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Abstract
We tackle the task of dense 3D reconstruction from RGB-D data. Contrary to the majority of existing methods, we focus not
only on trajectory estimation accuracy, but also on reconstruction precision. The key technique is SDF-2-SDF registration,
which is a correspondence-free, symmetric, dense energyminimizationmethod, performed via the direct voxel-wise difference
between a pair of signed distance fields. It has a wider convergence basin than traditional point cloud registration and cloud-
to-volume alignment techniques. Furthermore, its formulation allows for straightforward incorporation of photometric and
additional geometric constraints. We employ SDF-2-SDF registration in two applications. First, we perform small-to-medium
scale object reconstruction entirely on the CPU. To this end, the camera is tracked frame-to-frame in real time. Then, the
initial pose estimates are refined globally in a lightweight optimization framework, which does not involve a pose graph. We
combine these procedures into our second, fully real-time application for larger-scale object reconstruction and SLAM. It
is implemented as a hybrid system, whereby tracking is done on the GPU, while refinement runs concurrently over batches
on the CPU. To bound memory and runtime footprints, registration is done over a fixed number of limited-extent volumes,
anchored at geometry-rich locations. Extensive qualitative and quantitative evaluation of both trajectory accuracy and model
fidelity on several public RGB-D datasets, acquired with various quality sensors, demonstrates higher precision than related
techniques.
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1 Introduction

The variety of depth sensors available on the market has
brought tasks, such as three-dimensional object reconstruc-
tion and simultaneous localization and mapping (SLAM)
in static scenes, closer to the general user. The goal is to
determine the 6 degrees-of-freedom camera poses and subse-
quently fuse the respectiveRGB-D frames into geometrically
consistent models. Applications include robotic manipula-
tion, industrial design, interior planning and 3D content
creation. Therefore, a variety of real-time solutions have been
developed (Kähler et al. 2015; Kerl et al. 2013; Newcombe
et al. 2011;Nießner et al. 2013), butmost of them solely focus
on the accuracy of the estimated trajectory. This is often not
representative of the usability of the model, which might
be crucial for realistic virtual and augmented reality expe-
riences. Thus, this work aims to develop techniques which
also deliver high fidelity 3D reconstructions.

One of themost seminal works capable of real-time recon-
struction is KinectFusion (Izadi et al. 2011; Newcombe et al.
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2011). It conveniently stores the recovered geometry in an
incrementally built signed distance field (SDF). However, its
frame-to-model camera tracking via iterative closest points
(ICP Besl and McKay 1992; Chen and Medioni 1991) limits
it to objects with distinct geometry and to uniform scanning
trajectories. Furthermore, the required data association step
might slow performance down for data clouds larger than
VGA resolution.

Point-to-implicit techniques (Bylow et al. 2013; Canelhas
et al. 2013; Ren and Reid 2012) circumvent costly corre-
spondence search by directly projecting the point clouds of
incoming depth frames onto the cumulative SDF and mini-
mizing the difference to its zero level set. Such registration
has proven to be more robust than ICP, but becomes unre-
liable when data is sparse or once the global model starts
accumulating errors.

Although the frame-to-growing-model registration used
in the above techniques incorporates a form of global opti-
mization through the cumulative SDF, it only allows for
drift reduction, without a possibility to reposition incorrectly
fused geometry. Existing approaches that explicitly perform
optimization require all depth maps (Zhou and Koltun 2013)
or meshed scene fragments (Choi et al. 2015; Fioraio et al.
2015; Henry et al. 2013; Zhou et al. 2013) to be stored and
lead to lengthy posterior processing.

One of the most widespread choices (Choi et al. 2015;
Dimashova et al. 2013; Henry et al. 2013; Kehl et al. 2014)
for global refinement is the optimization of a pose graph,
e.g. g2o (Kümmerle et al. 2011). Its cost quickly grows with
the number of poses and can thus also entail long runtime.
The refinement scheme proposed here relies on a weighted
average SDF as a means for spreading information from all
frames and, thus, works without a pose graph. Furthermore,
we opt for concurrent tracking and refinement, taking inspi-
ration in PTAM (Klein and Murray 2007), one of the most
acclaimed real-time monocular SLAM techniques.

The present work employs highly accurate implicit-to-
implicit registration, both for camera tracking andmulti-view
optimization, and applies it to real-time object reconstruc-
tion and SLAM. It builds upon two previous approaches
(Slavcheva and Ilic 2016; Slavcheva et al. 2016) that address
these tasks.

Thefirst contribution, SDF-2-SDF (Slavcheva et al. 2016),
is a volumetric, correspondence-free registration energy
between pairs of SDFs, used for frame-to-frame camera
tracking and frame-to-model pose optimization. Its dense,
symmetric formulation allows for a larger convergence basin
and more accurate pose estimates than previous techniques.
Here we extend the framework to incorporate surface ori-
entation and photometric constraints, achieving even higher
accuracy.

Despite its precision, SDF-2-SDF is limited to object
reconstruction due to its underlying regular grid structure.

Memory reduction techniques such as octrees (Kehl et al.
2016; Steinbrücker et al. 2013, 2014; Zeng et al. 2013)
and voxel hashing (Kähler et al. 2015; Nießner et al. 2013)
are not applicable, since for accuracy reasons the SDF
being aligned is re-generated on every iteration. To enable
larger-scale reconstruction, the second contribution, SDF-
TAR (Slavcheva and Ilic 2016), applies registration over a
fixed number of limited-extent volumes (LEVs). These are
partial SDFs anchored at informative, geometry-rich loca-
tions. Thus memory usage is fixed and we can profit from
massively parallel GPU processing. As the CPU is idle in the
meantime, the refinement task is done concurrently there,
so that the whole pipeline can be completed in real time.
Optimization is done in batches of fixed number of frames
and lasts until a next batch is ready. Here we continue the
work in Slavcheva and Ilic (2016) by analysing its applica-
bility to large scale object reconstruction versus SLAM, i.e.
we investigate its performance under predominantly inward
(object-centric) versus outward camera motion.

We extend our analysis of both SDF-2-SDF and SDF-
TAR using several public RGB-D benchmarks and compare
to other state-of-the-art approaches. Among others, we eval-
uate on our 3D-Printed RGB-D Object Dataset (Slavcheva
et al. 2016), which is the first to provide groundtruth CAD
models and trajectories for scans acquired with commodity
and industrial depth sensors, and is thus highly suited for
assessing 3D reconstruction precision.

In the following, we first review related approaches in
Sect. 2. We outline our volumetric implicit-to-implicit regis-
tration scheme in Sect. 3. Then we explain how it is applied
to the tasks of object reconstruction and SLAM, in Sects. 4
and 5 respectively. Section 6 contains various qualitative
and quantitative experiments on public datasets. Finally, we
discuss strengths and limitations, and conclude in Sect. 7.

2 RelatedWork

In this section we review existing approaches for small- and
large-scale object and scene reconstruction from RGB-D
data. We focus particularly on the utilized ways for reducing
memory and runtime requirements.

Volumetric Registration KinectFusion (Newcombe et al.
2011) is among the most celebrated systems for reconstruc-
tion from RGB-D data. It employs Curless and Levoy’s
volumetric depth map fusion (Curless and Levoy 1996) to
represent scene geometry as a continuously updated SDF,
which aids smoothing noise away. Registration is done by
rendering the global SDF into a point cloud and apply-
ing point-to-plane ICP (Besl and McKay 1992; Chen and
Medioni 1991; Rusinkiewicz and Levoy 2001), making it
susceptible to drift under erratic motion or lack of discrimi-
native geometry.

123



International Journal of Computer Vision (2018) 126:615–636 617

Point-to-implicit approaches (Bylow et al. 2013; Canelhas
et al. 2013; Ren and Reid 2012) avoid the costly corre-
spondence association step of ICP. They directly project an
incoming point cloud onto the volume and minimize the dif-
ference to its zero-level set, achieving more precise camera
motion estimation.

SDF-2-SDF registration extends this line of work into an
entirely implicit-to-implicit framework by minimizing the
direct voxel-wise difference. Thus it is also correspondence-
free, and carries additional advantages, such as being denser
and symmetric, whereby both SDFs that are being regis-
tered steer towards optimal alignment. As a result, it achieves
higher accuracy.

Additional Constraints Several ICP variants utilize color in
order to avoid registration failure when geometry is not suf-
ficiently discriminative (color-ICP Johnson and Kang 1999,
RGBD-ICPHenry et al. 2010, multi-feature ICP Schütz et al.
1998).Theobject reconstructionpipeline ofKehl et al. (2014)
relies on dense visual odometry (DVO) (Kerl et al. 2013)
for camera tracking, which employs a photoconsistency con-
straint to find the best alignment between twoRGB-D frames.
After a pose optimization step, selected keyframes are fused
using amodification of Zach et al. (2007)’s TV-L1 minimiza-
tion scheme, which takes into account the color associated
with each SDF voxel. Similarly, Bylow et al. (2014) demon-
strate that a voxel grid color term improves registration
accuracy, especially in the absence of rich geometric features.
As the SDF-2-SDF formulation allows for straightforward
incorporation of additional voxel-wise constraints, we also
associate RGB values with voxels.

Another possibility to increase pose estimation robust-
ness is through further geometric terms. Masuda (2002)
uses the difference between normal vectors to this end. We
instead utilize the dot product as a more accurate mea-
sure of surface orientation similarity. Although our approach
works well without these color and normal constraints, they
are straightforward to integrate and further boost perfor-
mance.

Memory Load Reduction Amajor drawback of regular voxel
grids is their high memory requirement, which limits the
operational volume tomedium-scale spaces. It has been tack-
led in various ways, including moving volumes (Roth and
Vona 2012; Whelan et al. 2013a, 2012), octrees (Kehl et al.
2016; Steinbrücker et al. 2013, 2014; Zeng et al. 2013), voxel
hashing (Kähler et al. 2015; Nießner et al. 2013), hierarchical
(Houston et al. 2006), non-hierarchical (Nielsen and Museth
2006) and hybrid structures (Chen et al. 2013).However, they
are beneficial for storing or updating values, but are not as
efficient when an SDF has to be re-generated multiple times
per second, e.g. when its camera pose is re-estimated.

On the other hand, methods like RGB-D SLAM (Endres
et al. 2012) that detect 2D features and match them in 3D,

discard a lot of useful information and require RANSAC
(Fischler and Bolles 1981) and pose graph optimization
(Kümmerle et al. 2011) to estimate consistent trajectories.
While many authors have addressed 3D keypoint detection
(Clarenz et al. 2004; Gelfand et al. 2005; Ioannou et al. 2012;
Johnson and Hebert 1999; Steder et al. 2010; Tombari et al.
2013), the noise and occlusions inherent to 3D data limit
applications to object detection, recognition and classifica-
tion (Alexandre 2012; Bo et al. 2011; Drost et al. 2010).

Inspired by the accuracy of SDF-2-SDF registration,
we aim to apply it to larger-sized objects and SLAM.
KinectFusion (Newcombe et al. 2011) and point-to-implicit
approaches (Bylow et al. 2013; Canelhas et al. 2013) reg-
ister an amount of data equal to VGA resolution and thus
require only a limited number of reduction operations and
can profit fromGPU parallelization. However, the number of
voxels in SDF-2-SDF depends on the bounding box and the
desired voxel size, and is thus not known a priori. To tackle
this issue, we carry out registration over a fixed number of
limited-extent volumes (LEVs), which are small SDFs with
fixed side length.We anchor them at geometry-rich locations,
thus ensuring similar accuracy, fixed memory requirements
and suitability for GPU implementation.

Global OptimizationAlthough refinement can be highly ben-
eficial, it is often not viable for volumetric methods. Due to
the high processing requirements of dense data, most exist-
ing pipelines resort to expensive posterior optimization that
can take hours (Choi et al. 2015; Fioraio et al. 2015; Henry
et al. 2013; Zhou and Koltun 2013; Zhou et al. 2013).

This added runtime can be avoided by running refinement
concurrently to tracking, in aPTAM(Klein andMurray2007)
fashion. Optimization is applied either on all frames, or on
a fixed amount of those last tracked. Pirker et al. (2011)
carry out sliding window bundle adjustment, but the used
sparse 2D–3D correspondences entail loop closure detection
and posterior pose graph optimization.Whelan et al. (2013b)
combine incremental as-rigid-as-possible space deformation
and every-frame map correction, but depend on the presence
of loop closure and add some minimal time latency as more
frames are processed. Similarly, ElasticFusion (Whelan et al.
2015, 2016) relies on local loop closures to activate non-rigid
model-to-model refinement, without further improving the
estimated trajectory.

SDF-2-SDF can be used for global optimization, where
an SDF generated from an existing pose estimate is aligned
with the weighted average SDF of all frames. In this way
drift is distributed across the trajectory without the need for
a pose graph, resulting in more consistent geometry of the
reconstruction. In the SLAM setting, we apply such refine-
ment on the CPU, concurrently to tracking which runs on
the GPU. Optimization is done over LEVs in a batch of the
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most recently tracked frames, so that memory is bounded,
and runs until the next batch becomes ready.

3 SDF-2-SDF Registration

Here we briefly outline our mathematical notation and
explain our implicit-to-implicit registration scheme.

3.1 Mathematical Notation

Camera tracking entails estimating the 6 DoF pose at every
time instance. We represent rigid-body transformations min-
imally as twist coordinates from the Lie algebra se(3) of
the special Euclidean group SE(3) (Ma et al. 2003): ξ =
(u ωωω)� = (u1, u2, u3, ω1, ω2, ω3)

�, where ωωω ∈ R
3

denotes the rotational component and u ∈ R
3 corresponds

to the translation. We denote the motion of any 3D point
X = (XX ,XY ,XZ )� in terms of ξ as X(ξ).

An RGB-D frame is composed of a color image I : N2 →
R
3 and an aligned depth map D : N

2 → R. Assuming a
calibrated camera and a function π(X) = x that projects 3D
points onto pixel coordinates x = (x, y)� ∈ N

2, D stores the
depth values of the points: D(x) = XZ . The inverse relation,
π−1, back-projects a pixel x to 3D: X = π−1(x, D(x)).

3.2 SDF Generation

A signed distance field (SDF) in 3D space is an implicit
function φ : � ⊆ R

3 → R that assigns to each point X its
signed distance to the closest surface location (Osher and
Fedkiw 2003): it is positive for points in front of objects,
and negative for points inside. Thus the surface corresponds
to the zeroth level-set crossing, which can be extracted via
marching cubes (Lorensen and Cline 1987) or ray tracing
(Curless and Levoy 1996).

A single RGB-D pair allows to generate a discrete projec-
tive truncated SDF from its corresponding viewpoint. For this
purpose, first the bounding volume is determined by back-
projecting all pixels. Then it is discretized into cubic voxels
of predefined side length l.

A point X lies in the voxel with index vox : R3 → N
3:

vox(X) = int

(
1

l
(X − C) − (0.5, 0.5, 0.5)�

)
, (1)

where int rounds to integers, and C is the lower-left corner
of the volume. All points within the same voxel are assigned
the properties of its center

V(X) = l
(
vox(X) + (0.5, 0.5, 0.5)�

)
+ C, (2)

so denote the entire voxel by V ∈ R
3. As a depth image

only contains measurements of surface points, the projective
signed distance is the difference of sensor reading for the
voxel center projection π(V) and its depth VZ :

φtrue(V) = D(π(V)) − VZ , (3)

φ(V) =
{
sgn(φtrue(V)), i f |φtrue(V)| ≥ δ

φtrue(V)/δ, otherwise
(4)

ω(V) =
{
1, i f φtrue(V) > −η

0, otherwise
(5)

ζ(V) = I (π(V)). (6)

As φtrue(V) is a projective distance, it depends on the
viewpoint. To diminish this effect, it is scaled by a factor
δ and truncated into the interval [−1, 1], resulting in φ(V).
Since only values near the surface are significant, a common
speed-up practice is to execute calculations only in a narrow-
band near it (Adalsteinsson and Sethian 1995; Losasso et al.
2006; Whitaker 1998). The chosen value of δ determines its
thickness.

The binary weight ω(V) indicates whether the signed dis-
tance value for a voxel is reliable. All visible locations and
a region of size η behind the surface, reflecting the expected
object thickness, are assigned weight one. Voxels with zero
weight are discarded from computations.

Finally, we store the RGB triple corresponding to each
voxel in another grid, ζ , of the same dimensions as φ. Note
that color is meaningful only near the surface.

The outlined single-frame SDF generation approach cre-
ates interface beams where the camera rays pass the surface
silhouette, because values of 1 and −1 are adjacent there,
as shown in Fig. 1. As beams are view-point-dependent, we
favour SDF re-generation over interpolation upon camera
pose re-estimation. They cancel out when multiple SDFs are
fused, but have faulty gradients that need to be omitted from
calculations on projective SDFs. This is easily done, since
the central difference gradient on a beam has at least one
component with absolute value 1, and since voxels behind
the surface have not been observed and have zero weight.

We will often use the SDF gradient, since the normalized
3D spatial gradient ∇Xφ equals the normals n at surface
locations (Osher and Fedkiw 2003). Similar to color, normals
are valid only in the narrow band, which is composed of the
voxels satisfying the quick binary check |φ(V)| < 1.

Once a new camera pose has been estimated, its SDF is
fused into the common model Φ via the rolling weighted
average scheme of Curless and Levoy (1996):

Φt+1(V) = Wt (V)Φt (V) + ωt+1(V)φt+1(V)

Wt (V) + ωt+1(V)
,

Wt+1(V) = Wt (V) + ωt+1(V) . (7)
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Fig. 1 Cross section of a single-frame projective truncated SDF, identifying specialized regions, including interface beams. a Depth map, b SDF
rendering, showing beams, c cross section along the x-y plane of the volume

Fig. 2 2D analogy for comparison of the operational principles of KinectFusion (Newcombe et al. 2011), point-to-implicit (Bylow et al. 2013;
Canelhas et al. 2013) and SDF-2-SDF

Each color channel is averaged similarly, but the weights are
multiplied with the cosine of the viewing ray angle, giving
more influence to voxels facing the camera (Bylow et al.
2013).

3.3 SDF-2-SDF Energy

The SDF-2-SDF registration energy directly minimizes the
direct voxel-wise differenceof twogrids that occupy the same
volume. Its main component, Egeom , is based on the geom-
etry encoded by signed distances:

Egeom(ξ) =
∑

voxels

(
φre f ωre f − φcur (ξ)ωcur (ξ)

)2

, (8)

where φre f is the reference SDF, φcur is the SDF whose
optimal pose ξ∗ is being determined, and ωre f and ωcur are
the respective weights. Voxel indices are omitted for ease of
notation, i.e. we write φre f instead of φre f (V).

Egeom is based on the intuition that, as implicit functions,
SDFs densely interpolate depth measurements throughout
space. Thus both SDFs that are being registered steer con-
vergence towards the optimally aligned state. This is shown
in Fig. 2, where we visualize the operational principles of
KinectFusion, point-to-implicit and SDF-2-SDF in 2D. Solid
lines correspond to the zero level set of an SDF, which has
positive values on one side, and negative values on the other.
Note that each voxel in SDF-2-SDF contributes one sum-
mand in the energy, as in Eq. 8, but we visualize it more
densely to highlight the fact that, as opposed to point clouds,
SDFs have values everywhere in the volume.

KinectFusion (Newcombe et al. 2011) associates each
point in an incoming point cloud to a point in the cloud ren-
dered from the cumulative SDF. This procedure is both costly
and prone to errors. Point-to-implicit approaches (Bylow
et al. 2013; Canelhas et al. 2013) minimize the sum of the
signed distances of the incoming cloud to its zero level set.
This is a more robust variant of ICP, because the points
follow the natural gradient of the SDF towards alignment
with its zero interface. Finally, SDF-2-SDF extends this
idea by registering two implicit fields, both of which have
densely sampled signed distance values, whose gradients
point towards the minimal cost, i.e. where overlap is best.

Furthermore, SDF-2-SDF is a symmetric energy and will
yield nearly identical results if the target and data frames are
swapped. On the contrary, point-to-implicit can yield differ-
ent results depending on which one is represented as a cloud.
In particular, if an incoming frame is very noisy, registra-
tion can be significantly impaired. Thanks to the smoothing
properties of implicit functions, an SDF is likely to be less
influenced by noise.

Last but not least, we utilize the truncated± 1s, as opposed
to other approaches that designate them as empty space in
order to reduce storage requirements (Kähler et al. 2015;
Nießner et al. 2013).While a modified version of voxel hash-
ing or a hierarchical grid might achieve similar functionality,
we use a regular voxel grid, which results in more sample
points and ensures convergence from a larger deviation.

Thus we attribute our energy function design choice to
the geometric benefits of SDFs, including dense sampling of
space, a meaningful gradient, and lower sensitivity to noise.

123



620 International Journal of Computer Vision (2018) 126:615–636

We demonstrate these statements experimentally in the eval-
uation section.

The grid structure used in the SDF-2-SDF formulation
allows for straightforward incorporation of additional con-
straints that can be expressed over voxels. In particular, we
propose two terms on the surface voxels (which we approxi-
mate as the non-truncated voxels in an SDF grid), namely we
require similar surface orientation, Enorm , and overlapping
color, ERGB :

Enorm(ξ) =
∑

sur f ace
voxels

(
1 − nre f · ncur (ξ)

)
, (9)

ERGB(ξ) =
∑

sur f ace
voxels

∑
channel
c∈{R,G,B}

(
ζ c
re f − ζ c

cur (ξ)
)2

. (10)

As the SDF gradient equals the normals at surface loca-
tions, no additional computations are required. Furthermore,
this means that Egeom + Enorm is a higher-order approxima-
tion of the underlying continuous shape than Egeom alone.
Thus our expectation is that, given datawith little tomoderate
noise, registration will be slightly more accurate and con-
verge faster. On the other hand,we expect ERGB to be helpful
in situations with low geometric detail, but richer texture.

The full energy combines all terms, with relative influence
determined by the factors wgeom , wnorm , wRGB :

ESDF (ξ) = 1

2
wgeom Egeom(ξ) +

+ wnorm Enorm(ξ) + 1

2
wRGB ERGB(ξ). (11)

4 Object Reconstruction

Our system is depicted in Fig. 3. The object of interest is
assumed to be placed on a flat surface, and masked as done
in Kehl et al. (2014) and Rusu et al. (2009). Optionally, depth
images are de-noised via anisotropic diffusion (Vijayanagar

et al. 2014) or bilateral filtering (Tomasi andManduchi 1998).
As opposed to other SDFmethods that require manual selec-
tion (Bylow et al. 2013; Canelhas et al. 2013; Newcombe
et al. 2011), the bounding volume is automatically estimated
by back-projection of all masked depth map pixels. It is then
slightly padded and used for the generation of both SDFs that
are to be aligned.

These steps are applied to each input image fed to our
tracking method that performs frame-to-frame SDF-2-SDF
registration, thus avoiding error accumulation and allow-
ing for a moving volume of interest. Once it is complete,
a predefined number of keyframes is globally SDF-2-SDF-
registered to their weighted average SDF, circumventing the
need for a pose graph. This refinement follows a coarse-to-
fine scheme with respect to voxel size. Note that the tracking
and optimization stages are entirely stand-alone, and can be
used in other pipelines. Finally, a colored surface mesh is
obtained via the marching cubes algorithm (Lorensen and
Cline 1987).

4.1 Camera Tracking

Frame-to-model tracking can be detrimental in object recon-
struction: errors in pose estimation can introduce incorrect
geometry when fused into the global model, and conse-
quently adversely affect the subsequent tracking. Therefore,
we favor frame-to-frame camera tracking on single-frame
projective SDFs.

We determine the relative transformation between two
RGB-D frames by setting the pose of the first one to iden-
tity and incrementally updating the other one. The tracking
minimization scheme for the geometry term is based on
a first-order Taylor approximation around the current pose
estimate ξ k (Eqs. 12, 13, 14). Like other rigid registration
approaches, it leads to an inexpensive 6 × 6 linear system
(Eq. 15). Weighting terms have been omitted from formulas
for clarity. In order to avoid numerical instability, we take a
step of size β towards the optimal solution (Eq. 16). In each

Fig. 3 SDF-2-SDF pipeline: the bounding box of the object is automat-
ically determined for every frame by masking and back-projection. It is
then discretized into voxels and used for SDF-2-SDF registration with
the next frame. Once this online tracking stage is complete, several

keyframes are jointly optimized in less than a minute in SDF-2-SDF
fashion using their weighted average. The system runs entirely on the
CPU and finally yields a colored mesh from the SDF grid (Color figure
online)
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iteration φcur is generated from the current pose estimate
ξ k . We terminate when the translational update falls below a
threshold.

A =
∑

voxles

∇�
ξ φcur

(
ξ k

)
∇ξφcur

(
ξ k

)
(12)

b =
∑

voxles

(
φre f − φcur

(
ξ k

)
+

+ ∇ξφcur

(
ξ k

)
ξ k

)
∇�

ξ φcur

(
ξ k

)
(13)

dEgeom

dξ
= Aξ − b (14)

ξ∗ = A−1b (15)

ξ k+1 = ξ k + β
(
ξ∗ − ξ k

)
(16)

Above∇ξφ denotes the Jacobian of the pointV ∈ R
3, denot-

ing the voxel center, with respect to the pose ξ . It is obtained
by the chain rule:

∇ξφ(V(ξ)) = ∇Xφ(V)
∂V
∂ξ

=
= ∇Xφ(V)

(
I3×3 | −[V(ξ−1)]×

)
,

(17)

where I3×3 is the 3 × 3 identity matrix, ξ−1 denotes the
inverse of the rigid pose represented by twist coordinates ξ ,
and [·]× is the skew-symmetric matrix of its argument. Thus
∇ξφ ∈ R

1×6.
Each color grid channel is a scalar field, so it is treated

identically to Egeom .
As the normals of the SDF equal its spatial gradient,

the surface orientation term imposes curvature constraints,
whose derivation is mathematically equivalent to a second-
order Taylor approximation of Egeom . The derivative of
Enorm with respect to each component j of the twist coordi-
nates is:

dEnorm

dξ j
=

∑
sur f ace

voxels

−nre f ·
(

∇xncur (ξ)
∂V
∂ξ

δ j

)
, (18)

where δ j is a 6-element vector of zeros with j-th component
1, and ∇xn ∈ R

3×3 is the spatial gradient of a normal vector,
which evaluates how the orientation changes with location,
i.e. it is a measure of curvature.

4.2 Global Pose Optimization

After tracking, a predefined number of regularly spaced
keyframes are taken for generation of the final reconstruc-
tion. The weighted averaging provides a convenient way to
incorporate the information from all of their viewpoints into
a global model φavg .

However, when using noisy data the estimated trajectory
might have accumulated drift, so the keyframes’ poses need
to be refined to ensure optimal geometry. For this task we
propose a frame-to-model scheme based on the SDF-2-SDF
registration energy. Each pose ξt is better aligned with the
global weighted average model φavg , which is used as the
reference in Eq. 8. In effect, the optimization is interleaved
with the computation of the final reconstruction, and takes
less than 30 s for 24 keyframes. The linearization of the
energy follows a gradient descent minimization with step
α:

dEgeom

dξ
=

∑
voxels

(
φcur (ξ) − φavg

)∇ξφcur (ξ) , (19)

ξ k+1
t = ξ kt − α

dEgeom(ξ kt )

dξ
. (20)

The pose of the first camera determines the world coor-
dinate frame and is fixed to identity throughout the whole
optimization. In each iteration, the pose updates of all other
keyframes are determinedusing theglobalmodel, afterwhich
they are simultaneously applied. The weighted average is
recomputed every couple of iterations (10 in our case), rather
than on every step, so that the objective does not change in
the meantime. Furthermore, this is done in a coarse-to-fine
scheme over the voxel size to ensure that larger pose devia-
tions can also be recovered.

4.3 Implementation

The SDF-2-SDF energy is highly parallelizable, because the
contributions of each voxel are independent. However, as
we estimate the bounding box on the fly, their amount is not
known beforehand. Therefore, the number of reduction oper-
ations which ultimately lead to the 6 × 6 system of Eq. 15
is unknown. This is in contrast to KinectFusion (Newcombe
et al. 2011) and point-to-implicit (Bylow et al. 2013; Canel-
has et al. 2013), where aVGA-sized depth image is registered
to a point cloud or an SDF, respectively. Thus the number of
reduction operations in these methods is fixed and they can
be implemented efficiently on the GPU. Instead, we opt for
a parallelized CPU solution on an 8-core Intel i7-4900MQ
CPU at 2.80 GHz.

As tracking at a voxel size finer than the sensor resolution
is futile, we used 2 mm, corresponding to the expected error
of our noisiest sensor, the Kinect. We used SSE instructions
to make SDF generation efficient, which leaves the compu-
tation of each voxel’s contribution to the 6× 6 system as the
bottleneck. To speed it up, we only process voxels with pos-
itive weight, and different values in the two grids, achieving
real-time performance between 17 and 22 FPS on tabletop
objects.
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Fig. 4 SDF-TAR pipeline: the relative motion between every two
depth frames is estimated on the GPU from p limited-extent volumes,
anchored at locations of high curvature. As soon as frame Fm is tracked,
the CPU refinement module starts jointly optimizing Fm−2b+1 to Fm .

In the meantime tracking resumes on Fm+1 to Fm+b. Once this new
batch is ready, refinement is switched to Fm−b+1 to Fm+b. This strat-
egy ensures that every pose is optimized twice for highest geometric
consistency

On the other hand, the pose optimization has a simpler
mathematical formulation, whereby only a 6-element vec-
tor is calculated in every gradient descent step. We apply a
pyramid over voxel size (4, 2 mm, optionally 1 mm), which
ensures that first larger deviations are handled, while the final
model is of a high resolution. Typically the whole refinement
stage takes less than half a minute, even in case of severe
drift. Exact timings will be provided in the experimental sec-
tion.

5 SLAM

Having developed an advantageous registration strategy, our
next goal is to apply it for the reconstruction of larger
objects and indoor spaces, i.e. to make it suitable for SLAM-
like scenarios. However, regular voxel grids, as used in
SDF-2-SDF object reconstruction, are extremely memory-
intensive. This becomes especially problematic if a fine
voxel resolution, as required for accurate reconstruction, is
used for a large scene. Storing only the signed distances
for 5123 voxels takes 0.5 GB, and for 10243 - 4 GB.
These figures further increase for the storage of the weight
and color grids. The problem soon becomes intractable, as
processing a high amount of voxels also naturally entails
increased runtime. As discussed in Sect. 4.3, the involved
reduction operations prevent a straightforward GPU paral-
lelization.

To counter both the memory and speed issues, we pro-
pose a modification of the SDF-2-SDF scheme, which runs
over a small, fixed amount of voxels, and consequently can
be done efficiently on a GPU. We constrain registration to
limited-extent volumes at geometry-rich locations, so that we
can keep its accuracy, while reducing its load and increas-
ing its speed. Furthermore, as the CPU is left mostly idle,
we simultaneously use it for pose optimization. Thus we
obtain a hyprid GPU/CPU scheme, visualized in Fig. 4. We
call it SDF-TAR, for SDF-based parallel tracking and refine-
ment.

5.1 Limited-Extent Volumes

We propose a simple to implement solution that significantly
reduces the memory load. Our key idea is to set p partial
SDFs �1, . . . , �p of resolution x × y × z voxels with side
length l, and carry out SDF-2-SDF registration searching for
a common rigid-body motion ξ for all of these limited-extent
volumes (LEVs) simultaneously. This strategy guarantees
that memory will be kept constant for every pair of frames
and gives an upper bound for the processing time, letting us
select a maximum number of iterations that will always stay
within real-time constraints.

While the choice of the LEVs’ positions is obviously crit-
ical, it is also natural. Guided by the intuition that flat areas,
like walls, do not contribute to and could even inhibit regis-
tration, we propose to anchor the volumes at points of high
curvature. Such regions are highly distinct from their sur-
roundings and can therefore quickly lead registration to an
optimal solution.

Figure 5 illustrates the anchor point selection process. To
minimize runtime, all operations are done directly on the
depth map. Since the sensor error increases quadratically
with distance (Khoshelham and Elberink 2012), we consider
measurements further than 2 m unreliable and discard them.
Furthermore, RGB-D cameras are inaccurate near depth dis-
continuities, thus we also mask out pixels near edges. Next,
we estimate the surface normals as derivatives over the pre-
processed depth map, following the method of Holzer et
al. (2012). Then we calculate the curvature magnitude from
the derivatives of the normal map. Finally, we apply non-
maximum suppression (Neubeck and Van Gool 2006), so
that only one high curvature point is selected within every
window of size w × w pixels. This ensures that the LEVs
centered around these locations will not overlap. Finally, we
select the p points with highest curvature values in the non-
maximum-suppressed image. If there are less than p peaks,
we simply take all of them.
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Fig. 5 Limited-extent volume anchor point selection process: a loca-
tions too far away (blue) and near edges (red) are masked out from
the input depth map, to discard potentially noisy values. b Normals
are calculated as derivatives over depth. c Curvature is calculated as

derivatives of normals. Its size is non-maximum suppressed to deter-
mine peaks separated by a minimal distance. d The p highest peaks are
used as anchor points for the LEVs, which are small SDFs of fixed size
(Color figure online)

5.2 Limited-Extent Volume Registration

The modified geometric energy becomes:

Egeom′(ξ) =
∑

voxels �i
i=1..p

( ∑
voxels∈�i

(
φre f ωre f

−φcur (ξ)ωcur (ξ)
)2)

, (21)

and similarly the sums in Eqs. 9, 10, 11, 12, 13, 18.
We keep tracking in a frame-to-framemanner. However, if

refinement is done over all already tracked frames, its conver-
gence time will respectively increase with their number. In
addition, refinement over frames separated by a large distance
is not necessarily beneficial, since they may be capturing
completely non-overlapping parts of the scene. Therefore,
we propose to carry out pose optimization over batches of
the last few frames.

More precisely, it is done over q ≤ p LEVs, jointly in
batches of 2b frames, the first half ofwhich have already been
refined once,while the second half are the lastly tracked ones.
A local weighted average φloc avg of the 2b frames is gener-
ated in each LEV. As in the object reconstruction case, each
φloc avg is re-calculated only on every f th iteration in order
to keep the objective fixed meanwhile. For stability the first
b/2 poses are kept fixed, while each other pose is refined fol-
lowing the previously introduced gradient descent scheme,
resulting in one 6-element-vector pose update. Therefore,
once frame number m is tracked, optimization is carried out
following the modified version of Eq. 19:

dEgeom′

dξ
=

∑
voxels �i

i=1..p

( ∑
voxels∈�i

(
φd (ξ) − φloc avg

)

∇ξφd(ξ)

)
, d ∈ [m − 2b + 1, . . . ,m]. (22)

5.3 Parallel Tracking and Refinement

As our objective is a fully real-time SLAM method without
any posterior processing, we execute the tracking and refine-
ment modules concurrently. We allocate a separate GPU
stream responsible for tracking: an incoming depth map is
transferred to device memory, pre-processed and then regis-
tered to the previous one using the limited-extent volume
scheme explained above. When b frames have been pro-
cessed, the CPU is signalled and starts the optimization
module. Refinement is done in a locally global fashion: a
local batch of 2b frames is jointly globally optimized. The
batch consists of the newly tracked b poses and the b previous
ones, ofwhich thefirstb/2 are kept fixed for stability andonly
contribute to the weighted average generation. Refinement
runs until the next b frames have been tracked, when the CPU
is signalled to switch batches and the procedure continues.
This strategy gives a broader context for optimization and
ensures that every frame participates in the refinement twice,
thus is geometrically consistent with frames both before and
after it.

Given a trajectory estimated in this manner, a recon-
struction can be generated in various ways, among which
volumetric fusion (PCL 2017; Newcombe et al. 2011), care-
fully selected key-frame fusion (Meilland and Comport
2013), or point-based fusion (Keller et al. 2013). memory
load. As the particular method is not the focus of this work,
when comparing the outputs of different pipelines we will
always display results generated with the same technique
(PCL 2017).

5.4 Implementation

Our implementation was done on the previously used Intel
i7-4900MQ CPU at 2.80 GHz, and an NVIDIA Quadro
K2100M GPU. Pre-processing VGA-sized depth images
takes 7–8 ms: transferring the image to device memory, and
estimating its normals and curvature size take approximately
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4.5 ms in total, while the non-max-imum suppression and
sorting the peaks in order of their curvature magnitude last
another 3 ms. The remaining 25 ms are entirely available
for tracking, so the maximum number of iterations is set
depending on the number of SDFs. Depending on frame
distance, typically 20–60 iterations are sufficient for con-
vergence. Refinement runs concurrently until the signal that
a new batch is ready, when it switches to the new batch.

The tracking module requires 160 MB of GPU memory
for p = 64 SDFs (if signed distances are stored as float
and weights as uchar), totalling 322.4 MB for two frames
together with their depth maps. In addition, the refinement
module takes 20 MB of CPU memory for the weighted aver-
age, and another 23.4 MB for 20 depth images. These values
demonstrate the real-time capabilities of SDF-TAR, com-
bined with its lowmemory load. Furthermore, they show that
there are enough resources for an additional thread, respon-
sible for the data fusion in parallel.

6 Evaluation

Here we perform extensive qualitative and quantitative anal-
ysis of various aspects of SDF-2-SDF and SDF-TAR.

6.1 Test Setup and 3D-Printed RGB-DObject Dataset

Datasets Our goal has been to develop solutions that are
generic with respect to sensor noise characteristics, scanning
motion, and object/ scene geometry and texture. Moreover,
as we are interested in the usability of models, we want to
assess not only tracking, but also reconstruction accuracy on
real data. Therefore, we use several public datasets, acquired
with different sensors.

The availability of benchmarks for object reconstruction
is far more limited than for SLAM. Existing RGB-D col-
lections of household items, such as that of Washington
University (Lai et al. 2011) and Berkeley’s BigBIRD (Singh
et al. 2014), either lack noiseless meshes or complete 6 DoF
poses (Narayan et al. 2015). Thus, we 3D-printed a selection
of objects with diverse geometry, size and colors, and con-
tribute the first, to the best of our knowledge, object dataset
with original CAD models and RGB-D data from various
quality sensors, acquired from externally measured poses.
Our 3D-Printed RGB-D Object Dataset, shown in Fig. 6, is
available at http://campar.in.tum.de/personal/slavcheva/3d-
printed-dataset/index.html.

Our five objects exhibit various richness of geometry and
texture: uniformly colored (bunny), colored in patches (teddy,
Kenny), densely colored (leopard, tank); very small (Kenny),
very large (teddy); with thin structures (leopard’s tail, tank’s
gun), with spherical components (teddy, Kenny) and symme-
tries (teddy, Kenny, tank). Theywere 3D-printed in colorwith

Fig. 6 Members of the 3D-Printed RGB-D Object Dataset. The bunny
is from The Stanford Repository, the tank—from the 3D Warehouse,
and all other models—from Archive3D

a 3D Systems ZPrinter 650, which reproduces details of res-
olution 0.1 mm (ZCorporation 2008). Thus we ensure that
the textured ground-truth CAD models are at our disposal
for evaluation, eliminating dependence on the precision of
a stitching method or system calibration that other datasets
entail.

To capture increasing levels of sensor noise, we used three
RGB-D cameras: noise-free synthetic rendering in Blender
(https://www.blender.org/ 2017), an industrial phase shift
sensor of resolution 0.13 mm, and a Kinect v1. We recorded
in two scanning modes: turntable and handheld with the
Kinect. We simulated them in Blender as 120-pose trajecto-
ries of radius 50 cm, where the handheld one is a sine wave
with frequency 5 and amplitude 15 cm. Thus the synthetic
groundtruth trajectories are known, while the Kinect poses
are obtained from a markerboard placed under the object.
The industrial sensor takes 4 s to acquire a single RGB-D
pair, permitting us to only record turntable sequences. Due
to its limited field of view, we could not place a sufficiently
large markerboard, so we will only use it for evaluation of
model accuracy. In all cases the object of interest is placed on
a textured support that ensures optimal conditions for visual
odometry, ensuring fair comparisons.

For reconstruction of bigger objects we use the Large
Dataset of Object Scans (Choi et al. 2016). It provides
PrimeSense Carmine scans of furniture items and vehicles,
acquired by non-professional users in their everyday environ-
ments. Furthermore, some sequences include a reconstruc-
tion based on KinectFusions’s ICP registration combined
with DVO’s RGB-D photometric error. Hence this collection
is suitable for qualitative comparison in realistic scenarios
against well-established methods.

On the intersection between these two datasets is
CoRBS (Wasenmüller et al. 2016b). It also contains large-
scale objects: desk, human, electric cabinet and car, each
captured in five different Kinect v2 trajectories. Most impor-
tantly, it provides ground-truth models and poses for them,
which enable us to evaluate our approach on bigger objects.

Finally, to analyse our SLAM capabilities, we test on the
TUM RGB-D benchmark (Sturm et al. 2017), which encom-
passes many Axus Xtion scans of indoor spaces, together
with ground-truth trajectories.
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Fig. 7 Comparison of per-frame tracking errors on Kinect sequences from the 3D-Printed RGB-D Object Dataset (Slavcheva et al. 2016)

Methods Different components of our techniques will be
compared to the following state-of-the-art methods:

– GICP: PCL’s (http://pointclouds.org/ 2017) frame-to-
frame generalized ICP (Segal et al. 2009);

– KinFu: PCL’sKinectFusion (PCL2017;Newcombe et al.
2011) as a frame-to-model ICP variant;

– FM-pt-SDF: the frame-to-model point-to-implicit tech-
niques of Bylow et al. (2013) and Canelhas et al. (2013)
(available as a ROS package Canelhas 2017);

– FF-pt-SDF: our frame-to-frame modification of Canel-
has (2017);

– DVO-object: dense visual odometry without refinement
(Kerl et al. 2013) (available online (Kerl 2017) only over
the object;

– DVO-full: DVO on the entire scene (no refinement);
– KinFu+DVO: the ICP/DVO combination of Choi et al.
(2016);

– DNA-SLAM: theToFnoise-awareDVOvariant inWasen-
müller et al. (2016a);

– Kehl et al.: the object reconstruction pipeline of Kehl e al.
(2014), which tracks by DVO, detects loop closure, opti-
mizes keyframe poses via g2o (Kümmerle et al. 2011),
and integrates them via TV-L1 minimization (Zach et al.
2007) over colored SDFs.

As our tracking and pose optimization routines can be
used stand-alone, we evaluate them separately. Thus, in addi-
tion to the SDF-2-SDF and SDF-TAR pipelines, we test
the tracking-only component, denoted as SDF-2-SDF-reg.
Unless otherwise specified, we only use Egeom for higher

speed and lowermemory consumption than with the optional
constraints Enorm and ERGB .

Metrics We employ the typical RGB-D benchmark metrics
(Sturm et al. 2017), namely the absolute trajectory error
(ATE), which quantifies the overall trajectory error, and the
relative pose error (RPE), which is the drift over a fixed time
interval. However, the ATE first determines the best align-
ment between the groundtruth and estimated trajectories.
This is better suited to SLAM than object reconstruction,
where every-frame fusion is done with respect to the first
pose. Thus we also use an absolute pose error, which does
not carry out an alignment step.

We evaluate the reconstruction error against the CAD
model, used for 3D-printing, in CloudCompare
(http://www.danielgm.net/cc/ 2017).

6.2 3D Object Reconstruction

We start our evaluation with the trajectory and model preci-
sion achieved on household-scale objects.

Tracking Figure 7 provides an overview of the tracking errors
on all Kinect sensor sequences of our 3D-Printed Dataset,
without any pose refinement. We show both relative and
absolute values for translational and angular deviation. The
overall trend is that the angular error reflects the translational
one. Furthermore, we have calculated minimum, maximum,
average and root-mean squared (RMS) metrics, but note that
the average ones are most indicative and only display those.

The results indicate that typically DVO-full, using the
object together with its richly textured background, and our
SDF-2-SDF-reg are most precise, while GICP and DVO-
object are least accurate. SDF-2-SDF-reg clearly outper-
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forms the remaining volumetric methods. On large objects,
like teddy, our average relative drift is below 2 mm, which
corresponds to the voxel size used for tracking, suggesting
that when the data is not severely influenced by noise, only
the voxel resolution is a limiting factor for accuracy. Sim-
ilarly, our average relative angular error is always below
1° , and is often almost negligible, e.g. 0.19° on turntable
teddy, and 0.26° on tank and leopard, which are challeng-
ing objects with thin structures. Likewise, SDF-2-SDF-reg
has better absolute metrics even than DVO-full on turntable
bunny, teddy, tank and handheld teddy, despite using only
geometric constraints over the object of interest.

KinFu and the two point-to-implicit strategies perform
similar to each other. In most cases KinFu is more accurate
than pt-SDF, while frame-to-frame is slightly better than the
frame-to-model pt-SDF variant. A notable failure case for
FM-pt-SDF was the turntable teddy, where symmetry on the
back caused drift from the middle of the sequence onwards,
which lead to unrepairable errors in the globalmodel and con-
sequently flawed tracking. Similarly, FM-pt-SDF performed
poorly on the turntableKenny due to its fine structures, while
FF-pt-SDF did not suffer from error build-up and was most
accurate. These observations support our hypothesis that a
frame-to-frame strategy is better for object scanning scenar-
ios, in which, as opposed to SLAM, it is rare to repeatedly
cover vast overlapping areas.

In the presence of severe Kinect-like noise, the sparse
point clouds of objects in the scene tend to become too cor-
rupted and degrade registration accuracy. On the contrary,
SDF-2-SDF-reg is more precise than cloud-based KinFu and
pt-SDF because the inherent smoothing properties of vol-
umetric representations counteract noise better. Moreover,
SDF-2-SDF-reg relies on a denser set of correspondences:
on average, the used clouds consist of 8 × 103 data points,
while the SDFs have 386 × 103 voxels. Thus the problem is
constrained more strongly, making our proposed registration
strategy more suitable for object reconstruction.

Convergence Basin To deepen our analysis of SDF-2-SDF
registration, we investigated its convergence basin. We sim-
ulated initial conditions, in which the global minimum is
gradually further away, by skipping frames from the original
turntable Kinect sequences. The first five plots in Fig. 8 dis-
play comparisons to other techniques on each object, while
the last plot is averaged over all of them. In the majority of
cases, the errors of most methods grow approximately lin-
early, but SDF-2-SDF-reg has the slowest rate. Thus thanks to
its denser formulation and the existence ofmeaningful values
everywhere in the volume, it can determine an accurate pose
from a much larger initial deviation. In particular, with the
exception of two-frame distance on Kenny, SDF-2-SDF-reg
is considerably more precise than DVO-full. The remain-
ing results exhibit a trend similar to that of Fig. 7: GICP,

Fig. 8 Convergence analysis of registration methods with respect to
frame distance, simulating larger initial deviation

DVO-object and FM-pt-SDF have the fastest error growth
rates, and are outperformed by KinFu and FF-pt-SDF, which
behave alike.

Notably, on tank the errors of FF-pt-SDF and SDF-2-
SDF-reg are nearly identical for each frame distance. This
indicates that a frame-to-frame strategy is more advanta-
geous than frame-to-model for a larger pose difference. The
reason is that a model is of limited help here, because a
new frame exposes more unseen parts of the object. On the
other hand, the previously observed parts can steer into local
minima. Moreover, as the tank has a relatively uncompli-
cated geometry, the point-to-implicit and implicit-to-implicit
methods behave similarly. However, the remaining objects,
where geometry is more peculiar, present a larger challenge
to pt-SDF, since its point clouds aremore susceptible to noise
thanSDFs. These observations once again confirmour design
choices for the SDF-2-SDF framework.

Additional Constraints Next, we evaluate the effect of sur-
face orientation and photoconsistency on the registration
error, summarized in Fig. 9. We obtained similar results with
weight values from the set {0.05, 0.1, 0.2} for both wnorm

and wRGB . Each additional constraint decreases the error of
Egeom by a certain amount, depending on the properties of
the object, while all three together make ESDF most accu-
rate. This does not hold only for the angular error of haldheld
Kenny. Its error decreases with the normal term, but increases
with the texture one.We suppose this is due to depth-to-color
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Fig. 9 Effect of curvature and photometric constraints on the average
absolute error of SDF-2-SDF registration

Table 1 Effect of curvature constraints on convergence rate: compari-
son of number of iterations until convergence when tracking based on
the signed distance term only (geom) versus combined with the surface
orientation term (geom+norm)

Object Iterations to convergence

Turntable Handheld

geom geom+norm geom geom+norm

Bunny 42.09 23.37 41.26 31.18

Teddy 17.28 15.60 25.16 17.22

Kenny 46.01 28.36 76.44 41.09

Leopard 24.03 17.29 34.52 22.49

Tank 28.88 19.73 41.86 29.02

camera calibration, which can lead to a significant offset on
a small object like this. Moreover, considering that the addi-
tional terms entailmore calculations,we advocate to use them
depending on the specific case. For instance, Enorm is very
beneficial on the teddy, since it is a large object, where nor-
mals can be estimated reliably. Color helps on richly textured
objects, like leopard and tank. In several cases the final error
of ESDF has become even lower than that of DVO-full from
Fig. 7, where it previously was not.

As previously discussed, since surface normals are the
derivatives of signed distances, Enorm is a second-order term
in addition to Egeom , which does not significantly change the
optimumof the energy.However, assuming that the computa-
tion of normals is not heavily influenced by noise, we expect
that the optimum would be reached in fewer iterations. We
investigated this claim in Table 1 and Fig. 10.

First, we notice that handheld sequences typically require
more iterations to convergence than turntable ones. This is
due to themore erratic scanningmotion, causingmore notice-
able effects of motion blur and rolling shutter. In addition,

bigger objects, like teddy, require less iterations than smaller
ones, like Kenny, since they contain more data, a smaller
portion of which is influenced by noise. Finally, the expec-
tation for less iterations with the normal term is confirmed
in all cases. The plots indicate that Enorm remedies cases
when Egeom alone did not converge, since spikes in the red
lines are not present in the blue ones. There are rare cases
in which the combined energy needs several more iterations
than the geometric one alone, occurring on frame pairs with
smaller overlap. As the standard deviation of iteration num-
ber decreases noticeably, we conclude that the second-order
term regularizes the energy.

Note that high quality industrial sensor sequences typi-
cally require less iterations than Kinect ones, even based on
Egeom only. Therefore, while on Kinect data Enorm might
lead to convergence in half the iterations, its contribution is
not as significant on less noisy data.

Pose Refinement and Object Reconstruction Figure 11 shows
our results on the industrial sensor and Kinect sequences of
our 3D-Printed Dataset after global pose refinement. While
the shapes are reconstructed well, the difference in device
quality is apparent. The models obtained from phase shift
data are very detailed, while those fromKinect are smoothed
out. This is most visible on the edges of the tank, on the ears
of the leopard that were not captured by the Kinect, and from
the lack of details on the bunny body.

Furthermore, in Figs. 12 and 13 we provide qualita-
tive comparison on both the industrial and Kinect turntable
sequences of our3D-PrintedRGB-DObjectDataset between
KinFu, the DVO-full based method of Kehl et al., and SDF-
2-SDF without and with refinement. These snapshots reflect
the numerical reconstruction errors, listed in Table 2, where
we also test Kehl et al.’s pipeline with the less accurate DVO-
object.

In most cases, SDF-2-SDF-reg yields better results than
KinFu even without refinement. In particular, optimization is
typically not neededwhenusing phase shift data.On the other
hand, it is vital on the more challenging Kenny, leopard and
bunny Kinect scans. Therefore, our registration technique
alone outperforms related methods on high quality depth
data, while it requires the posterior refinement step on noisier
data.

Both figures show that the large teddy is the easiest object
for all methods, while the tiny Kenny is most difficult, since
it is more affected by noise. On industrial data SDF-2-SDF-
reg produces slightly better reconstructions than Kehl et al.,
while on Kinect data Kehl et al. is superior. However, the
model errors indicate that if its DVO tracking component is
constrained only on the object, performance is significantly
worse on Kinect data and might even fail on the more erratic
handheld scans. Contrary to expectations, the table shows
better results for Kehl-object than Kehl-full on industrial
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Fig. 10 Comparisons of iterations to convergence with Egeom versus Egeom + Enorm on Kinect sequences

data. This is, however, because the provided implementa-
tion required resizing the original 2040 × 1080 images to
VGA resolution, leading to increased error when process-
ing areas near the image border, where the textured table is
located. The results of KinFu and SDF-2-SDF did not change
for VGA and the original size, indicating lower sensitivity of
volumetric approaches to such issues. Moreover, the speed
of SDF-2-SDF remained unaffected, as it only depends on
the voxel resolution, and not on the image or point cloud
size, while KinFu slowed down with larger image dimen-

sions. Thus our system generalizes well not only for various
object geometry, but also for any device.

SDF-2-SDF’s error is clearly below1mmonall phase shift
sequences, and stays below 2mm on the Kinect ones. As this
corresponds to the device uncertainty, we once again confirm
that our approach is only limited by the sensor resolution and
the voxel size.

Finally, to demonstrate the generality of our approach,
we test it on bigger objects from the Large Dataset of
Object Scans (Choi et al. 2016), and compare to the provided
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reconstructions in Fig. 14. Note that in order to stay within
real-time constraints, we used a voxel size of 8 mm for track-
ing. Even though the dataset reconstructions are obtained via
a combination of ICP’s geometric error with the photocon-

sistency of DVO-full, SDF-2-SDF manages to better recover
challenging details such as chair legs and support beams over
long sequences with thousands of frames.

Fig. 11 SDF-2-SDF reconstructions of industrial and Kinect scans from the 3D-Printed RGB-D Object Dataset (Slavcheva et al. 2016)

Fig. 12 Qualitative comparison of untextured reconstructions from
scans with the high quality industrial sensor of the 3D-Printed RGB-
D Object Dataset (Slavcheva et al. 2016). Object poses might appear
slightly different, since models yielded by different methods are non-

identical. Fine structures cause related approaches to fail (on Kenny) or
to exhibit misalignment errors (on bunny’s ears, tank’s gun, connection
of leopard’s halves)
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Fig. 13 Qualitative comparison of untextured reconstructions from Kinect scans of the 3D-Printed Object Dataset (Slavcheva et al. 2016)

RuntimeAspreviouslymentioned, thanks toSSE instructions
and 8-core parallel processing over the narrow band, SDF-
2-SDF-reg tracking runs at 17–22 FPS on household objects
when a voxel size of 2 mm is used. Tables 3 and 4 list the
time taken for eachmajor step of our pipeline as average over
all sequences, as well as the fastest (achieved on synthetic
Kenny) and slowest (on Kinect leopard) runs.

Refinement requires at most 40 iterations on each voxel
resolution level, taking up to 30 s to deliver the reconstruc-
tion, which is generated via marching cubes from the final
field. In comparison, Kehl et al.’s pose graph optimization
took 196.4 s on average (minimum 53 s, maximum 902 s)
for the same amount of keyframes. Table 4 shows that our
pose-graph-free refinement is considerably faster.

6.3 Large Objects, Scenes and SLAM

Wenowswitch our focus to evaluating themodification of our
method, SDF-TAR, that permits it to track the camera entirely
onlinewhen scanning bigger objects and scenes. As the SDF-
2-SDF energy was designed for object reconstruction, our
main objective is to adapt it to larger-scale objects, such as

furniture items and industrial parts. Nevertheless, we also
investigate its applicability to SLAM scenarios and compare
to state-of-the art volumetric approaches.

Modification Effect Our expectation is that the numerical
accuracy of SDF-TAR is slightly inferior to SDF-2-SDF due
to the decreased density, while by design it runs in real time
executing both tracking and refinement concurrently. There-
fore, as a proof of concept, we examine the error on all
Kinect sequences of the 3D-Printed RGB-D Object Dataset
(Slavcheva et al. 2016) and compare the two versions of our
approach, as shown in Fig. 15.

We used a standard parameter setting for SDF-TAR
(details will follow in the next section) with a voxel size
of 2 mm, equal to that used in SDF-2-SDF. The out-
come confirms our expectation that performance is degraded
slightly.Nevertheless, the errors remain lower than themajor-
ity of other methods examined in Fig. 7. Moreover, the
error on the challenging handheld Kenny sequence is sig-
nificantly decreased. Therefore, SDF-TAR is a promising
modification of SDF-2-SDF, which will make our dense
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Table 2 CloudCompare
evaluation of the absolute
cloud-to-model reconstruction
error on the 3D-Printed RGB-D
Object Dataset (Slavcheva et al.
2016)

Object Method Mean error (mm)

Industr. turntable Kinect turntable Kinect handheld

Bunny KinFu 0.664 3.800 4.101

SDF-2-SDF-reg 0.656 2.586 1.770

Kehl-object 2.149 5.156 8.274

Kehl-full 0.838 1.134 1.124

SDF-2-SDF 0.541 0.953 0.996

Teddy KinFu 0.998 1.271 2.355

SDF-2-SDF-reg 0.930 1.078 1.589

Kehl-object 1.028 2.306 2.287

Kehl-full 4.828 1.221 3.066

SDF-2-SDF 0.910 0.722 0.990

Kenny KinFu 1.650 1.511 2.874

SDF-2-SDF-reg 0.363 1.295 2.415

Kehl-object 1.816 3.181 failed

Kehl-full 2.553 1.263 2.282

SDF-2-SDF 0.315 1.276 2.358

Leopard KinFu 1.785 4.445 1.886

SDF-2-SDF-reg 0.760 2.692 1.321

Kehl-object 1.018 5.693 failed

Kehl-full 3.626 1.907 1.281

SDF-2-SDF 0.652 1.308 1.263

Tank KinFu 1.390 1.561 2.579

SDF-2-SDF-reg 0.953 1.336 2.042

Kehl-object 1.573 1.192 2.340

Kehl-full 2.617 1.064 0.946

SDF-2-SDF 0.466 0.911 1.508

SDF-2-SDF-reg refers to our methodwithout refinement, while SDF-2-SDF includes refinement. The variants
of Kehl et al.’s pipeline (2014) indicate whether DVO-object or DVO-full was used for tracking
Bold values indicate the lowest error

implicit-to-implicit energy applicable to large spaces and
SLAM scenarios.

Fig. 14 Qualitative comparison versus reconstructions in the Large
Dataset of Object Scans (Choi et al. 2016)

Table 3 SDF-2-SDF-reg tracking module runtime statistics on the 3D-
Printed Dataset (Slavcheva et al. 2016): average/ fastest/ slowest

Tracking (milliseconds per frame)

Pre-process Reference SDF generation Minimization iterations

1.7/ 1.6/ 1.8 2.6/ 1.7/ 3.8 45.3/ 41.4/ 54.9

Overall 49.6/ 44.7/ 60.5 ms = 20/ 22/ 17 FPS

Table 4 SDF-2-SDF refinement module runtime statistics on the 3D-
Printed Dataset (Slavcheva et al. 2016): average/ fastest/ slowest

Refinement (total seconds)

Weighted averages Optimizing poses Marching cubes

1.9/ 0.4/ 6.8 6.1/ 0.3/ 20.2 0.6/ 0.2/ 1.3

Overall 8.6/ 0.9/ 28.3 s

Method ParametersThe resolution of a single LEVSDF is 83

voxels, with side 8mm for tracking and 4mm for refinement.
While this finer voxel size is advantageous for more accurate
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Fig. 15 Comparison of SDF-2-SDF and SDF-TAR on Kinect data
from the 3D-Printed RGB-D Object Dataset (Slavcheva et al. 2016).
SDF-TARdecreases accuracy only slightly, while ensuring tracking and
refinement are accomplished within real time constraints

refinement, an even smaller one is not beneficial because it
would become corrupted by sensor noise. The δ parameter
equals the voxel size, while η is twice the voxel size, as they
control the represented surface region. Independent of how
many LEVs are used for tracking, only n = 8 are used for
refinement, since a good initialization is available and since
generating them for a whole batch of frames on the CPU
would otherwise take too much time. The batch size is 20
frames (b = 10), while the weighted average is generated on
every f = 5th iteration.

While all parameters of SDF-TAR reflect the inherent
properties of the environment, some of the remaining ones
depend on the richness of the scanned geometry. In the
following we assess the susceptibility of trajectory esti-
mation accuracy to them on three sequences of the TUM
RGB-D benchmark (Sturm et al. 2017): fr1/xyz and fr1/rpy,
which are designed for evaluating translational and rota-
tional motion estimation respectively, and fr1/desk which is
a typical SLAM scenario combining both kinds of motion.
We evaluate the root mean squared absolute trajectory error
(ATE) proposed in the benchmark. In order to isolate the
effect of the parameters on the partial volume registration,
we disable the refinement module for this test.

To judge the dependence of the tracking error on the num-
ber of volumes, we take from 20 to 150 LEVs per frame. The
results in Fig. 16a show that the error is rather large with
a small number of volumes, and gradually decreases with
more LEVs. There is quite a broad range of values which
lead to near-optimal results, typically around 60–90 volumes.
When the LEV number becomes too high, the error slightly
increases again. This means that the volumes have become
so many that they also cover flat regions, which inhibit regis-

Fig. 16 Parameter analysis of SDF-TAR: influence of a the number of
LEVsused andb theLEVanchor point selection strategyon the absolute
trajectory error on sequences from the TUMRGB-D benchmark (Sturm
et al. 2017)

tration. Naturally, in order to keep runtime as low as possible,
we advocate taking the smallest amount that guarantees sta-
ble results, e.g. 80 LEVs per frame.

We compare our LEV anchor point selection strategy,
which determineswhere the partial SDFs are centered, to two
other approaches that can be applied directly over a depth
map. In them the image is split into non-overlapping win-
dows of w × w pixels, one pixel is selected per window and
back-projected to 3D to give the anchor point. The uniform
approach takes the center of each window, while the random
strategy selects a pixel at random. For all approaches we first
pre-process the depthmap, as explained (cf. Fig. 4), to discard
invalid regions, and then take the same number of LEVs (the
amount that gave optimal results in the experiment above for
the respective sequence). Figure 16b shows that the uniform
strategy leads to a 4–6 times higher error than our proposal,
while the random sampling is nearly twice worse than ours.
Thus our strategy clearly selects more discriminative regions
that, combined with its high speed, are more advantageous
for registration.

Finally, we switch the refinement module on, observing
a decrease in ATE error on fr1/xyz by only 19%, while on
fr1/rpy it reduced more than 50%. Not surprisingly, on the
combined motion sequence fr1/desk the improvement was in
between: 41%. We, therefore, conclude that our refinement
strategy is highly beneficial for reducing the rotational error
in tracking. We attribute this to the small volumes that only
encapsulate informative context around salient locations. On
the contrary, motion between flat regions can only be esti-
mated as sliding against each other, which would inhibit
accurate rotation estimation.

Furthermore, we tried an every-frame refinement strat-
egy, whereby we used the same frame to weighted average
registration, but only optimizing the last tracked pose. This
refinement lead to a very slight improvement over the non-
optimized trajectory. The reason is that the energy for
every-frame refinement is too similar to the tracking one, so it
cannot significantly improve the pose, while the batch refine-
ment has multiple frames influencing each other, resulting in
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Table 5 Absolute trajectory error (ATE) (meters) on sequences from the TUM RGB-D benchmark (Sturm et al. 2017)

Method fr1/xyz fr1/rpy fr1/desk fr1/desk2 fr1/360 fr1/floor

KinFu (PCL 2017) 0.023 0.081 0.057 0.102 0.591 0.918

FM-pt-SDF (Bylow et al. 2013) 0.021 0.042 0.035 0.061 0.119 0.567

FM-pt-SDF (Canelhas et al. 2013) 0.014 – 0.033 0.230 – 0.984

SDF-TAR 0.015 0.021 0.030 0.091 0.113 0.279

Our method achieves a considerably smaller error when the dominant motion is rotational (e.g. rpy, 360), and demonstrates comparable accuracy
under general motion. Qualitative examples of estimated trajectories are shown on the right
Bold values indicate the lowest error

Table 6 Relative pose error (RPE) translational (meters/frame) and rotational (°/frame) root-mean squared values per frame on TUM RGB-D
benchmark (Sturm et al. 2017) sequences

Method fr1/xyz fr1/rpy fr1/desk fr1/desk2 fr1/360 fr1/floor

tr. rot. tr. rot. tr. rot. tr. rot. tr. rot. tr. rot.

KinFu (PCL 2017) 0.004 0.474 – – 0.020 2.003 0.020 1.795 – – 0.035 1.718

FM-pt-SDF (Canelhas et al. 2013) 0.003 0.472 – – 0.007 0.759 0.019 1.080 – – 0.050 2.085

SDF-TAR 0.003 0.442 0.004 1.042 0.006 0.768 0.009 0.993 0.011 1.514 0.020 0.844

SDF-TAR outperforms the other methods on nearly all examples
Bold values indicate the lowest error

Table 7 Relative pose error
(RPE) translational (m/s) and
rotational (°/s) root-mean
squared values per second on
CoRBS dataset (Wasenmüller
et al. 2016b) sequences

Method Desk D1 Cabinet E1 Human H1

tr. rot. tr. rot. tr. rot.

DNA-SLAM (Wasenmüller et al. 2016a) 0.027 0.970 0.035 1.426 0.020 0.725

KinFu (PCL 2017) 0.026 1.739 0.045 1.047 0.034 1.626

FM-pt-SDF (Canelhas 2017) 0.032 1.753 0.033 1.731 0.041 1.891

SDF-TAR 0.030 0.964 0.032 0.990 0.037 1.456

Bold values indicate the lowest error

Table 8 CloudCompare
absolute cloud-to-model error
(centimeters) on objects from
the CoRBS dataset
(Wasenmüller et al. 2016b)

Method Desk D1 Cabinet E1 Human H1

KinFu PCL (2017) 1.5686 1.2504 0.7105

FM-pt-SDF Canelhas (2017) 1.3266 1.1599 0.6583

SDF-TAR 0.9856 1.0552 0.7258

Bold values indicate the lowest error

better estimates. Thuswe have developed a powerful strategy
that can be applied in parallel with the tracking module and
significantly reduces rotational drift.
SLAM We continue our quantitative evaluation on one of the
mostwidely used publicly available datasets, the TUMRGB-
D benchmark (Sturm et al. 2017), and therefore now assess
the SLAM capabilities of SDF-TAR. We compare against
state-of-the-art systems that rely on SDFs for registration:
KinFu (PCL 2017) and point-to-implicit methods (Bylow
et al. 2013; Canelhas et al. 2013). We cite the values reported
in the respective papers, and run our SDF-TARwith the stan-
dard setting outlined in the previous section.

The absolute and relative tracking errors are summarized
in Tables 5 and 6 respectively. The ATE testifies that SDF-

TAR considerably outperforms related works on sequences
with dominant rotationalmotion, and achieve on-par or better
accuracy on general types of motion. Moreover, our rela-
tive rotational drift is well below 1° even on the challenging
fr1/floor sequence. We, therefore, conclude that the LEVs
reduce the negative influences of noise, blur and rolling
shutter effect by constraining registration to the most dis-
criminative local geometry, and effectively avoiding regions
that typically impede accuracy, such as flat surfaces.

Large Objects Finally, we assess the performance of SDF-
TAR on the task of reconstructing large-scale objects. To this
end, we make use of the CoRBS dataset (Wasenmüller et al.
2016b), since it contains realKinect v2 captures of itemswith
externally recovered CAD models, enabling both tracking
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Fig. 17 Qualitative comparison on Desk1 from the CoRBS dataset
(Wasenmüller et al. 2016b): related approaches wash out fine struc-
tures due to drift (marked in red), while the concurrent refinement in

SDF-TAR reduces it, yielding more detailed, higher fidelity results. a
Color image, b KinFu (PCL 2017), c FM-pt-SDF (Canelhas 2017), d
SDF-TAR (Color figure online)

Fig. 18 SDF-TARresults onCoRBSdataset (Wasenmüller et al. 2016b)
sequences

and reconstruction evaluation. Since the dataset is relatively
new, we run KinFu (PCL 2017) and the ROS version of FM-
pt-SDF (Canelhas 2017) ourselves. For all tests we used a
voxel size of 8 mm, while other parameters were set to the
most advantageous ones defined by the respective authors
of each approach. In addition, we include results from DNA-
SLAM (Wasenmüller et al. 2016a), which is a SLAM system
from the authors of the CoRBS dataset, specifically designed
for time-of-flight cameras, but, unfortunately, reporting only
RPE values and no model errors.

Table 7 provides an overview of the relative trajec-
tory errors per second. KinFu (PCL 2017) and FM-pt-SDF
(Canelhas 2017) perform similarly, as was often the case for
small-scale objects, while our SDF-TAR and DNA-SLAM
achieve higher precision. In some cases DNA-SLAM out-
performs us, since it is specifically designed for this kind
of depth sensor. Nevertheless, SDF-TAR still demonstrates
excellent rotational motion estimation.

The CloudCompare results in Table 8 exhibit a similar
trend. We achieve the smallest model error on most objects,
which we attribute to the smaller rotational drift, combined
with the benefit of online refinement. This proves that SDF-
TAR has successfully leveraged SDF-2-SDF registration to
large volumes of interest.

Finally, we assess our overall outcomes on the RGB-D
benchmark (Sturm et al. 2017) and CoRBS (Wasenmüller
et al. 2016b) in order to judge performance under outward-

facing SLAM trajectories versus inward-facing object scan-
ning ones (Chen et al. 2013) (Figs. 17, 18). We observe that
our energy iswell suited both for small- and large-scale object
reconstruction, where the motion is object-centered. It per-
forms on-par with other methods under more challenging
SLAM motion, but is nevertheless very accurate under rota-
tional motion.

7 Conclusion

Wehave presented a dense, correspondence-free, symmetric,
volumetric energy for registering pairs of implicit repre-
sentations. We have applied it for highly accurate object
reconstruction in SDF-2-SDF, where online frame-to-frame
tracking is followed by swift global frame-to-model opti-
mization. Then, we have demonstrated how to modify it into
a fully real-time, hybridCPU/GPUsystem, SDF-TAR,which
handles larger volumes. Through multiple qualitative and
quantitative evaluations of various aspects of our methods,
we have shown their advantages over state-of-the-art tech-
niques, such as wider convergence basin, better rotational
motion estimation and reconstruction fidelity.
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