where the cardinality of the set of object indices, |I|, denotes
the number of tracked objects. The subgroups generated by
the exhaustive combinatorial enumeration are represented by
Sg , g = 1, ...,G. We apply the SCEA method to each sub-
group and all the results, i.e., assignment event matrix Ag ,
are merged together by

A = 1

Nmax

G∑

p=1

Ag. (17)

Here, Nmax normalizes the assignment event matrixA. Nmax

is the number that represents how many times each object
belongs to subgroups.

Nmax = |I|!
c!(|I| − c)! × c

|I| , (18)

where c is the number of objects in each subgroup as
described above. As the value of c increases, this method
estimates more optimal assignment event. However, the
computational complexity also increases significantly. We
evaluate the performance according to the different values of
c in Sect. 7.

For ease of understanding, we illustrate the proposed
method with one example. Suppose that we have a set of
objects as I = {1, 2, 3, 4} and each subgroup is supposed
to be formed with three objects based on the exhaustive
combinatorial enumeration. As c = 3, the number of all
possible subgroups is computed by the binomial coefficient
as |I|!

3!(|I|−3)! = 4!
3!(4−3)! = 4 and all possible subgroups are

123



International Journal of Computer Vision (2019) 127:1–21 9

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, and {2, 3, 4}. The SCEAmethod
is applied to each of 4 subgroups and four assignment event
matrices A1, A2, A3, and A4 are obtained. Further assume
that there exist six detections and the best assignment event
matrix for each subgroup is obtained as

A1 =

⎡

⎢⎢⎣

1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎦, A2 =

⎡

⎢⎢⎣

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1

⎤

⎥⎥⎦,

A3 =

⎡

⎢⎢⎣

1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

⎤

⎥⎥⎦, A4 =

⎡

⎢⎢⎣

0 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0

⎤

⎥⎥⎦.

The sum of all assignment event matrices is computed as
A = ∑4

n=1An and we normalize this matrix by Nmax as

A= 1

Nmax

4∑

n=1

An = 1

3

⎡

⎢⎢⎣

3 0 0 0 0 0
0 0 0 3 0 0
0 3 0 0 0 0
0 0 0 0 1 2

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1

3
2
3

⎤

⎥⎥⎦.

For the case of object 4, we select the detection 6 that receives
more votes than others. Note that, when the normalized vote
is below the threshold, we do not assign that detection to the
object.

Although the partitioning method performs favorably as
shown in Fig. 10, this exhaustive combinatorial enumera-
tion method generates more robust results. In addition, since
this voting scheme for the SCEAmethod considers all possi-
ble subgroups, it alleviates the problem of being trapped into
local optima and helps to find better solutions. Themain steps
of the proposed method are described in Algorithm 3. Simi-
larly to the partitioningmethod, it is also only executed when
the number of objects is larger than a threshold (it empirically
set to 5 in this work). As shown on line 4 of Algorithm 3,
we first make all possible subgroups consisting of c objects
based on the exhaustive combinatorial enumeration. Then,
for each subgroup p, we generate all possible assignment
events Ag ⊂ Ag

all based on the condition in (3). We obtain
the best sub-assignment event Âg by running the SCEA on
each subgroup, and we update the vote of assignments based
on Âg as on line 13 of Algorithm . After we obtain all the
votes, we normalize the voting assignment as on line 15 of
Algorithm 3 and then we set the assignment indicator ai,k to
0 if the normalized value is below the threshold η1 as on line
16 of Algorithm 3.

1 η is set to 0.5 in our experiments.

Algorithm 3: SCEA based on exhaustive combinatorial
enumeration.
Data: well-tracked objects Sw , structural constraints Ew ,

detections D
Result: assignment event Aw

1 begin
2 Step 1: Subgroup generation (Section 4.3.2)
3 · Removing negligible assignments by using the gating

technique ((15)).
4 · Generating all possible subgroups consisting of c objects

based on the exhaustive combinatorial enumeration.
5 · Subgroups and detections are denoted by

Sg
w ⊂ Sw,D p ⊂ D, g = 1, ...,G where G is the number of

subgroups in (16).
6 · Generating all possible assignment events Ag

all of each
subgroup from Sg

w and Dg based on the subgroup index sets
(Ig

w,Kg) and the condition in (3).
7 Step 2: SCEA on subgroups and Voting ((14))

8 Â = {âi,k = 0|i ∈ Iw, k ∈ K}; voting assignment
initialization

9 for g = 1 : G do
10 C(Ag,Sg

w, Ew,Dg) =
1

Δ

∑

i∈Ig
w,k∈Kg

ai,k=1

(
ai,kΩi,k +

∑

j∈Ig
w

j �=i

∑

q∈Kg

q �=k

a j,qΘ
j,q
i,k

)
,

11 Δ = ∑
ai,k∈Ag ai,k ,

12 Âg = argmin
Ag

(
C(Ag,Sg

w, Ew,Dg)
)
, Ag ⊂ Ag

all,

13 Â = {âi,k := âi,k + 1|ai,k = 1, ai,k ∈ Âg}; Voting
14 end

15 A = {ai,k = âi,k

Nmax
|âi,k ∈ Â}; Nmax in (18)

16 Aw = {ai,k = 1|ai,k ≥ η, ai,k ∈ A} ∪ {ai,k = 0|ai,k <

η, ai,k ∈ A};
17 end
18 return Aw

5 Structural Constraint Object Recovery
(SCOR)

We adopt two-step data association for effectively exploiting
the structural constraints for online 2DMOT. Since the struc-
tural constraints of objects tracked in the previous frame have
been updated with their corresponding detections, their con-
straints are more reliable than those of mis-detected objects.
This allows us to assign detections to tracked objects more
robustly and accurately. In the SCOR, similar to Grabner
et al. (2010), Yoon et al. (2015), we recover missing objects,
which are not associated with any detections in the previous
frame but re-detected in the current frame. To this end, we
first find the assignments for the objects tracked at the previ-
ous frame, and then we track other missing objects using the
updated positions of the tracked objects from the SCEA. The
recovery process is conducted by using the updated objects,
Sw, from the SCEA as described in Fig. 6. As described in
(6) and (7), the mis-detected objects are denoted by Sm , and
the structural constraints between mis-detected objects and
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Fig. 6 Concept of structural constraint object recovery: From the
tracked objects (s1 and s2) and the structural constraints (the green
lines), we recover missing objects when they are re-detected (detection
d1 and d2). By doing this, we can continuously keep the identity of
the missing objects under camera motion and occlusions (Color figure
online)

tracked objects are represented by Em . Using Sm , Sw, and
Em , we recover the re-detected objects as

Am = argmin
A

C(Sm, Em,Sw, D̃), s.t.
∑

i∈Im
ai,q

= 1 ∧
∑

q∈K̃
ai,q = 1, (19)

where Im denotes the set of mis-detected object indices and
K̃ represents the index set of detections D̃. Here, a set of
detections, D̃, contains the not-assigned detections in the
SCEA and dummy detections d0 for the case of mis-detected
objects. The structural constraint cost function for missing
objects is defined as

C(Sm , Em ,Sw, D̃) =
∑

i∈Im

∑

q∈K̃
ai,q Φ i,q

Φ i,q =
{

Fs(si ,dq )+Fa(si ,dq )+Fr (si , Em ,Sw,dq ) if q �= 0
τ if q = 0

,

(20)

where the cost τ is a non-negative constant and set to 4 in this
work as in (11). We recover the mis-detected object i from
the set of tracked objects using their structural constraints.
The constraint cost is therefore formulated as

Fr (si , Em,Sw,dq) = − ln

(
area

(
B(si,γ ) ∩ B(dq)

)

area
(
B(si,γ ) ∪ B(dq)

)
)

,

si,γ = [(sγ1 )�, 0, 0]� + [χ i,γ , υi,γ , wi , hi ]�,

γ = arg max
j∈Iw

1

‖[χ̇ i, j , υ̇i, j ]‖ , (21)

where Iw denotes the set of indices of tracked objects from
the SCEA. Here, the reliability of the structural constraints
between tracked objects and missing objects can be differ-
ent according to the past motion coherence. To consider this
constraint reliability, we select the object moving in the most
similar direction and velocity by taking themotion coherence
between objects into account, ‖[χ̇ i, j , υ̇i, j ]‖.

To solve (19), we reformulate (19) in a matrix form as

C =
[
Φdet

|Nm |×|M̃| Φ0|Nm |×|Nm |
]
, (22)

where the matrices are obtained by Φdet = [Φ i,q ],∀i ∈
Im,∀q ∈ K̃ and Φ0 = diag[Φ i,0],∀i ∈ Im . The off-
diagonal entries of Φ0 are set to ∞. We then apply the
Hungarian algorithm (Kuhn 1955) to get the assignment
event having the minimum cost.

6 Object and Structural Constraint
Management

Weobtain the final assignmentsA between objects and detec-
tions by merging Aw from the SCEA and Am from the
SCOR as described on 7 of Algorithm 1. Using estimated
assignments, we update both the object states and structural
constraints. In the following, we first discuss the update of
object states including the object management strategy. We
next describe the structural constraint management in Sect.
6.2.

6.1 Object Management

6.1.1 Update of Object States

While the constant velocity model described in Li and Jilkov
(2003) is widely adopted in target tracking, it performs well
only when a camera is stationary. To account for abrupt and
large motion changes, the motion covariance matrix of the
Kalman filter (KF) is set to be large in this work. We update
the object states by

Sw = {si = K F(si ,dk,F,Q,H,R)|ai,k
= 1,∀i ∈ Iw ∪ Im,∀k ∈ K}, (23)

where K F(·) represents the Kalman filter with the motion
model F, Q is the motion covariance matrix, H describes
the observation model, and R denotes the detection noise
covariance matrix. These terms are described by

F =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.25σ 2
q 0.5σ 2

q 0 0 0 0

0.25σ 2
q 0.5σ 2

q 0 0 0 0

0 0 0.5σ 2
q σ 2

q 0 0

0 0 0.5σ 2
q σ 2

q 0 0

0 0 0 0 σ 2
s 0

0 0 0 0 0 σ 2
s

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

H = [I2, 02, I2], R = diag(σ 2
x , σ 2

y , σ 2
w, σ 2

h ),

(24)
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where F and Q are from Li and Jilkov (2003), and In and 0n
denote the n-by-n identitymatrix, and the n-by-n zeromatrix,
respectively. The deviation σq describes the possible velocity
change over time steps, and σs represents the possible size
change. The standard deviations of position and size noise
of the detection noise are denoted by σx , σy , σw, and σh ,
respectively. In this work, we set those parameters as σq =
15, σx = σy = 3, and σs = σw = σh = 15.

We update object appearances incrementally over time.
When denoting a target object by a histogram Ht−1, the
object appearance is updated by

Ht = (1 − δ)Ht−1 + δĤ (25)

where Ĥ represents the histogram of the target object in the
current frame and δ is a learning rate set to 0.1 in this work.
For the mis-detected objects, we do not update their appear-
ances. In addition, we do not update the sizes of missing
objects. However, due to the appearance model, we do not
keep an object without detections for a long time because it
may affect the MOT performance, especially data associa-
tion.

Figure 7 shows the similarities between the size without
update and the ground truth size. The size similarity without
update does not change much for several frames. Thus, it
does not significantly affect the overall MOT performance if
we remove the objects that are not detected for more than a
certain number of frames.

6.1.2 Initialization and Termination

After the state update, we terminate the tracks of the objects
that are not assigned with any detections for a certain number
of frames and initialize new tracks (i.e. objects) from unas-
sociated detections. In this work, objects are initialized in
a way similar to the method developed in Breitenstein et al.
(2011) using distance and apperance between two detections.
If the distances between a detection in the current frame and
unassociated detections in the past a few frames are smaller
than a certain threshold, we then initialize this detection as a
new object. Note that the proposed data association handles
initialized objects when the sudden and large camera motion
occurs. When the sudden and large camera motion occurs
in the initialization process, the conventional initialization
method fails to initialize the object for tracking.

6.2 Structural Constraint Management

6.2.1 Update of Structural Constraints

After tracking, we update the structural constraints between
objects with their corresponding detections, based on the
same method proposed in Yoon et al. (2015), using zi, j =

[xid , yid ]� − [x j
d , y j

d ]� as an observation where [xid , yid ]�
represents the location of a detection assigned to object i .
We assume that the structural constraint change follows the
constant-velocity model from Li and Jilkov (2003). Similar
to the object state update, we update the structural constraint
variations by using the Kalman filter by

ei, j = K F(ei, j , zi, j ,Fsc,Qsc,Hsc,Rsc), if ai,k

= a j,k = 1. (26)

In (26), the motion model Fsc, motion covariance matrix
Qsc, observation model Hsc, and detection noise covariance
matrix Rsc are described by

Fsc =

⎡

⎢⎢⎢⎢⎢⎣

1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

⎤

⎥⎥⎥⎥⎥⎦
, Qsc =

⎡

⎢⎢⎢⎢⎢⎣

0.25σ 2
sc 0.5σ

2
sc 0 0

0.25σ 2
sc 0.5σ

2
sc 0 0

0 0 0.5σ 2
sc σ 2

sc

0 0 0.5σ 2
sc σ 2

sc

⎤

⎥⎥⎥⎥⎥⎦
,

Hsc = [I2, 02], Rsc = diag(σ 2
x , σ 2

y ).

(27)

The motion change standard deviation σsc for the structural
constraints describes possible changes over time steps. Note
that different from the object state update, the structural con-
straints are not significantly affected by the global camera
motion. Therefore, we set the small value as σsc = 1, which
enforces the structural constraints to follow the predefined
motionmodelFsc. For the observation noise covariance,Rsc,
we set the same parameters σx = σy = 3 used in the object
state update. The structural constraints of missing objects are
predicted by using the motion model.

ei, jt = Fsce
i, j
t−1, if ¬(ai,k = a j,k = 1). (28)

Although the prediction becomes less accurate when it is not
updated for a long duration, it performs favorably for several
frames as used in the SCOR because it is not significantly
affected by the global camera motion as mentioned.

6.2.2 Initialization and Termination

When a new object is initialized, the corresponding structural
constraints are generated by (1), where their initial change
values are set as χ̇

i, j
t = ξ̇

i, j
t = 0. On the other hand, we

do not initialize the structural constraints between the new
objects andmis-detections. Oncemis-detected objects are re-
tracked via the SCOR method, we initialize their structural
constraints. In addition, when the track of an object is termi-
nated, we delete the corresponding structural constraints.
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Fig. 7 Similarity distribution without the size update on different frames. The size similarity function in (10) is used without logarithm. a After 1
frame. b After 3 frames. c After 5 frames

7 Experiments

In the experiments, the proposedMOT framework is referred
to as the SCEA method for simplicity. We first present
the experimental evaluation of the proposed SCEA method
and the comparison against the other state-of-the-art online
and offline MOT methods. The source codes of the pro-
posed SCEA method will be available at https://cvl.gist.ac.
kr/project/scea.html.

7.1 Analysis of Data Association Performance

7.1.1 Datasets and Evaluation Metric

To evaluate the proposed data association method, we use
the ETH (Bahnhof, Sunnyday, and Jelmoli sequences) (Ess
et al. 2008) and KITTI car datasets. The sequences in both
datasets are recorded by a camera equipped on a moving
platform. We add different levels of motion fluctuation with
different detection missing rates for performance evaluation.
Figure 8 shows several example frames. The motion fluctu-
ation is synthetically generated by the uniform distribution
within [0, 0](no fluctuation), [− 7, 7], and [− 15, 15] pixels,
respectively. We also set the detection missing rate as 0, 10,
20, and 30%. Therefore, the experimental setup using [0, 0]
fluctuation and 0%missing rate is identical to that in the orig-
inal sequences. In addition, for all scenarios, we include at
most 10 false detections for each frame.

The overall performance of a MOT method is affected by
many internal tracking modules such as object initialization
and termination. To compare the data association algorithms
fairly, we use the same input for all data association meth-
ods in each frame, and measure the number of true matches
and number of false matches between objects and detections
in each frame. We measure the data association matching
accuracy (ACC) by

ACC = TM

TM + FM
, (29)

based on the number of true matches (TM) and the number
of false matches (FM) in each sequence.

7.1.2 Data Association Methods

We evaluate the performance of data association methods
including some variants of the SCEA method. The first
method utilizes the constant velocity motion model (i.e., lin-
ear motion (LM)) introduced in (24), and its data association
is carried out without the structural constraints. We apply
the Hungarian method (HM) to solve the data association
and name it as the LM-HMmethod. The second method uti-
lizes the relative motion network (RMN) (Yoon et al. 2015),
which describes the relative distance between objects as the
structural constraint information. This method assumes the
smooth camera motion, and the prediction of well-tracked
objects based on their own past motion information is used.
Therefore,well-tracked objects have two kinds of predictions
from its own motion and other objects with their structural
constraints. For the case of mis-detected objects, it only
exploits the predictions from well-tracked objects with their
structural constraints. This method, referred to as the RMN-
HMmethod, also uses the linearmotionmodel for prediction,
and the data association is conducted based on the Hungarian
method. We also evaluate the SCEA method based on dif-
ferent solutions, i.e., SCEA with partitioning (the SCEA-P)
and the SCEA with the exhaustive combinatorial enumera-
tion (the SCEA-E). In addition, to evaluate the effect of the
number of objects in each subgroup, we change the num-
ber of object in one subgroup, c, from 2 to 5 (2, 3, 4, 5).
Those variants are referred to as the SCEA-E2, SCEA-E3,
SCEA-E4, and SCEA-E5 method, respectively.

7.1.3 Comparison of Different Data Association Methods

The performance of different data associationmethods is pre-
sented in Figs. 9 and 10. For the baseline LM-HM, data is
associated without using structural constraints. As can be
seen, theLM-HMmethod achieves lower accuracy than other
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Fig. 8 Examples of the synthetic dataset: the dataset was generated based on the ground truth of the ETH and the KITTI datasets. We applied the
different levels of motion fluctuation noises and detection missing rates. In addition, we included at most 10 false positives for each frame

Fig. 9 Matching accuracy (ACC) of the LM-HM, RMN-HM, SCEA-P,
and SCEA-E3 under the different levels of camera motion fluctuation
and detection missing rates. The numbers ([0, 0],[−7, 7], [−15, 15])

represent the range of camera motion fluctuation noise in terms of pix-
els. The missing rate of the detection is set to 0, 10, 20, and 30%. We
analyze the performance of each method in detail in Sect. 7.1

Fig. 10 Matching accuracy (ACC) of the SCEA-P, SCEA-E2, SCEA-
E3, SCEA-E4, and SCEA-E5 under the different levels of camera
motion fluctuation and detection missing rates. The numbers ([0, 0],
[−7, 7], [−15, 15]) represent the range of camera motion fluctuation

noise in terms of pixels. The missing rate of the detection is set to 0, 10,
20, and 30%. We analyze the performance of each method in detail in
Sect. 7.1

methods for the low level fluctuation and 0% missing rate.
This can be attributed to that the sequences from the ETH
and the KITTI datasets contain significant camera panning
motions. For such scenes, the LM-HM method is less accu-
rate as shown in Table 1. In addition, as the missing rate
increases, the accuracy of the LM-HM method decreases
more than the SCEA method as it is not able to handle
ambiguities caused by the uncertain detections. In contrast,
the event aggregation method with the structural constraints
handles such scenes effectively. Actually, the RMN-HM (or
RMOT) method performs well in scenes with low-level fluc-

tuation in which motion can be predicted with linear models.
However, this method does not perform well for scenes with
large fluctuations (e.g, fluctuations [−7, 7] and [−15, 15]) as
the prediction based on structural constraints is not accurate
due to self-motion of well-tracked objects.

Figure 9 demonstrates that the SCEA-P and the SCEA-E3
methods perform better than the LM-HM and the RMN-
HM methods since the object motion is not used for data
association. In addition, these methods efficiently handle
ambiguities by aggregating the costs of the same events based
on different anchor assignments. As such, these methods
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Table 1 Motion accuracy in the data association

Motion type 20 15 10 5

(a) Static or smooth camera motion

Self motion (Kalman prediction) 0.91 0.88 0.80 0.49

Structural constraint 0.89 0.83 0.74 0.44

(b) Large camera motion

Motion type 20 15 10 5

Self motion (Kalman prediction) 0.51 0.34 0.17 0.05

Structural constraint 0.87 0.80 0.62 0.26

The numbers (20, 15, 10, and 5) represent the pixel error and the values
in the table represent the ratio of the number of pixels whose errors are
smaller than the given pixel error. Self motion represents the motion
prediction using object’s own motion information

perform well even for scenes with high detection missing
rate.

Among the SCEA-E3 and SCEA-P methods, the SCEA-
E3method performsmore robustly than the SCEA-Pmethod
as the fluctuation level and the missing rate increase. The
SCEA-P method divides the objects into subgroups based
on the spatial information, and the solution of each sub-
groupmay be sub-optimal. In contrast, the SCEA-E3method
exhaustively exploits all possible combinations of objects
when each subgroup consists of three objects, and the match-
ing results from all subgroups are summed together. Thus,
it can alleviate the effect of the false matching and the
local minima problem. However, as the number of objects
increases, its computational complexity increases factorially.

We also evaluate the performance of the SCEA method
with the different numbers of objects in each subgroup. As
shown in Fig. 10, the SCEA method with the different num-
bers of objects in each subgroup achieve similar performance.
In addition, we evaluate the effect of fluctuation noise on
these methods. Overall, these methods perform well under
different levels of fluctuations. Similar to the results with
different missing rates, these methods perform consistently
under the different fluctuation levels. However, the perfor-
mance slightly increases as the number of objects increases. It
indicates that the partitioning method generates more locally
optimized solutions with the high missing rate.

7.1.4 Speed

All ofmethods are implemented inMATLABand the speed is
evaluated on single-CPU machine according to the different
numbers of objects as shown in Table 2. The LM-HMmethod
performs very fast, and the RMN-HM method also operates
in real-time as not all possible associations are considered for
data association. The SCEA-P method is more efficient than
the SCEA-E method because it uses local spatial partitions.
The run time of the SCEA-P method increases in proportion

to the number of objects similar to the LM-HM and RMN-
HMmethods. Although the run time of the SCEA-E method
largely grows as the number of objects increases, the run
time can be reduced by using a parallel processor such as
GPU or other multi-core processors where each subgroup is
solved independently. As shown in Table 3, each subgroup of
the SCEA-E3 can be executed in approximately 0.0086 s on
average.However, when considering both accuracy and com-
putational complexity, we can say that the SCEA-P method
performsmore favorably than the SCEA-Emethod for online
MOT as shown in Fig. 10 and Table 2.

7.2 MOT EvaluationMetrics

We adopt the widely used metrics introduced in Bernardin
and Stiefelhagen (2008), Li et al. (2009) for performance
evaluation. The Multiple Object Tracking Accuracy (MOTA
↑) metric shows comprehensive MOT performance by con-
sidering false positives, false negatives, and mis-matches
over all frames. The Multiple Object Tracking Precision
(MOTP ↑) metric measures the total error in estimated posi-
tion for matched pairs over all frames. The mostly tracked
(MT ↑) targets ratio is the ratio of ground-truth trajectories
that are covered by a track hypothesis for at least 80% of
their respective life span, and the mostly lost (ML ↓) targets
ratio is the ratio of ground-truth trajectories that are covered
by a track hypothesis for at most 20% of their respective life
span. The fragment (FG ↓) metric presents the total number
of times that the generated trajectory is fragmented, and the
identity switch (ID↓) metric shows the total number of times
that the identity of a tracked trajectory switches. The false
positive (FP ↓) metric presents the number of false positives,
and the false negative (FN ↓) metric shows the number of
missed objects. The Recall (Rec ↑) metric measures the rate
of correctly tracked objects over the entire sequence based
on the ground truth, and the Precision (Prec ↑) metric shows
the rate of correctly tracked objects over all tracking results
of a sequence. The runtime (in second (sec.) ↓) or speed (in
frames per second (fps) ↑) is also considered as a metric.

7.3 Comparisons on Benchmark Datasets

We use three benchmark datasets, ETH,2 KITTI,3 and MOT
Challenge4 datasets, for evaluation and comparison. We
note that it is difficult to evaluate MOT systems fairly and
thoroughly for the following reasons. First, as most MOT
methods consist of several modules in a complicated way,
it is difficult to evaluate the performance of each module
and the effect of each module on the overall performance

2 iris.usc.edu/people/yangbo/downloads.html.
3 cvlibs.net/datasets/kitti/eval_tracking.php.
4 motchallenge.net/data/2D_MOT_2015/.

123

http://iris.usc.edu/people/yangbo/downloads.html.
http://cvlibs.net/datasets/kitti/eval_tracking.php.
http://motchallenge.net/data/2D_MOT_2015/


International Journal of Computer Vision (2019) 127:1–21 15

Table 2 Speed (fps) of different
data association methods

# of objects 10 11 12 13 14 15 16 17

Method LM-HM 474 422 357 261 257 218 138 67

RMN-HM 209 197 188 136 127 110 98 77

SCEA-P 17.6 21.1 20.4 16.4 15.1 14.6 11.6 10.0

SCEA-E2 2.33 2.03 1.75 1.55 1.09 1.05 0.88 0.75

SCEA-E3 0.83 0.75 0.63 0.35 0.28 0.23 0.22 0.16

SCEA-E4 0.57 0.36 0.21 0.17 0.10 0.09 0.06 0.04

SCEA-E5 0.40 0.24 0.14 0.08 0.05 0.03 0.02 0.01

Table 3 Speed (fps) of the
SCEA-E3 method

# of objects 10 11 12 13 14 15 16 17

# of combination 120 165 220 286 364 455 560 680

Speed (fps) on each subgroup 100 124 138 100 102 105 123 115

Overall speed 0.83 0.75 0.63 0.35 0.28 0.23 0.22 0.16

directly. Second, MOT methods are evaluated on different
metrics and the source codes are often not available. In this
section, we focus on analyzing how the proposed data asso-
ciation method facilitates MOT methods in comparison with
other alternatives.

7.3.1 ETH Datasets

The SCEAmethod is evaluated on the ETH dataset (Bahnhof
and Sunnday) that was recorded by using moving cameras
mounted on a mobile platform. The results of the other track-
ers onboth sequences are available in their original papers.As
shown in Table 4, our method shows the performance com-
parable to those of the state-of-the-art methods even though
it is an online method based on a simple appearance model.
TheKalmanSFMandLPSFMmethods use social forcemod-
els, which consider pairwise motion such as attraction and
repulsion, and require visual odometry to obtain 3D motion
information in the bird’s -eye -view maps. The 3D motion
information is estimated by the structure-from-motion algo-
rithm. However, the use of odometry information does not
alleviate the problem of accumulated motion errors, which
adversely affects the effectiveness of the social force models.
The MotiCon method shows slightly better performance in
terms of Recall, MT, and ML because it utilizes pre-trained
motion models in the offline framework. The OnlineCRF
method shows good performance in ID and FG because it
exploits pairwise motion and the future motion informa-
tion together in the offline tracking framework. Although
our method conducts online 2D MOT without using any
pre-trained motion models and 3D motion information, it
demonstrates comparable performance against the MotiCon
method and shows better Rec, Prec, MT, and ML than the
KalmanSFM, LPSFM,OnlineCRF, and CEMmethods while
keeping lower ID and FG than the KalmanSFM, LPSFM,

MotiCon, andCEMmethods. As demonstrated in Sect. 7.1.3,
the proposed data association with the event aggregation
reduces the mis-matches caused by false positives or other
different objects. As a result, it improves Prec. In addition,
the SCEA helps to re-track missing objects when they are re-
detected via the SCOR. This reduces FG and ID effectively.
Overall, the SCEA method performs favorably against other
online trackers (e.g., StructMOT, MOT-TBD, and RMOT).

7.3.2 KITTI Datasets

he KITTI dataset contains 29 sequences (Geiger et al. 2013).
The datasets contain test sequences from a static camera as
well as from a dynamic camera. Note that, since this work
focuses on 2DMOTwith a single camera, we did not use any
other information from stereo images, camera calibration,
depth maps, or visual odometry. In addition, we utilize the
same detections used for other methods in all experiments
for fair comparison. The KITTI datasets provide two sets of
detections, one from the DPM (Felzenszwalb et al. 2010)
and the other from the Regionlet detector (Wang et al. 2015).
TheRegionlet detector generatesmore detectionswith higher
recall than the DPM (Wang et al. 2015), as illustrated on the
KITTI website.

We compare the SCEA method with other online MOT
methods and offline MOT methods including a semi-online
method (e.g., NOMT) in Tables 5 and 6. Here, the online
methods produce the solution instantly at each frame by a
causal approach. The offline and semi-online MOT methods
utilize future frame information in tracking.

Since the offline MOTmethods utilize future frame infor-
mation, they can efficiently resolve thematching ambiguities
compared to the online methods including our method. In
addition, they can generate longer trajectories by linking
tracklets in the data association. Hence, the offline trackers
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Table 4 Comparisons to the KalmanSFM and LPSFM methods on the ETH datasets (Bahnhof + Sunnyday)

Setting Method Rec ↑ Prec ↑ MT ↑ ML ↓ ID ↓ FG ↓
Offline *KalmanSFM 72.3 84.1 51.6 5.6 77 206

*LPSFM 74.1 75.3 55.1 7.9 131 184

OnlineCRF 79.0 90.4 68.0 7.2 11 19

MotiCon 83.8 79.7 72.0 4.7 71 85

CEM 77.3 87.2 66.4 8.2 57 69

Online StructMOT 78.4 84.1 62.7 7.7 72 5

MOT-TBD 78.7 85.5 62.4 8.0 69 45

RMOT 81.5 86.3 67.7 4.8 38 40

SCEA 82.5 89.6 71.1 5.6 24 32

The results of the other methods are from the original publications, and those of Pellegrini et al. (2009), Leal-Taixé et al. (2011) are from Leal-Taixé
et al. (2014). The results obtained by using 3D motion information are marked by “*”. We include the average ranking (AR) metric computed
by averaging all metric rankings. Trackers: KalmanSFM (Pellegrini et al. 2009), LPSFM (Leal-Taixé et al. 2011), OnlineCRF (Yang and Nevatia
2014), MotiCon (Leal-Taixé et al. 2014), CEM (Milan et al. 2014),StructMOT (Kim et al. 2012), MOT-TBD (Poiesi et al. 2013), RMOT (Yoon
et al. 2015)

Table 5 Comparison to the state-of-the-art trackers on the KITTI car tracking

Setting Method MOTA MOTP Rec Prec MT ML FP FN ID FG Sec (core)

(a) Results on the DPM detections

Offline TBD 55.07 78.35 56.72 99.30 20.46 32.62 141 15281 31 529 10 (1)

SSP 57.85 77.64 59.88 98.76 29.38 24.31 266 14222 7 704 0.6 (1)

CEM 51.94 77.11 55.96 96.09 20.00 31.54 807 15598 125 396 0.09 (1)

NOMT 66.60 78.17 69.21 98.05 41.08 25.23 492 10981 13 150 0.09 (16)

LP_SSVM 61.77 76.93 64.78 97.67 35.54 21.69 551 12581 16 422 0.06 (1)

Online HM 43.85 78.34 45.03 99.67 12.46 39.54 53 19247 12 571 0.01 (1)

mbodSSP 56.03 77.52 58.52 97.81 23.23 27.23 463 14659 0 699 0.01 (1)

NOMT-HM 61.17 78.65 64.30 97.83 33.85 28.00 512 12813 28 241 0.09 (8)

RMOT 52.42 75.18 57.72 93.72 21.69 31.85 1367 14947 50 376 0.01 (1)

SCEA 57.03 78.84 58.63 99.48 26.92 26.62 109 14653 17 461 0.05 (1)

(b) Results on the Regionlet detections

Offline DCO_X 68.11 78.85 78.67 91.99 37.54 14.15 2588 8063 318 959 0.9 (1)

SSP 72.72 78.55 82.69 92.57 53.85 8.00 2548 6648 185 932 0.6 (1)

NOMT 78.15 79.46 83.22 96.78 57.23 13.23 1061 6421 31 207 0.09 (16)

LP_SSVM 77.63 77.80 83.35 96.27 56.31 8.46 1239 6393 62 539 0.01 (1)

Online mbodSSP 72.69 78.75 80.61 94.10 48.77 8.77 1918 7360 114 858 0.01 (1)

NOMT-HM 75.20 80.02 80.99 96.45 50.00 13.54 1143 7280 105 351 0.09 (8)

RMOT 65.83 75.42 80.58 88.09 40.15 9.69 4148 7396 209 727 0.02 (1)

SCEA 75.58 79.39 81.76 96.00 53.08 11.54 1306 6989 104 448 0.06 (1)

Trackers: TBD (Geiger et al. 2014), SSP (Lenz et al. 2015), CEM (Milan et al. 2014), NOMT/NOMT-HM (Choi 2015), LP_SSVM (Wang and
Fowlkes 2015), HM (Geiger 2013), mbodSSP (Lenz et al. 2015), RMOT (Yoon et al. 2015), DCO_X (Milan et al. 2013)

generally result in higher MT and lower ML compared to the
online trackers. Since the SCEA is also an online method,
it also shows limited performance in generating long object
trajectories. It is natural because the SCEA cannot fill out
the mis-tracked frames using the future frame information.
However, even though the SCEA does not use future frame
information in the data association, the SCEA shows compet-
itive accuracy in the data association — the SCEA generates

less false positives (FP) in comparison with offline trackers,
and it also improves Prec which represents the ratio of true
positives over the sum of false positives and true positives. It
is because the aggregation step reduces the matching ambi-
guities caused by uncertain detections as illustrated by the
experiments with the low level fluctuation in Fig. 9.

As shown in Table 5, we compare the SCEAwith the HM,
RMOT, and mbodSSP on the car tracking sequences. Differ-
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Table 6 Comparison to the state-of-the-art trackers on the KITTI pedestrian tracking

Setting Method MOTA MOTP Rec Prec MT ML FP FN ID FG Sec (core)

(a) Results on the DPM detections

Offline CEM 27.54 68.48 36.73 80.82 8.93 51.89 2020 14658 96 608 0.09 (1)

NOMT 36.93 67.75 46.96 82.91 17.87 42.61 2248 12318 34 789 0.09 (16)

LP_SSVM 33.33 67.38 42.98 82.44 12.37 45.02 2126 13235 72 818 0.06 (1)

Online NOMT-HM 27.49 67.99 37.30 80.09 15.12 50.52 2153 14559 73 732 0.09 (8)

RMOT 34.54 68.06 43.94 83.16 14.43 47.42 2065 13008 81 685 0.01 (1)

SCEA 33.13 68.45 40.32 85.27 9.62 46.74 1616 13849 16 717 0.05 (1)

(b) Results on the Regionlet detections

Offline NOMT 46.62 71.45 55.25 87.33 26.12 34.02 1867 10427 63 666 0.09 (16)

LP_SSVM 43.76 70.48 53.79 84.94 20.62 34.36 2228 10718 73 809 0.01 (1)

Online NOMT-HM 39.26 71.14 50.38 83.33 21.31 41.92 2355 11523 184 863 0.09 (8)

RMOT 43.77 71.02 53.64 85.75 19.59 41.24 2075 10790 153 748 0.01 (1)

SCEA 43.91 71.86 49.52 90.69 16.15 43.30 1183 11746 56 641 0.06 (1)

Trackers: CEM (Milan et al. 2014), NOMT/NOMT-HM (Choi 2015), LP_SSVM (Wang and Fowlkes 2015), RMOT (Yoon et al. 2015)

ent from the SCEA, those methods assume small motion
changes of objects, and the car tracking sequences contain
frequent unexpected camera motion. When the data associ-
ation fails due to large motion, the trackers generate more
fragments (FG) of object trajectories. Thus, the mbodSSP
and the HM show larger FG than the SCEA. Different from
them, the RMOT contains a recovery step to re-track miss-
ing objects. Hence, it can suppress FG, but due to matching
ambiguities caused by false positives, it generates larger ID
compared to the SCEA. This trend is also shown in Sect.
7.1.3 with Fig. 9. Due to the inaccurate data association,
those trackers show lowerPrec in comparisonwith theSCEA.
The SCEA can suppress FG because its data association uti-
lizes the structural constraints in the data association without
objects’ ownmotion information,which enables the SCEA to
deal with the unexpected camera motions in the data associ-
ation as validated in Fig. 9 and Table 1. Moreover, the SCEA
can further reduce FP because the aggregation method of
the data association reduces matching ambiguities caused by
uncertain detections. Such characteristic of the SCEA more
improves Prec. Qualitative comparisons with the LM-HM
and the RMOT are given in Figs. 11, 12, 13, 14. Here, the
LM-HM is similar to the HM because both methods utilizes
the linear motion model to predict object locations and the
Hungarian algorithm for the data association.

Different from other online trackers including the SCEA,
the NOMT-HM utilizes optical flow information to extract
more explicit object motion information. Thus, it can esti-
mate longer object trajectories and produce greater MT and
Rec. Since the NOMT-HM exploits additional information
that is not used in other onlineMOTmethods, it is difficult to
compare the performance directly. However, we can compare
the data association accuracy by comparing the metrics such

as Prec, FP, ID, and FG. These metrics are closely related
to the data association accuracy. Due to optical flow infor-
mation, the NOMT-HM generates less fragments, resulting
in small FG. In terms of Prec, FP, and ID, we can find that,
even without the optical flow information, the proposed data
association shows competitive performance. For the KITTI
pedestrian sequences, the SCEAachieves better performance
inMOTAandPrecmetrics compared to theNOMT-HM.This
is because the optical flow information from pedestrians is
less reliable compared to that in the car sequences owing
to the small size and non-rigid appearance of a pedestrian.
In addition, the motion cue (the optical flow) becomes less
discriminative when the motion of an object is small. In the
KITTI pedestrian tracking dataset, the motion of pedestrians
is much smaller than that of cars, and the most of sequences
were recorded by a static camera. Since the SCEA method
extracts structural motion information only from detections,
its performance is less dependent on the object size, appear-
ance, and the magnitude of motion.

The large performance difference of the SCEA according
to different detections (DPMandRegionlet) can be explained
by the fact that better recall of detections can improve the
SCEA considerably. In general, the SCEA is more robust to
missing detections than the RMOT, and the performance dif-
ferences become more obvious when large camera motions
occur and better detections are given (as illustrated in Fig. 9,
results under 0 or 10% missing rate under the high-level
fluctuation). This is because the proposed data association
handles large camera motions more effectively, and a high
detection rate makes the structural constraints more accurate
thanks to the continuous update of the structural constraints.
Since the KITTI car dataset contains large camera motion
more than the other datasets, the performance gap between
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Fig. 11 Qualitative comparisons on the KITTI0011 sequence. a SCEA. b LM-HM: the baseline method: object 3 at #91 is missed at #117; the
label of object 9 at #91 is changed at #117 (9→12); the labels of objects 17, 19 and 20 at #156 are changed at #168 (17→21, 19→18, 20→22)

Fig. 12 Qualitative comparisons on the KITTI0014 sequence. a SCEA. b LM-HM: the label of object 48 at #379 is assigned to a new object at
#384; the label of object 49 at #379 is assigned to new objects at #384, #391, and #397

Fig. 13 Qualitative comparisons on the KITTI0011 sequence. a SCEA. b RMOT (or RMN-HM): the label of object 16 at #78 is changed at #86
(16→10). The labels of object 2 and 10 at #86 are changed at #89 (2→20, 10→19). The label of object 18 at #86 is incorrectly assigned to a new
object at #89

the SCEA and the other methods becomes more obvious,
especially with the Regionlet detector whose recall perfor-
mance ismuch better than that of the DPM. In addition, using
the detector with high recall, the performance gap between
the SCEA and the offline trackers are alleviated as shown in
Table 5.

7.3.3 MOTC Datasets

The MOTC datasets provide more uncertain detections with
lower recall compared to the detections of the KITTI dataset.
As discussed in Sect. 7.3.2, the offline trackers generally
show better performance than the online MOT trackers.
However, due to the uncertain detections, some of offline
trackers show lower performance than the online trackers.
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Fig. 14 Qualitative comparisons on theKITTI0014 sequence. a SCEA.
b RMOT (or RMN-HM): the label of object 16 at #71 is changed at #86
(16→18). The label of object 9 at #86 is changed at #90 (9→19). The

label of object 9 at #86 is incorrectly assigned to object 15 at #90. The
label of object 15 at #90 is incorrectly assigned to object 18 at #98

Table 7 Comparison to the online trackers on the MOT Challenge dataset (pedestrian sequences)

Setting Method MOTA MOTP FAF MT ML FP FN ID FG Hz (core)

Offline CEM 19.3 70.7 2.5 8.5 46.5 14,180 34,591 813 1023 1.1 (1)

DCO_X 19.6 71.4 1.8 5.1 54.9 10,652 38,232 521 819 0.3 (1)

SegTrack 22.5 71.7 1.4 5.8 63.9 7890 39,020 697 737 0.2 (1)

MotiCon 23.1 70.9 1.8 4.7 52.0 10,404 35,844 1018 1061 1.4 (1)

JPDA_m 23.8 68.2 1.1 5.0 58.1 6373 40,084 365 869 32.6 (1)

ELP 25.0 71.2 1.3 7.5 43.8 7345 37,344 1396 1804 5.7 (1)

LP_SSVM 25.2 71.7 1.4 5.8 53.0 8369 36,932 646 849 41.3 (1)

SiameseCNN 29.0 71.2 0.9 8.5 48.4 5160 37,798 639 1316 52.8 (1)

MHT_DAM 32.4 71.8 1.6 16.0 43.8 9064 32,060 435 826 0.7 (1)

NOMT 33.7 71.9 1.3 12.2 44.0 7762 32,547 442 823 11.5 (16)

Online TC_ODAL 15.1 70.5 2.2 3.2 55.8 12,970 38,538 637 1716 1.7 (1)

RMOT 18.6 69.6 2.2 5.3 53.3 12,473 36,835 684 1282 7.9 (1)

NOMT-HM 26.7 71.5 2.0 11.2 47.9 11,162 33,187 637 1716 11.5 (16)

MDP 30.3 71.3 1.7 13.0 38.4 9717 32,422 680 1500 1.1 (8)

SCEA 29.1 71.1 1.0 8.9 47.3 6060 36,912 604 1182 6.8 (1)

We include the average number of false alarms per frame (FAF) as a metric. [The results of the NOMT-HM method are from the original paper
(Choi 2015)]. Trackers: CEM(Milan et al. 2014), DCO_X(Milan et al. 2013), SegTrack(Milan et al. 2015), MotiCon(Leal-Taixé et al. 2014),
(JPDA_m Rezatofighi et al. 2015), ELP(McLaughlin et al. 2015), LP_SSVM(Wang and Fowlkes 2015), SiameseCNN(Leal-Taixe et al. 2016),
MHT_DAM(Kim et al. 2015), NOMT/NOMT-HM(Choi 2015), TC_ODAL(Bae and Yoon 2014), RMOT(Yoon et al. 2015), MDP(Xiang et al.
2015)

Table 8 Comparison to the
MDP method on the KITTI
training dataset

MOTA ↑ MOTP ↑ Rec ↑ Prec ↑ MT ↑ ML ↓ ID ↓ FG ↓
(a) Car

MDP-KITTI 55.0 75.1 60.8 92.3 10.7 40.9 19 118

SCEA 58.8 78.6 61.3 96.5 11.6 32.9 6 100

(b) Pedestrian

MDP-KITTI 23.8 71.2 49.1 66.4 3.5 36.0 8 204

MDP-MOTC 25.1 71.2 47.8 68.6 3.5 34.9 32 209

SCEA 35.4 73.2 51.5 76.3 7.0 32.6 3 154
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The MHT_DAM constructs object trajectories by consid-
ering all possible data associations throughout the entire
sequence. Therefore, it can effectively reduce the incorrect
matching between objects and detections and generate long
trajectories. The NOMT utilizes the optical flow information
in a semi-online manner and exploits the future frame infor-
mation up to 30 frames. The SiameseCNNuses deep-features
to model the appearance of objects. These offline trackers fill
out themissing frames in the trajectory using the future frame
information, which helps to improve MT and reduce FN.
In addition, with some additional cues such as optical flow
information and deep-features, the future frame information
much reduces the matching ambiguities caused by uncertain
detections. As a result, they generate a small number of false
positives. Although the SCEA does not use the future frame
information, it shows comparable performance in terms of
MOTA and FP. It means that the aggregation method of the
proposed data association is robust to uncertain detections,
and the proposed data association reduces other mis-matches
such as ID and FG further compared to the data association
of other online MOT methods (Table 7).

The MDP shows better performance in MOTA, MT, ML,
and FN metrics compared to the SCEA. This is because the
MDP learns the target state (Active, Tracked, Lost, and Inac-
tive) from a training dataset and its ground truth in an online
manner. Therefore, it can initialize and terminate the objects
more robustly than the other methods. In addition, owing to
the use of optical flow information for local template track-
ing, the MDP generates longer trajectories compared to the
other online methods. However, the SCEA has some advan-
tages over the MDP. First, the proposed data association
generates lower FP, ID, and FG. It means that the proposed
data association is more robust to uncertain detections. Sec-
ond, the SCEA does not require any training datasets and
it runs much faster because it does not conduct template
tracking based on dense optical flow. To show the perfor-
mance dependency on the training dataset, we compare the
SCEAwith theMDPon theKITTI dataset. For the pedestrian
sequences, we run the MDP with the original trained model
provided with the original source code by the authors (MDP-
MOTC). In addition, we also train the MDP method with the
KITTI training dataset for car sequences (MDP-KITTI). As
shown in Table 8, the performance of the MDP depends on
the training dataset. Note that the performance of the MDP
can be improved further if more training datasets are used.

8 Conclusion

In online 2DMOT with moving cameras, observable motion
cues are complicated by global cameramovements and, thus,
are not always smooth or predictable. In this paper, we pro-
posed a new data association method that effectively exploits

structural constraints in the presence of unexpected cam-
era motion and uncertain detections. In addition, to further
alleviate data association ambiguities caused by uncertain
detections, e.g., mis-detections and multiple false positives,
we developed a novel event aggregation method to inte-
grate the structural constraints in assignment event costs.
The proposed data association and structural constraints are
incorporated into the online 2D MOT framework, which
simultaneously tracks objects and recovers missing objects
with structural constraints. Experimental results on a large
number of datasets demonstrated and validated the effective-
ness of the proposed algorithm for online 2D MOT.
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