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Abstract
Object tracking is challenging as target objects often undergo drastic appearance changes over time. Recently, adaptive
correlation filters have been successfully applied to object tracking. However, tracking algorithms relying on highly adaptive
correlation filters are prone to drift due to noisy updates. Moreover, as these algorithms do not maintain long-term memory
of target appearance, they cannot recover from tracking failures caused by heavy occlusion or target disappearance in the
camera view. In this paper, we propose to learn multiple adaptive correlation filters with both long-term and short-term
memory of target appearance for robust object tracking. First, we learn a kernelized correlation filter with an aggressive
learning rate for locating target objects precisely. We take into account the appropriate size of surrounding context and the
feature representations. Second, we learn a correlation filter over a feature pyramid centered at the estimated target position
for predicting scale changes. Third, we learn a complementary correlation filter with a conservative learning rate to maintain
long-term memory of target appearance. We use the output responses of this long-term filter to determine if tracking failure
occurs. In the case of tracking failures, we apply an incrementally learned detector to recover the target position in a sliding
window fashion. Extensive experimental results on large-scale benchmark datasets demonstrate that the proposed algorithm
performs favorably against the state-of-the-art methods in terms of efficiency, accuracy, and robustness.

Keywords Object tracking · Adaptive correlation filters · Short-term memory · Long-term memory · Appearance model

1 Introduction

Object tracking is one of the fundamental problems in com-
puter vision with numerous applications including surveil-
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lance, human-computer interaction, and autonomous vehicle
navigation (Yilmaz et al. 2006; Li et al. 2013; Smeulders et al.
2014). Given a generic target object specified by a bounding
box in the first frame, the goal of object tracking is to esti-
mate the unknown target states, e.g., position and scale, in
the subsequent frames. Despite significant progress in the
last decade, object tracking remains challenging due to the
large appearance variation caused by deformation, sudden
motion, illumination change, heavy occlusion, and target dis-
appearance in the camera view, to name a few. To cope with
this appearance variation over time, adaptive correlation fil-
ters have been applied for object tracking. However, existing
tracking algorithms relying on such highly adaptive models
do not maintain long-term memory of target appearance and
thus are prone to drift in the case of noisy updates. In this
paper,we propose to employmultiple adaptive correlation fil-
ters with both long-term and short-term memory for robust
object tracking.

Correlation filters have attracted considerable attention in
the object tracking community (Bolme et al. 2010;Henriques
et al. 2012, 2015; Danelljan et al. 2014a; Zhang et al. 2014b;
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Fig. 1 Effectiveness of long-term memory of target appearance for
tracking. Sample tracking results on the lemming sequence (Wu et al.
2013a) by our approach, MUSTer (Hong et al. 2015), KCF (Henriques
et al. 2015), STC (Zhang et al. 2014b), DSST (Danelljan et al. 2014a)
and TLD (Kalal et al. 2012) [×: no tracking output from TLD (Kalal
et al. 2012)] Our tracker learns adaptive correlation filters with short-
term memory for translation and scale estimation. Compared to the
TLD (Kalal et al. 2012) tracker, the proposed tracking algorithm ismore

robust to abrupt motion and significant deformation in the 230th frame.
Our trackers explicitly capture long-termmemory of target appearance.
As a result, our methods can recover the lost target after persistent
occlusion in the 386th frame. The other state-of-the-art correlation
trackers [MUSTer (Hong et al. 2015), KCF (Henriques et al. 2015),
DSST (Danelljan et al. 2014a) and STC (Zhang et al. 2014b)] fail to
handle such tracking failures

Li and Zhu 2014; Hong et al. 2015; Liu et al. 2015; Ma
et al. 2015b, c; Danelljan et al. 2015; Bertinetto et al. 2016)
in recent years. We attribute the effectiveness of correlation
filters for object tracking to the following three important
characteristics. First, correlation filter based tracking algo-
rithms can achieve high tracking speed by computing the
spatial correlation efficiently in the Fourier domain. The use
of kernel tricks (Henriques et al. 2015;Danelljan et al. 2014b;
Li and Zhu 2014) further improves the tracking accuracy
without significantly increasing the computational complex-
ity. Second, correlation filters naturally take the surrounding
visual context into account and provide more discriminative
information than the appearance models (Kalal et al. 2012;
Supancic and Ramanan 2013) constructed based on target
objects only. For example, even if a target object undergoes
heavy occlusion, contextual cues can still help infer the tar-
get position (Zhang et al. 2014b). Third, learning correlation
filters is equivalent to a regression problem (Henriques et al.
2012, 2015), where the circularly shifted versions of input
image patches are regressed to soft labels, e.g., generated by
a Gaussian function with a narrow bandwidth ranging from
zero to one. This differs from existing tracking-by-detection
approaches (Avidan 2007; Babenko et al. 2011; Hare et al.
2011) where binary (hard-thresholded) sample patches are
densely or randomly drawn around the estimated target posi-
tions to incrementally train discriminative classifiers. Hence,
correlation filter based trackers can alleviate the inevitable
ambiguity of assigning positive and negative labels to those
highly spatially correlated samples.

However, existing correlation filter based trackers (Bolme
et al. 2010; Henriques et al. 2012; Danelljan et al. 2014a;
Zhang et al. 2014b; Li and Zhu 2014) have several limita-
tions. These methods adopt moving average schemes with
high learning rates to update the learned filters for handling
appearance variations over time. Since such highly adap-
tive update schemes can only maintain a short-term memory

of target appearance, these methods are thus prone to drift
due to the noisy updates (Matthews et al. 2004), and can-
not recover from tracking failures as long-term memory of
target appearance is notmaintained. Figure 1 shows an exam-
ple highlighting these issues. The state-of-the-art correlation
filter trackers [KCF (Henriques et al. 2015), STC (Zhang
et al. 2014b), and DSST (Danelljan et al. 2014a)] tend to
drift caused by noisy updates in the 350th frame and fail to
recover in the 386th frame after a long-duration occlusion.

In this paper, we address the stability-adaptivity dilemma
(Grossberg 1987; Santner et al. 2010) by strategically lever-
aging both the short-term and long-term memory of target
appearance. Specifically,we exploit three types of correlation
filters: (1) translation filter, (2) scale filter, and (3) long-term
filter. First, we learn a correlation filter for estimating the tar-
get translation. To improve location accuracy, we introduce
histogram of local intensities (HOI) as complementary fea-
tures to the commonly used histogram of oriented gradients
(HOG).We show that the combined features increase the dis-
criminative strength between the target and its surrounding
background. Second, we learn a scale correlation filter by
regressing the feature pyramid of the target object to a one-
dimensional scale space for estimating the scale variation.
Third, we learn and update a long-term filter using confi-
dently tracked sample patches. For each tracked result, we
compute the confidence score using the long-term filter to
determine whether tracking failures occur. When the confi-
dence score is below a certain threshold,we activate an online
trained detector to recover the target object.

Themain contribution of thiswork is an effective approach
that best exploits three types of correlation filters for robust
object tracking. Specifically, we make the following three
contributions:

– We show that adaptive correlation filters are competent
in estimating translation and scale changes, as well as
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determining whether tracking failures occur. Compared
to our previous work in Ma et al. (2015c), we employ
a different detection module with incremental updates
using an efficient passive-aggressive scheme (Crammer
et al. 2006).

– We systematically analyze the effect of different feature
types and the size of surrounding context area for design-
ing effective correlation filters.We also provide thorough
ablation study to investigate the contribution of the design
choices.

– We discuss and compare the proposed algorithm with
the concurrent work (Hong et al. 2015) in details. We
evaluate the proposed algorithm and present extensive
comparisons with the state-of-the-art trackers on both the
OTB2013 (Wu et al. 2013a) and OTB2015 (Wu et al.
2013b) datasets as well as on additional 10 challenging
sequences from Zhang et al. (2014a).

2 RelatedWork

Object tracking has been an active research topic in computer
vision. In this section, we discuss the most closely related
tracking-by-detection approaches. Comprehensive reviews
on object tracking can be found in Yilmaz et al. (2006), Li
et al. (2013), Smeulders et al. (2014).

2.1 Tracking-by-Detection

Tracking-by-detection methods treat object tracking in each
frame as a detection problem within a local search window,
and often by incrementally learning classifiers to separate
the target from its surrounding background. To adapt to the
appearance variations of the target, existing approaches typ-
ically draw positive and negative training sample patches
around the estimated target location for updating the classi-
fiers. Two issues ensue with such approaches. The first issue
is the sampling ambiguity, i.e., a slight inaccuracy in the
labeled samples may be accumulated over time and cause
trackers to drift. Numerous methods have been proposed to
alleviate the sampling ambiguity. The main objective is to
robustly update a discriminative classifier with noisy train-
ing samples. Examples include ensemble learning (Avidan
2007; Bai et al. 2013), semi-supervised learning (Grabner
et al. 2008), multiple instance learning (MIL) (Babenko et al.
2011), structure learning (Hare et al. 2011), and transfer
learning (Gao et al. 2014). The second issue is the dilemma
between stability and adaptivity when updating appearance
models. To strike a balance between the model stability and
adaptivity, Kalal et al. (2012) decompose the tracking task
into tracking, learning and detection (TLD) modules where
the tracking and detection modules facilitate each other,
i.e., the results from the aggressively updated tracker pro-

vide additional training samples to conservatively update
the detector. The online learned detector can be used to
reinitialize the tracker when tracking failure occurs. Simi-
lar mechanisms have also been exploited in Pernici (2012),
Supancic and Ramanan (2013), Hua et al. (2014) to recover
target objects from tracking failures. Zhang et al. (2014a) use
multiple classifierswith different learning rates and design an
entropy measure to fuse multiple tracking outputs. We also
use an online trained detector for reinitializing the tracker
as in Kalal et al. (2012), Zhang et al. (2014a). However, we
only activate the detector if the response from the long-term
filter is lower than a certain threshold. This approach helps
improve efficiency because we do not active the detector in
every frame as in Kalal et al. (2012), Zhang et al. (2014a).

2.2 Correlation Filter Based Tracking

Correlation filters have been widely applied to various
computer vision problems such as object detection and recog-
nition (Kumar et al. 2005). Recently, correlation filters have
drawn significant attention in the object tracking community,
owing to the computational efficiency and the effectiveness
in alleviating the sampling ambiguity, i.e., learning correla-
tion filters does not require hard-thresholded binary samples.
Bolme et al. (2010) learn a minimum output sum of squared
error (MOSSE) filter on the luminance channel for fast track-
ing. Considerable efforts have since been made to improve
the tracking performance using correlation filters. Extensions
include kernelized correlation filters (Henriques et al. 2012),
multi-channel filters (Henriques et al. 2015; Danelljan et al.
2014b; Ma et al. 2015b; Galoogahi et al. 2013), context
learning (Zhang et al. 2014b), scale estimation (Danelljan
et al. 2014a; Li and Zhu 2014), and spatial regularization
(Danelljan et al. 2015). However, most of these approaches
emphasize the adaptivity of the model and do not main-
tain a long-term memory of target appearance. As a result,
these models are prone to drift in the presence of occlusion
and target disappearance in the camera view and are unable
to recover targets from tracking failures either. Our work
builds upon correlation filter based trackers. Unlike existing
work that relies on only one correlation filter for translation
estimation, we learn three complementary correlation fil-
ters for estimating target translation, predicting scale change,
and determining whether tracking failure occurs. The most
closely related work is that by Hong et al. (2015) (MUSTer)
which also exploits the long-term and short-term memory
for correlation filter based tracking. The main difference lies
in the model used for capturing the long-term memory of
target appearance. The MUSTer tracker represents the target
appearance using a pool of local features. In contrast, our
long-term correlation filter represents a target object with
a holistic template. We observe that it is often challenging
to match two sets of local points of interest between two
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Fig. 2 Overview of three types of correlation filters: translation fil-
ter, scale filter, and long-term memory filter. The translation filter AT
with short-term memory adapts to appearance changes of the target and
its surrounding context. The scale filter AS predicts scale variation of
the target. The long-term filter AL conservatively learns and maintains
long-term memory of target appearance. Also, we use the long-term
filter AL to detect tracking failures by checking if the filter response
is below a certain threshold. Note that the filter responses for the scale

filterAS are one-dimensional while the filter responses of the other two
filters are two-dimensional. We train the translation filter AT using the
histogram of local intensities as features in addition to the commonly
used HOG features. Furthermore, we apply a layer of spatial weights to
the feature space to cope with the discontinuity introduced by circular
shifts. The operatorF indicates the Fourier transformation, and� is the
Hadamard product. The dashed arrow in orange denotes a conservative
update scheme for filter learning (Color figure online)

frames due to outliers. Figure 1 shows one example where
the MUSTer tracker fails to recover the target in the 386th
frame, as few interest points are correctly matched.

3 Overview

We aim to exploit multiple correlation filters to handle the
following three major challenges in object tracking: (1) sig-
nificant appearance changes over time, (2) scale variation,
and (3) target recovery from tracking failures. First, exist-
ing trackers using one single correlation filter are unable to
achieve these goals as it is difficult to strike a balance between
the stability and adaptivity with only one module. Second,
while considerable efforts have been made to address the
problem of scale prediction (Danelljan et al. 2014a; Li and
Zhu 2014; Zhang et al. 2014b), it remains an unsolved prob-
lem as slight inaccuracy in scale estimation causes significant
performance loss of an appearance model. Third, determin-
ing when tracking failures occur and re-detecting the target
object from failures remain challenging. In this work, we
exploit three types of correlation filters with different levels
of adaptiveness to address these issues. Figure 2 illustrates
the construction of three correlation filters for object track-
ing. We use two correlation filters with short-term memory,
i.e., the translation filterAT and the scale filterAS, for trans-
lation and scale estimation. We learn a long-term filter AL

to maintain long-term memory of target appearance for esti-
mating the confidence of each tracked result.

Figure 3 illustrates the main steps of the proposed algo-
rithm with the three correlation filters for object tracking.
Given an input frame, we first apply the translation filter
AT for locating the target object in a search window cen-
tered at the position in the previous frame. Once we obtain
the estimated target position, we apply the scale filter AS

to predict the scale changes. For each tracked result, we
use the long-term filter AL to determine whether tracking
failure occurs (i.e., whether the confidence score is below
a certain threshold). In the cases where the tracker loses
the target, we activate an online detector for recovering
the lost or drifted target, and reinitialize our tracker. While
the proposed long-term filter itself can also be used as a
detector, the computational load is high due to the use of
high-dimensional features. For computational efficiency, we
build on an additional detection module using an online sup-
port vector machine (SVM). We update both the detection
module and the long-term filter with a conservative learning
rate to capture the target appearance over a long temporal
span.

4 Tracking Components

In this section, we describe the main components of the pro-
posed tracking algorithm. We first describe the kernelized
correlation filters (Henriques et al. 2012), and then present
the schemes of learning these filters over multi-channel fea-
tures (Henriques et al. 2015) for translation estimation and
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Fig. 3 Overview of the proposed algorithm. We decompose the track-
ing task into translation and scale estimation. We first infer the target
position pt from correlation response map of the translation filter AT,
and then predict the scale change using the scale filterAS. The correla-
tion tracking module collaborates with the re-detection module built on

SVM classifier via the long-term filterAL. We activate the re-detection
module when the correlation response ofAL is below a given Tr . Note
that we conservatively adopt the detection result only when it is highly
confident, i.e., the correlation response ofAL is above a given threshold
Ta

scale prediction. We then discuss how to learn correlation
filters to capture the short-term and long-term memory of
target appearance using different learning rates, as well as
how these filters collaborate with each other for object track-
ing. Finally, we present an online detectionmodule to recover
the target when tracking failure occurs.

4.1 Kernelized Correlation Filters

Correlation filter based trackers (Danelljan et al. 2014a, b)
achieve the state-of-the-art performance in the recent bench-
mark evaluations (Wu et al. 2013a; Kristan et al. 2014). The
core idea of these methods is to regress the circularly shifted
versions of the input image patch to soft target scores (e.g.,
generated by a Gaussian function and decaying from 1 to
0 when the input images gradually shift away from the tar-
get center). The underlying assumption is that the circularly
shifted versions of input images approximate the dense sam-
ples of target appearance (Henriques et al. 2015). As learning
correlation filters do not require binary (hard-threshold) sam-
ples, correlation filter based trackers effectively alleviate the
sampling ambiguity that adversely affects most tracking-by-
detection approaches. By exploiting the redundancies in the
set of shifted samples, correlation filters can be trained with
a substantially large number of training samples efficiently
using fast Fourier transform (FFT). This data augmentation
helps discriminate the target from its surrounding back-
ground.

Given one-dimensional data x = {x1, x2, . . . , xn}�, we
denote its circularly shifted version with one entry by
x1 = {xn, x1, x2, . . . , xn−1}�. All the circularly shifted ver-
sions of x are concatenated to form the circulant matrix
X = [x1, x2, . . . , xn]. Using the Discrete Fourier Transform
(DFT), we can diagonalize the circulant matrix X as:

X = FHdiag
(
F (x)

)
F, (1)

where F denotes the constant DFT matrix that transforms
the data from the spatial domain into the Fourier domain. We
denote F (x) as the Fourier transform of x, i.e.,F (x) = Fx
and FH as the Hermitian transpose of F.

A linear correlation filter f trained on an image patch x
of size M × N is equivalent to a ridge regression model,
which considers all the circularly shifted versions of x (in
both horizontal and vertical directions) as training data. Each
example xi , i ∈ {1, 2, . . . , M} × {1, 2, . . . , N } corresponds
to a target score yi = exp

(
− (m−M/2)2+(n−N/2)2

2σ 2
0

)
, where

(m, n) indicates the shifted positions along horizontal and
vertical directions. The target center has a maximum score
yi = 1. The score yi decays rapidly from 1 to 0 when the
position (m, n) is away from the desired target center. The
kernel width σ0 is a predefined parameter controlling the
sensitivity of the score function. The objective function of
the linear ridge regression for learning the correlation filter
is of the form:

min
w

M×N∑

i=1

(
f (xi ) − yi

)2 + λ‖w‖2, (2)

where λ > 0 is a regularization parameter. The solution to
(2) is a linear estimator: f (x) = w�x. As a result, the ridge
regression problem has the close-form solution with respect
to the circulant matrix X as follows:

w = (X�
X + λI)−1

X
�y, (3)

where I is the identity matrix with the size of MN × MN .
Substituting the DFT form of x for the circulant matrix X

using (1), we have the solution in the Fourier domain as:
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W = X � Y
X � X + λ

, (4)

whereW , X , Y are the corresponding signals in the Fourier
domain, and X is the complex conjugate of X .

To strengthen the discrimination of the learned fil-
ters, Henriques et al. (2012) use a kernel k, k(x, x′) =
〈φ(x), φ(x′)〉 to learn correlation filters in a kernel space
while maintaining the computational complexity as its linear
counterpart. Here the notation 〈·, ·〉 denotes inner product.
The kernelized filter can be derived as f (x) = w�φ(x) =∑

i ai k(xi , x
′), where a = {ai } are the dual variables of

w. For shift-invariant kernels, e.g., an RBF kernel, the dual
coefficients a can be obtained using the circulant matrix in
the Fourier domain (Danelljan et al. 2014b; Henriques et al.
2015) as:

A = Y
Kxx′ + λ

, (5)

where the matrixK denotes the Fourier transform of the ker-
nel correlation matrix k, which is defined as:

kxx
′ = exp

(
−‖x‖2 + ‖x′‖2

σ 2 − 2F−1
(
X � X ′)

)
. (6)

As the computation involves only element-wise product, the
overall complexity remains in linearithmic time,O(n log n),
where the input size n = MN . Given a new input frame,
we apply a similar scheme in (6) to compute the correlation
response map. Specifically, we first crop an image patch z
centered at the location in the previous frame. We then com-
pute the response map f using the learned target template x̃
in the Fourier domain as:

f(z) = F−1(Kx̃z � A). (7)

We can then locate the target object by searching for the
positionwith themaximumvalue in the responsemap f . Note
that the maximum correlation response naturally reflects the
similarity between a candidate patch and the learned filter. As
we learn the filer in the scale space, the confidence score can
be used to estimate scale changes (Sect. 4.3). Similarly, when
the filter maintains long-term memory of target appearance,
the confidence score can be used for determining tracking
failures (Sect. 4.4). Note that here we use two-dimensional
long-term memory filter. In the case where an input image
patch is not well aligned with the learned filter, the maximum
value of the 2D responsemap can still effectively indicate the
similarity between the image patch and learned filter.

4.2 Multi-Channel Correlation Filters

Appearance features play a critical role for object tracking.
In general, multi-channel features are more effective in sep-
arating the foreground and background than single channel
features, e.g., intensity. With the use of the kernel trick, we
can efficiently learn correlation filters over multi-channel
features. Let x = [x1, x2, . . . , xc] denote the multi-channel
features for the target object, where c is the total number of
channels. The kernel correlationmatrixkxx

′
can be computed

by a summation of the element-wise products over each fea-
ture channel in the Fourier domain. Thus, we rewrite (6) as
follows:

kxx
′ = exp

(

−‖x‖2 + ‖x′‖2
σ 2 − 2F−1

(
∑

c

Xc � X ′
c

))

.

(8)

This formulation renders an efficient solution to incorporate
different types of multi-channel features. In this work, we
use two complementary types of local statistical features for
learning correlation filters: (1) histogram of oriented gradi-
ents (HOG) and (2) histogram of local intensities (HOI).

4.2.1 Histogram of Oriented Gradients (HOG)

As one of the most widely used feature descriptors for object
detection (Dalal and Triggs 2005), the main idea of the HOG
descriptor is to encode the local object appearance and shape
by the distribution of oriented gradients. Each image patch
is divided into small regions (cells), in which a histogram of
oriented gradients is computed to form the descriptor. These
gradient-based descriptors are robust to illumination vari-
ation and local shape deformation and have been used to
help learn discriminative correlation filters for object track-
ing (Henriques et al. 2015; Danelljan et al. 2014a).

4.2.2 Histogram of Local Intensities (HOI)

We observe that correlation filters learned from only HOG
features are not effective in handling cases where the images
are heavily blurred, e.g., caused by abrupt motion, blur-
ring, or illumination changes. We attribute the performance
degradation to the fact that intensity gradients are no longer
discriminative when representing target objects undergoing
abrupt motion. In such cases, we observe that the intensity
values between the target and its background remain dis-
tinctive. However, learning correlation filters directly over
intensities does not perform well (Henriques et al. 2012;
Zhang et al. 2014b) (see Sect. 6.2) as intensity values are
not robust to appearance variation, e.g., caused by defor-
mation. We thus propose to compute the histogram of local

123



International Journal of Computer Vision (2018) 126:771–796 777

intensities as a complementary of HOG features. The pro-
posedHOI features bear some resemblance to the distribution
field scheme (Sevilla-Lara and Learned-Miller 2012; Fels-
berg 2013) where the statistical properties of pixel intensities
are exploited as features. In contrast to computing the sta-
tistical properties over the whole image (Sevilla-Lara and
Learned-Miller 2012; Felsberg 2013), we use the histograms
of local patches. These local statistical features are more
robust to appearance changes than pixel intensities. In this
work, we compute the histogram in a 6 × 6 local cell and
quantize the intensity values into 8 bins. To enhance the
robustness to drastic illumination variation, we compute the
HOI feature descriptors not only on the intensity channel but
also on a transformed channel by applying a non-parametric
local rank transformation (Zabih and Woodfill 1994) to the
intensity channel. The intensity-based features (HOI) and
the gradient-based features (HOG) are complementary to
each other as they capture different aspects of target appear-
ance. We compute these two types of features using local
histograms with the same spatial resolution (but with dif-
ferent channels). Thus, the HOG and HOI features can be
easily integrated into the kernelized correlation filters using
(8).

4.2.3 Deep Convolutional Features

Deep features learned from convolutional neural networks
(CNNs) have recently been applied to numerous vision prob-
lems (Krizhevsky et al. 2012; Girshick et al. 2014; Long et al.
2015). In thiswork,we exploit deepCNN features to comple-
ment the proposed multi-channel HOG and HOI features for
learning correlation filters. Specifically, we use the features
from the last convolutional layer (conv5-4) of the VGGNet-
19 (Simonyan and Zisserman 2015) as in Ma et al. (2015a).
Compared to the handcrafted HOI and HOG features that
capture fine-grained spatial details of a target object, deep
CNN features encode hierarchical and high-level semantic
information that is robust to significant appearance changes
over time. Our goal is to fully exploit the merits of both
handcrafted and deep features. Instead of learning a single
correlation filter over the concatenated features, we learn one
correlation filter for each type of features. We infer target
object location by combining the response maps from the
two correlation filters.

Given the correlation responsemaps fh and fd using hand-
crafted and deep features in (7), we denote the probability of
position (i, j) ∈ {1, 2 . . . , M}×{1, 2, . . . , N } to be the cen-
ter of the target by a distribution f li j , where

∑
i j f li j = 1

and l ∈ {h, d}. We determine the optimal distribution q by
minimizing the Kullback–Leibler (KL) divergence of each
response map f l and q as follows:

#015 #030

#050 #070

Fig. 4 Effectiveness of using both deep and handcrafted features.
Qualitative results on the skiing sequence (Wu et al. 2013a) using
different types of features for learning the translation filter. The CT-
HOGHOI-VGG19 method effectively exploits the advantages of both
deep and handcrafted features, and tracks the target object over the
entire sequence

argmax
q

∑

l∈{h,d}
DKL(f l‖q),

s.t.
∑

i, j

qi j = 1, (9)

where fi j and qi j are the elements of f and q at position
(i, j). The KL divergence is defined as:

DKL(f l‖q) =
∑

f li j log
f li j
qi j

. (10)

Using the Lagrange multiplier method, the solution of q in
(9) is:

q = fh ⊕ fd

2
, (11)

where⊕means element-wise addition. An intuitive explana-
tion is that the final probability distribution of object location
q is the average of the response maps fh and fd . We locate
the target object based on the maximum value of q.

To demonstrate the effectiveness of exploiting both the
deep (conv5-4 in VGGNet-19) and handcrafted (HOG-HOI)
features, we show quantitative comparisons of the tracking
results using four different types of features on the skiing
sequence in Fig. 4. Figure 5 shows the center location error
plot over the entire sequence. Note that the CT-HOGHOI-
VGG19 approach exploits the merits of both deep and
handcrafted features effectively, and thus successfully track
the target skier over the entire sequence. On the other hand,
other alternative approaches (using either deep or hand-
crafted features) do not achieve satisfactory results as shown
by the large center location error in Fig. 5.

123



778 International Journal of Computer Vision (2018) 126:771–796

10 20 30 40 50 60 70 80

Frame number

0

50

100

150

200

250

300

350

400

450

C
en

te
r 

lo
ca

tio
n 

er
ro

r 
(p

ix
el

s)
Center location error plot - skiing

CT-HOG
CT-HOGHOI
CT-VGG19
CT-HOGHOI-VGG19
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4.3 Scale RegressionModel via Correlation Filters

We construct the feature pyramid of target appearance cen-
tered at the estimated location to train a scale regression
model using correlation filters. Danelljan et al. (2014a) also
learn a discriminative correlation filter for scale estimation.
Ourmethod differs fromDanelljan et al. (2014a) in thatwe do
not use the predicted scale changes to update the translation
filter. Let W × H be the target size and N indicate the num-
ber of scales S = {αn|n = 
− N−1

2 �, 
− N−3
2 �, . . . , 
 N−1

2 �},
where α is a scaling factor, e.g., α = 1.03. For each scale
s ∈ S, we crop an image patch of size sW × sH centered at
the estimated location. We resize all these cropped patches
to an uniform size of W × H , and then extract HOG fea-
tures from each sampled patch to form a feature pyramid
containing the multi-scale representation of the target.

Let xs denote the target features in the sth scale.We assign

xs with a regression target score ys = exp(− (s−N/2)2

2σ 2
0

). As

{ys} is one dimensional, we vectorize xs before applying

(5) to learn correlation filters. With the use of vectorization,
the output response score of (7) is a scalar indicating the
similarity between xs and the learned filter. To mitigate the
ambiguity, we denote this output scalar from (7) as g(xs).
The optimal scale s∗ can then be inferred by:

s∗ = argmax
s

{g(xs) | s ∈ S}. (12)

In Fig. 6, we compare four different schemes for esti-
mating the target states in terms of translation and scale. As
shown in Fig. 6d, our approach first estimates the transla-
tion, and then predicts the scale change in a spirit similar
to the coordinate descent optimization. Our approach dif-
fers from several existing tracking schemes that jointly infer
the translation and scale changes. For example, particle fil-
ter based tracking algorithms such as Arulampalam et al.
(2002) draw random samples to approximate the distribu-
tion of target states containing translation and scale changes
(Fig. 6a). The gradient descent method [e.g., Lucas and
Kanade (1981)] iteratively infers the local optimal transla-
tion and scale changes (Fig. 6b). Although it is suboptimal to
decompose the tracking task into two independent sub-tasks
(i.e., translation and scale estimation) as shown in Fig. 6d,
our tracker not only alleviates the burden of densely evaluat-
ing the target states, but also avoids the noisy updates on the
translation filter in case of inaccurate scale estimation. We
note that the DSST (Danelljan et al. 2014a) also decomposes
the tracking task into the translation and scale estimation
sub-tasks. Our approach differs the DSST in that we update
the translation filter using the ground-truth scale in the first
frame rather than the estimated scale in each frame. We
further alleviate the degradation of translation filter caused
by inaccurate scale estimation. Experimental results (see
Fig. 11 and Sect. 6) show that our tracker significantly
outperforms an alternative implementation (CT-HOGHOI-
joint-scale-HOG), where the estimated scale change in each
frame is used to update the translation filter.

(a) (b) (c) (d)

Fig. 6 Four main schemes for state estimation in object tracking. The
symbols �, × and � denote the current, sampled and optimal states,
respectively. a The particle filter scheme such as Arulampalam et al.
(2002) draws random samples (particles) to approximate the joint dis-
tribution of target states. b The gradient descent method such as Lucas

and Kanade (1981) iteratively infers the local optimal translation and
scale changes jointly. c The exhaustive search scheme evaluates all
possible states in a brutal force manner. d Our method estimates the
translation change first and then predicts scale change in a similar spirit
to coordinate descent optimization
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4.4 Long-Term and Short-TermMemory

To adapt to appearance changes, we incrementally update
the learned correlation filters over time. Since it is compu-
tationally expensive to update filters by directly minimizing
the output errors over all tracked results (Boddeti et al. 2013;
Galoogahi et al. 2013), we use a moving average scheme for
updating a single filter as follows:

x̃t = (1 − η)x̃t−1 + ηxt , (13a)

ãt = (1 − η)ãt−1 + ηat , (13b)

where t is the frame index and η ∈ (0, 1) is a learning rate.
This approach updates the filter at each frame and empha-
sizes the importance of model adaptivity with the short-term
memory of target appearance. Due to the effectiveness of
this scheme in handling appearance changes, tracking algo-
rithms (Henriques et al. 2015; Danelljan et al. 2014a) achieve
favorable performance in recent benchmark studies (Wu et al.
2013a;Kristan et al. 2014). However, these trackers are prone
to drift when the training samples are noisy and unable to
recover from tracking failures due to the lack of the long-
termmemory of target appearance. In otherwords, the update
scheme in (13) assumes the tracked result in each frame is
accurate. In this work, we propose to learn a long-term filter
AL to address this problem. As the output response map of
the long-term filter AL in (7) is two-dimensional, we take
the maximum value of the response map as the confidence
score. To capture the long-termmemory of target appearance
for determining if tracking failures occur, we set a stability
threshold Ts to conservatively update the long-term filterAL

formaintaining themodel stability. We update the filter using
(13) only if the confidence score, max

(
f(z)

)
, of the tracked

object z exceeds the stability threshold Ts . Compared to the
methods (Santner et al. 2010; Zhong et al. 2014) that use only
the first frame as the long-termmemory of target appearance,
our long-term filter can adapt to appearance variation over a
long time span.

An alternative approach to maintain long-termmemory of
target appearance is to directly learn a long short-term mem-
ory (LSTM) network (Hochreiter and Schmidhuber 1997)
from training sequences off-line.We follow the project (Ning
et al. 2017) (https://github.com/Guanghan/ROLO) to imple-
ment a baseline tracker using the standard LSTM cell. We
interpret the hidden state of the LSTM as the counterpart
of the long-term correlation filter. We use all the sequences
on the VOT datasets (Kristan et al. 2014, 2015) as training
data [excluding the overlapped sequences on the OTB2015
dataset (Wu et al. 2013b)]. For each input feature vector xt ,
the output cell state ct and hidden state ht are:

ĝ f , ĝi , ĝo, û = Wxhxt + Whhht−1 + bh (14)
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Fig. 7 Effect of long-term filters. On the lemming sequence, we use
three different long-term filters to compute the confidence scores of
the tracking results (yellow boxes) using the baseline CT-HOGHOI
method without incorporating a re-detection module. The conserva-
tively updated correlation filter performs well in determining tracking
failures as the confidence scores are generally below the threshold 0.15
after the 360-th frame (Color figure online)

g f = σ(ĝ f ) (15)

gi = σ(ĝi ) (16)

go = σ(ĝo) (17)

u = tanh(û) (18)

ct = g f � ct−1 + gi � u (19)

ht = go � tanh(ct ) (20)

where ĝ f , ĝi , ĝo are the forget gates, input gates and output
gates, respectively. We denote b as the hidden state biases,
σ(x) as the sigmoid function of x , 1

1+e−x , and � as the

element-wisemultiplication.Here,Wxh are theweights from
the input xt to the hidden state, and Whh are the weights
between hidden states and are connected through time. For
simplicity, we set the size of the hidden state ht to be equal
to the size of the input xt . We use the hidden state ht as the
long-term filter to compute the correlation response map.

Using lemming (Wu et al. 2013a) sequence as an exam-
ple, we compare three types of long-term filters to compute
the tracking confidence scores of the baseline CT-HOGHOI
method in Fig. 7. The baseline algorithmdoes not incorporate
a re-detection module and thus fails to track the target after
the 360-th frame. The aggressively updated correlation filter
and the LSTM hidden states gradually degrade due to noisy
updates and cannot predict the tracking failures. In contrast,
the conservatively learned correlation filter accurately pre-
dicts tracking failures (the confidence scores are generally
below 0.15).
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4.5 Three Types of Correlation Filters

For translation estimation, we enlarge the input bounding
boxes of target objects to incorporate surrounding context
to provide substantially more shift positions. Compared to
the tracking methods based on online classifiers (Dinh et al.
2011; Zhang et al. 2012b, 2015) that learn from sparse sam-
ples (randomly drawn around the estimated target position),
our approach based on correlation filters learns from dense
samples, i.e., all the circularly shifted versions of input fea-
tures (see Sect. 4.1). The increase of training data facilitates
discriminating the target from its background. For learning
the scale filter and long-term filter, we do not incorporate
contextual cues as the surrounding context often changes
drastically over time and may adversely affect both the scale
filter and the long-term filter. Figure 2 shows the three differ-
ent correlation filters with the update schemes, context size,
and feature type. We refer the readers to the ablation studies
in Sect. 6.4 for justification of the design choices of the filters.
Here, we summarize the three different correlation filters as
follows:

– The translation filter AT captures a short-term memory
of target appearance. We exploit surrounding context
information for learning the filter AT. To fully exploit
the semantics within deep features and the fine-grained
spatial details within hand-crafted features, we learn
translation filters over deep and handcrafted features,
respectively. To alleviate the boundary discontinuities
caused by the circular shifts, we use a two-dimensional
cosine window to weight each channel of the input fea-
tures.

– We learn the scale filter AS using HOG features only.
We empirically find that adding HOI features does not
improve the accuracy of scale estimation (see Fig. 11).
Unlike the translation filter AT, we extract the features
directly from the target region without incorporating the
surrounding contexts as they do not provide information
about the scale changes of the target.

– We learn the long-term filter AL using a conservative
learning rate to maintain the long-term memory of tar-
get appearance for determining the tracking failures. We
learn the filter AL using both HOG and HOI features.

4.6 Online Detector

A robust tracking algorithm requires a detection module to
recover the target from potential tracking failures caused
by heavy occlusion or out-of-view movement. For each
tracked target z, we compute its confidence score as CL =
max

(
fAL(z)

)
using the long-term filter AL. Unlike previ-

ous trackers (Pernici 2012; Supancic and Ramanan 2013;
Hua et al. 2014) carrying out the detection at every frame,

we activate the detector only if the confidence score CL is
below a predefined re-detection threshold Tr . The main goal
of using Tr is to reduce the computational load by avoiding
the sliding-window detection in each frame. For efficiency,
we use an online SVM classifier as the detector rather than
using the long-term filter AL. We incrementally train the
SVM classifier by drawing dense training samples around
the estimated position and scale change and assigning these
samples with binary labels according to their overlap ratios
similar to Zhang et al. (2014a). In this work, we only take
the translated samples for training to further reduce the com-
putational burden. We use quantized color histogram as our
feature representation where each channel in the CIE LAB
space is quantized into four bins as Zhang et al. (2014a). To
improve robustness to dramatic illumination variation, we
apply the non-parametric local rank transformation (Zabih
and Woodfill 1994) to the L channel. Given a training set
{(vi , ci )|i = 1, 2, . . . , N } with N samples in a frame, where
vi is the feature vector generated by the i-th sample and
ci ∈ {+1,−1} is the class label. The objective function of
solving the hyperplane h of the SVM detector is

min
h

λ

2
‖h‖2 + 1

N

∑

i

�
(
h; (vi , ci )

)

where �
(
h; (v, c)

) = max{0, 1 − c〈h, v〉}. (21)

The notation 〈h, v〉 indicates the inner product between h and
v. Unlike existingmethods (Avidan 2004; Zhang et al. 2014a)
that maintain a large pool of supported vectors for incre-
mental update, we apply the passive-aggressive algorithm
(Crammer et al. 2006) to update the hyperplane parameters
efficiently.

h ← h − �
(
h; (v, c)

)

‖∇h�
(
h; (v, c)

)‖2 + 1
2τ

∇h�
(
h; (v, c)

)
, (22)

where ∇h�
(
h; (v, c)

)
is the gradient of the loss function in

terms of h and τ ∈ (0,+∞) is a hyper-parameter that con-
trols the update rate of h. Similar to the long-term filter, we
update the classifier parameters using (22) only when the
confidence score CL is above the threshold Ts .

5 Implementation Details

Figure 3 presents the main steps of the proposed tracking
algorithm.We learn three types of correlation filters (AT,AS,
AL) for translation estimation, scale estimation, and captur-
ing the long-termmemory of target appearance, respectively.
We also build a re-detection module using SVM for recover-
ing targets from tracking failures.
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Algorithm 1: Outline of the proposed tracking algo-
rithm.
Input : Initial bounding box bt−1 = (xt−1, yt−1, st−1),AT,AS,

AL, h
Output: Estimated bounding box bt = (xt , yt , st )

1 repeat
2 Crop out the image patch z centered at (xt−1, yt−1) and

extract HOG and HOI features;
// Translation estimation

3 Compute fAT (z) and estimate target position (xt , yt );
// Scale estimation

4 Construct scale pyramid z′ around (xt , yt ) and compute
fAS (z

′) to infer st ;
5 Crop out patch z centered at (xt , yt );

// Re-detection
6 if max(fAL (z)) < Tr then
7 Activate detection module h and find the candidate

bounding boxes B with positive labels;
8 foreach state b′ in B do computing fAL (b′) if

max (fAL (b′)) > Ta then bt = b′
9 end

// Model update
10 Update AT and AS;
11 if max(fAL (z)) > Ts then
12 Update AL and h;
13 end
14 until end of image sequence;

Algorithm 1 summarizes the proposed tracker. Our trans-
lation filter AT separates the target object from the back-
ground by incorporating the contextual cues. Existing meth-
ods (Henriques et al. 2015; Danelljan et al. 2014a) use an
enlarged target bounding box by a fixed ratio r = 2.5 to
incorporate the surrounding context. Our experimental anal-
ysis (see Sect. 6.6) shows that slightly increasing the context
area leads to improved results. We set the value of r to a
larger ratio of 2.8. We also take the aspect ratio of target
bounding box into consideration. We observe that when the
target (e.g., pedestrian) with a small aspect ratio, a smaller
value for r can decrease the unnecessary context area in the
vertical direction. To this end, we reduce the ratio r by one-
half in the vertical direction when the target with aspect ratio
smaller than 0.5 (see Sect. 6.6 for more detailed analysis).

For training the SVM detector, we densely draw samples
from a window centered at the estimated location. We assign
these samples with positive labels when their overlap ratios
with the target bounding box are above 0.5, and assign them
with negative labels when their overlap ratios are below 0.1.
We set the re-detection threshold Tr = 0.15 for activating the
detectionmodule and the acceptance threshold Ta = 0.38 for
adopting the detection results. These settings suggest that
we conservatively adopt each detection result, as it would
relocate the targets and reinitialize the tracking process. We
set the stability threshold Ts to 0.38 to conservatively update
the filterAL for maintaining the long-term memory of target
appearance.Note that all these threshold values comparewith

the confidence scores computed by the long-term filter AL.
The regularization parameter of (2) is set to λ = 10−4. The
Gaussian kernel width σ in (8) is set to 0.1, and the other
kernel width σ0 for generating the soft labels is proportional
to the target size, i.e., σ0 = 0.1×√

WH . We set the learning
rate η in (13) to 0.01. For scale estimation, we use N = 21
levels of the feature pyramid and set the scale factorα to 1.03.
The hyper-parameter τ in (22) is set to 1. We empirically
determine all these parameters and fix them throughout all
the experiments. The source code is available at https://sites.
google.com/site/chaoma99/cf-lstm.

6 Experimental Results

6.1 Experimental Settings

6.1.1 Datasets

We evaluate the proposed algorithm on a large benchmark
dataset (Wuet al. 2013b) that contains 100 videos. To validate
the effectiveness of the proposed re-detectionmodule, we use
additional ten sequences provided by Zhang et al. (2014a).

6.1.2 Evaluation Metrics

We evaluate the performance using two widely used metrics:

– Overlap success rate: the percentage of frames where the
overlap ratio between predicted bounding box (b1) and
ground truth bounding box (b0) is larger than a given
threshold, i.e., b1∩b0

b1∪b0 > 0.5.
– Distance precision rate: the percentage of frames where
the estimated center location error is smaller than a given
distance threshold, e.g., 20 pixels.

6.1.3 Baseline Trackers

We compare the proposed algorithm (1) using only hand-
crafted features (Ours) and (2) using both handcrafted and
deep features (Ours-deep) with 13 state-of-the-art trackers.
The compared trackers can be roughly grouped into three
categories:

– Trackers using correlation filters including the MUSTer
(Hong et al. 2015), KCF (Henriques et al. 2015), DSST
(Danelljan et al. 2014a), STC (Zhang et al. 2014b), and
CSK (Henriques et al. 2012) methods.

– Trackers using single online classifier including the
Struck (Hare et al. 2011), LSHT (He et al. 2013), MIL
(Babenko et al. 2011), and CT (Zhang et al. 2012a) meth-
ods.
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Fig. 8 Quantitative evaluation on the OTB2013 dataset. Overlap suc-
cess and distance precision plots using one-pass evaluation (OPE),
temporal robustness evaluation (TRE) and spatial robustness evalua-

tion (SRE). The legend of precision plots shows the distance precision
scores at 20 pixels, and the legend of success plots contains the overlap
success scores with the area under the curve (AUC)

– Trackers using multiple online classifiers including the
MEEM (Zhang et al. 2014a), TGPR (Gao et al. 2014),
SCM (Zhong et al. 2014), and TLD (Kalal et al. 2012)
methods.

Since the baseline methods are not deep learning trackers,
we report the results of our method using only handcrafted
features throughout all quantitative comparisons. We use the
evaluation protocol from the benchmark study (Wu et al.
2013a). We implemented the algorithm in MATLAB. We
conduct all the experimental results on a machine with an
Intel I7-4770 3.40 GHz CPU and 32 GB RAM. More quan-
titative and qualitative evaluation results are available at
https://sites.google.com/site/chaoma99/cf-lstm.

6.2 Overall Performance

The object tracking benchmark dataset (Wu et al. 2013b)
contains two versions: (1) OTB2013 (Wu et al. 2013a) with
50 sequences and (2) OTB2015 (Wu et al. 2013b) with
100 sequences. We show the quantitative results using the
one-pass evaluation (OPE), temporal robustness evaluation
(TRE), and spatial robustness evaluation (SRE) criteria on
both datasets in Figs. 8 and 9. Following the protocol, we

report distance precision rate at a threshold of 20 pixels, the
overlap success rate at a threshold of 0.5 Intersection over
Union (IoU), the average center location error, and the aver-
age tracking speed in frames per second in Table 1. We show
in Table 1 that the proposed algorithm performs favorably
against the representative baseline methods in both overlap
success and distance precision metrics.

In addition, we compare our method with the MEEM and
MUSTer trackers in more detail as both two approaches
explicitly incorporate re-detection modules. The MEEM
tracker employs multiple SVM classifiers with different
learning rates and uses an entropy measure to fuse all the
outputs from multiple classifiers. While the MEEM tracker
can recover from tracking failures, it does not handle scale
changes well. Our method explicitly predicts scale vari-
ation and thus achieves higher overlap success rate over
MEEM (81.3 versus 69.6%). The MUSTer tracker is a con-
current work with our preliminary work (Ma et al. 2015c).
Both the MUSTer tracker and our approach can cope with
scale changes. Unlike the MUSTer tracker, we update the
translation filter AT without considering scale changes. We
observe that slight inaccuracy in scale estimation would
cause rapid performance degradation of the translation filter.
Our method achieves higher overlap success rates than the
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Fig. 9 Quantitative evaluation on the OTB2015 dataset. Overlap suc-
cess and distance precision plots using the one-pass evaluation (OPE),
temporal robustness evaluation (TRE) and spatial robustness evalua-

tion (SRE). The legend of precision plots shows the distance precision
scores at 20 pixels, and the legend of success plots contains the overlap
success scores with the area under the curve (AUC)

MUSTer tracker: 81.3 versus 78.4%on theOTB2013 dataset,
and 70.1 versus 68.3% on theOTB2015 dataset, respectively.

Regarding tracking speed, the STC, CSK and KCF track-
ers using only one correlation filter are faster than our
approach. The accuracy of these trackers, however, is infe-
rior to our approach due to their inability to recover from
failures and to handle scale variation. Our tracker runs 20
frames per second (close to real-time) as we only activate the
detector when the confidence score is below the re-detection
threshold Tr and avoid the computationally expensive search
in sliding window. In terms of the TRE and SRE criteria,
the proposed method does not perform as well as in the
OPE evaluation. This can be explained by the fact that the
TRE and SRE evaluation schemes are designed to evaluate
tracking methods without re-detection modules. In the TRE
evaluation criterion, a video sequence is divided into several
fragments, and thus the importance of the re-detection mod-
ule in long-term tracking is not taken into account. In the
SRE evaluation criterion, the trackers are initialized with the
slightly inaccurate target position and scale. As our tracker
relies on learning correlation filters to discriminate the target
from its background, inaccurate initialization in the spatial
domain adversely affects the performance of the learned filter
in locating targets.

We discuss several observations from the experimental
results. First, correlation trackers (e.g., KCF and DSST)
consistently outperform the methods that use one single dis-
criminative classifier (e.g., LSHT, CSK, andCT). This can be
attributed to that correlation filters regress all the circularly
shifted samples of target appearance into soft regression tar-
gets rather than hard-thresholded binary labels. Correlation
filter based trackers effectively alleviate the sampling ambi-
guity problem. Second, trackers with re-detection modules
(e.g., MUSTer,MEEMand the proposed tracker) outperform
those without re-detection modules. Third, while TLD uses
a re-detection module, we find that the TLD tracker does not
perform well in sequences with drastic appearance changes.
It is because the tracking module in TLD builds upon the
Lucas and Kanade (1981) method with an aggressive update
rate. Such highly adaptive model often results in drifting.

6.3 Attribute-Based Evaluation

The video sequences in the benchmark dataset (Wu et al.
2013a) are annotated with 11 attributes to describe the var-
ious challenges in object tracking, e.g., occlusion or target
disappearance of the camera view (out-of-view). We use
these attributes to analyze the performance of trackers in var-
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ious aspects. In Tables 2 and 3, we show the attribute-based
evaluation results in terms of overlap success and distance
precision on the OTB2013 dataset. In terms of overlap suc-
cess rate, the proposed algorithm performs well against the
baseline methods in most of the attributes. Compared to the
concurrent MUSTer method, our tracker achieves large per-
formance gains in seven attributes: illumination variation
(2.0%), out-of-plan rotation (6.4%), occlusion (4.5%), defor-
mation (6.8%), in-plan rotation (7.9%), background clutter
(1.7%) and low resolution (1.3%). We attribute the improve-
ments mainly to three reasons. First, we separate the model
update for learning the translation filter AT and the scale
filter AS. While this approach appears to be sub-optimal
for inferring target states when compared to the MUSTer
tracker, we find that it effectively avoids the degradation of
the translation filter caused by inaccuracy of scale estimation.
Second, the HOI features are based on the local histogram of
intensities, which strengthen the distinction between target
objects and background in the presence of rotation. This helps
the translation filter locate target objects precisely. Third,
we maintain the long-term memory of target appearance as
a holistic template using correlation filters. The MUSTer
tracker instead uses a pool of local key-point descriptors [i.e.,
SIFT (Lowe 2004)] for capturing the long-term memory of
target appearance. In the presence of significant deformation
and rotation, there are significantly fewer key points to dis-
criminate target objects.As a result, our tracker ismore robust
to these challenges than the MUSTer tracker. Table 2 shows
that our method achieves the best results in deformation
(86.1%), in-plane rotation (80.2%) and out-of-view move-
ment (72.8%) based on the distance precision rate. These
results demonstrate the effectiveness of our method in han-
dling large appearance changes and recovering targets from
failure cases. With the use of a similar re-detection module,
theMEEMtracker performs favorably in dealingwithmotion
blur, fast motion, and low resolution.

6.4 Ablation Studies

To better understand the contributions of each component of
the proposed tracker, we carry out three group of ablation
studies by comparing with other alternative design options.
Figures 10–12 show the overall tracking performance and
comparisons with alternative approaches for developing the
translation filter, scale filter, and the re-detection module on
the OTB2013 dataset (Wu et al. 2013a) using the one pass
evaluation (OPE) protocol. The legend of precision plots
shows scores at a thresholdof 20pixels. The legendof success
plots contains the values of the area under the curve (AUC).
For clarity, we add the proposed methods that incorporate all
components using deep features (ours-deep) or handcrafted
features (ours) in Figs. 10–12.

6.4.1 Feature Analysis on Translation Filter

Wefirst demonstrate the effectiveness of using different types
of features for learning the translation filter. Note that all the
baseline methods (except ours and ours-deep) in Fig. 10 do
not incorporate the scale filter and the re-detection module.
FromFig. 10,we have the following observations: (1)Deeper
CNN features facilitate correlation filter based trackers in
locating target object (the CT-VGGNet19 method outper-
forms both the CT-AlexNet and CT-HOGHOI methods)
as the encoded semantic information within deep features
are robust to significant appearance changes. (2) Hand-
crafted features (HOG-HOI) with fine-grained spatial details
are helpful for estimating scale changes. The CT-HOGHOI
method outperforms the CT-VGGNet19 method in terms of
overlap success. The CT-HOGHOI method performs better
than the CT-AlexNet method using the AlexNet (Krizhevsky
et al. 2012). Note that the CT-HOGHOI method signifi-
cantly outperforms the CT-HOG features. The results show
the effectiveness of the proposed HOI features. (3) The CT-
HOGHOI-VGGNet19 method exploits both merits of deep
and handcrafted features and outperforms other alternative
approaches in both distance precision and overlap success.

6.4.2 Feature Analysis on Scale Filter

We evaluate different types of features for learning the
scale filter based on the CT-HOGHOI implementation. Fig-
ure 11 shows that the scale filter using HOG features do not
outperform that using both HOG and HOI features. Conse-
quently, we learn the scale filter using only HOG features
for efficiency. In addition, we implement the CT-HOGHOI-
joint-scale-HOG approach, which updates the translation
filter AT using the estimated scale in each frame as in
the DSST (Danelljan et al. 2014a) and MUSTer (Hong
et al. 2015) methods. We observe the CT-HOGHOI-joint-
scale-HOG approach performs worst among the compared
methods as slight inaccuracy in scale estimation always
causes a rapid degradation of the translation filter. As a result,
we use the ground-truth scale in the first frame to update the
translation filter.

6.4.3 Re-detection Module

We evaluate four re-detection schemes with the baseline
CT-HOGHOI method. Using the long-term filter based on
correlation filter (CT), we compare two different schemes to
update the SVM detector. We implement the CT-HOGHOI-
CF-SVM method using the proposed passive-aggressive
update scheme (see Sect. 4.6), while the CT-HOGHOI-CF-
SVMsv using the support vector update scheme (Zhang et al.
2014a). Figure 12 shows that the proposedpassive-aggressive
scheme performs slightly better. The reason is that, by
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Fig. 10 Feature analysis for learning translation filters on the OTB2013
dataset. The baseline trackers (CT-*) do not incorporate re-detection
modules. Using both deep and handcrafted features, the CT-HOGHOI-
VGGNet19 method outperforms other alternatives
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Fig. 11 Analysis of scale estimation schemes on the OTB2013 dataset.
We first analyze features for learning scale filters. Adding the HOI
features for scale estimation (CT-HOGHOI-scale-HOGHOI) does not
improve tracking accuracy when compared to the CT-HOGHOI-scale-
HOG method. The CT-HOGHOI-joint-scale-HOG method updates the
translation filterAT using the estimated scale change in each frame. In
contrast, we use the ground-truth scale in the first frame to update the
translation filter AT)
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Fig. 12 Analysis of re-detection modules on the OTB2013 dataset.
Using the CT-HOGHOI method, we evaluate the results of using four
re-detection schemes. With the correlation filter based long-term filter,
we use two different schemes to update SVM using (1) the proposed
passive-aggressive scheme (CT-HOGHOI-CF-SVM) and (2) the sup-
port vector update scheme (CT-HOGHOI-CF-SVMsv) described in
Zhang et al. (2014a). (3) The CT-HOGHOI-CF-CF method uses the
long-term filter itself as a detector. (4) The CT-HOGHOI-LSTM-SVM
method using the hidden states of an LSTM network as the long-
termfilter. The proposedCT-HOGHOI-CF-SVMscheme performswell
against other alternative approaches

directly updating the hyperplane h in (22), the passive-
aggressive scheme makes use of all the training data. In
contrast, the support vector scheme uses a small subset of
training data (support vectors) to update model. As the long-
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Fig. 13 Performance comparison of the baseline LSTM tracker Ning
et al. (2017) on training, validation, and test sets under one pass evalua-
tion (OPE). The legend of precision plots shows the distance precision
scores at 20 pixels. The legend of success plots contains the overlap
success scores with the area under the curve (AUC)

term filter can be used as a detector as well, we implement the
CT-HOGHOI-CF-CFmethod by replacing the SVMdetector
with the long-term filter. However, the CT-HOGHOI-CF-CF
methd does not perform as well as the CT-HOGHOI-CF-
SVM. For the CT-HOGHOI-LSTM-SVM method, we use
the hidden states of an LSTM network as the long-term filter.
Due to limited training data, the CT-HOGHOI-LSTM-SVM
method does not perform as well as the CT-HOGHOI-CF-
SVM, which uses the correlation filter based long-term filter.
To investigate the influence of training data for the LSTM,
we follow the project (Ning et al. 2017) (https://github.com/
Guanghan/ROLO) to implement a baseline tracker, which
uses the LSTM cell to produce tracking results. We use the
same 50 sequences from the OTB2013 dataset as the test set
and the remaining sequences of the OTB2015 dataset as the
validation set. Figure 13 shows the tracking performance on
training, validation, and test sets. We attribute the large per-
formance gap on training and validation/test sets to limited
training data (58 sequences in total for training).

6.5 Sensitivity Analysis

We discuss how we set three important thresholds: (1) re-
detection threshold Tr for activating the detection module;
(2) acceptance threshold Ta for adopting detection results;
and (3) stability threshold Ts for conservatively updating the
long-term filter. We use the tracking results on the lemming
sequence for illustration. As shown in Fig. 7, we implement
a baseline CT-HOGHOI method, which does not incorporate
a re-detection module and fails to track the target after the
360-th frame. The tracked results cover a variety of track-
ing successes and failures. We apply the long-term filter to
compute the confidence scores of the tracked results.Wefine-
tune the stability threshold values for conservatively updating
the long-term filter and examine the correlation between the
confidence scores and the overlap success rates. We empiri-
cally find thatwhen targets undergo occlusion, the confidence
scores are generally smaller than 0.15. As such, we set the
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Fig. 14 Sensitivity analysis on the OTB2013 dataset (Wu et al. 2013a)
under one pass evaluation (OPE). The legend of precision plots shows
the distance precision scores at 20 pixels. The legend of success plots
contains the overlap success scores with the area under the curve (AUC)

re-detection threshold Tr to 0.15. For setting the acceptance
threshold Ta , we use a larger value to accept the detection
results conservatively. We initialize the acceptance thresh-
old Ta two times of the re-detection threshold Tr . We use
the grid search and empirically set the acceptance threshold
Ta to 0.38 for better results. Figure 14 shows that the per-
formance is not sensitive to Ta between 0.3 and 0.45. For
setting the stability threshold Ts , we show in Fig. 15 the con-
fidence scores using different threshold values to update the
long-term filter. Figure 15 shows that the performance is not
sensitive to a reasonable selection of stability threshold Ts
(0.2–0.5). We thus set Ts equal to Ta as 0.38.

6.6 Exploiting Contextual Cues

We explore two approaches for incorporating surrounding
context for learning the translation filter AT: (1) scaling:
enlarging the target bounding box by scaling the bounding
box with a given factor, and (2) padding: evenly padding the
width and height of the bounding box with a certain size.
We plot the tracking results in terms of distance precision on
50 benchmark sequences (Wu et al. 2013a) in Fig. 16. The
results show that the performance of the translation filter is
sensitive to the padding size of surrounding context on tar-
get objects. For the target objects with smaller aspect ratios,
e.g., jogging and walking, it performs better with evenly-
padded context areas in precise localization. This motivates
us to exploit the merits of these two approaches simulta-
neously. From Fig. 16a, we find that a scaling factor of 2.8
leads to good results. For the target object with a small aspect
ratio (e.g., a pedestrian), we find that padding the bounding
box with 1.4 times of height in the vertical directions yields
improved results as shown in Fig. 16b. This heuristic, despite
its simplicity, provides a moderate improvement in locating
target objects. For example, the overall distance precision
rate on the OTB2013 dataset increases from 81.6 to 84.8%.
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Fig. 15 Sensitivity of the threshold selection. The tracking confidence
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Fig. 16 Validation of incorporating context. Distance precision results
on learning translation filter with different sizes of context area on the
OTB2013dataset (Wuet al. 2013a).aEnlarge the boundingboxof target
by a given factor to incorporate surrounding context. b Uniformly pad
the width and height of target bounding box by a factor proportional to
the target size. The horizontal axis indicates the context area size that
gives rise to the best result on the particular sequence. The green line is
the averaged result, and the shaded area shows the standard deviation
(Color figure online)

6.7 Qualitative Evaluation

We evaluate the proposed algorithm with five state-of-the-
art trackers [MUSTer (Hong et al. 2015), KCF (Henriques
et al. 2015), STC (Zhang et al. 2014b), Struck (Hare et al.
2011), and TLD (Kalal et al. 2012)] on seven sequences
with representative challenging attributes in Fig. 17. The
MUSTer tracker contains similar tracking components as
our approach, i.e., translation and scale filters as well as a
re-detection module, and performs well against the other
methods. However, the translation filters in MUSTer are
learned from color attribute features (Danelljan et al. 2014b),
which are not robust to background clutters (coke) and fast
motion (jumping). With the use of the kernelized correlation
filter learned from HOG features, the KCF tracker (similar
to the baseline CT-HOG method in Fig. 11) performs well
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Fig. 17 Qualitative comparison. Tracking results on the seven challeng-
ing sequences are from our approach, the MUSTer (Hong et al. 2015),
KCF (Henriques et al. 2015), STC (Zhang et al. 2014b), Struck (Hare
et al. 2011) and TLD (Kalal et al. 2012) algorithms (×: no tracking

output). The proposed method performs favorably against the baseline
trackers in terms of both translation estimation and scale estimation.
From first to last row: coke, shaking, skating1, david, car4, jumping
and jogging-2

in handling significant deformation and fast motion (david).
However, the KCF tracker tends to drift when the target
undergoes temporary occlusion (coke) and fails to recover
from tracking failures (jogging-2). Furthermore, the KCF
tracker does not perform well for scenes with background
clutters (shaking) due to the presence of noisy image gradi-
ents. Although the STC tracker can estimate scale changes,
it does not perform well when the target objects undergo
significant scale changes or abrupt motion (jumping). This
is because the STC tracker uses intensity as features and

the scale is estimated from the response map of one sin-
gle translation filter. The Struck tracker does not perform
well when the target objects undergo out-of-plane rotation
(david), heavy occlusion, background clutter (coke), or out-
of-view movement(jogging-2), as one single classifier is
unlikely to balance model stability and adaptivity well. The
TLD tracker can recover target objects from tracking fail-
ures by performing detection in each frame. However, the
tracking component in TLD is updated too aggressively to
locate objects undergoing significant deformation and fast
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#120 #060 #240

Fig. 18 Failure cases on the girl2, singer2 and soccer sequences (Wu
et al. 2013a). Red: ours-deep; blue: ours; green: ground truth (Color
figure online)

motion (shaking and jumping). As the TLD tracker updates
the detector in each frame, drifting (skating1) and false pos-
itive re-detections are likely to occur as well (jogging-2).

The proposed tracker performs well in estimating both the
translation and scale changes on these challenging sequences.
Weattribute the favorable performance to three reasons. First,
we learn the translation filterAT over a complementary set of
features: HOG and HOI. Our tracker is thus less sensitive to

illumination and background clutter (shaking and singer2),
rotation (david), and partial occlusion (coke). Second, the
scale filterAS and the translation filterAT are updated inde-
pendently. This design effectively alleviates the degradation
of the translation filter caused by inaccuracy in scale esti-
mation as in the MUSTer tracker. It also helps alleviate the
drifting problem caused by scale change, e.g., rapid perfor-
mance loss in scale estimation on the jumping sequence for
the STC tracker. Third, the online trained detector can re-
detects target objects in case of tracking failure, e.g., in the
presence of the heavy occlusion (coke) or target disappear-
ance from the camera view (jogging-2).

We show sample tracking failures by the proposed trackers
in Fig. 18. For the girl2 sequence, when long-term occlusions
occur, the proposed re-detection scheme is not activated due
to the high similarity between the target and surrounding peo-
ple. In the singer2 sequence, our method using deep features

Table 4 Overlap success rates (%) on the MEEM dataset

Ours MUSTer KCF DSST STC TLD
(Hong et al. 2015) (Henriques et al. 2015) (Zhang et al. 2014b) (Danelljan et al. 2014a) (Kalal et al. 2012)

ball 65.3 96.7 97.2 57.9 44.3 6.72

billieJean 53.4 52.4 53.6 12.4 11.6 10.3

boxing1 46.5 14.4 29.3 40.5 22.7 7.88

boxing2 97.0 27.5 52.9 35.2 12.8 40.9

carRace 97.3 98.1 33.6 33.6 6.53 0.33

dance 36.1 26.5 26.0 25.4 22.7 13.9

latin 41.7 44.4 44.4 36.8 12.0 14.6

ped1 100 8.1 50.9 55.6 48.3 56.8

ped2 15.2 12.9 12.0 14.3 14.2 3.95

rocky 100 38.5 100 100 74.0 10.7

Average 65.3 41.9 50.0 41.2 26.9 16.6

The best and second best results are highlighted by bold and underline

Table 5 Distance precision rates (%) on the MEEM dataset

Ours MUSTer KCF DSST STC TLD
(Hong et al. 2015) (Henriques et al. 2015) (Zhang et al. 2014b) (Danelljan et al. 2014a) (Kalal et al. 2012)

ball 66.4 96.5 96.7 56.6 56.8 6.72

billieJean 60.2 64.9 71.9 14.7 13.1 10.3

boxing1 49.2 20.3 26.5 46.4 29.0 3.03

boxing2 93.6 27.3 47.9 34.3 24.2 34.4

carRace 95.8 97.0 33.5 33.6 21.2 0.33

dance 25.1 22.5 22.8 21.0 19.3 10.2

latin 30.5 44.9 44.6 37.3 29.8 3.17

ped1 100 53.4 55.1 59.0 53.0 69.2

ped2 15.6 13.9 12.3 15.3 15.2 3.95

rocky 100 38.5 100 100 100 16.3

Average 63.6 47.9 51.1 41.8 36.2 15.8

The best and second best results are highlighted by bold and underline
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Fig. 19 Qualitative comparison in long-term tracking. Results on four
challenging sequences: boxing1, boxing2, ped1, and rocky are from
our approach, the MUSTer (Hong et al. 2015), KCF (Henriques et al.

2015), STC (Zhang et al. 2014b), DSST (Danelljan et al. 2014a) and
TLD (Kalal et al. 2012) algorithms (×: no tracking output for TLD).
Our approach performs well against the baseline methods

(ours-deep) fails to track the target as deep features capture
the semantics, which is not effective in differentiating the
dark foreground from the bright background. In contrast, our
methodwith the handcrafted features encodes the spatial fine-
grained details and performs well over the entire sequence.
For the soccer sequence, the cluttered background yields a
large amount of spatial details that lead our method not using
deep features to drift, while the semantics within deep fea-
tures are robust to such appearance variations.

6.8 MEEMDataset

In addition to the OTB2013 and OTB2015 datasets, we com-
pare with correlation filter based trackers (MUSTer, KCF,
STC, and DSST) on the dataset used in the MEEM method
(http://cs-people.bu.edu/jmzhang/MEEM/MEEM.html). TheMEEM
dataset contains 10 sequences with featured challenging

attributes, such as heavy occlusion (dance, boxing1, boxing2,
ped1, and ped2), abrupt illumination changes (carRace, and
billieJean), low contrast (ball, ped2, rocky, and billieJean),
and significant non-rigid deformation (latin, ball, carRace,
dance, and billieJean). This dataset contains approximately
7500 frames in total.We report the results of ourmethodwith-
out using deep features for fair comparison. We also include
the TLD tracker in our comparison to analyze the effective-
ness of the re-detection module. For fair comparisons, we
fix all the parameters as used in the OTB2013 and OTB2015
benchmark studies.

Table 4 and 5 show that the proposed algorithm performs
favorably against the state-of-the-art trackers with more than
10% gains in both overlap success and distance precision
rate. Among the other correlation trackers, the KCF method
performs well due to the robustness of kernelized correlation
filters. The DSST and MUSTer trackers update the transla-
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tion filters by taking the scale changes into consideration.We
observe that such an update scheme does not perform well
on these challenging sequences as slight inaccuracy in scale
estimation causes significant performance loss of the trans-
lation filter and the detection module. The MUSTer tracker
is sensitive to false positive detections and thus fails to track
target objects.

We show the qualitative tracking results on four challeng-
ing sequences in Fig. 19 and compare their center location
error in Fig. 20. Figure 19 shows that correlation trackers
without re-detection modules (e.g., KCF, STC and DSST)
are unable to recover target objects from heavy occlusion
(boxing1, boxing2, and ped1). We compare our approach
with the MUSTer and TLD trackers in greater details. In
the boxing1 sequence, the target boxer in blue is occluded
by the other boxer and ropes. The MUSTer tracker uses a
pool of local key-point features as the long-term memory of
target appearance and fails to handle heavy occlusion as few
reliable key points are detected in such case. For the TLD
tracker, the detector is learned on the thresholded intensity
features, which are less discriminative in representing the
target undergoing fast motion and frequent occlusion. In the
boxing2 sequence, the MUSTer tracker aggressively updates
the detector online and yields a false positive detection
in the 400th frame. This false positive detection inaccu-
rately reinitializes the tracking component and causes rapid
performance loss of both the tracker and detector in sub-
sequent frames. Instead, our tracker alleviates the noisy
update problem through a conservative update scheme and
thus increases tracking precision. In the ped1 sequence, the
MUSTer tracker does not estimate scale correctly at the
beginning of the sequence. The errors in scale estimation
get accumulated in subsequent frames and adversely affects
the translation estimation and the long-termmemorymodule.
Our method updates the translation and scale filters indepen-
dently and does not from such error accumulation. For the
rocky sequence, parts of the target object are similar to the
tree branches in the background due to low image resolution.
As such, false positive detections cause both theMUSTer and
TLD trackers to lose the target object.

Overall, the proposed tracker effectively exploits multiple
correlation filters for robust object tracking. Both the quali-
tative (Fig. 19) and quantitative (Fig. 20) results demonstrate
that the proposed tracking algorithm performs favorably
against the state-of-the-art trackers.

7 Conclusion

In this paper, we propose an effective algorithm for robust
object tracking. Building on the recent success of correla-
tion filter based tracking algorithm, we extended it in several
aspects. First, we address the stability-adaptivity dilemma by
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Fig. 20 Quantitative results in center location error on the four chal-
lenging sequences in Fig. 19. Our method performs favorably against
the compared trackers

exploiting three correlation filters: (1) translation filter, (2)
scale filter, and (3) long-term filter. These three filters work
collaboratively to capture both the short-term and long-term
memory of target object appearance. Second, we propose
to learn correlation filter using HOI features in addition to
the commonly used HOG features for improving localization
accuracy. We further investigate the appropriate size of sur-
rounding context and learning rates to improve the tracking
performance. Third, we explicitly handle tracking failures by
incrementally learning an online detector to recover the tar-
gets. We provide a comprehensive ablation study to justify
our design choices and understand the trade-off. Extensive
experimental results show that the proposed algorithm per-
forms favorably against the state-of-the-art methods in terms
of efficiency, accuracy, and robustness.
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Appendix

In this appendix, we present two additional ablation studies
on theOTB2013 dataset. First, we show the results of directly
minimizing the errors over all the tracked results to update
the correlation filters. Second, we analyze the robustness of
the proposed method by spatially shifting the ground truth
bounding boxes.

By directly minimizing the errors over all the tracked
results, we consider all the extracted appearances {x j , j =
1, 2, . . . , p} of the target object from the first frame up to the
current frame p. The cost function is the weighted average
quadratic error over these p frames. We assign each frame
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Fig. 21 Performance of different update schemes on the OTB2013
dataset (Wu et al. 2013a) under one pass evaluation (OPE). Consid-
ering all the tracked results (ours-all-update) to update the translation
filter does not improve tracking performance. The legend of precision
plots shows the distance precision scores at 20 pixels. The legend of
success plots contains the overlap success scores with the area under
the curve (AUC)

Fig. 22 Spatial shifts. The amount of shift is 10% of width or height of
the ground-truth bounding box

j with a weight β j ≥ 0 and learn correlation filter w by
minimizing the following objective function:

min
w

p∑

j=1

β j

(
∑

m,n

∣
∣
∣
〈
φ

(
x j
m,n

)
, w j

〉
− y j (m, n)

∣
∣
∣
2 + λ

〈
w j , w j

〉
)

,

(23)

where w j = ∑
k,l a(k, l)φ(x j

k,l). We have the solution to
(23) in the Fourier domain as:

Ap =
∑p

j=1 β jK j
x � Y

∑p
j=1 β jK j

x �
(
K j

x + λ
) , (24)

where K j
x = F

{
k j
x

}
and k j

x (m, n) = k(x j
m,n, x j ). We per-

form a grid search and set the weight β j = 0.01 and the
update rate λ = 10−4 for the best accuracy. We restore the
parameter {K j

x }, j = 1, 2, . . . , p − 1, to update the correla-
tion filter in frame j .

Note that such an update scheme is not applicable in prac-
tice as it requires a linearly increasing computation andmem-
ory storage over the increase of frame number p. The average
tracking speed is 2.5 frames per second (fps) versus 20.8 fps
(ours) on the OTB2013 dataset. However, Fig. 21 shows that
this update scheme does not improve performance. The aver-
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Fig. 23 Tracking performance with spatially shifted ground truth
bounding boxes on the OTB2013 dataset (Wu et al. 2013a) under one
pass evaluation (OPE)

age distance precision is 83.5 versus 84.8% (ours), and the
average overlap success is 62.0 versus 62.8% (ours).

We spatially shift the ground truth bounding boxes with
eight directions (Fig. 22) and rescale the ground truth bound-
ing boxes with scaling factors 0.8, 0.9, 1.1 and 1.2. Figure 23
shows that slightly enlarge the ground truth bounding boxes
(with scaling factor 1.1) does not significantly affect the
tracking performance.
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