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Abstract Deformable image registration is a fundamental
problem in computer vision and medical image computing.
In this paper we investigate the use of graphical models in
the context of a particular type of image registration prob-
lem, known as slice-to-volume registration. We introduce a
scalable, modular and flexible formulation that can accom-
modate low-rank and high order terms, that simultaneously
selects the plane and estimates the in-plane deformation
through a single shot optimization approach. The proposed
framework is instantiated into different variants seeking
either a compromise between computational efficiency (soft
plane selection constraints and approximate definition of
the data similarity terms through pair-wise components) or
exact definition of the data terms and the constraints on the
plane selection. Simulated and real-data in the context of
ultrasound and magnetic resonance registration (where both
framework instantiations as well as different optimization
strategies are considered) demonstrate the potentials of our
method.
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1 Introduction

Slice-to-volume deformable registration is an important
problem in the communities of computer vision and medical
image computing, which has received considerable attention
during the last decade. In general terms, it seeks to determine
the slice (corresponding to an arbitrary plane) from a given
target volume that corresponds to the deformed version of a
source 2D image. This slice is generally specified by a rigid
transformation T̂ . The source 2D image is deformed by a
deformation field D̂ towards improving the matching con-
sistency between the deformed source image and the target
slice.

Slice-to-volume registration is sometimes referred as
2D/3D registration, primarily due to dimension of the images
involved in the registration process. Note that this term
describes two different problems depending on the technol-
ogy used to capture the 2D image: it might be a projective
(e.g. X-ray) or sliced [e.g. ultrasound (US)] image. In this
work we only focus on the latter case. Projective images
have to be treated in a different way (basically a pixel in
the 2D image does not correspond only to a voxel from the
target volume, but to a projection of a set of them in cer-
tain perspective) and they are out of the scope of this paper.
This is principally due to the fact that conventional image
similarity terms cannot be used in the projective case. How-
ever, it should be noted that the proposed formulation with
an appropriate definition of the matching and regularization
cost could also accommodate a solution to this problem. We
refer the reader to the comprehensive survey byMarkelj et al.
(2012) for further information about this topic.
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1.1 Motivation

A broad number of medical image computing applications
benefit from slice-to-volume registration. One can cite, for
example, image guided surgeries and therapies (Fei et al.
2002), biopsies (Xu et al. 2014), tracking of particular organs
(Gill et al. 2008) and minimally-invasive procedures (Liao
et al. 2013; Huang et al. 2009). In such a context, slice-
to-volume registration is a key element for bringing high
resolution annotated data into the operating room. Gener-
ally, pre-operative 3D images such as computed tomography
(CT) or magnetic resonance images (MRI) are acquired for
diagnosis and manually annotated by expert physicians prior
to the operation. During the procedure, 2D real time images
are generated using different technologies (e.g. fluoroCT, US
or interventional MRI slices). These intra-operative images
refer to challenging acquisition constraints and inherit lower
resolution and quality than the pre-operative ones.Moreover,
tissue shift collapse aswell as breathing andheartmotion dur-
ing the procedure, causes elastic deformation in the images.
Non-rigid image registration is suitable to address this issue.
The alignment of intra-operative images with pre-operative
volumes augments the information that doctors have access
to, and allows them to navigate the volumetric annotation
while performing the operation.

Another interesting application is motion correction for
image reconstruction. Here, the goal is to correct for mis-
aligned slices when reconstructing a volume of a certain
modality. A typical approach to solve it consists of map-
ping individual slices within a volume onto another reference
volume in order to correct the inter-slice misalignment. The
popular map-slice-to-volume (MSV)method that introduced
this idea in the context of functional MRI (fMRI) was pre-
sented by Kim et al. (1999). More recently, applications of
slice-to-volume registration to the same problem in different
contexts like cardiac magnetic resonance (CMR) (Chandler
et al. 2008), fetal images (Seshamani et al. 2013) and dif-
fusion tensor imaging (DTI) (Jiang et al. 2009) have shown
promising results.

Although the goals of the motivating problems we have
described are different, all of them require to perform (to
some extent) slice-to-volume registration. In this work, we
focus on the applications where we need to navigate a pre-
operative volume using intra-operative images. However, the
method we present is modular enough to be adapted to dif-
ferent image modalities and settings, and therefore can be
applied to any of these problems.

1.2 Previous Work

Several methods have been proposed during the recent years
to deal with slice-to-volume registration. Some of them deal
onlywith rigid registration, and therefore they cannotmanage

deformations due to tissue shift, breathing or heart motion.
San José Estépar et al. (2009), for example, proposed a
method to register endoscopic and laparoscopic ultrasound
images with pre-operative computed tomography volumes
that potentially could work in real time. It is based on a
new phase correlation technique called LEPART and it han-
dles rigid registration. Gill et al. (2008) tracks intra-operative
MRI slices of prostate images with a pre-operative MRI vol-
ume. This monomodal registration is designed to provide
patient tracking information for prostate biopsy performed
under MR guidance, but is also constrained to rigid trans-
formations. More recently, Eresen et al. (2014) proposed a
method that uses smart phone as a navigation tool for ini-
tial slice alignment followed by an overlap invariant mutual
information-based refinement that estimates the rigid trans-
formation.

Other methods tackle the challenging problem of non-
rigid slice-to-volume registration using nonlinear models.
Among these, there is a sub-category of approaches that uses
several slices instead of a single one, in order to improve the
quality of the results. Some examples are Olesch et al. (2011)
which uses a variational approach and Xu et al. (2014) who
designed a two-step algorithmwhere initial rigid registration
is followed by B-spline based deformable registration. Using
several slices restricts the potential applications to the ones
where more than one slice is available from the beginning.
It also simplifies the problem by increasing the amount of
available information. Our method performs slice-to-volume
registration using a single input slice. Consequently, it can
be adapted to a broader range of applications where just one
slice is available at a time.We refer the reader to Ferrante and
Paragios (2017) for a complete survey about alternative slice-
to-volume registration methods proposed in the literature of
medical image registration.

Most of the aforementioned slice-to-volume registration
approaches, rely on continuous methods to model and per-
form parameter estimation. In this paper we extend our
previous work presented in Ferrante and Paragios (2013),
Ferrante et al. (2015b), Ferrante et al. (2015a) through the
introduction of a single, mathematically rigorous and the-
oretically sound framework derived as a discrete labeling
problem on a graphical model. Graphical models and dis-
crete optimization are powerful formalisms that have been
successfully used during the past years in the field of com-
puter vision (Wang et al. 2013). In particular, rigid as well
as non-rigid image registration have been formulated as a
minimal cost graph problem where the nodes of the graph
correspond to the deformation grid and the graph con-
nectivity encodes regularization constraints. However, this
technique has been applied mainly to mono-dimensional
cases (2D–2D or 3D–3D). To the best of our knowledge,
the only work that focuses on multi-dimensional image
registration (apart of our previous articles that have been
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referenced at the beginning of this paragraph) using this
type of techniques is Zikic et al. (2010). However, it esti-
mates only rigid transformations and works with projective
images.

Discretemethods have several advantageswhen compared
with continuous approaches for slice-to-volume registration.
First, discrete algorithms are inherently gradient-free, while
most part of continuous methods require the objective func-
tion to bedifferentiable.Gradient-freemethods donot require
computation of the energy derivative. Therefore, it may be
applied to any complex energy function (allowing the user
to define its own similarity measures in case of registra-
tion problems). The only requirement is that this function
must be evaluable in a variety of possible discrete labelings.
Second, most part of the continuous methods are prone to
be stuck in local minima when the functions are not con-
vex. In case of discrete methods, even complicated functions
could potentially be optimized using large neighbor search
methods. The main limitation is the discretization of the con-
tinuous space; however, as suggested by Glocker (2010),
’the optimality is bounded by the discretization, but with
intelligent refinement strategy the accuracy of continuous
methods can be achieved’. Third, parallel architectures can
be used to perform non-sequential tasks required by several
discrete algorithms leading to more efficient implementa-
tions. Fourth, by using a discrete label spacewe can explicitly
control its range and resolution (it can be useful to introduce
prior information, as it will be shown in this work), while in
continuousmodels it is not clear how this type of information
can be used to constraint the solution. Last but not least, dis-
crete frameworks such as discrete MRF provide a modular
and principled way to combine prior knowledge with data
likelihood (through the energy formulation), what makes it
applicable to a wide range of vision tasks (Wang et al. 2013),
particularly, to the challenging slice-to-volume registration
problem.

1.3 Contribution

This article contributes to enrich the standard graph-based
deformable registration theory by extending it to the case of
slice-to-volume registration.We present three different mod-
els to solve this challenging problem which vary in terms of
graph topology, label space definition and energy construc-
tion. Our aim is to demonstrate how flexible and powerful the
graph theory is in terms of expressive potential of the mod-
eling process, while solving a new problem using graphical
models. We analyze the strong and weak points of every
model and we perform comparative experiments. Validation
is done using a monomodal MRI cardiac dataset and a multi-
modal brain dataset (Mercier et al. 2012) including different
inference methods.

2 Graph-Based Slice-to-Volume Deformable
Registration

An enormous variety of tasks in computer vision and med-
ical image analysis can be expressed as discrete labeling
problems (Paragios et al. 2016). Low, mid and high-level
vision tasks can be addressed within this framework. To this
end, a visual perception task is addressed by specifying a
task-specific parametric model, associating it to the available
observations (images) through anobjective function andopti-
mizing the model parameters given both, the objective and
the observations (Paragios and Komodakis 2014).

In the context of graph-based discrete labeling problems,
the model is composed by a graph G = 〈V,E〉where vertices
in V correspond to the variables while E is a neighborhood
system (pair-wise & higher order cliques) that encodes the
relationships among these variables. We also consider a dis-
cretized version of the search space that is represented by a
discrete set of labels l ∈ L . The aim is to assign to every
variable v ∈ V a label lv ∈ L . Each time we choose to assign
a label, say, lv1 to a variable v1, we are forced to pay a price
according to the so-called energy function. This objective
function is domain-specific and associates the observations
to the model. It is formulated as the sum of singleton terms
gv(lv) (which depend only on one label lv), pairwise terms
fv1v2(lv1, lv2) (which depend on two variables lv1, lv2 ) and
high-order terms fv1...vn (lvi1 , . . . , lv|Ci |

i
) (which are associ-

ated to high-order cliques Ci that depend on more than two
variables). Our goal is then to choose a labeling which will
allow us to recover the solution corresponding to theminimal
value of the objective function. In other words, we want to
choose a labeling that minimizes the sum of all the energy
potentials, or equivalently the energy P(g, f ). This amounts
to solving the following optimization problem:

argmin
l p

P(g, f ) =
∑

v∈V
gp(lv) +

∑

(v1,v2)∈E
fv1v2(lv1, lv2)

+
∑

Ci∈E
fv1...vn (lvi1 , . . . , lv|Ci |

i
),

(1)

Performing parameter inference on this graphical model,
could be an effective solution to a big variety of problems
in computational medicine. Note that we make a distinction
between singleton, pairwise and high-order terms, depending
on the number of variables jointly interacting. It should be
noted that most part of the graph-based vision models have
explored mainly pairwise constraints (pairwise Conditional
and Markov Random Field (CRF/MRF) models), because in
these cases exact or approximate efficient inference of Max-
imum a Posteriori (MAP) solutions can be done. However,
during the last few years, more and more high-order models
and inference algorithms have been developed which offer
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Fig. 1 Basic workflow to perform slice-to-volume registration based
on graphical models. (1) A 2D input image I and a 3D target volume
J are given as input data. (2) A grid is superimposed to image I . The
process is initialized using a 6-DOF rigid transformation T0 that spec-
ifies the initial position of the grid within the volume J . (3) The grid

is deformed by optimizing an energy function. (4) The plane π̂ and
the deformation field T̂D are reconstructed from the final state of the
optimized grid. (5) T̂D is used to deform image I , and it is provided as
output together with the corresponding slice π̂ [J ]

higher modeling power and can lead to more accurate solu-
tions of the problems (Kohli and Rother 2012; Komodakis
et al. 2011). Given such a general setting, let us now try to
explore the expressive power of such models in the context
of slice-to-volume deformable registration.

The task of slice-to-volume deformable registration can
be expressed mathematically as follows. Given a 2D source
image I and a 3D target volume J , we seek the 2D–2D in-
plane local deformation field T̂D and the plane π̂ [J ] (i.e. a
bi-dimensional slice from the volume J ) which in the most
general case minimize the following objective function:

T̂D, π̂ = argmin
TD ,π

M(I ◦ TD(x), π [J ](x)) + R(TD, π), (2)

where M represents the data similarity term and R the reg-
ularization term. The data term M measures the matching
quality between the deformed 2D source image and the corre-
sponding 3D slice. The regularization termR imposes certain
constraints on the solution that can be used to render the prob-
lem well posed. It also imposes certain expected geometric
properties on the extended (plane selection and plane defor-
mation) deformation field. The plane π̂ , that minimizes the
equation, indicates the location of the 3D volume slice that
best matches the deformed source image. The deformation
field T̂D represents the in-plane deformations that must be
applied to the source image in order to minimize the energy
function.

The fundamental idea behind our approaches is quite intu-
itive: we aim at deforming a planar 2D grid in the 3D space,
which encodes both the deformation field T̂D and the plane
π̂ at the same time. This grid is super-imposed to the 2D
source image and consists of control points that jointly rep-
resent the in-plane deformation and the current position of
the 2D image into the 3D volume. The source image is posi-
tioned within the volume by applying different displacement

vectors with respect to the control points of the superimposed
grid. These displacements are chosen such that a given energy
(see Eq. 2) is minimized to best fit the matching criterionM.
Since they can be moved without any restriction, geometric
constraints are imposed through the regularization term R in
order to keep a smooth deformation field and a planar grid.
Given that we impose a soft planar constraint, the resulting
grid is approximately planar. Therefore, we reconstruct the
final solution by projecting all the points into a regression
plane which is estimated out of the current position of the
points. The rigid transformation that indicates the position
of the regression plane is considered as π̂ . Finally, the pro-
jected grid is interpreted as a 2D Free Form Deformation
model (FFD) (Rueckert et al. 1999) where each control point
has local influence on the deformation and is used to approx-
imate the dense deformation field T̂D (other control point
interpolation models could be used as well). Alternatively,
depending on the application, one may prefer to deform the
sliced image π [J ] instead of the source image I . Note that
this can be done by simply using the inverse of the defor-
mation field TD . To guarantee the existence of the inverse,
we can restrict the generated deformation fields to be diffeo-
morphic. This can be easily guaranteed in our framework by
restricting the displacements size to 0.4 times the size of the
current grid, as indicated in Glocker et al. (2011). Figure 1
illustrates the completeworkflowdescribed in this paragraph.

In this work, we restrict the geometry of the final solu-
tion to in-plane deformations only (i.e. 2D deformations
acting only in the plane π ). As explained in the previous
paragraph, we do that by projecting the final position of
the control points into a regression plane estimated out of
the current position of those points. We follow this strategy
since we found that it improves the stability of the method by
restricting the solution space to only 2D deformation fields.
However, considering out-of-plane deformations in the pro-
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Fig. 2 a Connectivity structure of the graph for a grid of size 5 × 5.
The gray edges are standard 4-neighbor connections while the orange
ones correspond to the extra cliques introduced to improve the geomet-
rical constraints propagation. b Displacement vectors corresponding to
the first three elements of a label from the overparameterized approach
di = (dx , dy , dz). c Unit vectors in spherical coordinates correspond-

ing to the last two coordinates of a label from the overparameterized
approach Ni = (φ, θ). d Displacement of the control points pi and p j
when the corresponding labels li = (di , Ni ) and l j = (d j , N j ) are
applied. The planes πi and π j are those that contain the control points
pi + di , p j + d j and whose normals are Ni , N j respectively

posed frameworkwould only require sidestepping the control
points projection step. In our current formulation, since we
allow the control points to move freely within the 3D space,
the grid is actually deformed in 3D. Actually, the regulariza-
tion terms imposing plane consistency are soft constraints
which can be violated if the data term indicates large match-
ing values. Indeed, they are commonly violated; otherwise
we would not require a projection step. Consequently, avoid-
ing the step where we project every control point to the
regression plane and interpreting the deformed 2D grid as
a 3D deformation field, would be enough to incorporate out-
of-plane deformations if required.

This general formulation can be expressed through dif-
ferent discrete labeling problems on a graph by changing its
topology, the label space definition and the energy terms.
As we mentioned, in this work we propose three differ-
ent approaches to derive slice-to-volume registration as a
discrete graph labeling problem. First, we propose the so-
called overparameterized method, which combines linear
and deformable parameters within a coupled formulation on
a 5-dimensional label space (Ferrante and Paragios 2013).
The main advantage of such a model is the simplicity pro-
videdby its pairwise structure,while themain disadvantage is
the dimensionality of the label space which makes inference
computationally inefficient and approximate (limited sam-
pling of search space).Motivated by thework of Shekhovtsov
et al. (2008), we present a decoupled model where linear
and deformable parameters are separated into two intercon-
nected subgraphs which refer to lower dimensional label
spaces (Ferrante et al. 2015b). It allows us to reduce the
dimensionality of the label space by increasing the num-
ber of edges and vertices, while keeping a pairwise graph.
Finally, in the high-order approach (Ferrante et al. 2015a),
we achieve this dimensionality reduction by augmenting the
order of the graphical model, using third-order cliques which
exploits the expression power of this type of variable interac-

tions. Such a model provides better satisfaction of the global
deformation constraints at the expense of quite challenging
inference.

2.1 Overparameterized Approach

Let us consider an undirected pair-wise graph GO = 〈V, E〉
super-imposed to the 2D image domain with a set of nodes
V and a set of cliques E . The nodes V (a regular lattice)
are interpreted as control points of the bi-dimensional quasi-
planar grid that we defined in the previous section. The set of
edges E is formed by regular 4-neighbors grid connections
and some extra edges introduced to improve the propaga-
tion of the geometrical constraints (see Fig. 2a). The vertices
vi ∈ V are moved by assigning them different labels ui ∈ L
(where L corresponds to the label space) until an optimal
position is found.

In order to deform the graph, we need to define a label
space able to describe the inplane deformations and the plane
selection variables. To this end, we consider a label space L
that consists of 5-tuples l = (dx , dy, dz, φ, θ), where the first
three parameters (dx , dy, dz) define a displacement vector
di in the cartesian coordinate system (see Fig. 2b), and the
angles (φ, θ) define a vector Ni on a unit sphere, expressed
using spherical coordinates (see Fig. 2c). Let us say we have
a control point pi = (pxi , pyi , pzi ) and we assign the label
li = (dxi , dyi , dzi , φi , θi ) to this point. So, the new point
position p′

i after assigning the label is calculated using the
displacement vector as given by the following equation:

p′
i = ( pxi + dxi , pyi + dyi , pzi + dzi ). (3)

Additionally,wedefine aplaneπi containing the displaced
control point p′

i and whose unit normal vector (expressed
in spherical coordinates and with constant radius r = 1)
is Ni = (φi , θi ). One of the most important constraints to
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Fig. 3 Data term formulation for the overparameterized approach. The points x ∈ Ωi are used to calculate the unary potential. π [J ](x) returns
the intensity of the point in the 2D slice corresponding to the plane πi in the 3D image, whereas I (x) returns the 2D image intensity. δ represents
the similarity measure

be considered is that our transformed graph should have a
quasi-planar structure, i.e. it should be similar to a plane; the
plane πi associated with every control point pi is used by the
energy term to take into account this constraint. Figure 2.d
shows how to interpret the labels for two given points pi and
p j .
The energy to be optimized is formed by data terms

G = {gi (·)} (or unary potentials) associated with each graph
vertex and regularization terms F = { fi j (·, ·)} (or pairwise
potentials) associated with the edges. As we described in
Sect. 2, the first ones are typically used for encoding some
sort of data likelihood,whereas the later ones act as regulariz-
ers and thus play an important role in obtaining high-quality
results (Glocker et al. 2011). The minimization energy prob-
lem for the overparameterized formulaton is thus defined as:

PO(G, F) = min
∑

i∈V
gi (li ) + γ

∑

(i, j)∈E
fi j (li , l j ), (4)

where li , l j ∈ L are the labels assigned to the vertices
vi , v j ∈ V respectively.

The formulation of the unary potentials that we propose
is independent of the similarity measure. It is calculated for
each control point given any intensity based metric δ capa-
ble of measuring the similarity between two bi-dimensional
images (e.g sum of absolute differences, mutual informa-
tion, normalized cross correlation). This calculation is done
for each control point pi , using its associated plane πi in the
target image J and the source 2D image I . An oriented patch
Ωi over the plane πi (centered at pi ) is extracted from the
volume J , so that the metric δ can be calculated between that
patch and the corresponding area from the source 2D image
(see Fig. 3). Please note that this patch will be sampled from
the 3D image, given the current position of the control point
pi. Since a single point is not enough to define a unique patch,
we refer to the “patch Ωi over the plane πk” to stress the fact
that this patch will be sampled from the area surrounding the
point pi, only considering those points living in the plane πi

defined by the normal vector Ni . The unary potential is then
defined as:

gi (li ) =
∫

Ωi

δ(I◦TD(x), πi [J ](x))dx. (5)

One of the simplest and commonly used similarity mea-
sures is the Sum of Absolute Differences (SAD) of the
pixel intensity values. It is useful in the monomodal sce-
nario, where two images of the same modality are compared
and, therefore, the grey intensity level itself is discriminant
enough to determine how related are the two images. Its for-
mulation in our framework is:

gSAD,i (li ) =
∫

Ωi

| I◦TD(x) − πi [J ](x) | dx. (6)

In multimodal scenarios, where different modalities are
compared (e.g. CT with Ultrasound images), statistical
similarity measures such as Mutual Information (MI) are
generally used since we can not assume that corresponding
objects have the same intensities in the two images. MI is
defined using the joint intensity distribution p(i, j) and the
marginal intensity distribution p(i) and p( j) of the images
as:

gMI,i (li ) = −
∫

Ωi

log
p(I◦TD(x), πi [J ](x))

p(I◦TD(x))p(πi [J ](x)))
dx. (7)

As we can see in the previous examples, our framework
can encode any local similarity measure defined over two
two-dimensional images. Please note that by local similarity
measure we stress the fact that the metric is computed locally
around the control point, as opposed to global similaritymea-
sures which are computed using the complete image.

Let us now proceed with the definition of the regular-
ization term. Generally, these terms are used to impose
smoothness on the displacement field. In our formulation,
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the pairwise potentials are defined using a linear combina-
tion of two terms: the first (F1) controls the grid deformation
assuming that it is a plane, whereas the second (F2) main-
tains the plane structure of the mesh. They are weighted by
a coefficient α as indicates the following equation:

fi j (li , l j ) = αF1i, j (li , l j ) + (1 − α)F2i, j (li , l j ). (8)

The in-plane deformation is controlled using a distance
preserving approach: it tries to preserve the original distance
between the control points of the grid. Since this metric
is based on the euclidean distance between the points, it
assumes that they are coplanar. We use a distance based on
the ratio between the current position of the control points
pi , p j and their original position po,i , po, j :

ψi, j (di , d j ) = || ( pi + di ) − ( p j + d j ) ||
|| ( po,i ) − ( po, j ) || . (9)

Once we have defined ψi j , the regularizer should fulfill
two conditions: (i) it has to be symmetric with respect to
the displacement of the points, i.e. it must penalize equally
whenever the control points are closer or more distant; (ii)
the energy has to be zero when the points are preserving
distances and monotonically increasing with respect to the
violation of the constraint. The following regularization term
fulfills both conditions for a couple of nodes i, j ∈ V labeled
with labels li , l j :

F1i, j (li , l j )=(1 − ψi, j (di , d j ))
2 + (1 − ψi, j (di , d j )

−1)2,

(10)

The plane preservation term is based on the average dis-
tance between a given control point and the plane defined
from the neighboring ones (see Fig. 4b). The aim is to main-
tain the quasi-planar structure of the grid. Given that the

Fig. 4 a In plane regularization term: the dotted line represents the
distance used in F1, i.e. the distance between the points assuming they
are coplanar. b Plane structure regularization term: the dotted line rep-
resents the distance between one of the control points and the plane
corresponding to the other one. This information is used to compute the
term F2

distance between a point and a plane is zero when the point
lies on the plane, this termwill be minimumwhen the control
points for which we are calculating the pairwise potential are
on the same plane.

The distance between a point p = (px , py, pz) and a
plane π defined by the normal vector N = (nx , ny, nz) and
the point q = (qx , qy, qz) is calculated as:

Dπ ( p) = | nx (px − qx ) + ny(py − qy) + nz(pz − qz) |
√
n2x + n2y + n2z

.

(11)

F2 is defined using this distance (Equation 11) and corre-
sponds to the average of Dπ j ( pi + di ) and Dπi ( p j + d j ):

F2i, j (li , l j ) = 1

2
(Dπ j ( pi + di ) + Dπi ( p j + d j )). (12)

Recall that normal vectors in our label space are expressed
using spherical coordinates with a fixed radius r = 1
(unit sphere). However, the formulation that we presented
uses cartesian coordinates. Therefore, the mapping from one
space to another is done as follows:

x = r sin(θ) cos(φ), y = s sin(θ) sin(φ), z = r cos(θ).

(13)

Note that such pairwise terms are non submodular since
we include the current position of the points (which can be
arbitrary) in their formulation and therefore the submodular-
ity constraint is not fulfilled. In this context, even if there is
no energy bounding that guarantees certain quality for the
solution of the optimization problem, good empirical solu-
tions are feasible since we are in a pairwise scenario. Still,
two issues do arise: (i) high dimensionality of the label space
and consequently high computational cost, (ii) insufficient
sampling of the search space and therefore suboptimal solu-
tions. In order to address these issues while maintaining the
pairwise nature of the methods, we propose the decoupled
method inspired by Shekhovtsov et al. (2008). We con-
sider decoupling the label space into two different ones and
redefining the topology of the graph, so that we can still cap-
ture rigid plane displacements and in-plane deformation.

2.2 Decoupled Approach

We propose to overcome the limitations of the overparam-
eterized method by decoupling every node of the previous
approach into two different ones: one modeling the in-plane
deformation and another the position of the plane. This is
somewhat analogous to creating two separated graphs of the
same size and topology corresponding to different random
variables and label spaces.Once spaces have been decoupled,
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Fig. 5 Data term formulation for the decoupled approach. It is similar
to the formulation shown in Fig. 3, but it combines labels from differ-
ent label spaces. The points x ∈ Ωk are used to calculate the unary
potential. πk [J ](x) returns the intensity of the point in the 2D slice
corresponding to the plane πk in the 3D image, whereas I (x) returns
the 2D image intensity. δ represents the similarity measure. In order to
compute the final position of the sampled patch in the volume, the in-

plane deformation label l I = (dx , dy) is applied to the corresponding
imaginary grid point pk . Then, label l P = (N , λ) is used: the point is
translated in the direction given by vector N and scaled by a factor λ.
In other words, we simply add the vectorN ∗λ. Finally, the patch Ωk is
sampled from plane πk with normal N , centered at the displaced point
pk (in orange) (Color figure online)

different sampling strategies can be used for them. Another
advantage of this approach is that we can define distinct reg-
ularization terms for edges connecting deformation nodes or
plane position nodes. It allows to regularize in a different way
the deformation and the plane position, imposing alternative
geometrical constraints for every case.

Since data term computation requires the exact location of
the node, both position and deformation labels are necessary.
Both graphs can thus be connected through a pairwise edge
between every pair of corresponding nodes. Therefore, new
pairwise potentials are associated with these edges in order
to encode the matching measure.

Formally, the decoupled formulation consists of an undi-
rected pair-wise graph GD = 〈V, E〉 with a set of nodes
V = VI ∪ VP and a set of cliques E = EI ∪ EP ∪ ED .
VI and VP have the same cardinality and 4-neighbor grid
structure. Nodes in VI are labeled with labels that model in-
plane deformation, while labels used in VP model the plane
position. Edges from EI and EP correspond to classical grid
connections for nodes in VI and VP respectively; they are
associated with regularization terms. Edges in ED link every
node from VI with its corresponding node from VP , creat-
ing a graph with a three dimensional structure; those terms
encode thematching similaritymeasure.Note that EI and EP

can be extended with the same type of extra edges defined
in Sect. 2.1 (see Fig. 2a) to improve the satisfaction of the
desired geometrical constraints.

We define two different label spaces, one associated with
VI and one associated with VP . The first label space, L I , is a
bidimensional space that models in-plane deformation using
displacement vectors l I = (dx , dy). The second label space,

LP , indicates the plane in which the corresponding control
point is located and consists of labels l P representing differ-
ent planes. In order to specify the plane and the orientation
of the grid on it, we consider an orthonormal basis acting on
a reference point in this plane. Using this information, we
can reconstruct the position of the control points of the grid.
The planes parametrization is given by l P = (φ, θ, λ), where
anglesφ and θ define a vector N over a unit sphere, expressed
through its spherical coordinates (see Fig. 2c). This value,
together with parameter λ, defines the position of the plane
associated with the given control point. This is an important
advantage of our method: we could use prior knowledge to
improve thewaywe explore the plane space, just by changing
the plane space sampling method.

As it concerns the considered plane sampling method, the
final position of every control point pk of the grid is deter-
mined using the pairwise term between two graph nodes
(v I

k ∈ VI and vP
k ∈ VP ) and their respective labels (l Ik ∈ L I

and l Pk ∈ LP ). Imagine we have a plane πk with normal
vector N that contains the displaced control point pk + l Ik .
Parameter λ indicates the magnitude of the translation we
apply to πk in the direction given by N in order to deter-
mine the plane’s final position (see Fig. 5 for a complete
explanation). Given that we can associate different planes to
different control points (by assigning them different labels
l P ), we need to impose constraints that will force the final
solution to refer to a unique plane.

The energy that guides the optimization process involves
three different pairwise terms, which encode data consis-
tency between the source and the target, smoothness of the
deformation and unique plane selection:
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PD(I, P, D) = min α
∑

(i, j)∈EI

eIi, j (l
I
i , l

I
j )

+ β
∑

(i, j)∈EP

ePi, j (l
P
i , l

P
j )

+
∑

(i, j)∈ED

eDi, j (l
I
i , l

P
j ),

(14)

where α, β are scaling factors, eIi, j ∈ I are in-plane defor-

mation regularizers (associated to edges in E I ), ePi, j ∈ P
are plane consistency constraints (associated with edges in
EP ) and eDi, j ∈ D are data terms (associated with edges in

ED). l Ii , l
P
i are labels from label spaces L I and LP respec-

tively.
The data term is defined for every control point of the

imaginary grid pk using the information provided by two
associated graph nodes. It is encoded in the pairwise term
eD ∈ ED . To this end, we extract an oriented patch Ωk over
the plane πk (centered at pk) from the volume J , so that the
similarity measure δ can be calculated between that patch
and the corresponding area over the source 2D image (see
Fig. 5):

eDi, j (l
I
i , l

P
j ) =

∫

Ωk

δ(I◦TD(x), πk[J ](x))dx. (15)

We define two different regularization terms. The first
controls the in-plane deformation; it is defined on VI and
corresponds to a symmetric distance preserving penalty:

eIi, j (l
I
i , l

I
j )=(1 − ψi, j (l Ii , l

I
j ))

2 + (1 − ψi, j (l Ii , l Ij )
−1)2,

(16)

where ψi, j is the distance defined in Equation 9.
The second term penalizes inconsistencies in terms of

plane selection, and is defined on VP . We use the earlier
defined (at is concerns the overparameterizedmodel, inEqua-
tion 12) point-to-plane distance:

ePi, j (l
P
i , l Pj ) = 1

2
(Dπ j ( pi

′) + Dπi ( p j
′)). (17)

where pi ′ and p j
′ are the positions after applying label l Pi ,

l Pj to pi , p j respectively.
Note that these terms are similar to the ones of the former

approach. However, there is an important difference regard-
ing the parameters they use. In case of the overparameterized
approach, parameters are always 5-dimensional labels. In the
current approach, parameters are at most 3-dimensional, thus
reducing the complexity of the optimization process while
also allowing a denser sampling of the solution space. Con-
ventional pairwise inference algorithms could be used to

optimize the objective function corresponding to the pre-
viously defined decoupled model. Such a model offers a
good compromise between expression power and compu-
tational efficiency. However, the pairwise nature of such
an approach introduces limited expression power in terms
of energy potentials. The smoothness (regularization) terms
with second order cliques are not invariant to linear transfor-
mations such as rotation and scaling (Glocker et al. 2009),
while being approximate in the sense that plane consistency
is imposed in a rather soft manner. These concerns could
be partially addressed through a higher order formulation
acting directly on the displacements of the 2D grid with
3D deformation labels. Furthermore, the data term is just
a local approximation of the real matching score between
the deformed source 2D image and the corresponding target
plane; by introducing high-order terms we could define it
more accurately.

2.3 High-Order Approach

The new formulation consists of an undirected graph GH =
〈V, E〉with a set of nodesV and a set of third-order potentials
E = ED ∪ ER . The nodes are control points of our two-
dimensional quasi-planar grid and they are displaced using
3D vectors li ∈ LH . We define two types of cliques in E .
Cliques in ED are triplets of vertices with a triangular shape
and they are associated with data terms. Cliques in ER are
collinear triplets of vertices (aligned in horizontal and ver-
tical directions) forming third-order cliques associated with
regularization terms.

Unlike the previous methods, which require extra labels
to explicitly model the plane selection, high-order potentials
explicitly encode them. Furthermore, third-order triangu-
lar cliques can also explicitly encode data terms, since the
corresponding plane can be precisely determined using the
position of these 3 vertices.We use triplets of collinear points
for regularization terms. According to Kwon et al. (2008),
this allows us to encode a smoothness prior based on the
discrete approximation of the second-order derivatives using
only the vertices’ position. Therefore, we define a simple
three dimensional label space of displacement vectors which
is sampled as shown in Fig. 2b.

The energy to be minimized consists of data terms Di jk

associatedwith triangular triplets of graph vertices (i, j, k) ∈
ED and regularization terms Ri jk associated with collinear
horizontal and vertical triplets (i, j, k) ∈ ER . The minimiza-
tion energy problem becomes:

PH(D, R) = min
∑

(i, j,k)∈ED

Di jk(li , l j , lk)

+ γ
∑

(i, j,k)∈ER

Ri jk(li , l j , lk),
(18)
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Fig. 6 Different types of cliques used in the formulation. a Example of
a triangular clique used for data term computation. The green patch Ω

corresponds to the clique (i, j, k) and it is used to calculate the data term.
b Examples of vertical (i1, j1, k1) and horizontal (i2, j2, k2) collinear
third-order cliques used to regularize the grid structure (Color figure
online)

where γ is a scaling factor and li is a label associated with a
displacement vector (dx , dy, dz) and assigned to the node i .

The data term is defined over a disjoint set of triangular
cliques, covering the entire 2D domain, as shown in Fig. 6a.
Its formulation is independent of the similarity measure δ

and it is calculated for each clique c = (i, j, k) ∈ ED using
the source 2D image I and the corresponding plane πd [J ]
extracted from the target volume J , defined by the three con-
trol points of the clique. For a given similarity measure δ, the
data term associated with the clique c is thus defined as:

Di jk(li , l j , lk) =
∫

Ω(li ,l j ,lk )

δ(I◦TD(x), πd [J ](x))dx,

(19)

where x ∈ Ω(li ,l j ,lk ), and Ω(li ,l j ,lk ) corresponds to the trian-
gular area defined by the control points of clique c = (i, j, k)
over the plane πd [J ], after applying the corresponding labels
li , l j , lk to the vertices.

Smoothness and plane consistency are also imposed using
higher order cliques. We define a clique for every set of three
collinear and contiguous grid nodes (in horizontal and ver-
tical directions as depicts Fig. 6b). We also introduce extra
cliques formed by nodes that are collinear but not contiguous.
The aim is to propagate the regularization so that the planar
structure is conserved. The regularization term, as noted pre-
viously, seeks to satisfy the plane structure of the grid and
the smoothness nature of the in-plane deformations.

Planar consistency can be easily enforced by propagating
a null second-derivative constraint among collinear triplets
of points. In fact, a null second-derivative for these cliques
does not impose just a planarity constraint but it also aims
at regularizing the grid structure. Thanks to the third-order
cliques, we can accurately approximate a discrete version of
the second-order derivative (Kwon et al. 2008). Given three
contiguous control points ( pi , p j , pk) and their correspond-
ing displacement labels (li , l j , lk), it can be approximated
as follows: || ( pi + li ) + ( pk + lk) − 2 · ( p j + l j ) ||.

Based on this idea, we define the following energy term
that is proportional to the second derivative, and normalized
with the original distance between the control points, d:

RA
i jk(li , l j , lk)=

|| ( pi+li )+( pk+lk)−2 · ( p j +l j ) ||
d2

2

,

(20)

In-plane deformation smoothness is reinforced in the same
manner as the previous models—through a symmetric dis-
tance preserving approach. For the sake of clarity,we redefine
Equation 10 as Ψi j (li , l j ) = (1 − ψi, j (li , l j ))2 + (1 −
ψi, j (li , l j )−1)2, and we apply it to both pairs of contiguous
points that form the clique (i, j, k):

RB
i jk(li , l j , lk) = Ψi j (li , l j ) + Ψ jk(l j , lk)

2
. (21)

The equation that regularizes the grid is a weighted com-
bination of both terms RA

i jk and RB
i jk :

Ri jk(li , l j , lk) = (1− α)RA
i jk(li , l j , lk) + αRB

i jk(li , l j , lk),

(22)

where α represents a weighting factor used to calibrate the
regularization term.

3 Results and Discussion

Let us now proceed with a systematic evaluation of the
proposed methods. One of the main aspects shared across
methods is the inference algorithms used to produce the
desired solution.

3.1 Inference Methods

Depending on their cardinality and regularity, objective func-
tions canbeoptimizedusing avariety of discrete optimization
algorithms which offer different guaranties. It must be noted
that the regularization terms presented in our three models
are non submodular, since we include the current position
of the points (which can be arbitrary) in their formulation.
Therefore, submodularity constraint is fulfilled neither in the
pairwise nor in the high-order terms (for a clear definition of
submodularity in pairwise and high-order energies, we refer
the reader to the work of Ramalingam et al. (2008)).

In Ferrante and Paragios (2013), the overparameter-
ized approach was optimized using the FastPD algorithm
(Komodakis et al. 2007) while for the decoupled (Ferrante
et al. 2015b) and the higher order models (Ferrante et al.
2015a), we consider loopy belief propagation networks. For
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the sake of fairness, in order to improve the confidence of
the comparison among the three methods, in this work we
adapted it to be optimized with the same algorithms. There-
fore, results in this work can not be directly compared with
our previous works.

Given the variety of models presented in this work, we
chose two different inference methods that can deal with
arbitrary graph topologies and clique orders, coming from
two standard inference algorithm classes: (i) Loopy Belief
Propagation (LBP), a well knownmessage passing algorithm
that has been extensively used in the literature; and (ii) the
Lazy Flipper (LF) by Andres et al. (2012), a move-making
algorithm which is a generalization of the classical Iterated
Conditional Modes (ICM) (Besag 1986) and has provided
good approximations for several non-submodular models in
different benchmarks. Both are approximate inference meth-
ods that can accommodate arbitrary energy functions, graph
topologies and label spaces, and allow us to show how the
three proposed approaches perform under different optimiza-
tion strategies.

3.1.1 Loopy Belief Propagation

LBP estimates a solution by iteratively passing local mes-
sages around the variables of the random field. These
messages mi j (sent from a node i to a node j) are actu-
ally vectors of size | L | (cardinality of the label space),
where every scalar entry represents what node i thinks about
assigning label l to the node j . Once a node i receives all
the messages from its neighbors, it compute its beliefs (also
vectors of size | L |) in a label li . The messages are itera-
tively passed from one node to its neighbors until no change
occurs from one iteration to the next one. When convergence
is achieved, the MAP labeling is obtained for every node i
as the label li that minimizes the corresponding belief. Note
that both, messages and beliefs computed for a given node,
depend on the messages received from its neighbors. There-
fore, if the graph that underlies theMRF is a tree, this process
is initialized in the roots since messages for these nodes can
be calculated considering just their potentials. In this case,
at convergence, the solution is guaranteed to be optimal for
arbitrary energies. If the structure is not a tree, messages are
passed in any arbitrary order, but the algorithm is not guaran-
teed to converge in a finite number of iterations. Nonetheless,
LBP has shown good performance in empirical studies (Mur-
phy et al. 1999).

3.1.2 Lazy Flipper

LF is a move-making algorithm proposed by Andres et al.
(2012). It is a generalization of the well-known ICM which
offers a systematic way to explore (exhaustively or not) the
search space. The idea is to start from an arbitrary initial

assignment and perform successive flips of variables that
reduce the energy to be minimized. A greedy strategy is
adopted to explore the space of solutions: as soon as a flip
reducing the energy is found, the current configuration is
updated accordingly. In a first stage, only one variable is
flipped at a time (as in ICM). However, once a configura-
tion is found whose energy can no longer be reduced by
flips of one variable, a new stage starts where all subsets of
two connected variables (i.e. variables that are linked by an
edge in the graph) are considered. This strategy is applied,
considering sets of maximum size k. This parameter con-
trols the search depth. For k = 1, it specializes to ICM. For
bigger values of k a trade-off between approximation qual-
ity and runtime is established, which in the limit converges
to an exhaustive search over only the connected subgraphs
(intractable in most of the cases).

3.1.3 Factor Graphs

We have adopted the OpenGM2 library (Kappes et al. 2013)
which implements both inferencemethods, andmakes it pos-
sible to perform fair comparisons. It requires construction of
a factor graph for every scheme (see Fig. 7).

A factor graphG ′ is a bipartite graph that factorizes a given
global energy function, expressing which variables are argu-
ments of which local functions (Kschischang et al. 2001).
Given a graphical model of any order G = 〈V, E〉 (like the
ones described in this work), we can derive a factor graph
G ′ = 〈V ′, F ′, E ′〉. Here, V ′ is the set of variable nodes
formed by the nodes of G, F ′ is a the set of all the factors
f ∈ F ′ (where every f is associated to one clique G), and
the set E ′ ⊂ V ′ × F ′ defines the relation between the nodes
and the factors. Every factor f has a function ϕ f : V ′n → R

associated with it, that might correspond to one of the data or
regularization terms defined in previous sections. The energy
function of our discrete labeling problem in the context of
factor graphs is then given by:

E(x) =
∑

f ∈F ′
ϕ f (l

f
1 , . . . , l fn ), (23)

where x corresponds to a given labeling for the complete
graph and l f1 . . . l fn are labels given to the variables in the
neighborhood (or scope) of the factor f . Figure 7 shows a
comparison between the three models and the derivation of
the corresponding factor graph in each case.

3.1.4 Incremental Approach

In order to improve the quality of the label space sampling
(and therefore the accuracy of the results) while keeping a
low computational cost, we adopted a greedy incremental
approach where the label space is refined for every time we
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Fig. 7 Factor graph derivation and labels spaces corresponding to the
overparameterized, decoupled and high-order approaches. It shows the
equivalence between cliques ci in the first column (unary, pairwise and
high-order, depending on the model) and the corresponding factors fi
in the second column. In red, we observe the cliques and factors asso-
ciated with data terms, while in green and orange we represent those

associated with regularization terms. In the third column, we include a
figure representing the label space associated to every model (orange
vectors and planes are associated to different labels). Note that the over-
parameterized approach is defined as the Cartesian product between
the displacements and plane selection labels, while in the decoupled
approach these label spaces are independent (Color figure online)

run the inference algorithm. In that way we explore a wider
range of parameters which result in more accurate sampling
when composed after several iterations. A similar approach
has been successfully used in previous graph-based regis-
tration papers (Ferrante and Paragios 2013; Ferrante et al.
2015a, b; Glocker et al. 2008, 2011).

3.2 Experimental Validation

We compute results on two different datasets for the three
methods, using the two inference algorithms (LBP and LF)
in order to validate both the resulting 2D–2D deforma-
tion field and the final plane estimation. The first one is a
monomodal MRI heart dataset while the second one consists
of 6 sequences of multimodal US-MRI brain images.

For every registration case, we run the inference algo-
rithm several times (more precisely, the inference method is
executed a number of times equal to the product between

grid refinement levels and label refinement levels). For a
single execution of both inference methods, we use the
same compound stopping criterion based on the energy
gap between iterations and maximum running time. The
algorithms run until the energy improvement between two
iterations is smaller than a fraction of the current energy (we
use ε = 0.01%). If convergence is not achieved before a
timeout is reached, the algorithm stops and returns the best
explored solution. A timeout of 60 s is used since we observe
that it is enough to achieve convergence in most of the regis-
tration cases. When it is not achieved within this time, it can
take too long. For LF we used a maximum depth of k = 2
(for details about LF, we refer the reader to Sect. 3.1 or to the
work of Kappes et al. 2013).

We run the same experiments using a continuous approach
to estimate rigid and deformable parameters, which serve as
baseline for comparison. We adopted the best deformable
approach (namelyCont Def-Two Steps) from a brief compar-
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ative analysis included in “Appendix 1”, where we discussed
alternative continuous models for slice-to-volume registra-
tion. Please refer to “Appendix 1” for a detailed discussion
about this model. The continuous optimization is performed
using the simplex algorithm proposed by Nelder and Mead
(1965). Also known as Nelder-Mead, downhill simplex or
amoeba, the simplex method is one of the most popular con-
tinuous derivative-free methods. It relies on the notion of
simplex (a n + 1 vertices polytope living in a n-dimensional
space) to explore the space of solutions in a systematic way.
At every iteration, the method constructs a simplex over the
search surface, and the objective function is evaluated on its
vertices. In the simplest version, the algorithm moves across
the surface by replacing, at every iteration, the worst vertex
of the current set by a point reflected through the centroid of
the remaining n points. The method can find a local optimum
when the objective function varies smoothly and is unimodal.
It has also shown to be more robust when dealing with
complicated parameter space than standard gradient-based
methods, providing a good compromise between robustness
and convergence time (Leung et al. 2008). It has been widely
used in a variety of slice-to-volume applications, to estimate
all kinds of transformation models optimizing a variety of
similarity measures (Fei et al. 2002; Birkfellner et al. 2007;
Gill et al. 2008; Osechinskiy and Kruggel 2011). We opti-

mized a global energy where the similarity measure was
computed for the complete image, since no local deformation
model is considered.

In the following subsections we describe the datasets and
present quantitative and qualitative results.

3.2.1 Monomodal Dataset Experiment

The monomodal dataset was derived from a temporal series
of 3D heart MRI volumes. It consists of 10 sequences of 19
MRI sliceswhich have to be registeredwith an initial volume.
The slices are extracted from randompositions in the volumes
while satisfying spatio-temporal consistency. The ground
truth associated with this dataset refers to the rigid transfor-
mation used to extract every 2D slice of every sequence (it
is used to validate the plane estimation or rigid registration)
and a segmentation mask of the left endocardium, that can
be used to validate the quality of the estimated deformation
field.

The dataset was generated from a temporal series of 3D
heart MRI volumes Mi as shown in Fig. 8. For a given
sequence in the heart dataset, every 2D slice Ii was extracted
from the corresponding volumeMi at a position which is cal-
culated as follows. Starting from a random initial translation
T0 = (Tx0 , Ty0 , Tz0) and rotation R0 = (Rx0 , Ry0 , Rz0), we

Fig. 8 Heart dataset construction. Given a series of 3D MRI volumes of a beating heart (a), we extract ten different random trajectories (b). Every
trajectory is composed of twenty different positions from which we extract the 2D slices (c)
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Fig. 9 Slices extracted from three different sequences of the heart
dataset before and after registration. Input slice a is initialized in a
position specified by a rigid transformation within the volume, whose
slice corresponds to b. After deformable registration, a deformation
field (c) is estimated. d The difference between initial images a and
b, while e shows the difference between a and the corresponding slice

extracted after rigid registration. Finally, f corresponds to the results
after deformable registration (i.e., the difference between the deformed
version of slice a and the slice corresponding to the estimated transfor-
mation).Red indicates bigger differences between the images.Note how
these values are changing before (d), after rigid (e) and after deformable
(f) registration (Color figure online)

extract the first 2D slice I0 from the initial volume M0. Then,
gaussian noise is added to every parameter of the transfor-
mation in order to generate the position of the next slice at
the next volume.We used σr = 3◦ as rotation and σt = 5mm
as translation parameters. Those parameters generate maxi-
mum distances of about 25mm between the current and the
succeeding plane. In this way, we generated 2D sequences
that correspond to trajectories inside the volumes. Since the
initial 3D series consists of temporally spaced volumes of
the heart, there are local deformations between them due to
the heartbeat; therefore, extracted slices are also deformed.

The resolution of theMRI volume is 192×192×11 voxels
and the voxel size is 1.25mm × 1.25mm × 8mm. The slices
of the 2D sequences are 120 × 120 pixels with a voxel size
of 1.25mm × 1.25mm.

Experiments for the 3 methods were performed using
equivalent configurations. In all of themweused3grid refine-
ment levels, 4 steps of label refinement per grid level, initial
grid size of 40mm and minimum patch size (for similarity
measure calculation) of 20mm. In case of the overparame-
terized approach we used α = 0.8, γ = 1 and 342 labels;
for the decoupled approach we used α = 0.8, β = 0.2,
25 labels in the 2D deformation space and 91 in the plane

selection space; and finally, for the high-order approach
we used α = 0.5, γ = 1.10 and 19 labels. Parameters
α, β, γ were chosen using cross-validation. The number of
labels in every label space was chosen to make the search
spaces as similar as possible. Recall that alternative label
spaces were adopted in every approach: the overparameter-
ized model uses 5-dimensional labels describing in-plane
deformation and plane selection variables; the decoupled
model divides this unified label space into two separate ones,
the in-plane deformations label space and the plane selection
label space; finally, the high-order model uses a unique and
simpler label space composedof 3-dimensional displacement
vectors.

Results are reported (for every approach and every infer-
ence method) for 10 sequences of 19 images, giving a total
of 190 registration cases. We also included the results cor-
responding to the rigid approach optimized using simplex
method. We used SAD as similarity measure given that we
are dealingwithmonomodal registration. The idea is to regis-
ter every 2Dslice Ii (whichplays the role of an intra-operative
image) to the same initial volume M0 (which acts as the pre-
operative image). The resulting position of the slice Ii was
used to initialize the registration of slice Ii+1.
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Fig. 10 Rigid transformation estimation error for the heart dataset.
We measured the distance for every one of the 6 rigid parameters, for
the three approaches using LF and LBP as inference methods and for
the continuous rigid and deformable approaches. The discrete methods

outperform the results obtained using the continuous baselines. Inde-
pendently of the inferencemethod, the decoupled approach outperforms
the other two in terms of average and standard deviation of the estimated
error, for all the 6 parameters

Figure 10 shows results in terms of rigid transformation
estimation. We measured the distance between the trans-
formation parameters, and reported the average of the 190
registration cases. It resulted in less than 0.02rad (1.14◦) for
rotation and less than 1.5mm for translation parameters in
all the discrete approaches and optimization methods. The
discrete methods outperform the results obtained using the
continuous baselines. The decoupled method dominates the
other two by orders of magnitude in terms of reduction of
the standard deviation and the mean error. However, in terms
of performance, both decoupled and high-order methods
are equally good when compared to the overparameterized

approach whose computational time is higher (as expected,
given the high dimensionality of the label space). This can
be observed in Figs. 13, 14 and 15.

To measure the influence of the deformation in the final
results, we used the segmentations being associated with
the dataset. We computed statistics for the segmentation
overlapping at three different stages: before registration (i.e.
between the source image and the target volume slice corre-
sponding to the initial transformation), after rigid registration
(i.e. between the source image and the target volume slice
corresponding to the estimated transformation) and after
deformable registration (i.e. between the deformed source
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Fig. 11 Segmentation overlapping statistics computed before, after
rigid and after deformable registration for both datasets (190 registra-
tion cases for the heart dataset and 54 for the brain dataset). In the
case of deformable registration, the source segmentation mask was
deformed using the estimated deformation field. Results are reported
for the continuous approach that only estimates rigid parameters using
the simplex method, the continuous approach that estimates both rigid

and deformable parameters, and for three discrete methods (overpa-
rameterized, high-order and decoupled) using both inference strategies
(LBP and LF). Note that for every sequence of several contiguous 2D
images, the resulting transformation from slice Ii was used to initialize
the registration of slice Ii+1. Therefore, the accumulated error during
the registration of successive 2D images for every method lead to dif-
ferent scores ’before registration’

image and the target volume slice corresponding to the esti-
mated transformation). We evaluated accuracy computing
DICE coefficient, Hausdorff distance andContourMeanDis-
tance (CMD). We also provided sensitivity (which measures
how many pixels from the reference image are correctly
segmented in test image) and specificity (which measures
how many pixels outside the reference image are correctly
excluded from the test image) coefficients to complete the
analysis. Results presented in Fig. 11 show the mean and
standard deviation of the indicators at the three stages,
for the three approaches and the two inference methods.

The discrete methods outperform the continuous approaches
(rigid and deformable) in all the cases. It can be seen
that results improve at each stage, achieving DICE coeffi-
cient of around 0.9 after deformation. Hausdorff distance
and CMD decreased at each stage until a total reduction
of around 66%. Decoupled method still outperforms the
others after deformation in all the indicators, and presents
a substantial improvement in terms of standard deviation
reduction with respect to them (it is consistent with the
results we showed in Fig. 10 for the rigid parameters).
Figure 12 complements these results by showing DICE
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Fig. 12 Final DICE (after deformation) comparison for every
sequence (10 sequences in the heart dataset and 6 sequences in the brain
dataset). Results are shown for the rigid approach optimized using sim-
plex method, as well as the three discrete approaches where inference is
performed using two different methods. The discrete methods outper-

form the continuous approaches (both rigid and deformable models). In
case of the heart dataset, decoupled method outperforms the other two
discrete in most part of the sequences. In the brain dataset, the high-
order approach shows best performance in most cases. This is coherent
with the aggregated results shown in Fig. 11

values per sequence, while Fig. 9 shows some qualitative
results before, after rigid and after deformable registra-
tion.

Finally, in terms of running time, Fig. 13 presents the
average value for the three approaches and the two inference
methods, together with the distribution with respect to data
cost computation and optimization time. As we can see, the
decoupled method again outperforms the other two when
inference is performed using LBP.We run all the experiments
(brain and heart datasets) on an Intel Xeon W3670 with 6
Cores, 64bits and 16GB of RAM.

3.2.2 Multimodal Experiment

Another dataset was used to test our approaches on multi-
modal image registration. The dataset consists of a preoper-
ative brain MRI volume (voxel size of 0.5mm × 0.5mm ×
0.5mm and resolution of 394 × 466 × 378 voxels) and 6

series of 9 US images extracted from the patient 01 of the
database MNI BITE presented in Mercier et al. (2012). The
intra-operative US images were acquired using the proto-
type neuronavigation system IBIS NeuroNav. We generated
6 different sequences of 9 2D US images of the brain ven-
tricles, with resolution around 161 × 126 pixels and pixel
size of 0.3mm×0.3mm. The brain ventricles were manually
segmented in both modalities. The estimated position of the
slice n was used to initialize the registration process of slice
n + 1. Slice 0 was initialized in a position near the ground
truth using the rigid transformation provided together with
the dataset. We computed statistics as we did in the previous
experiment, but in this case based on the overlap between
ventricle segmentations. Since we registered input images of
different modalities, we used Mutual Information as similar-
ity measure instead of SAD.

Figure 11 summarizes the average DICE, specificity, sen-
sibility, Hausdorff distance and Contour Mean Distance
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Fig. 13 Average running time expressed in seconds, for one registra-
tion case, for the three approaches running on the heart dataset (a) and
the brain dataset (b), using LF and LBP. Blue part corresponds to data
cost computation while orange part corresponds to the optimization
time. As we can observe, data cost computation represents a bigger
portion of the total time in the brain dataset than in the heart dataset.

This is due to the similarity measure: while in the monomodal case
(heart) we use a simple SAD, in the multimodal case (brain) we need
a more complex measure like mutual information. Note that data cost
computation time remains constant when we vary the inference method
(with small fluctuations due to operating system routines which ran
during the experiment) but not across different models

coefficients for all the series,while Fig. 13 reports the running
times. Figure 12 complements these results by showingDICE
values disaggregated per sequence. Note that the decoupled
method does better in terms of computational time (indepen-
dently of the inference method). However, the high-order
method achieves better results in terms of segmentation
statistics (in the order of 5% in terms of DICE, 2mm for
Hausdorff distance and 0.5mm for contour mean distance)
while keeping low running times, specially when using LF
as optimization strategy (see Figs. 14, 15 for a comparison
between running time and energy or accuracy, respectively).
It must be noted that, in this case, we are dealing with
a more complex problem than in the case of monomodal
registration; consequently, the increment obtained in terms
of accuracy for both, rigid and deformable registration, is
smaller. Given that we are dealing with highly challeng-
ing images of low resolution being heavily corrupted from
speckle, those results are extremely promising. It is known to
the medical imaging community that explaining correspon-
dences between different modalities is an extremely difficult
task.

In all brain experiments, we used initial grid size of 8mm,
a minimum patch size of 13mm, histograms of 16 bins to
measure mutual information similarity, a grid level of 3 and
4 steps of label refinement per grid level. In case of the over-
parameterized approach, we used α = 0.9, γ = 0.1 and 342
labels; for the decoupled approach α = 0.015, β = 0.135,
25 labels in the 2D deformation space and 91 in the plane
selection space; finally, for the high-order approach α = 0.7,
γ = 0.05 and 19 labels. Parameters were chosen similarly
as in the heart experiments.

3.3 Comparative Analysis

In this section, we aim at comparing different aspects of the
three approaches we have presented in this paper, namely
label spaces, graph topology and computational time. With-
out loss of generality, some assumptions are made regarding
the models. First, we consider only square grids where N is
the number of control points and consequently

√
N is the

number of nodes per side. Second, for the sake of simplicity
we do not consider the extra cliques introduced to improve
the geometrical constraints propagation, since they are con-
templated as an alternative strategy which may or may not
be adopted.

Figure 14 shows a comparative analysis between the three
approaches, using the two proposed inference methods, in
terms of optimization time and final energy, while Fig. 15
includes a similar graph representing time vs accuracy (mea-
sured using DICE coefficient). Note that in Fig. 14, both
methods are equivalent with respect to the final energy in
general (without considering the outliers). However, there
are more important differences in terms of computational
time. In the high-order approach, where the label space is
small, LF outperforms LBP since convergence is achieved in
a few seconds, independently of the dataset. For bigger label
spaces (like decoupled and overparameterized approaches),
LBP converges faster in case of the heart dataset, where SAD
is used as similarity measure and therefore the energy is
smooth. The last case is when we use MI as similarity mea-
sure (brain dataset) and we have big label spaces: there is no
clear pattern in this case. Note that these results are consis-
tent with those shown in Fig. 15. Indeed, one can observe
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Fig. 14 Comparison between total optimization time and final energy
using two different optimizers (LBP corresponds to circles and LF to
crosses). Results are shown for the overparameterized approach (in

blue), the high-order approach (in orange) and the decoupled approach
(in green). The gray lines connect data points corresponding to the same
registration case (Color figure online)

that graphs in Fig. 15 are essentially a flipped version (over
the X axis) of graphs included in 14. This evidences a high
correlation between low energy values and high accuracy of
the results, proving that the energy is appropriately modeled.

Table 2 presents a compendium of themost critical param-
eters related to the proposed methods. Let us start with the
label spaces. We divide them into two types: displacement
space (LD) and plane selection space (LP ). The first one
contains the displacement vectors (2D or 3D, depending
on the model) applied to the control points, while the sec-
ond one contains the set of planes that can be chosen. In
terms of cardinality of the label spaces, the overparame-
terized approach has the highest complexity, given by the
cartesian product between the displacements and all the
possible planes, |LD × LP |. The decoupled model is dom-
inated by the maximum of the cardinality of both label
spaces, max(|LD|, |LP |). Finally, for the high-order model
it depends only on |LD| since it is not necessary anymore
to explicitly model which planes can be chosen—the trian-

gles defined by the triplets of points describe a plane (and
even more, a patch on this plane) by themselves. It clearly
illustrates how we can reduce the complexity of a given label
space bymaking smart decisions in terms of energy definition
and graph topology.

However, there is always a trade-off. This strong reduction
in the size of the label space, has an effect on other parame-
ters like number of cliques and number of variables. In case
of the decoupled model, the main advantage is related to the
fact that while the number of variables and edges augment
linearly (it goes from N to 2N in case of variables, and from
2N − 2

√
N to 5N − 4

√
N in case of pairwise edges), the

number of labels decreases quadratically (from |LD × LP |
to max(|LD|, |LP |)). It results in better performance for the
decoupled method as can be observed in Fig. 13. A conse-
quence of the third-order cliques in the high-order method is
higher computation costs. Even then, judging from the run-
ning times reported in Fig. 13, we achieve good experimental
computation time because of the smaller label space.
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Fig. 15 Comparison between total optimization time and results accu-
racy (measured using DICE coefficient) using two different optimizers
(LBP corresponds to circles and LF to crosses). Results are shown for
the overparameterized approach (in blue), the high-order approach (in

orange) and the decoupled approach (in green). The gray lines connect
data points corresponding to the same registration case (Color figure
online)

Table 1 Memory footprint
comparison among the three
methods, using two different
optimizers

Overparameterized (MB) Decoupled (MB) High-order (MB)

LBP 362 37.9 65.4

LF 342 34.9 44.7

The reported value corresponds to the maximum amount of memory that the process used while running in
every case

Table 2 Comparison among the
three methods in terms of label
space and graph topology

Parameter Overparameterized Decoupled High-order

Label space |LD × LP | max(|LD |, |LP |) |LD |
# variables N 2N N

# 1st order cliques N – –

# 2nd order cliques 2N − 2
√
N 5N − 4

√
N –

# 3rd order cliques – – 4N − 6
√
N + 2

Finally, we include a comparison in terms of memory
footprints (see Table 1) among the three methods, using
two different optimizers. We reported the maximum amount
of memory that a process consumed while running one
registration case for the heart dataset. As expected, the over-

paremterized model requires more memory than the other
two approaches. Results also suggest that LF ismore efficient
in terms of memory consumption than LBP, since given the
same graphical model, LF always outperforms LBP in terms
of memory consumption (Table 2).

123



56 Int J Comput Vis (2018) 126:36–58

4 Conclusion

We derived three new models from the standard graph-based
deformable registration theory for slice-to-volume registra-
tion.We have shown promising results in amonomodal and a
multimodal case, using different inference methods, and we
compare them with baseline rigid and non-rigid approaches
were inference is performed using continuous optimization.
The proposed framework inherits the advantages of graph-
based registration theory: modularity with respect to the
similarity measure, flexibility to incorporate new types of
prior knowledge within the registration process (through
new energy terms) and scalability given by its paralleliza-
tion potential.

The three methods we have presented aim at optimiz-
ing different types of energy functions in order to get both,
rigid and deformable transformations that can be applied
independently, according to the problem we are trying to
solve. An extensive evaluation in terms of different statistical
indicators has been presented, together with a comparative
analysis of the algorithmic and computational complexity
of each model. This work constitutes a clear example of
the modeling power of graphical models, and it pushes the
limits of the state-of-the-art by showing how a new prob-
lem can be solved not just in one, but in three different
ways.

Numerous future developments built upon the proposed
framework can be imagined. In this work, we proposed a
joint model which encodes rigid and deformable param-
eters through a 2D grid of control points living in 3D
space. An alternative approach, standard in the literature of
slice-to-volume registration using continuous methods (i.e.
Osechinskiy and Kruggel 2011), consists in decoupling the
parameters into a unique global rigid transformation (6DOF)
for plane selection, and a 2D deformation model, which can
be optimized in two-steps or simultaneously, as we discussed
in “Appendix 1”. Adopting a similar model in the discrete
case would help to reduce the number of parameters in the
label space, by increasing the complexity of the graphical
model itself. In that sense, the recent work presented by
Porchetto et al. (2016) suggests a strategy to optimize global
transformations throughdiscrete graphicalmodels in the con-
text of slice-to-volume registration,which couldbe combined
with a simplified version of the proposed models encoding
the deformable parameters.

Alternative optimization methods and in particular sec-
ond order methods in the context of higher order infer-
ence could improve the quality of the obtained solution
while decreasing the computational complexity. The inte-
gration of geometric information (landmark correspon-
dences) combined with iconic similarity measures (Sotiras
et al. 2010) could also be an interesting additional com-
ponent of the registration criterion. Last but not least,

domain/problem specific parameter learning (Baudin et al.
2013; Komodakis et al. 2015) towards improving the pro-
posed models could have a positive influence on the obtained
results.
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Appendix 1: Continuous Slice-to-Volume Registra-
tion

In this appendix, we include a brief comparative study among
alternative continuous models for slice-to-volume registra-
tion. Comparison is performed using the monomodal heart
dataset (see Sect. 3.2.1 for a complete description). The aim
of this experiment was to choose the most accurate method
for deformable registration which (together with the stan-
dard rigid model) was then used as baseline for comparison
with the discrete approaches proposed in this work (see
Sect. 3.2).

Following the literature on slice-to-volume registration
(for a complete survey on slice-to-volume registration see
Ferrante and Paragios (2017)), we adopted a decoupled
model where the transformation consists in a global 6-DOF
rigid transformation for plane selection, and a 2D FFD
to represent the deformation field. To account for smooth
deformations, the FFD is regularized using the Jacobian of
the deformation field, a common regularizer used in the
deformable image registration community (Sotiras et al.
2013). Optimization was performed through the continu-
ous Nelder-Mead simplex algorithm described in Sect. 3.2,
adopted in many slice-to-volume registration studies (see
Section 4.1.2 of Ferrante and Paragios 2017). The grid res-
olution for the 2D FFDs was set to be equivalent to the
resolutions used in the discrete experiments (see Sects. 3.2.1,
3.2.2). We run simplex optimization until convergence or
until a maximum of 10,000 simplex iterations were achieved.
For the rigidmodel, convergencewas always reached in a few
seconds. In case of the deformable models, the algorithm did
not converge in all the cases, achieving maximum running
times of around 40s for 10,000 iterations. We experimented
with more iterations (100,000) but we did not reach signifi-
cant improvements in the results.

Figure 16 summarizes the results for the comparative
study including a simple 6-DOF rigid transformation and
three variants of a decoupled model with a global 6-DOF
rigid transformation and a 2D FFD. As it can be observed,
the Cont Def-Two Steps outperforms the other models. That
is why it was chosen as baseline for comparison with the
discrete approaches proposed in this work.
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Fig. 16 Comparison among four different slice-to-volume registration
models optimized using continuous optimization (Nelder-mean simplex
algorithm). We compare a simple 6-DOF rigid transformation (Cont
Rigid) and three variants of a decoupled model with a global 6-DOF
rigid transformation and a 2D FFD. In the first variant (Cont Def-Joint
Rig+Def ), rigid and deformable parameters are optimized jointly. In
the second case (Cont Def-Two Steps) a two steps strategy is adopted:
first, only rigid parameters are optimized until convergence; then, both

rigid and deformable parameters are optimized jointly. In the last case
(Cont Def-Two Steps Indep), a two steps strategy is also adopted, the
difference being that when optimizing the deformable parameters, the
rigid ones are not modified. The Cont Def-Two Steps model outper-
forms the others according to all the metrics (distance between rigid
transformations, Dice coefficient, specificity, sensitivity, Hausdorff and
CMD)
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