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Abstract
The segmentation of video sequences into foreground and background regions is a low-level process commonly used in
video content analysis and smart surveillance applications. Using a multispectral camera setup can improve this process by
providing more diverse data to help identify objects despite adverse imaging conditions. The registration of several data
sources is however not trivial if the appearance of objects produced by each sensor differs substantially. This problem is
further complicated when parallax effects cannot be ignored when using close-range stereo pairs. In this work, we present
a new method to simultaneously tackle multispectral segmentation and stereo registration. Using an iterative procedure, we
estimate the labeling result for one problem using the provisional result of the other. Our approach is based on the alternating
minimization of two energy functions that are linked through the use of dynamic priors. We rely on the integration of shape
and appearance cues to find proper multispectral correspondences, and to properly segment objects in low contrast regions.
We also formulate our model as a frame processing pipeline using higher order terms to improve the temporal coherence of
our results. Our method is evaluated under different configurations on multiple multispectral datasets, and our implementation
is available online.

Keywords Video object segmentation · Cosegmentation · Multispectral imagery · Energy minimization · Video signal
processing

1 Introduction

The detection and segmentation of objects of interest based
on motion analysis in video sequences is a fundamental
early vision task. In the context of video surveillance and
intelligent environments, objects of interest (or “foreground”
objects) are disruptors that temporarily break the natural state
of the observed scene (the “background”). Several types of
approaches exist to classify image regions as being “of inter-
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est” based on this criteria (see Bouwmans 2014; Perazzi et al.
2016). While these all have different qualities, they suffer
from the same fundamental drawback: if the contrast between
an observed object and the background becomes too low, our
ability to detect and segment it automatically deteriorates.
This problem is not specific to the visible light spectrum, as
this camouflaging can occur with any imaging modality.

However, interestingly, the phenomena describing the
appearance of an object and the conditions under which it
becomes harder to identify are rarely shared across several
imaging modalities. This is especially true when consider-
ing for example the visible and Long-Wavelength Infrared
(LWIR) spectra, as the correlation between the temperature
of an object and its visible appearance is very weak (see
Bilodeau et al. 2011).We show an example of this in Fig. 1. In
fact, many surveillance systems rely on the complementarity
of these two imaging modalities to detect abnormal events:
the visible spectrum can easily identify large objects near
ambient temperatures (e.g. vehicles), and theLWIR spectrum
can easily identify objects that exhibit abnormal temperatures
(e.g. animals, engine parts).
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Fig. 1 Examples of mutual foreground segmentation in low contrast
conditions for RGB-LWIR image pairs. On the left, the person is only
partly perceptible in the LWIR spectrum due to a winter coat, but is
clearly perceptible in the visible spectrum. The opposite is true on the
right, where legs are hard to perceive in the visible spectrum, but easy
to perceive in the LWIR spectrum

Integrating data captured from different spectral bands
to attain benefits in recognition tasks is however not triv-
ial. If the optical axes of the sensors are not already aligned
using a beam splitter, a registration method has to be used
to bring data points back into a common coordinate system.
The image registration problem has been thoroughly stud-
ied for identical sensor pairs, but multispectral registration
is fundamentally more challenging (c.f. Zitová and Flusser
2003). Since the appearance of objects cannot be directly
relied upon to find local correspondences, higher level image
features such as edges have to be used instead. These are
typically harder to compute, and often result in a loss of reg-
istration accuracy at the pixel level when parallax effects are
not negligible.

Past researchhas focusedmostly on the problemsof binary
(or foreground-background) segmentation and multispectral
image fusion/registration as separate issues. Yet, holistic
approaches such as the ones of Torabi et al. (2012) and Zhao
and Sen-Ching (2014) can outperform combinations of dis-
tinct methods on identical tasks. These holistic approaches
first optimize registration using foreground object contours
or trajectories as high-level features, and then use integrated
image data to improve their segmentation. Solving both prob-
lems at once would bemore beneficial, but this goal implies a
“chicken-and-egg” dilemma: the result of one task is needed
to obtain the other.An ideal holisticmethod should thus adopt
an iterative optimization approach to resolve this issue. In
the case of video sequences, proposed solutions should also
consider the temporal redundancy of data to improve their
performance. Finally, in the context of surveillance applica-
tions, the entire process should function without any human
supervision, and allow frame pairs to be processed one at a
time.

In this paper, we propose a holistic method to address
both segmentation and registration problems by inferring
their solutions alternately using move-making algorithms on
a set of conditional random fields. We use self-similarity

descriptors and shape cues to find proper pixel-level matches
across imagingmodalities in non-planar scenes, and integrate
image data to improve foreground-background partition-
ing. This integration is achieved by iteratively refining local
color models and shape contour positions while continu-
ously realigning data sources. Our two goals are formulated
as distinct energy minimization problems, and we use pro-
visional inference results as dynamic priors to converge to
a global solution. We also rely on dynamic temporal con-
nections updated via motion cues to improve segmentation
coherence over long image sequences.

Our principled bottom-up approach requires no human
intervention, and relies on no prior knowledge of the fore-
ground objects’ nature. Our models are formulated so that
imaging modalities can be combined without assumptions
about their specific characteristics, as image regions con-
taining discriminative data are automatically identified. This
power of discrimination is exploited to scale the importance
of each imaging modality when registering and integrating
pixel-level data. It is also used to speed up shape contour
evolution in low contrast regions by reducing penalties for
label discontinuities when the other view possesses strong
intensity gradients in its corresponding regions. Besides, we
tackle foreground-background segmentation in the general
case of video surveillance, meaning we assume the scene
might contain multiple foreground objects at different depths
and scales, and that they might not always be moving. This
differs significantly from traditional cosegmentation meth-
ods, as we make no assumption regarding the distribution of
foreground and background regions in the observed scene.

Through our experiments, we show that our primary goal,
mutual foreground segmentation, can be achieved efficiently
despite low contrast and other adverse conditions in both
visible andLWIR images. Performance evaluations show that
our approach outperforms both supervised and unsupervised
monocular segmentation methods in terms of F1 score on
the VAP dataset of Palmero et al. (2016). Compared to the
recent video segmentationmethod of St-Charles et al. (2016),
our method improves its average F1 score by 13%, from
0.766 to 0.866. To help future benchmarking on this task, we
offer a new multispectral video dataset for the simultaneous
evaluation of registration and segmentation performance.1

Finally, we also offer our source code and testing framework
online.2

Note that our method was previously introduced (St-
Charles et al. 2017). Here, beyond presenting an extended
description of our approach, we introduce a new spatiotem-
poral term to our model and study its effect on segmentation
accuracy, we conduct an ablation study and test the sensi-
tivity of our main parameters individually, we present new

1 http://www.polymtl.ca/litiv/vid/index.php.
2 https://github.com/plstcharles/litiv.
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experiments on two pre-existing datasets, we introduce a
new non-planar RGB-LWIR video dataset, and we provide a
benchmark for the evaluation of segmentation and stereo reg-
istration on this newdataset. Our source code and annotations
have been made available online for future works tackling a
similar problem.

The paper is organized as follows. In Sect. 2, we present
previousworks related to ourmultispectralmutual segmenta-
tion problem, and highlight major differences. In Sect. 3, we
describe our dual modeling approach, inference strategies,
and implementation details. In Sect. 4, we present parame-
ter and configuration studies, and evaluation results on three
publicly available datasets. Lastly, we conclude with some
remarks in Sect. 5.

2 PreviousWork

The problem of foreground-background segmentation in
images is difficult to tackle without some assumptions or
constraints. Monocular segmentation solutions typically rely
on visual saliency hypotheses (e.g. single foreground object
roughly focused) or human supervision to obtain good results
(Arbelaez et al. 2011; Rother et al. 2004). The same problem
in the temporal domain (i.e. on image sequences) is easier to
address due to the additional assumptions that can be made
regarding object or scene motion.

Multiple families of methods exist in video segmenta-
tion; the main ones are listed here. Background subtraction
methods work by building a model representing the back-
ground under the assumption that the camera is static. These
methods then perform one-class pixel classification to label
all outliers as foreground without supervision (Bouwmans
2014). These methods are favored in cases where foreground
objects can temporarily become immobile, as they will retain
their labeling for some time. Other video object segmenta-
tion approaches instead extend the concept of visual saliency
into the temporal domain using highly connected graph struc-
tures (Perazzi et al. 2016). These approaches can usually
be applied to sequences with changing viewpoints, but are
computationally more demanding. Finally, motion cluster-
ingmethods exist that rely on optical flow or trajectory points
partitioning to identify image regions that behave differently
from their surroundings (Tron and Vidal 2007). The strong
link between motion partitioning and video object segmen-
tation has also become a focus in recent years (Jain et al.
2017; Cheng et al. 2017). Also, in semi-supervised settings,
approaches based on end-to-end neural networks have also
become increasingly popular for single object video segmen-
tation (Cheng et al. 2017; Caelles et al. 2017).

Foreground-background segmentation can become easier
if multiple images of the object(s) of interest are avail-
able. Two families of methods have been developed for this

circumstance: cosegmentation methods and mutual segmen-
tation methods. Cosegmentation methods typically rely on
visual saliency assumptions (e.g. shared foreground appear-
ance and low background correlation across different views),
and assume a single object is targeted and shared throughout
all views (Rother et al. 2006; Zhu et al. 2016). Interestingly,
cosegmentation methods can also work with different object
instances from the same object category (Vicente et al. 2011).
On the other hand, mutual segmentation methods typically
assume that the same object instance is observed from mul-
tiple viewpoints, and optimize the geometric consistency of
the extracted foreground region (Djelouah et al. 2015; Jeong
et al. 2017; Riklin-Raviv et al. 2008). Our work falls into
this second family of methods, as we assume the use of a
synchronized stereo pair for data capture.

Previous mutual segmentation methods have typically
focused on single-spectrum imaging (Riklin-Raviv et al.
2008; Ju et al. 2015; Bleyer et al. 2011), or have used depth
sensors to solve the registration problem and to provide a
range-based solution for foreground object detection (Jeong
et al. 2017; Djelouah et al. 2015; Zhang et al. 2016). Of these,
our proposed method is closest to the work of Riklin-Raviv
et al. (2008), who termed the idea of “mutual segmen-
tation” for objects in visible image pairs. Their approach
addresses the uncertainty of object boundary localization
under occlusions and noise by iteratively optimizing active
contours without supervision. Their use of a biased shape
term however entails that a free parameter directly con-
trols the elimination of ambiguous shape segments in the
image pair. In our work, we avoid this parameterization
issue by relying on local saliency and self-refining color
models to automatically integrate multiple view data. Our
object contours then expand and contract until they natu-
rally converge. Besides, the method of Riklin-Raviv et al.
(2008) considers that all images are related only by planar
projective homographies, and thus it cannot handle parallax
issues in 3D scenes. This latter problem was addressed by Ju
et al. (2015), who also proposed a contour-based modeling
approach formutual foreground segmentation in stereo pairs.
This more recent approach however relies on the assumption
that near-perfect foreground contours obtained via human
supervision are available in at least one of the views. Lastly,
the work of Bleyer et al. (2011) is also somewhat related to
ours: they tackle disparity (or parallax) estimation for cali-
brated stereo pairs using a piecewise planar model based on
object segmentation. However, their main goal is scene-wide
data registration, which is very computationally demanding.
According to Tippetts et al. (2016), processing an image pair
took the method about 20 min. In our case, we only focus on
the registration and segmentation of foreground objects clas-
sified as such in a video surveillancemindset. Thismakes our
proposed approach much more lightweight and applicable to
real data streams.
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The use of multispectral data (other than RGBD) has been
mostly neglected in the context of mutual segmentation or
cosegmentation due to the registration problem. As stated
before, this difficulty is due to the (typically) low correlation
between the appearances of objects in different spectral bands
(see Zitová and Flusser 2003). Beam splitters can be used to
avoid the registration problem altogether (Bienkowski et al.
2012; Hwang et al. 2015). These setups are however very
delicate, and they induce color distortions. Moreover, the
elimination of parallax also prevents the recovery of depth
information from the scene.

In practice, if the chosen spectral bands are not too distant
in terms of their imaging characteristics (e.g. visible light
and near-infrared), modern image descriptors and similar-
ity measures can be used to find local correspondences with
varying degrees of success (see Pinggera et al. 2012). These
“close” spectrum pairs are however less interesting to inte-
grate in machine vision systems due to their resemblance.
On the other hand, traditional appearance-based matching
approaches suffer when distant spectrum pairs are selected;
see for example the study done for visible (RGB) and Long-
Wavelength Infrared (LWIR) pairs by Bilodeau et al. (2014).
Multispectral registration thus has to rely on higher level
features that encapsulate raw object appearance in order to
find proper local correspondences. In the recent literature,
some have relied on edge matching in local neighborhoods
(Coiras et al. 2000;Mouats andAouf 2013) or inHough space
(Pistarelli et al. 2013) to resolve this problem. Edge-based
approaches are however more suited to man-made environ-
ments, and underperform in more general settings (e.g. open
terrain) where large intensity gradients are rarer or more
weakly correlated between imaging modalities.

Other works have instead addressed the registration prob-
lem in the temporal domain by adopting motion-based cues
(Torabi et al. 2012; Zhao and Sen-Ching 2014; Nguyen et al.
2016), which is more similar to our approach. In the work of
Torabi et al. (2012), the trajectories of foreground objects are
used for high-level registration based on the idea that position
andmotion are fully independent of appearance. In theworks
ofZhao andSen-Ching (2014) andNguyen et al. (2016), fore-
ground shapes obtained via background subtraction are used
for contour matching. This latter strategy has been shown
to be more pixel-accurate for the registration of foreground
objects, but it still depends strongly on the performance of
the segmentation method used. In our proposed method, we
address this problem by combining contour-based registra-
tion and segmentation into a global optimization framework.

Finally, as for the combination of multispectral regis-
tration and segmentation, we can highlight the existence
of a few papers. Torabi et al. (2012) propose a solution
based on object-wise planar registration, and improve seg-
mentation masks obtained via background subtraction by
combining multispectral data using a sum-rule approach.

Zhao and Sen-Ching (2014) also rely on object-wise pla-
nar registration, and use multiple object trackers to improve
the results of parallel segmentors a posteriori. In this case,
the methods are run in cascade to resolve the “chicken-and-
egg” optimization dilemma stated earlier. The strategies of
Torabi et al. (2012) and Zhao and Sen-Ching (2014) do not
handle occlusions well due to their high level registration
approach, and only provide a single-pass improvement to
the segmentation results of a given frame pair. Palmero et al.
(2016) introduced a human body segmentation method for
trimodal (RGBD-LWIR) image sequences based on feature
fusion using a random forest classifier. They also avoid pixel-
level registration by predefining a set of homographies to
use at runtime based on detected foreground object depth.
Davis and Sharma (2007) proposed a dual background sub-
traction model and contour extraction technique to improve
RGB-LWIR foreground fusion based on local visual saliency
evaluation. Similarly, Li et al. (2017) proposed a background
subtraction method based on the low-rank decomposition of
integrated RGB-LWIR pairs to improve foreground segmen-
tation in a global framework. The main shortcoming of these
latter two works is that they only handle planar scenes (i.e.
scenes where parallax issues are negligible) using a single
predefined homography. To the best of our knowledge, no
method has previously been proposed to tackle multispectral
non-planar registration and mutual foreground segmentation
simultaneously.

3 Proposed Approach

Our approach can be described based on its twomain compo-
nents: the stereo matching model for disparity (or parallax)
estimation on epipolar lines, described in Sect. 3.1, and
the shape matching model for binary image segmentation,
described in Sect. 3.2. These twomodels are conditional ran-
domfields formulated as discrete energy functions that tackle
the multispectral registration and segmentation problems in
an integrated fashion. Our energy functions are minimized
alternately using move-making algorithms, as described in
Sect. 3.3. The flowchart in Fig. 2 illustrates our approach.

We begin with an introduction of the general terms
and notation used in this section. Given a set of rectified
images I = {Ik} (with k = {0, 1} in the case of a stereo
pair), the disparity label space LD={0, . . . , dmax}, and the
background-foreground label spaceLS= {0, 1}, our goal is to
find the optimal pixel-wise disparity and segmentation label-
ings D= {Dk} and S = {Sk} such that:

Dk = argminDk
E stereo
k

(
Dk

)
, (1)

Sk = argminSk E
segm
k

(
Sk

)
, (2)
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Fig. 2 Flowchart of the proposed method. A monocular video segmen-
tation method is first used to initialize segmentation masks for both
cameras individually. Then, the energies of the stereo and segmentation
models (described in Sects. 3.1 and 3.2, respectively) are alternately

minimized until a proper global solution is reached. The output of our
method then consists of the refined segmentation masks of the input
frames, and of the reciprocal disparity labelings computed for both
cameras

where Dk=
{
dp : p ∈ Ik, dp ∈ LD

}
is a disparity labeling,

Sk = {
sp : p ∈ Ik, sp ∈ LS

}
is a segmentation labeling (or

mask), andwhere the energy cost functions E stereo
k and E segm

k
are described in Sects. 3.1 and 3.2, respectively. For now,
note that these functions are linked through their estimation
results,Dk andSk , which are used as dynamic priors through-
out the minimization. In other words, disparity labels dp for
each pixel p in Ik are used in E segm

k for appearance data
integration, and segmentation labels sp are used in E stereo

k
to improve stereo matching. Lastly, note that we sometimes
omit the k subscript in the following subsections to simplify
the notation, as most equations only deal with one image of
the stereo pair at a time.

3.1 Stereo RegistrationModel

We tackle the multispectral stereo registration problem for
non-planar scenes using a sliding window strategy for pixel
matching. This search for correspondences is limited to an
horizontal axis on the image plane due to epipolar geometry
constraints. These constraints restrict the disparity (or par-
allax) between the 2D projections of an observed 3D object
point to one dimension (see Hartley and Zisserman 2003).
In short, given the intrinsic and extrinsic parameters of the
stereo pair obtained via calibration, we can rectify the input
images. This forces the corresponding projection of a 2D
point in one view to be located somewhere on the same hor-
izontal line in the other view. While calibration does require
human intervention, it is a one-time effort generally accepted
in an unsupervised system. It could also be replaced by an
automatic approach (e.g. Nguyen et al. 2016).

For a pixel-wise disparity label map D, we define its
energy (or cost) to be minimized as

E stereo(D) = Eappearance(D) + E shape(D)

+ Euniqueness(D) + E smooth1(D)
. (3)

Each term in this cost function is crafted to promote a
desired property of the output disparity labeling, and is
described in detail in the following paragraphs. The first three
terms are unary costs summed over all pixels of the image.
The appearance and shape terms evaluate the local affinity
between a pixel p and its corresponding pixel shifted by
dp in the other view. The uniqueness term penalizes mul-
tiple matches with p in the other view. The last term is a
sum of pairwise smoothness costs used to penalize irregu-
lar disparities in uniform image regions. Note that in order
to maximize processing speed for image pair sequences, we
keep our stereo model simple. Our results would undoubt-
edly improve with second-order terms such as those of
Woodford et al. (2009) or Kohli et al. (2009), but at an
important increase in computational complexity. Moreover,
since we only focus on the registration of foreground objects,
higher-order surface smoothness priors are not as important
here.

3.1.1 Appearance and Shape Terms

These two terms convey the cost of matching an image patch
centered on a pixel p ∈ I to another one in the second view
which is offset according to its disparity label dp. The terms
are both defined as

E {appearance, shape}(D) =
∑

p∈I
A(

p, r(p, dp)
) · W(

p
)
, (4)

where r(p, dp) returns the pixel location in the other view
obtained by shifting p by dp on its epipolar line, A(p, q)

encodes the affinity cost for matching descriptor patches
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centered at p and q in each image, and W(p) encodes the
saliency coefficient for pixel p (detailed further down). For
the appearance term, the affinity cost map A is obtained by
densely computing local image descriptors over I0 and I1,
and by matching them using L2 distance in 15x15 patches
to dampen noise. As stated in Sect. 2, classic appearance-
based descriptors are not ideal for wide spectrum pairs such
as RGB-LWIR. To address this issue, we used Dense Adap-
tive Self-Correlation descriptors (DASC; Kim et al. 2015),
which are based on self-similarity measures. We also tested
the Local Self-Similarity descriptor (LSS; Shechtman and
Irani 2007) during our preliminary experiments, and found a
slight decrease in terms of overall registration performance.
For the shape term, we densely compute Shape Context
descriptors (Belongie et al. 2002) over S0 and S1, which are
the provisional segmentation masks. We then match these
descriptors using the same approach as for the appearance
term to obtain the shape affinity cost mapA. Our hypothesis
here is that the combination of these two types of descriptors
can provide better matching results than either one alone.
However, remember that multispectral matches are often
unreliable due to non-discriminative descriptors in uniform
image regions or in regions with very low multispectral cor-
relation. To avoid increasing pixel matching penalties in
such cases, we multiply the affinity cost by a local saliency
coefficient. In both the appearance and shape terms, this
local saliency coefficient for a given pixel p is defined as

W(p)= max

{
H

([
A(

p, r(p, d)
) ∀ d∈LD

])
,H

(
K (p)

)}
,

(5)

where K (p) returns the matrix of local descriptors in the
patch centered on pixel p, andH(·) computes the sparseness
metric of Hoyer (2004) over a vector or matrix. This met-
ric returns a value ∈ [0, 1], meaning W(p) is also in that
interval. In simple terms, if all affinity values are uniform
(i.e. all disparity offsets have the same cost), and if the local
patch’s descriptor bins are all uniform, then W(p) will take
a low value. In turn, this will lower the cost for dp eval-
uated through the affinity map A, and make local labeling
depend more on neighboring decisions through the smooth-
ness term. A simplified case of this is illustrated in Fig. 3.
Besides, note that in E shape, we nullify the saliency outside
foreground regions to avoid influencing background dispar-
ity estimation around object contours. We can assume that
disparity estimation for background regionswill be less accu-
rate due to this missing term contribution, but since we focus
on the registration of foreground shapes, this is inconsequen-
tial. We study the individual contributions of the appearance
and shape terms to the overall performance of our approach
in Sect. 4.

Fig. 3 Simplified case of saliency evaluation during a correspondence
search on an epipolar line. On the left, for the “A” pair, low contrast in
one image leads to roughly uniform affinity scores and matching costs,
which translate into a low local saliency value. On the right, for the “B”
pair, good contrast leads to varied affinity scores and matching costs,
and a high local saliency value

3.1.2 Uniqueness Term

This unary term is used to penalize having multiple epipolar
correspondences tied to the same pixel. This helps spread
and equalize disparity labels in occluded and weakly dis-
criminative image regions. Our formulation for this term is
different from the classic mutual exclusion constraint pro-
posed by Kolmogorov and Zabih (2001), which assigns an
infinite cost to all extra correspondences found for a pixel p.
Instead, we rely on a soft constraint that permits many-to-
one correspondences with gradually increasing costs. This
strategy allows our stereo model to temporarily stack extra
correspondences during label swaps if the extra cost is worth
absorbing. This translates into faster and larger label moves
in the early steps of our inference approach, and redistri-
bution of extra correspondence costs over future iterations.
Since our method only requires a rough registration of fore-
ground shapes to start properly segmenting them, this allow
us to bootstrap the segmentation model without spending too
much time on disparity estimation. We define the uniqueness
cost for a pixel p as
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U(p) =
{∑N (p)−1

n=1
w·n

w+n−1 if N (p) > 1
0 otherwise

, (6)

where N (p) returns p’s current correspondence count with
pixels in the other view, and w is a small weight (we used
w = 3 in our tests). For this to work, we need to keep track of
pixel correspondence counts (N (p)) as latent variables in our
model. However, since we use a move-making strategy for
model inference, many correspondences might be removed
in a single iteration. This makes the total cost of a move over
several pixels hard to predict with (6) due to its nonlinearity.
To solve this problem, we define our uniqueness term as

Euniqu.(D) = λu ·
∑

p∈I

(
–U

(
r(p,d ′

p)
)

N
(
r(p,d ′

p)
) + w·N

(
r(p,dp)

)

w+N
(
r(p,dp)

)
−1

)
, (7)

where d ′
p is the previous disparity label of p, and λu is a

fixed scaling factor. Note that we specify the values used
for important factors such as λu in Sect. 3.3, and test their
contribution to overall performance in Sect. 4.4. The formu-
lation behind (7) provides the worst-case energy variation
between two labeling states, and guarantees that estimated
label update costs provided to the move-making algorithm
will always be similar but greater than the evaluated costs
once the full move is complete. The left term of the sum
corresponds to the energy refunded if a previous pixel cor-
respondence is broken, and the right term corresponds to an
increase due to a new correspondence. The approximation
of the true energy variation is required so that the optimizer
always minimizes (3), which lets us avoid having to fall back
to an older labeling state if the total energy increases. We
further explain why this estimation is needed via an example
in Fig. 4.

3.1.3 Smoothness Term

Lastly, we rely on a classic truncated pairwise (first-order)
smoothness term to enforce the spatial coherence of our
model. This term penalizes cases where neighboring pix-
els have irregular disparity labels despite being located in
a roughly uniform image region, as described by a weak
local gradient magnitude. If the gradient detected between
the two pixels is instead strong, the penalty is lowered, as
object edges more likely correspond with breaks in labeling.
We define this term as

E smooth1(D) = λs1·
∑

〈p,q〉∈N
min

(
|dp− dq |, 10

)2· Gs
I(p, q), (8)

with

Gs
I(p, q) = max

(
exp

(
1− |∇ I (p,q)|

g

)
− 0.5, 0

)
, (9)

Fig. 4 Example showing why an approximation of the uniqueness cost
variation must be used under a move-making optimization approach.
The two rows are epipolar lines whose pixels have to be matched indi-
vidually. Already established correspondences are shown with solid
black arrows, and move proposals are shown with dashed red arrows.
The proposals all originate from a single disparity label for each move,
which in this case is d = 0, meaning r(px , d) = qx . Here, the move
operation could lower N (q2) (and thus lower the total energy) by reas-
sociating p1 with q1 and p3 with q3, but the energy variation induced
by these swaps cannot be predetermined exactly. It will depend on how
many links with q2 are broken during the move (i.e. one or two) due to
the other terms, and whether p4 is still linked with q4 afterwards, and
so on (Color figure online)

where λs1 is a fixed scaling factor, N is the set of first order
cliques in the graph model, ∇ I (p,q) returns the normalized
local image gradient magnitude between pixels p and q of
image I , and g is a constant value defining the expected object
contour gradient magnitude (also specified in Sect. 3.3). The
truncation value (10 is used) allows large discontinuities to
occur by capping the maximum smoothness penalty.

3.2 SegmentationModel

Our segmentation model’s role is to integrate multispec-
tral image data so that foreground objects can be properly
segmented in both views, even in low contrast imaging con-
ditions. Our model also needs to be lightweight enough so
that cost updates and inference is fast, as shape priors are
continuously modified. Since our goal is to build an unsu-
pervised approach, we initialize the priors described below
using the approximate masks provided by a monocular seg-
mentation method (i.e. the one of St-Charles et al. 2016).
This method was chosen because it can detect multiple fore-
ground objects at once, and it can keep segmenting them at
least partially if they become immobile. In Sect. 4, we show
that our method works even when an initialization mask is
provided for only one of the two views.

We describe the energy cost of a pixel-wise segmentation
proposal S as

E segm(S) = Ecolor(S) + Econtour(S)

+ E smooth2(S) + E temp(S)
. (10)
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Fig. 5 Illustration of the simplified frame layering used in our segmen-
tation model for temporal labeling refinement. In green, the first-order
cliques that form E smooth2 are used to enforce spatial coherence in every
layer. In blue, the higher order cliques that form E temp are used to
enforce temporal coherence across layers. Note that due to foreground
motion, these cliques would not all be linked to the same underlying
nodes; in reality, the links are dictated by image realignment based on
optical flow (Color figure online)

Once again, the terms of this cost function are defined so that
various characteristics expected of the segmentation masks
can be promoted. The first two terms are unary costs summed
over all pixels, and their role is to influence local segmen-
tation decisions based on image data. The color data term
maximizes the separation between the color distributions of
foreground and background pixels, while the contour data
termpenalizes shapemismatches between the views based on
distance transforms. The third term is a pairwise smoothness
sum similar to (8), and is used to penalize labeling irregu-
larities in uniform image regions. Lastly, the temporal term
is a sum of higher order clique costs used to enforce tem-
poral labeling coherence. These terms are all described in
the following paragraphs. Note that due to the presence of
the higher order temporal term in (10), our model is built as
a multi-layer lattice, as illustrated in Fig. 5. The top layer’s
nodes correspond to the pixels of the latest frame of the video
sequence, and lower layers’ nodes correspond to the pixels of
older frames. This effectively creates a pipeline where seg-
mentation masks can be improved over time based on new
image data. We discuss the improvement achieved using this
approach with various pipeline depths in Sect. 4.

3.2.1 Color Term

We define the cost for this unary term using a color mixture
model for each modality of the stereo pair. We employ the
classic approach of Rother et al. (2004)which relies onGaus-
sianmixture models to represent foreground and background
regions. These models can provide us with the probability

that a pixel belongs to the background or foreground based
on its color value. In our implementation, we use six mixture
components, and use our initial and updated segmentation
masks to refine ourmodels after each iteration, in each frame.
We define the color cost of all pixels as

Ecolor(S)=
∑

p∈I

⎧
⎨

⎩

− log
(
h(Ip;β1,μ1,Σ1)

)
if sp = 1

− log
(
h(Ip;β0,μ0,Σ0)

)
otherwise

,

(11)

where h(x;β,μ,Σ) returns the relative likelihood that the
pixel color x fits a Gaussian mixture model with compo-
nent weights β, means μ and covariance matrices Σ . Note
that the parameter subscripts in (11) indicate that either the
foreground or background model is used based on sp. These
parameters are initialized using k-means, and refitted after
every minimization step using the new estimated segmenta-
tion masks.

3.2.2 Contour Term

Next, we define another data term that penalizes label swaps
far from shape boundaries, and that combines these bound-
aries across the stereo pair. Its value is computed using shape
distance transforms: first, we build maps in which each pixel
is assigned its Euclidean distance to the closest pre-existing
foreground or background pixel in the current view. We then
use thesemaps to deduce the label update costs for each pixel
in our graph, considering a mix of distances in both views at
once (note the use of subscript k below). More specifically,
we define our contour term as

Econt.
k (Sk)=λc·

∑

p∈Ik

{
Fk

(
p
)+λm ·Fk′

(
r(p, dp)

)
if sp = 1

Bk
(
p
)+λm ·Bk′

(
r(p, dp)

)
otherwise

, (12)

where λc and λm are fixed scaling factors, k′ is the opposite
index of k in the stereo pair, Fk(p) returns a nonlinear dis-
tance cost (described below) for pixel p based on its distance
to the closest foreground pixel in the previous segmentation
of view k, and similarly for Bk(p) with background pixels.
Note in (12) that λm scales the term’s multispectral cost con-
tribution.During our tests, we give it a value∈]0, 1[, meaning
that shape contours will prefer sticking to their own previ-
ous results. This improves the stability of the segmentation
while optimizing, reducing the risk of eliminating relevant
shape fragments too rapidly. For the nonlinear distance cost
function behind Fk(p) and Bk(p), we use an exponential
to increase the contrast between close range and long range
contour overlaps. More specifically, we use a relation of the
form
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distance-cost(p) ∝ 1

exp
(− t(p)

) , (13)

where t(p) returns the actual Euclidean distance between p
and its nearest pixel with a foreground or background label in
the previous inference result, depending on the current value
of sp. The contour term’s main responsibility is to control
the evolution of object contours over several optimization
passes. The multispectral contribution allows contours to be
modified in regions where only one modality contributes
meaningful information. The simple formulation of our con-
tour term also avoids the needless filling of cavities, and it
makes no assumption on the foreground-to-background ratio
in the images.

3.2.3 Smoothness Term

This pairwise term is similar to the one used in (8); its role is
to penalize label discontinuities everywhere except for image
regions where local gradients are strong. In this case, how-
ever, we reuse themultispectral contribution idea of (12), and
apply it to the gradient scaling factor. We define this term as

E smooth2
k (Sk) = λs2 ·

∑

〈p, q〉 ∈ Nk

(
sp⊕sq

)
·
(
Gs
Ik

(
p,q

) + λm·Gs
Ik′

(
p′,q ′)

)
,

(14)

where λs2 is a fixed scaling factor, ⊕ is the XOR opera-
tor, p′ is a shorthand for r(p, dp), and q ′ is a shorthand for
r(q, dq). In (14), the right-hand parentheses group returns
the gradient coefficient with its multispectral contribution,
and the left-hand group returns 1 or 0 based on whether a
label discontinuity is found. As before, the use of local image
gradients helps “snap” these discontinuities to real object
contours. However, the multispectral contribution allows
shape contours to settle in uniform regions if the other view
possesses a strong local gradient there. Paired with the con-
tour term, this allows our model to properly expand and
contract shape boundaries across imagemodalities.We study
the effect of λm on the performance of our method in Sect. 4.

3.2.4 Temporal Term

Lastly, we present the formulation and role of our tempo-
ral term. Unlike the other terms presented so far, this term
is based on higher order cliques that are composed at run-
time, and updated for each frame. The role of these cliques
is to enforce spatiotemporal labeling coherence despite fore-
ground object motion. Our graph structure can be visualized
as a stack of analyzed frames; this structure is shown in Fig. 5.
While the depth (or layer count) of this stack is predeter-
mined, its temporal cliques are composed based on node
realignments provided by optical flow maps. This allows

cliques to remain attached to the same object part despite
movement, and thus enforce labeling smoothness across
frames.We compute optical flowmaps using themethod pro-
posed by Kroeger et al. (2016). As for the cost term itself:
given C, the set of all temporal cliques in our model, and
using the subscript l to identify different temporal layers in
these cliques, we define it as

E temp(D) = λs2·
∑

c∈C

L−1∑

l=1

(
sc,l ⊕ sc,(l+1)

) · Gt(c, l
)
, (15)

where λs2 is the same scaling factor as in (14), L is the
pipeline’s depth in frames, sc,l returns the label of the lth
node in clique c, and Gt(c, l) returns a scaling factor for
clique c at layer l (described next). Overall, this term is sim-
ilar to the pairwise smoothness terms described earlier, but
it can link more nodes together. However, instead of scaling
costs via local image gradients, we rely on temporal image
gradients in Gt(c, l). These new gradient values are obtained
by computing the absolute color differences between pix-
els of consecutive frames realigned using optical flow maps.
Strong color differences are indicative of uncertain regions
where consistency costs should be reduced due to occlusions
or bad optical flow estimation. Here, similarly to (9), we
define the new gradient scale term as

Gt (c, l) = max

(
exp

(
1− |ic,l−ic,(l+1)|

g

)
− 0.5, 0

)
, (16)

where ic,l returns the color value of the lth node in clique c.
We study the contribution of this new term in Sect. 4 given
various layer count configurations.

3.3 Inference and Implementation Details

Simultaneously minimizing the cost functions defined in (3)
and (10) is not trivial. Both functions rely on each other’s
provisional results as dynamic priors, and (10) contains a
higher order term. A simple cost function can typically be
minimized iteratively using a move-making algorithm such
as α-expansion (Boykov et al. 2001) that returns a local min-
imum within a known factor of the global minimum. In our
case, the dynamic weights and links used to connect our two
cost functions cause their global objective to be updated each
time a new labeling is obtained for either half of the model.
This means that the global minimum of our model is always
changing, and that reaching it is difficult. Instead,we focus on
converging to a local minimum in each function by alternat-
ing label move operations. Recently proposed move-making
algorithms can deal with higher-order terms and dynamic
priors without having to resort to a move-and-check or roll-
back strategy (c.f. Lempitsky et al. 2010; Kappes et al. 2013).

123



International Journal of Computer Vision (2019) 127:1044–1062 1053

However, to reach a local minimum in both functions simul-
taneously, the terms have to be carefully designed so that the
cost functions can converge under roughly similar conditions.
We achieve this as anticipated using shape contours: these
tend to settle on the maxima in gradient intensity maps that
correspond to object boundaries, and can be easily matched
across image modalities despite some local shape variabil-
ity. In practice, our optimization strategy converges once the
target objects in the scene (roughly identified via the initial-
ization masks) are properly covered by foreground segments
that are registered between the two views. This convergence
also happens without having to use a decaying metaparame-
ter to force a solution after a fixed number of iterations.

We rely on the move-making algorithms of Fix et al.
(2011) and Fix et al. (2014) for the inference of our stereo
and segmentation models, respectively. Both are modified
for use in a dynamic graph structure. While faster inference
solutions do exist, these were deemed fast enough for our
experiments, even without having to parallelize label moves.
In both cases, our move proposals only consist of uniform
labeling maps, meaning our inference approach is fairly sim-
ilar to α-expansion. We build our graphical models in C++
using the OpenGM library (Andres et al. 2012), and reuse
the same structure for all frames in a video, updating only
the composition of temporal factors in (15) as required. We
settled for these two generic optimizers to show that the
formulation of our models is not tied to the optimization
approach we use.

We tackle the alternating minimization of energies (3)
and (10) for each frame of a video by first minimizing
the stereo model’s energy using unary terms only, or by
realigning its previous disparity labeling result via optical
flow. Simultaneously, the segmentation model is initialized
using the masks provided by an unsupervised monocular
method, as stated earlier. Then, segmentation and disparity
label moves are iteratively computed in small batches until
nomoremoves inLS can reduce the energy of (10). This typ-
ically happens after less than three passes over the disparity
label space (LD), and less than 50 moves in the segmenta-
tion label space (LS), the exact number depending on the
quality of the initialization. For reference, with our baseline
implementation, this is equivalent to approximately 30 sec-
onds worth of processing time on a single core of a 3.7 GHz
Intel i7-8700K processor for a VGA-sized image pair. This
processing time seems to scale in a roughly linear fashion
with respect to the number of pixels in the analyzed images.

As for the free parameters listed earlier, we use the fol-
lowing configuration for our tests in the next section:

– Stereo model uniqueness term weight: λu = 0.4
– Stereo model smoothness term weight: λs1 = 0.001
– Expected object contour gradient intensity: g = 30
– Segmentation model contour term weight: λc = 7

– Segmentation model smoothness weight: λs2 = 7
– Multispectral contribution term weight: λm = 0.5

The values listed above have been empirically found to
provide good overall segmentation performance on a small
subset of our test data via grid search. As previously noted,
we study the effect of several of these parameters on the
overall performance of our method in the next section. For
optical flow and DASC descriptors computations, we kept
the default parameters provided by their original authors. For
Shape Context computations, we used 50 pixel-wide descrip-
tors with 10 angular bins and 3 radial bins. For the depth of
our frame processing pipeline, we used two temporal layers
(i.e. the current frame and the previous one), as adding more
did not improve overall performance significantly over the
extra processing cost; this is discussed in Sect. 4.4. Finally, to
reduce the computational cost when using higher order terms
in our segmentationmodel,we use a stride of two pixelswhen
creating the temporal cliques used in (15). For more imple-
mentation details, we refer the reader to our source code.3

4 Experiments

In this section, we first discuss our evaluation methodology,
and then present evaluation results for mutual segmentation
and stereo registration. Since close-range (non-planar)multi-
spectral video datasets are quite uncommon in the literature,
we had to adapt existing datasets to our problem. For multi-
spectral mutual segmentation, we rely on a modified version
of the VAP trimodal dataset of Palmero et al. (2016); the
modifications we made are detailed in Sect. 4.2. For stereo
registration, we rely on the benchmark of Bilodeau et al.
(2014). We follow up with an ablation study of our method
in which we remove key terms from our energy functions,
and then study the effect of tuning key parameters of these
terms. Finally, we provide evaluation results for both seg-
mentation and stereo registration on a newly captured and
annotated RGB-LWIR dataset for future comparisons.

4.1 EvaluationMethodology

Since our primary goal is mutual foreground segmentation,
we employ binary classification metrics for the first part of
our evaluation. Commonly used metrics in the context of
video segmentation are Precision (Pr), Recall (Re), and F1
score. These are based on three types of pixel-wise classifica-
tion result counts, namelyTruePositives (TP), FalsePositives
(FP), and False Negatives (FN). These metrics are defined as

3 https://github.com/plstcharles/litiv.
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Table 1 Evaluation results on the multispectral video segmentation dataset of Palmero et al. (2016)

Method Metric Scene 1 Scene 3 Overall

Visible LWIR Visible LWIR Visible LWIR Average

St-Charles et al. (2016) (unsupervised) Pr 0.820 0.755 0.716 0.514 0.768 0.635 0.701

Re 0.810 0.975 0.688 0.969 0.749 0.972 0.861

F1 0.815 0.851 0.702 0.672 0.758 0.762 0.760

Palmero et al. (2016) (semi-supervised) Pr – – 0.817 0.777 – – –

Re – – 0.568 0.564 – – –

F1 – – 0.670 0.654 – – –

Rother et al. (2004) (GrabCut; supervised) Pr 0.685 0.808 0.653 0.847 0.669 0.828 0.748

Re 0.759 0.896 0.929 0.916 0.844 0.906 0.875

F1 0.721 0.850 0.767 0.880 0.744 0.865 0.804

Proposed method (unsupervised) Pr 0.894 0.860 0.788 0.749 0.841 0.804 0.821

Re 0.902 0.901 0.918 0.937 0.910 0.919 0.914

F1 0.898 0.880 0.848 0.833 0.873 0.857 0.866

Bold results are the best in that category across all methods

Precision = TP

TP + FP
, (17)

Recall = TP

TP + FN
, (18)

F1 = 2·Precision·Recall
Precision + Recall

, (19)

In all three cases, higher values indicate better performance.
The F1 score corresponds to the harmonic mean of the pre-
cision and recall scores. We use it as an overall indicator
of binary segmentation performance, as it was shown in the
work of Goyette et al. (2012) to be strongly correlated with
the final ranking of methods on a large binary segmentation
dataset based on numerous other metrics.

Our second goal is to evaluate stereo registration perfor-
mance. For this, we employ the strategy of the Middlebury
dataset (Scharstein et al. 2014), and report the percentage
of pixels labeled with disparity errors larger than some fixed
distance thresholds (in pixels).We also report average frame-
wide pixel disparity errors, noted d̄err below. In this case,
lower values indicate better performance.

4.2 VAP 2016 Dataset

For this first part of our evaluation, we adapted the dataset
of Palmero et al. (2016) to our needs. This dataset was origi-
nally intended for the trimodal (RGBD-LWIR) detection and
segmentation of people in images, and it is provided as a
set of videos. It consists of 5724 image triplets split into
three scenes, with their associated groundtruth foreground-
background segmentationmasks.Weobtained the calibration
data used by the original authors to roughly register scene
contents via homographies, and rectified all RGB and LWIR
image pairs using theOpenCVcalibration toolbox. The depth
images were left unused during all our experiments, and the

second scene was removed due to missing calibration data.
Finally, to avoid skewing the performance evaluation by con-
tinuously segmenting empty frames or frames with purely
static and/or unoccluded foreground regions, we manually
selected a subset of groundtruth masks for our experiments.
These masks were picked at a rate of roughly 2 Hz from all
originally available masks while focusing on time spans with
people interacting.

We present the segmentation performance of our proposed
method, as well as the performance of baseline video and
image segmentation methods in Table 1. We could not evalu-
ate the performanceof theworks listed in the last paragraphof
Sect. 2 that simultaneously tackle segmentation and registra-
tion due to a lack of open-source code and datasets. Besides,
comparing our results to those of other methods that assume
single-spectrum data or planar scenes would also be unfair.
For the video segmentation baseline, we rely on the method
of St-Charles et al. (2016), which is fully unsupervised. We
use the method’s default parameters from its original imple-
mentation, and process each spectrum individually. For the
image segmentation baseline,we rely on theGrabCutmethod
of Rother et al. (2004), and provide this method with manu-
ally defined bounding boxes for all foreground objects. We
used OpenCV’s GrabCut implementation, and ran five iter-
ations per image. Finally, we provide partial results for the
method of Palmero et al. (2016) that were obtained using the
original predictions provided by the authors.

We can observe that our proposed method outperforms
the unsupervised video segmentation approach of St-Charles
et al. (2016) in terms of overall F1 score by a margin of
0.1, equal to a relative improvement of over 13%. This con-
firms that our approach can properly integrate multispectral
information through stereo registration in order to improve
segmentation performance beyond that of a state-of-the-art

123



International Journal of Computer Vision (2019) 127:1044–1062 1055

Fig. 6 Examples of typical segmentation results from the VAP dataset
of Palmero et al. (2016); the left two columns show the segmentation
masks obtained via the method of St-Charles et al. (2016) and used to
initialize our method, and the right two columns show our final seg-
mentation masks. Image regions properly classified as foreground are

highlighted in green over the original images, while regions highlighted
in orange and magenta show false positives and false negatives, respec-
tively. Images have been cropped to show more details (Color figure
online)

monocular method. Interestingly, our proposed method even
outperforms the supervised image segmentation approach of
Rother et al. (2004), which relies on manual annotations to
pinpoint all foreground objects in every frame. This can be
explained by the fact that foreground objects in this dataset
have better contrast in the LWIR spectrum than in the visible
spectrum, and because our approach propagates this contrast
information across the stereo pair. Additionally, our method
outperforms the semi-supervised approach of Palmero et al.
(2016) in Scene 3 despite having to estimate full disparity
maps for stereo registration, and without requiring train-
ing. Finally, we show in Fig. 6 some qualitative results for

this dataset. The last row of this figure presents an inter-
esting case: in this frame pair, the initial foreground masks
provided to our method both contain important errors in dif-
ferent regions, but the output is excellent. This shows that
despite not having a proper foreground shape template, the
real underlying shape can be found and extracted correctly
via our iterative process.

4.3 Bilodeau et al. 2014 Dataset

We now evaluate our proposed method’s stereo registration
accuracy using the benchmark dataset of Bilodeau et al.
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(2014). This dataset was originally intended for the eval-
uation of image descriptors and similarity measures in the
context of multispectral stereo matching, once again pro-
vided as a set of videos. It consists of 5390RGB-LWIR frame
pairs split into three scenes, with over 25,000 sparse corre-
spondences annotated on visible foreground objects.

As stated before, we evaluate performance on this dataset
by analyzing the accuracy of disparity labelings. Unfor-
tunately, previous works tackling multispectral registration
have often relied on their own foreground overlap ratios to
assess their performance (e.g. Nguyen et al. 2016), meaning
comparisons here are impossible. Here, to provide a reusable
evaluation baseline, we compare our results to those obtained
using a sliding window patch-matching approach, similar to
the strategy used by Bilodeau et al. (2014). In short, local
disparity labels are assigned based on the best match (or
smallest distance) found between image patches in a winner-
takes-all fashion. To describe the similarity between these
image patches, we rely on descriptors, namely LSS (Shecht-
man and Irani 2007) and DASC (Kim et al. 2015), and on
Mutual Information scores (MI; Maes et al. 1997). Note that
for these experiments,weused the samemetaparameters (e.g.
patch size, bin counts) as those used by our own method, or
translated them to be roughly equivalent. Also, for fairness,
we relied on the same smoothness term we used in our own
method (E smooth1) to regularize the patch matching disparity
estimation results. Finally, to highlight the issue of apply-
ing traditional stereo registration methods on multispectral
datasets, we evaluate the block matching algorithm of K.
Konolige implemented in OpenCV. These results are pre-
sented in Table 2.

We can note that our proposed method performs very
well compared to the baseline methods. Unsurprisingly,
OpenCV’s block matching method fails on this dataset as
it tries to compare image textures directly across the pair,
despite their low correlation. The approaches based on self-
similarity descriptors (LSS, DASC) and mutual information
perform slightly better, but still produce highly inaccurate
results. On average, above 50% of all the evaluated points
are labeled with disparities at least four pixels off from the
groundtruth. On the other hand, our approach manages to
label 51.8% of all evaluated points within a single pixel of
the groundtruth, and provides an average disparity error of
only 3.21 pixels. Note however that while this performance
is good enough for our primary task (mutual foreground
segmentation), it is still far from the current state-of-the-art
in single-spectrum stereo registration. For example, on the
Middlebury dataset (Scharstein et al. 2014), top-performing
methods typically label less than 20% of all points with a
disparity error larger than a single pixel. This highlights the
difficulty of multispectral stereo registration.
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Table 3 Overall performance for various configurations of the proposed
method on the datasets of Palmero et al. (2016); Bilodeau et al. (2014)

Method configuration d̄err F1

No shape term
(
E shape

)
8.71 0.860

No appearance term
(
Eappearance

)
3.69 0.851

No saliency maps
(W)

3.47 0.856

No uniqueness term
(
Euniqueness

)
3.33 0.865

No color term
(
Ecolor

)
3.46 0.822

No contour term
(
Econtour

)
4.16 0.624

No temporal term
(
E temporal

)
3.29 0.855

No initial LWIR segm. mask 10.82 0.820

No initial visible segm. mask 8.32 0.800

Default configuration 3.21 0.866

4.4 Parameters and Ablation Study

In this section,we study the behavior of ourmethodwhen key
terms and parameters are modified from the default config-
uration listed in Sect. 3.3 on the two previously introduced
datasets. First, we perform an ablation study to determine
which energy terms are the most important in our models;
this study is presented in Table 3.

According to the F1 scores, modifying the stereo energy
formulation only has a small effect on segmentation perfor-
mance. On the other hand, removing the color or contour
terms from the segmentation energy has larger impacts, and
the latter of the two is the most important contributor to
overall performance. As for the registration performance,
the shape term seems to be the most important, but all terms
contribute to the overall performance of themethod. The pos-
itive contribution of both appearance and shape terms also
confirms the hypothesis set in Sect. 3.1. Besides, interest-
ingly, when our model is initialized in only one of the two
modalities using approximative masks, its segmentation per-
formance is still at least as good as GrabCut’s (as reported in
Table 1). This highlights the robustness of our approach, and
shows that it can perform well even in adverse initialization
conditions.

Next, we show the effect of parameter tuning. The seg-
mentation and registration performance for our proposed
method in terms of overall F1 score and average disparity
error (d̄err, in pixels) is presented for various configurations
in Fig. 7. Note that we roughly tuned our method with seg-
mentation performance as a priority to obtain our default
configuration. Nonetheless, registration performance is usu-
ally near-optimal or stable around the same parameter values.
In general, we can note that the choice of parameters does
not seem to drastically alter our method’s performance, as
both metrics fairly remain stable over large value intervals.

Fig. 7 Overall performance for various parameter values of the pro-
posed method on the datasets of Palmero et al. (2016); Bilodeau et al.
(2014). The default configuration of each parameter is shown with the
dashed line. Remember that for F1, higher is better, and for d̄err, lower
is better

Table 4 Overall segmentation performance for various temporal
pipeline depths on the dataset of Palmero et al. (2016)

Method configuration Pr Re F1

2 Layers, real-time 0.817 0.910 0.863

3 Layers, real-time 0.821 0.915 0.866

4 Layers, real-time 0.825 0.918 0.867

5 Layers, real-time 0.826 0.918 0.868

2 Layers, deferred 0.821 0.914 0.866

3 Layers, deferred 0.824 0.920 0.870

4 Layers, deferred 0.827 0.921 0.870

5 Layers, deferred 0.826 0.919 0.868

No temporal term 0.801 0.919 0.855

Finally, in Table 4, we evaluate our approach configured
with different temporal pipeline depths, and while allowing
deferred output or not. The notion of “pipeline depth” here
corresponds to the number of edges in the higher order tem-
poral terms introduced in Sect. 3.2. Deferred segmentation
outputs are masks generated by our method with the added
latency of the full pipeline, meaning the results are evalu-
ated with a delay equal to the pipeline depth. These masks
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Table 5 Evaluation results for the proposed method on our newly captured multispectral video dataset

Evaluation type
(method)

Metric Video 1 Video 2 Video 3 Overall

Visible LWIR Visible LWIR Visible LWIR Visible LWIR Average

Segmentation
(St-Charles
et al. 2016)

Pr 0.933 0.716 0.938 0.763 0.935 0.821 0.935 0.767 0.851

Re 0.721 0.997 0.834 0.938 0.750 0.996 0.768 0.977 0.872

F1 0.813 0.834 0.883 0.841 0.832 0.900 0.843 0.858 0.851

Segmentation
(Proposed)

Pr 0.883 0.937 0.874 0.923 0.921 0.942 0.893 0.934 0.910

Re 0.776 0.842 0.818 0.783 0.850 0.849 0.815 0.825 0.820

F1 0.826 0.887 0.845 0.878 0.884 0.893 0.852 0.876 0.864

Registration
(DASC Sliding
Window)

% err. > 1px 90.6 88.6 92.1 90.8 88.5 87.2 90.4 88.8 89.6

% err.> 2px 85.2 81.9 86.6 83.7 81.9 80.2 84.6 81.9 83.3

% err.> 4px 75.5 71.6 78.6 74.2 72.3 70.0 75.5 71.9 73.7

d̄err 30.26 21.90 31.22 29.11 26.48 23.34 29.32 24.79 27.05

Registration
(Proposed)

% err. > 1px 75.0 74.5 76.3 76.5 68.7 69.9 73.3 73.6 73.5

%err.> 2px 59.5 59.2 63.4 63.5 53.3 54.3 58.7 59.0 58.8

%err.> 4px 43.8 43.8 46.8 47.0 32.0 32.4 40.9 41.1 41.0

d̄err 26.47 22.12 14.43 14.97 9.00 9.06 16.63 15.38 16.01

Bold results are the best in their respective evaluation category

are thus allowed more iterations in our graphical model, and
benefit from more temporal information (i.e. past and future
frame data). On the other hand, the real-time segmentation
outputs are the masks generated by our method for all new
image pairs, provided without delay. From these results, we
can note that the difference between deferred and real-time
output is surprisingly small. This means that our model’s
temporal inertia allows it to smooth out shape variations
without having to peek at future frame data, which is use-
ful for real-time surveillance systems. Besides, the overall
improvements obtained by using more than two temporal
layers is marginal, as more temporally consistent results also
entail that some relevant shape fragments around non-rigid
objects are discarded. Finally, note that using more layers
results in an important increase in computational complex-
ity: using four layers roughly triples the time required for
model inference compared to the default configuration.

4.5 LITIV 2018 Dataset

To help others compare their work on multispectral segmen-
tation and registration, we developed and annotated a new
dataset. We recorded video sequences using a stereo pair
composed of a Kinect v2 for Windows (at Full HD resolu-
tion) and a FLIR A40 LWIR camera (at QVGA resolution).
The sensors were roughly aligned on a fixed baseline support
(approximately 50 centimeters apart) and synchronized via
software to capture frame pairs at 30 Hz. Calibration data for
image rectification was obtained by capturing snapshots of a
foam core checkerboard pattern heated using halogen lamps
to make it visible in LWIR images. For the annotations, we

simultaneously recorded depth and user segmentation masks
provided by the Kinect SDK, and transformed this data into
foreground-background segmentation masks, adding man-
ual touch-ups where needed. Stereo correspondences were
also manually annotated like in the work of Bilodeau et al.
(2014) to allow an approximate evaluation of registration per-
formance in foreground image regions. In total, this dataset
contains over 6000 frame pairs split into three videos, and its
groundtruth is composed of 866 binary segmentation masks
and 15,182 point correspondences roughly distributed among
frameswith visible foreground.As for the capture conditions,
we deliberately recorded sequences with both strong and
weak contrast between foreground and background regions
in the two image modalities. More specifically, we used
two different temperature calibrations to make individuals
more or less perceptible in LWIR images, we introduced
some cluttered background in part of the visible images,
and we had people carry and exchange objects that mod-
ify their appearance in both spectral bands. Overall, this
dataset should be more challenging than already available
RGB-LWIR video datasets. The fact that it also allows the
simultaneous evaluation of foreground segmentation and
stereo registration also makes it quite unique in the current
literature.

We havemade this new dataset available online alongwith
our modified version of the VAP dataset for other authors.4

Our Kinect’s raw data which includes depth images and
mapping information is also provided for those interested
in trimodal segmentation tasks.

4 http://www.polymtl.ca/litiv/vid/index.php.
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Fig. 8 Examples of typical segmentation results from our newly cap-
tured dataset; the left two columns show the segmentation masks
obtained via St-Charles et al. (2016) and used to initialize our method,
and the right two columns show our final segmentation masks. Image

regions properly classified as foreground are highlighted in green over
the original images, while regions highlighted in orange and magenta
show false positives and false negatives, respectively. Images have been
cropped to show more details (Color figure online)

Weoffer our proposedmethod’s results on this newdataset
as a baseline for future comparisons in Table 5. We can
note that compared to the other two datasets, segmentation
results here are still good, but registration errors are much
higher. This is primarily due to the fact that our camera
baseline is very large (≈ 50 cm), which leads to high dis-
parities for close-range objects (over 150 pixels in some
cases), and because our images are higher resolution than
those of Bilodeau et al. (2014). Also, we can note that reg-

istration errors are higher in the first video sequence: this
is caused by the loss of some small foreground segments
near image borders which were annotated with correspon-
dences. As for the segmentation results, there are caseswhere
foreground objects are only partly detected, which results
in slightly lower Recall scores in some videos. Nonetheless,
these results show that ourmethod is capable of segmentating
foreground objects in difficult imaging conditions. Finally,
we present qualitative segmentation results for this dataset
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in Fig. 8. We can notice in the bottom row a case where
segmentation errors were propagated from the visible image
to the infrared one (i.e. two legs are falsely annotated as
background). In short, our model can sometimes settle object
boundaries in the wrong region due to occlusions in one of
the views, or when strong gradients within the object happen
to fit the contour model better than the object’s real bound-
aries. A typical example of this is when a person occludes
a computer monitor while wearing a shirt that is similarly
colored: our model will tend to merge the monitor’s contour
with the person’s blob. This rarely happens in practice, as a
very close match in terms of visual appearance and thermal
signature is required. Furthermore, as seen from the over-
all F1 results in Table 5, our new method outperforms the
previous segmentation method in both image modalities.

5 Conclusion

We have presented a new method for simultaneous multi-
spectral foreground segmentation and stereo registration, and
validated its capabilities on several datasets. Our approach is
based on the alternating minimization of two linked energy
functions that integrate multispectral shape and appearance
cues. We have shown that both segmentation masks and
disparity maps can simultaneously converge to good local
minima without any human supervision. Furthermore, with
the help of higher order factors, we achieve strong temporal
coherence in our segmentation results by linking consecu-
tive video frames inside our graphical models. To make the
comparison of methods tackling this problem easier in the
future, we provide our full implementation online, as well as
a newly created multispectral dataset for evaluation.

If supporting large stereo baselines is unnecessary, the
method could use a stronger constraint on multispectral
contour similarity to improve coherence between views.
Besides, explicit occlusion handling in our stereo model
would further improve overall performance on the cur-
rent datasets. Our model could also be generalized to
provide instance-level segmentation by using a separate
foreground appearance model for each object. Finally,
a three-way energy minimization solution tackling fore-
ground segmentation, stereo registration, and optical flow
could be designed based on our current inference
approach.
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