
Int J Comput Vis (2017) 124:237–254
DOI 10.1007/s11263-017-1016-8

End-to-End Learning of Deep Visual Representations for Image
Retrieval

Albert Gordo1 · Jon Almazán1 · Jerome Revaud1 · Diane Larlus1

Received: 19 December 2016 / Accepted: 5 May 2017 / Published online: 5 June 2017
© Springer Science+Business Media New York 2017

Abstract While deep learning has become a key ingre-
dient in the top performing methods for many computer
vision tasks, it has failed so far to bring similar improve-
ments to instance-level image retrieval. In this article, we
argue that reasons for the underwhelming results of deep
methods on image retrieval are threefold: (1) noisy training
data, (2) inappropriate deep architecture, and (3) subopti-
mal training procedure. We address all three issues. First,
we leverage a large-scale but noisy landmark dataset and
develop an automatic cleaning method that produces a suit-
able training set for deep retrieval. Second, we build on
the recent R-MAC descriptor, show that it can be inter-
preted as a deep and differentiable architecture, and present
improvements to enhance it. Last, we train this network
with a siamese architecture that combines three streams with
a triplet loss. At the end of the training process, the pro-
posed architecture produces a global image representation in
a single forward pass that is well suited for image retrieval.
Extensive experiments show that our approach significantly
outperforms previous retrieval approaches, including state-
of-the-art methods based on costly local descriptor indexing
and spatial verification.OnOxford 5k, Paris 6k andHolidays,
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we respectively report 94.7, 96.6, and 94.8mean average pre-
cision. Our representations can also be heavily compressed
using product quantization with little loss in accuracy.

Keywords Deep learning · Instance-level retrieval · Visual
search · Visual representation

1 Introduction

Instance-level image retrieval is a visual search task that aims
at, given a query image, retrieving all images that contain the
same object instance as the query within a potentially very
large database of images. Image retrieval and other related
visual search tasks have a wide range of applications, e.g.,
reverse image search on the web or organization of personal
photo collections. Image retrieval has also been seen as a
crucial component for data-driven methods that use visual
search to transfer annotations associated with the retrieved
images to the query image (Torralba et al. 2008). This has
proved useful for annotations as diverse as image-level tags
(Makadia et al. 2008), GPS coordinates (Hays and Efros
2008), or prominent object location (Rodriguez-Serrano et al.
2015).

Deep learning, and particularly deep convolutional neural
networks (CNN), have become an extremely powerful tool
in computer vision. After Krizhevsky et al. (2012) achieved
the first place on the ImageNet classification and localization
challenges in 2012 (Russakovsky et al. 2015) using a convo-
lutional neural network, deep learning-based methods have
significantly improved the state of the art in other tasks such
as object detection (Girshick et al. 2014) and semantic seg-
mentation (Long et al. 2015). Recently, they have also shined
in other semantic tasks such as image captioning (Frome et al.
2013; Karpathy et al. 2014) and visual question answering
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(Antol et al. 2015). However, deep learning has been less
successful so far in instance-level image retrieval. On most
retrieval benchmarks, deepmethods performworse than con-
ventional methods that rely on local descriptor matching and
reranking with elaborate spatial verification (Mikulík et al.
2010; Tolias et al. 2015; Tolias and Jégou 2015; Li et al.
2015).

Most of the deep retrieval methods use networks as local
feature extractors, leveraging models pretrained on large
image classification datasets such as ImageNet (Deng et al.
2009), and only focus on designing image representations
suited for image retrieval on top of these features. Con-
tributions have been made to allow deep architectures to
accurately represent input images of different sizes and
aspect ratios (Babenko and Lempitsky 2015; Kalantidis et al.
2016; Tolias et al. 2016) or to address the lack of geomet-
ric invariance of CNN-based features (Gong et al. 2014;
Razavian et al. 2014). Here, we argue that one of the main
reasons that prevented previous retrieval methods based on
deep architectures to perform well is their lack of super-
vised learning for the specific task of instance-level image
retrieval.

In this work, we focus on the problem of learning repre-
sentations that are well suited for the retrieval task. Unlike
features that are learned to distinguish between different
semantic categories, and hence that are supposedly robust
to intraclass variability, here we are interested in distin-
guishing between particular objects, even if they belong
to the same semantic class. We propose a solution that
combines a representation tailored for the retrieval task
together with a training procedure that explicitly targets
retrieval.

For the representation, we build on the regional maxi-
mumactivations of convolutions (R-MAC) descriptor (Tolias
et al. 2016). This approach computes CNN-based descriptors
of several image regions at different scales that are sum-
aggregated into a compact feature vector of fixed length, and
is therefore moderately robust to scale and translation. An
advantage of this method is that it can encode images at high
resolutions and without distorting their aspect ratio. How-
ever, in its original form, the R-MAC descriptor uses a CNN
pretrained on ImageNet, which we believe is sub-optimal. In
our work, we note that all the steps of the R-MAC pipeline
can be integrated in a single CNN and we propose to learn
its weights in an end-to-end manner, as all the steps involved
in its computation are differentiable.

For the training procedure, we use a siamese network that
combines three streams with a triplet loss and that explicitly
optimizes the weights of our network to produce representa-
tions well suited for a retrieval task. Furthermore, we also
propose to learn the pooling mechanism of the R-MAC
descriptor. In the original architecture of Tolias et al. (2016),
a rigid grid determines the location of regions that are pooled

to produce the final image-level descriptor. Here we propose
to explicitly learn how to choose these regions given the
image content using a region proposal network. The train-
ing procedure results in a novel architecture that is able to
encode one image into a compact fixed-length vector in a
single forward pass. Representations of different images can
be then compared using the dot-product. Finally, we propose
a way to encode information at different resolutions into a
single descriptor. Input images are first resized at different
scales and their representations are then combined, yielding
a multi-resolution descriptor that significantly improves the
results.

Learning theweights of our representation requires appro-
priate training data. To that aim we leverage the public
Landmarks dataset of Babenko et al. (2014), which is well
alignedwith the standard instance-level retrieval benchmarks
as shown by Babenko et al. (2014), and where images were
retrieved by querying image search engines with the name
of several famous landmarks. We propose a cleaning process
for this dataset that automatically discards the large amount
of mislabeled images and estimates the landmark location
without the need of further annotations or manual interven-
tion.

An extensive experimental study on four standard image
retrieval benchmarks quantitatively evaluates the impact
of each of our contributions. We also show the effect of
combining our representation with query expansion and
database-side feature augmentation, and the impact of com-
pression with product quantization. In the end, we obtain
results that largely outperform the state of the art on all
datasets, not only compared to methods that use one global
representation per image, but also against much more costly
methods that, unlike our proposedmethod, require to perform
a subsequent matching stage or geometrical verification.

The rest of the paper is organized as follows. Section
2 discusses related work. Section 3 describes the clean-
ing procedure that leads to a suitable training set. Section
4 describes the training procedure while Sect. 5 proposes
several improvements to our deep architecture. Section 6
describes the final pipeline and compares it with the state
of the art. Finally, Sect. 7 concludes the paper.

This article extends our previous work (Gordo et al.
2016) in the followingmanner: we consider residual network
architectures as an alternative when constructing our global
descriptor (and their very deep nature requires to adjust our
training procedure, see Sect. 4.3).Webuild amulti-resolution
version of the descriptor to cope with scale changes between
query and database images (Sect. 5.3). We propose to com-
bine our method with database-side feature augmentation to
significantly improve the retrieval accuracywith no extra cost
at testing time (Sect. 6.2). We evaluate the effect of compres-
sion in our representation, both with PCA and with product
quantization (Sect. 6.3). These new contributions lead to
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significantly improved results. Furthermore, we also show
qualitative results illustrating the impact of learning in the
model activations.

2 Related Work on Image Retrieval

This section gives an overview of some of the key papers that
have contributed to instance-level image retrieval.

2.1 Conventional Image Retrieval

Early techniques for instance-level retrieval such as the ones
of Sivic and Zisserman (2003), Nister and Stewenius (2006),
and Philbin et al. (2007) rely on bag-of-features represen-
tations, large vocabularies, and inverted files. Numerous
methods that better approximate the matching of the descrip-
tors have been proposed, see for instance the works of Jégou
et al. (2008, 2010a),Mikulik et al. (2013), Tolias et al. (2015).
An advantage of these techniques is that spatial verification
can be employed to rerank a shortlist of results (Philbin et al.
2007; Perdoch et al. 2009), yielding a large improvement
despite a significant cost.

Concurrently, methods that aggregate local patches to
build a global image representation have been considered.
Encoding techniques, such as the Fisher Vector (Perronnin
andDance 2007; Perronnin et al. 2010) or theVLADdescrip-
tor (Jégou et al. 2010b) have been used for example by
Perronnin et al. (2010), Gordo et al. (2012), Jégou and
Chum (2012), Radenovic et al. (2015). All these methods
can be combined with postprocessing techniques such as
query expansion (Chum et al. 2007, 2011; Arandjelovic
and Zisserman 2012). Some works also suggest to com-
press the descriptors to improve the storage requirements and
retrieval efficiency at the cost of reduced accuracy. Although
the most common approach is to use unsupervised compres-
sion through PCA or product quantization (Perronnin et al.
2010; Jégou and Chum 2012; Radenovic et al. 2015), super-
vised dimensionality reduction approaches are also possible
(Gordo et al. 2012).

2.2 CNN-Based Retrieval

In the seminal work of Krizhevsky et al. (2012), the acti-
vations of a CNN trained for ImageNet classification were
used as image features for an instance-level retrieval task,
although this was only evaluated in qualitative terms. Soon
after, these off-the-shelf CNN features were evaluated quan-
titatively by Razavian et al. (2014). Several improvements
were proposed to overcome their lack of robustness to scal-
ing, cropping and image clutter. The method of Razavian
et al. (2014) performs region cross-matching and accumu-
lates the maximum similarity per query region while the

one of Babenko and Lempitsky (2015) applies sum-pooling
to whitened region descriptors. Kalantidis et al. (2016)
extended the work of Babenko and Lempitsky (2015) by
allowing cross-dimensional weighting and aggregation of
neural codes. Other approaches proposed hybrid models also
involving an encoding technique such as Perronnin and Lar-
lus (2015) that used the FV or Gong et al. (2014) and Paulin
et al. (2015) that considered VLAD. Although these methods
outperform standard global descriptors, their performance is
significantly below the state of the art of conventional meth-
ods.

Tolias et al. (2016) proposed to aggregate the activa-
tion features of a CNN in a fixed layout of spatial regions.
The method uses a pretrained, fully convolutional CNN
to extract local features of images without distorting their
aspect ratio and independently of their size, and aggregates
these local features into a global representation using nor-
malizations known to work well for image retrieval (Jégou
and Chum 2012). The result is the R-MAC descriptor, a
fixed-length vector representation of the image that, when
combined with query expansion, achieves results close to
the state of the art. Our work draws inspiration from the R-
MAC pipeline, but learns the model weights in an end-to-end
manner.

2.3 Finetuning for Retrieval

The use of off-the-shelf features frommodels trained for clas-
sification on ImageNet may not be the optimal choice for
instance-level retrieval tasks due to the models being trained
to achieve intraclass generalization. Instead of using pre-
trained models as a feature extractor, a few methods have
proposed to explicitly learn weights more suited for the
retrieval task. The work of Babenko et al. (2014) showed
that models pretrained on ImageNet for object classifica-
tion could be improved by finetuning them on an external
set of Landmarks images, even when using a classification
loss.

A preliminary version of our work (Gordo et al. 2016),
togetherwith a concurrentwork (Radenovic et al. 2016), con-
firmed that finetuning the pretrained models for retrieval can
bring a significant improvement, but demonstrated that even
more crucial are the combination of i) a good image represen-
tation and ii) a ranking loss—as opposed to the classification
loss used by Babenko et al. (2014). The recent NetVLAD by
Arandjelovic et al. (2016) also highlights the importance of
learning to rank.

3 Leveraging Large-Scale Noisy Data

To learn an informative and efficient representation for
instance-level retrieval, we need the appropriate dataset.
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Fig. 1 Left random images from the “St Paul’s Cathedral” landmark.
Green, gray and red borders respectively denote prototypical, non-
prototypical, and incorrect images. Right excerpt of the two largest

connected components of the pairwise matching graph (corresponding
to outside and inside pictures of the cathedral) (Color figure online)

This section describes how we leveraged and automatically
cleaned an existing dataset to obtain the characteristics we
need for training our models.

We leverage the Landmarks dataset (Babenko et al.
2014), a large-scale image dataset that contains approxi-
mately 214k images of 672 famous landmark sites. Its images
were collected through textual queries in an image search
enginewithout thorough verification. As a consequence, they
comprise a large variety of profiles: general views of the
site, close-ups of details like statues or paintings, with all
intermediate cases as well, but also site map pictures, artistic
drawings, or even completely unrelated images, see Fig. 1.

We could only download a subset of all images due to
broken URLs. We removed classes with too few images. We
also meticulously removed all classes having an overlap with
the Oxford 5k, Paris 6k, and Holidays datasets, on which
we experiment, see Sect. 4.4. We obtained a set of about
192,000 images divided into 586 landmarks. We refer to this
set asLandmarks-full. For our experiments, we use 168,882
images for the actual finetuning, and the 20,668 remaining
ones to validate parameters.

Cleaning the Landmarks Dataset. The Landmarks dataset
presents a non-negligible amount of unrelated images
(Fig. 1). While this could be allowed in certain frameworks
(e.g. for classification, typically networks can accommodate
during training for this diversity and even for noise), in some
scenarios we need to learn our representations with images
of the same particular object or scene. In this case, variability
comes from different viewing scales, angles, lighting condi-
tions and image clutter.Wepreprocess theLandmarks dataset
to achieve this as follows.

We first run a strong image matching baseline within the
images of each landmark class. We compare each pair of
images using invariant keypoint matching and spatial veri-
fication (Lowe 2004). We use the SIFT and Hessian-Affine
keypoint detectors (Lowe 2004; Mikolajczyk and Schmid

2004) and match keypoints using the first-to-second neigh-
bor ratio rule (Lowe 2004). This is known to outperform
approaches based on descriptor quantization (Philbin et al.
2010). Afterwards, we verify all pairwise matches with an
affine transformation model as proposed by Philbin et al.
(2007). This heavy procedure is affordable as it is performed
offline, only once at training time, and on a class per class
basis.

Without loss of generality, we describe the rest of the
cleaning procedure for a single landmark class. Once we
have obtained a set of pairwise scores between all image
pairs, we construct a graph whose nodes are the images
and edges are pairwise matches. We prune all edges which
have a low score. Then we extract the connected compo-
nents of the graph. They correspond to different profiles
of a landmark; see Fig. 1 that shows the two largest con-
nected components for St Paul’s Cathedral. Finally we retain
only the largest connected component and discard the oth-
ers to ensure that all images inside a class are visually
related. This cleaning process leaves about 49,000 images
(divided in 42,410 training and 6382 validation images)
still belonging to one of the 586 landmarks, referred to
as Landmarks-clean. The cleaning process took approx-
imately 1week on a 32-core server, parallelizing over
classes.

Bounding Box Estimation. In one of our experiments, we
replace the uniform sampling of regions in the R-MAC
descriptor by a learned region of interest (ROI) selector
(Sect. 5.1). This selector is trained using bounding box
annotations that we automatically estimate for all landmark
images. To that aim we leverage the data obtained during the
cleaning step. The position of verified keypoint matches is a
meaningful cue since the object of interest is consistently
visible across the landmark’s pictures, whereas distractor
backgrounds or foreground objects are varying and hence
unmatched.

123



Int J Comput Vis (2017) 124:237–254 241

A12

image 1

image 4

image 3

A24

A42

A21 = A12
-1

A32

A23
image 2

A34 A43

Fig. 2 Left the bounding box from image 1 is projected into its graph
neighbors using the affine transformations (blue rectangles). The cur-
rent bounding box estimates (dotted red rectangles) are then updated

accordingly. The diffusion process repeats through all edges until con-
vergence. Right initial (dotted red box) and final (solid green box)
estimates (Color figure online)

We denote the connected component from each landmark
as a graph S = {VS , ES}. Each pair of connected images
(i, j) ∈ ES corresponds to a set of verified keypoint matches
and an affine transformation Ai j . We first define an initial
bounding box in both images i and j , denoted by Bi and Bj ,
as the minimum rectangle enclosing all matched keypoints.
Note that a single image can be involved in many different
pairs. In this case, the initial bounding box is the geometric
median of all boxes, efficiently computed as in Vardi and
Zhang (2004). Then, we run a diffusion process, illustrated
inFig. 2, inwhich for a pair (i, j)wepredict the boundingbox
Bj using Bi and the affine transform Ai j (and conversely).
At each iteration, bounding boxes are updated as: B ′

j = (α−
1)Bj + αAi j Bi , where α is a small update step (we set α =
0.1 in our experiments). Again, the multiple updates for a
single image are merged using geometric median, which is
robust against poorly estimated affine transformations. This
process iterates until convergence. As can be seen in Fig. 2,
the locations of the bounding boxes are improved as well as
their consistency across images. We are making the list of
Landmarks-clean images and the estimated bounding boxes
available.

Next we leverage our cleaned dataset to learn powerful
image representations tailored for image retrieval.

4 Learning to Rank: An End-to-End Approach

This section first revisits the R-MAC representation of Tolias
et al. (2016) in Sect. 4.1 and shows that, despite its hand-
crafted nature, all the operations involved in it can be
integrated into a single CNN that computes the R-MAC rep-
resentation in one single forward pass. More importantly,
all of its components consist of differentiable operations,
and therefore, given training data and an appropriate loss,
one can learn the optimal weights of the architecture in an

end-to-end manner. To that aim we leverage a three-stream
siamese network with a triplet ranking loss (Sect. 4.2). Then
we discuss the practical details that allow this architecture to
scale to deep networks with large memory needs (Sect. 4.3).
Finally, we experimentally validate the gain obtained by the
proposed training strategy in terms of accuracy in standard
benchmarks (Sect. 4.4).

4.1 The R-MAC Baseline

The R-MAC descriptor, recently introduced by Tolias et al.
(2016), is a global image representation that is particu-
larly well-suited for image retrieval. At its core, it uses
a “fully convolutional” CNN as a powerful local feature
extractor that works independently of the image size and
that extracts local features without distorting the aspect ratio
of the original image. The original work of Tolias et al.
(2016) uses both AlexNet (Krizhevsky et al. 2012) and
VGG16 (Simonyan and Zisserman 2015) network archi-
tectures, with models pretrained on the ImageNet dataset,
but other network architectures such as residual networks
(He et al. 2016) can also be used. These local features
are then max-pooled across several multi-scale overlapping
regions, obtained from a rigid grid covering the image,
similar in spirit to spatial pyramids, producing a single
feature vector per region. These region-level features are
independently �2-normalized, whitened with PCA, and �2-
normalized again, a normalization pipeline known to work
well for image retrieval (Jégou and Chum 2012). Finally,
region descriptors are sum-aggregated and �2-normalized
once again. The obtained global image representation is a
compact vector whose size (typically 256 to 2k dimensions,
depending on the network architecture) is independent of
the size of the image and of the number of regions. Note
that the region pooling is different from a spatial pyramid:
the latter concatenates the region descriptors, while the for-
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mer sum-aggregates them. Comparing the R-MAC vectors
of two images with a dot-product can then be interpreted
as a weighted many-to-many region matching, where the
weights depend on the normof the aggregated region descrip-
tors.

4.2 Learning to Retrieve

One key aspect of the R-MAC pipeline is that all of its com-
ponents are differentiable operations. More precisely, the
multi-scale spatial pooling in different regions is equivalent
to the Region of Interest (ROI) pooling from He et al. (2014)
using a fixed rigid grid, which is differentiable as shown
in the context of detection (Girshick 2015). The PCA pro-
jection can be seen as a combination of a shifting (for the
mean centering) and a fully connected (FC) layer (for the
projection with the eigenvectors), with weights that can be
learned. The sum-aggregation of the different regions and
the �2-normalization are also differentiable. Therefore, one
can implement a network architecture that, given an image
and the precomputed coordinates of its regions, directly pro-
duces a representation equivalent to the R-MAC pipeline.
As all the components are differentiable, one can backprop-
agate through the network architecture to learn the optimal
network weights, namely the weights of the convolutions
and of the shifting and fully-connected layers that replace
the PCA.

Learning with a Classification Loss. One can easily fine-
tune a standard classification architecture (e.g. VGG16) on
the Landmarks dataset using a cross-entropy loss, as pre-
viously done by Babenko et al. (2014), and then use the
improved convolutional filters as the feature extractor of the
R-MAC pipeline, instead of using the original weights. We
use this approach as our training baseline, and note that it
has important issues. First, it does not learn directly the
task to address, retrieval, but a proxy, classification. Sec-
ond, it does not leverage the R-MAC architecture, as it
learns on the original classification architecture, using low-
resolution square crops. The convolutional weights are used
together with the R-MAC architecture only after the train-
ing has finished. In our experiments we show how this
naive finetuning method already outperforms the baseline
approach significantly, but does not match the accuracy
obtained by training using the appropriate architecture and
loss.

Learning with a Ranking Loss. In our work we propose to
consider a ranking loss based on image triplets. The goal is
to explicitly enforce that, given a triplet composed of a query
image, a relevant element to the query, and an irrelevant one,
the R-MAC representation of the relevant image is closer to

the representation of the query than the representation of the
irrelevant one.

We design a three-stream siamese network architecture
where the image representation produced by each of the three
streams are jointly considered by the loss. This architecture
is illustrated in Fig. 3. The weights of the convolutional fil-
ters and of the fully-connected layer are shared between the
streams as their size is independent of the size of the images.
This means that the siamese architecture can process images
of any sizes and aspect ratios, and we can train the network
using images at the same (high) resolution that is used at test
time.

Siamese networks have performedwell formetric learning
(Song et al. 2016), dimensionality reduction (Hadsell et al.
2006), learning image descriptors (Simo-Serra et al. 2015),
and performing face identification (Chopra et al. 2005; Hu
et al. 2014; Sun et al. 2014). Recently triplet networks (i.e.
three-stream siamese networks) have been considered for
metric learning (Hoffer and Ailon 2015; Wang et al. 2014)
and face identification (Schroff et al. 2015).

We use the following ranking loss. Let Iq be a query
imagewith R-MACdescriptor q, I+ be a relevant imagewith
descriptor d+, and I− be an irrelevant image with descriptor
d−. We define the ranking triplet loss as

L(Iq , I
+, I−) = 1

2
max(0,m+‖q−d+‖2 −‖q−d−‖2),

(1)

where m is a scalar that controls the margin. Given a triplet
that produces a non-zero loss, the sub-gradients are given by:

∂L

∂q
= d− − d+,

∂L

∂d+ = d+ − q,
∂L

∂d− = q − d−. (2)

The sub-gradients are backpropagated through the three
streams of the network, and the convolutional layers together
with the “PCA” layers—the shifting and the fully connected
layers—get updated. This approach directly optimizes a
ranking objective.

4.3 Practical Considerations

When learning with a ranking loss, one should pay attention
to certain practical considerations. The first one is the sam-
pling of the triplets, as sampling them randomly will, most of
the time, yield triplets that incur no loss and therefore do not
improve the model. To ensure that the sampled triplets are
useful, we first select randomly N training samples, extract
their features with the current model, and compute all pos-
sible triplets and their losses, which is fast once the features
have been extracted. All the triplets that incur a loss are pre-
selected as good candidates. Triplets can then be sampled

123



Int J Comput Vis (2017) 124:237–254 243

Fig. 3 Proposed siamese network At training time, image triplets are
sampled and simultaneously considered by a triplet-loss that is well-
suited for the task (top). At test time, the query image is fed to the

learned architecture to efficiently produce a compact global image rep-
resentation that can be compared with the dataset image representations
with a dot-product (bottom)

from that set of good candidates, with a bias towards hard
triplets, i.e. triplets that produce a high loss. In practice this is
achieved by randomly sampling one of the N images with a
uniform distribution and then randomly choosing one of the
25 triplets with the largest loss that involve that particular
image as a query. Note that, in theory, one should recompute
the set of good candidates every time themodel gets updated,
which is very time consuming. In practice, we assume that
most of the hard triplets for a given model will remain hard
even if the model gets updated a few times, and therefore
we only update the set of good candidates after the model
has been updated k times. We used N = 5000 samples and
k = 64 iterations with a batch size of 64 triplets per iteration
in our experiments.

The second consideration is the amount of memory
required during training, as we trainwith large images (larger
side resized to 800 pixels) and with three streams at the same
time. When using the VGG16 architecture, we could only fit
one triplet in memory at a time on an M40 GPU with 12 GB
of memory. To perform updates with a batch of effective size
bs larger than one, we sequentially compute and aggregate
the gradients of the loss with respect to the parameters of the
network for every triplet, and only perform the actual update
every bs triplets, with bs = 64.

When using a larger network such as ResNet101, the sit-
uation becomes more complex, as we do not have enough
memory to process even one single triplet. Instead of reduc-

ing the image size, which would result in a loss of detail,
we propose an alternative approach detailed in Algorithm 1.
This approach allows us to process the streams of a triplet
sequentially using one single stream instead of all of them

Algorithm 1Memory efficient model update
1: procedure Process Triplet
2: Q: Query image
3: I+: Relevant image
4: I−: Irrelevant image
5: Main:
6: Compute feature representation of Q: q
7: Compute feature representation of I+: d+

/Overwrites results needed to backpropagate
the loss with respect to q/

8: Compute feature representation of I−: d−
/Overwrites results needed to backpropagate the loss
with respect to d+/

9: Compute loss as in Eq. (1)
10: Compute gradients with respect to q, d+, and d− as

in Eq. (2)
11: Backpropagate the loss with respect to d−
12: Recompute q

/recomputing is needed to obtain the necessary
statistics to backpropagate/

13: Backpropagate the loss with respect to q
14: Recompute d+

/recomputing is needed to obtain the necessary
statistics to backpropagate/

15: Backpropagate the loss with respect to d+
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simultaneously. This yields exactly the same gradients but
trades some computational efficiency due to recomputations
(about a 25% overhead) for very significant memory reduc-
tion (only one third of the memory is required, from 23 Gb
down to 7.5Gb). This allows one to train themodel using very
deep architectures without reducing the size of the training
images.

4.4 Experiments

In this section we study the impact of learning the weights
for different setups and architectures. In all these experiments
we assume that the descriptor extracts regions following the
standard R-MAC strategy, i.e. following a predefined rigid
grid.

4.4.1 Experimental Details

We test our approach on four standard datasets: the Oxford
5k building dataset (Philbin et al. 2007), the Paris 6k dataset
(Philbin et al. 2008), the INRIAHolidays dataset (Jégou et al.
2008), and the University of Kentucky Benchmark (UKB)
dataset (Nister and Stewenius 2006). We use the standard
evaluation protocols, i.e. recall@4 for UKB and mean aver-
age precision (mAP) for the rest. As is standard practice, in
Oxford and Paris one uses only the annotated region of inter-
est of the query, while for Holidays and UKB one uses the
whole query image. Furthermore, the query image is removed
from the dataset when evaluating on Holidays, but not on
Oxford, Paris, and UKB. Following most CNN-based meth-
ods, we manually correct the orientation of the images on the
Holidays dataset and evaluate on the corrected images. For
fair comparison with methods that do not correct the orienta-
tion we also report results without correcting the orientation
in our final experiments.

For the convolutional part of our network, we evaluate
two popular architectures: VGG16 (Simonyan and Zisser-
man 2015) and ResNet101 (He et al. 2016). In both cases
we start with the publicly available models pretrained on the
ImageNet ILSVRC data. The fully-connected layer is ini-
tialized with a PCA projection, computed on the normalized
per-region descriptors. All subsequent learning is performed
on the Landmarks dataset.

To perform finetuning with classification we follow stan-
dard practice and resize the training images tomultiple scales
(shortest side in the [256–512] range) and extract random
crops of 224 × 224 pixels. To finetune using our proposed
architecture we also augment our training data performing
random crops (randomly removing up to 5% of each side of
the image) and then resize the resulting crop such as that the
larger side is of 800 pixels, preserving the aspect ratio. At test
time, all the database images are also resized so the larger

side is 800 pixels.1 All the models are trained with stochas-
tic gradient descent (SGD) with momentum of 0.9, learning
rate of 10−3, and weight decay of 5×10−5. We decrease the
learning rate down to 10−4 on the classification finetuning
once the validation error on Landmarks stops decreasing.We
did not see any improvement by reducing the learning rate
when learning to rank, and so we keep the learning rate at
10−3 until the end. The margin is set to m = 0.1.

4.4.2 Results

Quantitative Evaluation.We report results in Table 1 for two
possible choices of the convolutional part of the network:
VGG16 (top) and ResNet101 (bottom). For each architec-
ture, we first report performance with the R-MAC baseline,
whose convolutional layer weights are taken directly from
the ImageNet pretrained networks and the PCA is learned
on Landmarks-full. For the learned models, weights are fine-
tuned on Landmarks either with a classification loss (Ft-Cls)
or with a ranking loss (Ft-Rnk). For the latter, we consider
either initializing theweights directlywith the ImageNet pre-
trained network orwith awarmed upmodel already finetuned
on Landmarks using a classification loss.

From the results reported in Table 1 we highlight the fol-
lowing observations.

• Finetuning with a naive classification loss on a relevant
dataset already brings a significant improvement over
a model pretrained on ImageNet, as already observed
by Babenko et al. (2014) (albeit on a different architec-
ture) on the first three datasets. In this case, training with
Landmarks-full or training with Landmarks-clean does
not make a significant difference.

• Finetuning our proposed architecture with a ranking loss
is the best performing strategy. For the first three datasets
again, it seems very beneficial to improve the weights of
our model using the Landmarks dataset. We only report
results learning the ranking with Landmarks-clean. We
found this to be crucial: learning on Landmarks-full sig-
nificantly worsens the accuracy of the model.

• To obtain good results with VGG16 using the ranking
loss we found important to warm up the network by first
training it on the Landmarks dataset using a classification
loss, as done in Gordo et al. (2016). However, this was
not so important when using the more recent ResNet101
architecture: although warming up the network brings
slight improvements, the final results are similar. This can
also be observed in Fig. 4, which shows the evolution of

1 Note that this differs from the original setup of Tolias et al. (2016),
that resizes images to 1024 pixels, and leads to different results in Table
1. Please see Gordo et al. (2016) for a discussion about this issue.
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Table 1 Impact of learning the weights of the representation with a classification (Cls) and a ranking (Rnk) loss, either with VGG16 or ResNet101

Architecture Model Oxford 5k Paris 6k Holidays UKB

VGG16 ILSVRC2012 baseline 60.3 79.9 85.8 3.75

Ft Cls-Landmarks-Full 74.2 82.5 87.7 3.65

Ft Cls-Landmarks-Clean 74.0 83.0 86.0 3.62

Ft Rnk-Landmarks-Clean 76.3 86.2 85.6 3.61

Ft Cls-Landmarks-Full ⇒ Ft Rnk-Landmarks-Clean 79.9 85.9 87.9 3.59

Ft Cls-Landmarks-Clean ⇒ Ft Rnk-Landmarks-Clean 79.0 86.9 86.4 3.55

ResNet101 ILSVRC2012 baseline 69.4 85.2 91.4 3.89

Ft Cls-Landmarks-Full 77.7 89.4 93.4 3.89

Ft Cls-Landmarks-Clean 78.5 88.2 93.0 3.86

Ft Rnk-Landmarks-Clean 83.4 92.8 93.7 3.85

Ft Cls-Landmarks-Full ⇒ Ft Rnk-Landmarks-Clean 84.1 93.6 94.0 3.83

Ft Cls-Landmarks-Clean ⇒ Ft Rnk-Landmarks-Clean 83.3 91.3 93.3 3.79

Bold values indicate the best results per dataset
The weights are learned either from the full Landmarks dataset (Landmarks-Full) of the clean version (Landmarks-Clean). For the ranking loss we
also compare different intializations

Fig. 4 Accuracy comparison of three different model initializations
when finetuning the representation with a ranking loss as a function
on the number of iterations (one iteration corresponds to a batch of 64
triplets)

the accuracy on the Oxford dataset as training progresses
for different model initializations.

• For the UKB dataset, the “off-the-shelf” R-MAC already
provides state-of-the-art results, and the training slightly
decreases its performance, probably because of the large
domain differences (c.f . Sect. 6 for a more detailed dis-
cussion about UKB).

• As expected, themodel based onResNet101 outperforms
the model based on VGG16. This gap, however, is not as
significant as the improvement brought by the training.

Impact of Finetuning on the Neurons.We qualitatively eval-
uate the impact of finetuning the representation for retrieval.
To this end,we visualize the image patches thatmost strongly
respond (i.e. with the largest activation values) for different
neurons of the last convolutional VGG16 layer in Fig. 5,
before and after finetuning for retrieval. These examples
illustrate the process that takes place during finetuning. Some
neurons that were originally specialized in recognizing spe-
cific object parts crucial for classification on ImageNet (for
instance a “shoulder neuron” or a “waist neuron”) were
repurposed to fire on visually similar landmark parts (e.g.
domes, buildings with flat roofs and two windows). How-
ever, other neurons (e.g. the “sunglasses neuron”) were not
clearly repurposed, which suggest that improvements in the
training scheme may be possible.

Computational Cost. To train and test our models we use an
M40 NVIDIA GPU with 12 Gb of memory. When pretrain-

Fig. 5 Visualization of the neuron adaptation during training. Image patches with largest activation values for some neurons of layer “conv5_3”
from VGG16, before (top) and after (bottom) finetuning for retrieval. See text for more details
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ing ResNet101 on Landmarks-full with a classification loss it
takes approximately 4 days to perform 80,000 iterations with
a batch size of 128. This is the model that we use to initialize
our approach in most of the experiments. For training our
ranking model we use a batch size of 64 triplets and the “sin-
gle stream” approach (Algorithm 1), and resize our images
preserving their aspect ratio such that the longer size has 800
pixels. With ResNet101 this process requires about 7.5 GB
of memory per stream per sample, and can process 64 iter-
ations in approximately 1h, of which approximately 15min
are devoted to mining hard triplets. Our model, when ini-
tialized with the pretrained classification model, converges
after approximately 3000 iterations, i.e., 2 days. If we do
not warm up the model on Landmarks and use directly the
ImageNet model, it converges after approximately 8000 iter-
ations. In both cases, this roughly corresponds to a week of
total training.

Once trained, extracting the descriptor of one image takes
approximately 150ms, i.e., about 7 images per second on a
single GPU. Computing the similarity between two images
comes down to computing the dot-product between their rep-
resentations, which is very efficient, i.e., one can compute
millions of such comparisons per second on a standard pro-
cessor.

5 Improving the R-MAC Representation

The R-MAC representation has proved to excel at retrieval
among deep methods (Tolias et al. 2016). In the previous
section we have shown that we could further improve its
effectiveness by learning the network weights in an end-
to-end manner with an objective and a training set tailored
for image retrieval. In this section, we propose several ways
to modify the network architecture itself. First, we improve
the region pooling mechanism by introducing a region pro-
posal network (RPN) that predicts the most relevant regions
of the image, where the local features should be extracted
(Sect. 5.1). Second, we observe that the network architecture
only considers a single fixed image resolution, and pro-
pose to extend it to build a multi-resolution descriptor (Sect.
5.2).

5.1 Beyond Fixed Regions: Proposal Pooling

The rigid multi-scale grid used in R-MAC to pool regions
tries to ensure that the object of interest is covered by at least
one of the regions. However, this raises two issues. First, it is
unlikely that any of the grid regions precisely align with the
object of interest. Second, many of the regions only cover
background, especially if the object to retrieve is of small
scale. This is problematic as the comparisonbetweenR-MAC
signatures can be seen as a many-to-many region matching,
and so region clutter will negatively affect the performance.
Increasing the number of regions in the grid would improve
the likelihood that one region is well aligned with the object
of interest, but would also increase the number of irrelevant
regions.

We propose tomodify the R-MAC architecture to enhance
it with the ability to focus on relevant regions in the image. To
this end we replace the rigid grid with a region proposal net-
work (RPN) trained to localize regions of interest in images,
similar to the proposal mechanism of Ren et al. (2015). This
RPN is trained using the approximate bounding box annota-
tions of the Landmarks dataset obtained as a by-product of
our cleaning process. The resulting network architecture is
illustrated in Fig. 6.

The main idea behind an RPN is to predict, for a set of
candidate boxes of various sizes and aspect ratios, a score
describing how likely each candidate box at each possible
image location contains an object of interest. Simultaneously,
for each candidate box, it performs coordinate regression to
improve the location accuracy. This is achieved by a “fully
convolutional” network consisting of a first layer that uses
3× 3 filters, and two sibling convolutional layers with 1× 1
filters that predict, for each candidate box in the image and
for each location, both the objectness score and the regressed
coordinates. Non-maximum suppression is then performed
on the ranked boxes to produce k final proposals per image
that are used to replace the rigid grid.

This modification to the network has several positive out-
comes. First, the region proposals typically cover the object
of interest more tightly than the rigid grid. Second, even if
they do not overlap exactly with the region of interest, most
of the proposals do overlap significantlywith it, whichmeans

Fig. 6 Proposal network At train time, a region proposal network is
trained using bounding box annotations and an appropriate loss (left). At
test time, the query image is fed to the learned architecture to efficiently

produce a compact global image representation that can be compared
with the dataset image representations with a simple dot-product (right)
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that increasing the number of proposals per image not only
helps to increase the coverage but also helps in the many-to-
many matching.

Learning the RPN. We assign a binary class label to each
candidate box, depending on how much this box overlaps
with the ground truth region of interest, and we minimize
an objective function with a multitask loss that combines
a classification loss (more precisely a log loss over object
vs background classes) and a regression loss [similar to
the smooth �1 loss used by Girshick (2015)]. The objec-
tive function is optimized by backpropagation and SGD.
More details about the implementation and the training pro-
cedure of the RPNs can be found in the work of Ren et al.
(2015).

We learn the RPN on top of the convolutional layers of
our network. We first train the network using the rigid grid
as described in Sect. 4.2, and then we fix the weights of the
convolutional layers and train the RPN from the output of
the last convolutional layer. In this way, both networks share
the computation of the convolutional part and are combined
into a single architecture (Fig. 6). Finetuning the RPN and
the ranking simultaneously is also feasible, but we observed
no accuracy gain by doing so.

5.2 Multi-Resolution

In the original R-MAC descriptor as proposed by Tolias et al.
(2016), images are considered at a single scale. However,
one could consider extracting and combining features from
images that havebeen resized to different resolutions, in order
to integrate information from different scales. The goal is to
improve the matching between objects that appear at differ-
ent scales in the database images and the retrieval of small
objects.

One interesting characteristic of the original R-MAC
network is that different input image sizes still produce
descriptors of the same length. Note, however, that two ver-
sions of the same image with different resolutions will not
produce the same output descriptor. The first part of the net-
work is fully convolutional, which directly enables to process
inputs of different sizes, and the aggregation layer combines
the size-dependent amount of input features into a fixed-
length representation. Following this idea, we propose to
extract different descriptors from images resized at different
scales, and then combine them into a single final representa-
tion. In practice we use 3 scales, with 550, 800 and 1050
pixels in the larger side, preserving the aspect ratio. The
descriptor of each of the three images is then extracted inde-
pendently. Finally we sum-aggregate them and �2-normalize
them to obtain the final descriptor.

This multi-resolution descriptor can be computed both
in the query side and in the database side. The process

brings an extra computational cost at feature extraction time
(approximately three times the cost for three resolutions),
but the cost at search time and the storage cost remain the
same.

Ourmulti-resolution scheme can be connected to previous
papers aiming to build transformation-invariant representa-
tions like Schmidhuber (2012), Laptev et al. (2016). The
transformation considered in our case is the image scaling.
In contrast to multi-column networks or bagging approaches
(Schmidhuber 2012), we use the same network for all image
scales. In fact, our approach is conceptually close to Laptev
et al. (2016), a siamese network with weight sharing, the
main difference being that we use average-pooling instead
of max-pooling.

5.3 Experiments

In this section we study the impact of the proposal pooling
and the multi-resolution descriptors.

Experimental Details. We train the RPN network for 200k
iterations with a weight decay of 5 · 10−5 and a learning
rate of 10−3, which is decreased by a factor of 10 after 100k
iterations. We remark that only the RPN layers are updated
and that the preceding convolutional layers remain fixed. The
process takes less than 12h on an M40 GPU.

Region Proposal Network. Table 2 presents the results of
the region proposal network for an increasing number of
regions compared to a rigid grid both for the baseline R-
MAC (convolution weights learned from ImageNet) and for
the version trained with a ranking loss, for both VGG16 and
ResNet101 architectures. With VGG16 we observe a sig-
nificant improvement for all datasets and types of training
when the number of regions is high enough (128 regions
or more), consistent with our findings in the preliminary
version of this article (Gordo et al. 2016). However, with
ResNet101, this gap is much smaller, especially when the
network has been trained with the ranking loss. Our intu-
ition is that ResNet101 is able to learn a more invariant
representation of the regions and to discount the effect of
background, and so it does not require the proposals as much
as VGG16. This makes the use of proposals less appealing
when using ResNet101. Given that ResNet101 considerably
outperforms VGG16 for all the cases (c.f . Tables 1, 2), we
depart from Gordo et al. (2016) and, for the rest of the paper,
we report results only with ResNet101 without using the
RPN.

Multi-Resolution. Table 3 shows results using ResNet101
trained with a ranking loss. Multi-resolution is applied to the
query image (QMR), to the database images (DMR), or to
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Table 2 Accuracy comparison between the fixed-grid and our proposal network, for an increasingly large number of proposals, before and after
finetuning with a ranking-loss

Dataset Model Grid # Region proposals

20 32 64 128 192 256

VGG16

Oxford 5k ILSVRC2012 baseline 60.3 62.4 63.1 63.3 64.3 65.0 65.4

Ft Cls-Full ⇒ Ft Rnk-Clean 79.9 80.7 80.8 81.9 83.1 83.2 83.2

Paris 6k ILSVRC2012 baseline 79.9 77.6 78.5 79.7 80.6 81.1 81.3

Ft Cls-Full ⇒ Ft Rnk-Clean 85.9 85.1 85.7 86.6 87.1 87.1 87.2

Holidays ILSVRC2012 baseline 85.8 82.7 83.5 85.8 86.8 87.5 87.5

Ft Cls-Full ⇒ Ft Rnk-Clean 87.9 86.2 86.7 87.8 88.7 88.7 88.7

UKB ILSVRC2012 baseline 3.75 3.72 3.74 3.76 3.77 3.78 3.78

Ft Cls-Full ⇒ Ft Rnk-Clean 3.59 3.55 3.58 3.60 3.61 3.62 3.62

ResNet101

Oxford 5k ILSVRC2012 baseline 69.4 69.2 70.5 71.4 72.3 72.5 72.9

Ft Cls-Full ⇒ Ft Rnk-Clean 84.1 83.7 84.1 84.4 85.0 85.2 85.2

Paris 6k ILSVRC2012 baseline 85.2 84.5 85.2 86.0 86.3 86.5 86.6

Ft Cls-Full ⇒ Ft Rnk-Clean 93.6 93.3 93.7 94.0 94.0 94.0 94.0

Holidays ILSVRC2012 baseline 91.4 89.8 91.0 92.0 92.2 92.3 92.2

Ft Cls-Full ⇒ Ft Rnk-Clean 94.0 92.0 92.7 93.5 93.8 94.0 94.0

UKB ILSVRC2012 baseline 3.89 3.89 3.89 3.90 3.90 3.90 3.90

Ft Cls-Full ⇒ Ft Rnk-Clean 3.83 3.82 3.82 3.83 3.83 3.84 3.83

Bold values indicate the best results for each dataset and model
The rigid grid extracts, on average, 20 regions per image

Table 3 Multi-resolution

QMR DMR Oxford 5k Paris 6k Holidays UKB

84.1 93.6 94.0 3.83

✓ 84.9 94.1 94.3 3.83

✓ 85.2 94.1 94.4 3.83

✓ ✓ 86.1 94.5 94.8 3.84

Bold values indicate the best results per dataset
Effect of using multi-resolution descriptors on the query side (QMR)
and on the database side (DMR)

both of them. All cases improve over the single-resolution
descriptors, showing that encoding images using several
scales helps at matching and retrieving objects. QMR and
DMR also appear to be complementary. We use both QMR
and DMR through the rest of our experiments.

6 Evaluation of the Complete Approach

In the previous sections we have cast the R-MAC descriptor
as a standalone network architecture where its weights can
be learned discriminatively in an end-to-end manner as well
as proposed some improvements over the original pipeline.
In this section we compare the obtained representation with
the state of the art. Our final method integrates two other
improvements: query expansion (QE) and database-side fea-
ture augmentation (DBA).

6.1 Query Expansion

To improve the retrieval results we use query expansion,
a standard technique introduced to the image search prob-
lem by Chum et al. (2007). Query expansion works as
follows: a first query is issued with the representation of
the query image, and the top k results are retrieved. Those
top k results may then undergo a spatial verification stage,
where results that do not match the query are discarded. The
remaining results, together with the original query, are then
sum-aggregated and renormalized. Finally, a second query is
issued with the combined descriptor, producing the final list
of retrieved images. Query expansion typically leads to large
improvements in accuracy at the expense of two extra costs at
query time: spatial verification, and a second querying oper-
ation. In our case we do not perform spatial verification (note
that this typically requires access to local keypoint descrip-
tors, which we do not have), and therefore query expansion
simply doubles the query time due to the second query oper-
ation.

6.2 Database-Side Feature Augmentation

Introduced in the works of Turcot and Lowe (2009) and
Arandjelovic and Zisserman (2012), database-side augmen-
tation (DBA) replaces every image signature in the database
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by a combination of itself and its neighbors, potentially after
a spatial verification stage as in the case of query expansion.
The objective is to improve the quality of the image represen-
tations by leveraging the features of their neighbors. Sincewe
do not use spatial verification, we sum-aggregate the nearest
k neighbors as in the query expansion case. Optionally, the
sum can be weighted depending on the rank of the neigh-
bors, and in our experiments we use weight(r) = k−r

k as a
weighting scheme, with r the rank of the neighbor, and k the
total number of considered neighbors.

DBA is less common than query expansion as, with sparse
inverted files, it increases the size of the database as well as
the query time. In our case, signatures are already dense,
so we are not affected by this. Consequently, the only extra
cost incurs in finding the nearest neighbors in the dataset,
which is done only once, and offline. In the case of growing
databases, the database augmentation could potentially also
be done online as new samples are added.

6.3 Experiments

6.3.1 Evaluation of QE and DBA

We evaluate the effect of query expansion (QE) depend-
ing on the number of neighbors k as well as the effect of
database-side augmentation (DBA) depending on the num-
ber of neighbors k′ in Fig. 7. First of all we observe how, in
Oxford 5k, where many queries have very few relevant items
(less than 10 or even less than 5), using large values of k for
the QE can, unsurprisingly, degrade the accuracy instead of
improving it, independently of whether DBA is used or not.
This is not a problem on Paris, where all queries have a large
number of relevant items in the dataset.

The weighted DBA seems to help in all cases, even when
large values of k′ are selected, but, as a side effect, it can
worsen the results as well if an inappropriate number of
neighbors are chosen for QE. In general it seems that QE
and DBA can significantly help each other if the appropriate

Fig. 7 Accuracy as a function of the number of neighbors k used during
query expansion (QE) for several values of the number of neighbors k′
used for database-side augmentation (DBA)

number of neighbors is chosen, and, as a rule of thumb, we
suggest to use a large value for DBA (e.g. k′ = 20) and a
small value for QE (e.g. k = 1 or k = 2). Because DBA
can be a costly preprocessing, it is not always feasible. In
this case (corresponding to k′ = 0), it is preferable to use an
intermediate value for k. For our final experiments involving
QE and DBA, we fix k = 1 and k′ = 20 in all datasets. When
employing only QE we fix k = 10 in all datasets. If one has
prior knowledge about the dataset, modifying these values
may lead to improved results.

6.3.2 Comparison with the State of the Art

We compare ourmethod against the state of the art in Table 4.
For these experiments, in addition to the four datasets intro-
duced in Sect. 4.4, we also consider the Oxford 105k and
Paris 106k datasets that extend Oxford 5k and Paris 6k with
100k distractor images (Philbin et al. 2007). In the first half
of the table, we show results for other methods that employ
global representations of images and do not performany form
of spatial verification or query expansion at run-time. As
such, they are conceptually closer to our method. Yet, we
consistently outperform all of them on all datasets. In one
case (namely, on Paris 106k), our method is more than 14
mAP points ahead of the best competitor (Radenovic et al.
2016).

The de facto evaluation protocol for methods based on
CNN features on the Holidays dataset involves manually
rotating the images to correct their orientation. If we do not
manually rotate the images, our accuracy drops from 94.8
to 90.3, which still outperforms the current state of the art.
Instead of using an oracle to rotate the database images, one
can automatically rotate the query image and issue three dif-
ferent queries (original query, query rotated 90 degrees, and
query rotated 270 degrees). The score of one database image
is the maximum score obtained with the three queries. This
makes the query process 3 times slower, but improves the
accuracy to 92.9 with no oracle intervention.

We also include our reimplementation of the R-MAC
baseline (Tolias et al. 2016) using ResNet101 instead of
VGG16. Although the accuracy improvement when using
ResNet101 is not negligible, the accuracy obtained by the
trained model is still much higher (in Oxford, 69.4 without
training vs 84.1 and 86.1 when training, either using single-
resolution or multi-resolution setting). This gap underlines
the importance of both a well designed architecture and a
sound end-to-end training with relevant data, all tailored to
the particular task of image retrieval.

The second part of Table 4 shows results for state-of-
the-art methods that do not necessarily rely on a global
representation. The majority of them is characterized by a
larger memory footprint than our method, e.g. the ones of
Tolias and Jégou (2015), Tolias et al. (2016), Danfeng et al.

123



250 Int J Comput Vis (2017) 124:237–254

Table 4 Accuracy comparison with the state of the art

Method Dim. Datasets

Oxf5k Par6k Oxf105k Par106k Holidays

Global descriptors

Jégou and Zisserman (2014) 1024 56.0 – 50.2 – 72.0

Jégou and Zisserman (2014) 128 43.3 – 35.3 – 61.7

Gordo et al. (2012) 512 – – – – 79.0

Babenko et al. (2014) 128 55.7* – 52.3* – 75.9/78.9�

Gong et al. (2014) 2048 – – – – 80.8

Babenko and Lempitsky (2015) 256 53.1 – 50.1 – 80.2�

Ng et al. (2015) 128 59.3* 59.0* – – 83.6

Paulin et al. (2015) 256k 56.5 – – – 79.3

Perronnin and Larlus (2015) 4000 – – – – 84.7

Tolias et al. (2016) 512 66.9 83.0 61.6 75.7 85.2†/86.9†,�

Tolias et al. (2016) (ResNet101)† 2048 69.4 85.2 63.7 77.8 91.3 �

Kalantidis et al. (2016) 512 68.2 79.7 63.3 71.0 84.9

Arandjelovic et al. (2016) 4096 71.6 79.7 – – 83.1/87.5�

Radenovic et al. (2016) 512 79.7 83.8 73.9 76.4 82.5�

Previous state of the art 79.7
Radenovic
et al. (2016)

83.8
Radenovic
et al. (2016)

73.9
Radenovic
et al. (2016)

76.4
Radenovic
et al. (2016)

84.9
Kalantidis
et al. (2016)

Ours 2048 86.1 94.5 82.8 90.6 90.3/94.8�

Matching/Spatial verification/QE

Chum et al. (2011) 82.7 80.5 76.7 71.0 –

Danfeng et al. (2011) 81.4 80.3 76.7 – –

Mikulik et al. (2013) 84.9 82.4 79.5 77.3 75.8�

Shen et al. (2014) 75.2 74.1 72.9 – 76.2

Tao et al. (2014) 77.8 – – – 78.7

Deng et al. (2013) 84.3 83.4 80.2 – 84.7

Tolias et al. (2015) 86.9 85.1 85.3 – 81.3

Tolias et al. (2016) 512 77.3 86.5 73.2 79.8 –

Tolias et al. (2016) (ResNet101)† 2048 78.9 89.7 75.5 85.3

Tolias and Jégou (2015) 89.4 82.8 84.0 – –

Li et al. (2015) 73.7 – – – 89.2

Kalantidis et al. (2016) 512 72.2 85.5 67.8 79.7 –

Radenovic et al. (2016) 512 85.0 86.5 81.8 78.8 –

Azizpour et al. (2015) 79.0 85.1 – – 90.0

Previous state of the art 89.4
Tolias and Jégou
(2015)

86.5
Tolias et al.
(2016)

85.3
Tolias et al.
(2015)

79.8
Tolias et al.
(2016)

90.0
Azizpour
et al. (2015)

Ours (with QE) 2048 90.6 96.0 89.4 93.2 –

Ours (with QE and DBA) 2048 94.7 96.6 93.6 93.5 –

Bold values indicate the best results per dataset for each type of methods
Methods marked with an * use the full image as a query in Oxford and Paris instead of using the annotated region of interest as is standard practice.
The † symbol denotes our reimplementation. Methods that manually rotate the images on Holidays using an oracle are labeled with �. We do not
perform QE on Holidays as it is not a standard practice. See text for more details

(2011), Azizpour et al. (2015). These methods perform a
costly spatial verification at runtime that typically requires
storing thousands of local descriptors for each image in the

database (Tolias and Jégou 2015; Li et al. 2015;Mikulik et al.
2013). Most of them also perform query expansion (QE).
For comparison purposes, we also report our results using
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QE with or without DBA at the bottom of the table. Using
onlyQE brings about half of the improvement obtainedwhen
using both QE and DBA, yet avoiding any pre-processing of
the database. In spite of not requiring any form of spatial ver-
ification at runtime, our method is largely improving on the
state of the art on all datasets. In particular, our performance
is between 5 to 14 mAP points ahead of the best competitor
on all datasets.

The best methods in the literature (Tolias and Jégou 2015;
Azizpour et al. 2015) are hardly scalable as they require a
lot of storage memory and an expensive verification. For
instance, the method of Tolias and Jégou (2015) requires
a slow spatial verification taking over 1 second per query
(excluding descriptor extraction time). Without spatial veri-
fication their approach loses 5 mAP points and still requires
about 200 ms per query. The approach of Tolias et al. (2016)
is more scalable but still needs an extra spatial-verification
stage based on storing many local representations of the
database images, ending up in a significantly larger mem-
ory footprint than our approach, despite using advanced
compression techniques. In comparison, our approach only
calculates two matrix-vector products (only one if QE is not
performed), that are extremely efficient. This operation com-
putes several millions of image comparisons in less than
a second. Without any compression, our method requires
storing 2048 floats per image, i.e. 8 kb, but this represen-
tation can be drastically compressed without much accuracy
loss as we show in the next section. Finally, we would
like to point out that our method uses a single universal
model to compute our learned image representation—the
same for all test datasets—contrary to, for instance, other
methods of Danfeng et al. (2011), Shen et al. (2014), Tolias
et al. (2015) that perform some learning on the target
datasets.

Wealso report results on theUKBdataset usingour univer-
salmodel.Ourmethod obtains 3.84 recall@4withoutQEand
DBA, and 3.91 recall@4 score with QE and DBA. The latter
is comparable to the best published results on this dataset,
i.e. 3.85 reported by Azizpour et al. (2015), although this
method is a lot more costly. Other results are significantly
lower (e.g. Paulin et al. (2015) reports 3.76,Deng et al. (2013)
reports 3.75, and Tolias and Jégou (2015) reports 3.67) and
they are hardly scalable as well (see discussion above). Note
that training marginally decreases our performance on UKB
(Table 1). This is caused by the discrepancy between our
training set (landmarks images) and the UKB images (daily
life items). The drop remains marginal, which suggests that
out method adapts well to other retrieval contexts.

6.3.3 Short Image Codes with PCA and PQ

We investigate two different methods to reduce the memory
footprint of our approach while preserving the best pos-

sible accuracy. We compress our 2048-dimensional image
descriptors using either principal component analysis (PCA)
or product quantization (PQ) (Jégou et al. 2011). In both
cases, we learn the vocabulary (PCA projection or PQ code-
book) on Landmarks-clean images, encodedwith our learned
representation.

In the case of PCA, to obtain descriptors of d dimensions
we simply mean center the features, project them with the
eigenvectors associated with the d largest eigenvalues of the
data, and �2-normalize them. The resulting descriptor size is
thus 4d bytes, as they are stored as 32-bits floats. PQ com-
pression, for its part, is based on splitting the input descriptor
in k subparts and applying vector quantization on each sub-
part separately. Although some works also apply PCA to the
input descriptors before the PQ encoding, we found it did
not have any noticeable impact in our case. Training PQ is
then equivalent to learning a codebook for each subpart and
is achieved though k-means clustering on a set of represen-
tative descriptors. The codebook size is typically set to 256
for each subpart, as it allows them to be stored on exactly 1
byte. Thus, the size of a PQ-encoded descriptor is k bytes. At
test time, efficient caching techniques allow to compute the
dot-product between the query and the PQ-encoded database
descriptors efficiently (Jégou et al. 2011). Note that recent
improvements have led PQ tomatch the high speed of bitwise
Hamming distance computations without losing in accuracy
(Douze et al. 2016).

Retrieval results for our method (without QE or DBA)
and for the state of the art are presented in Fig. 8 for all
datasets and for different descriptor sizes (in bytes). PCA-
based compression, labeled as “Proposed (PCA)”, achieves
slightly better results than other existing approaches for all
considered datasets and all code sizes, but its accuracy drops
rapidly for short codes. This compression method is still
of interest as it does not require any change in the system
architecture and still compares favorably to the state of the
art. PQ-based compression, labeled as “Proposed (PQ)” in
Fig. 8, largely outperforms all published methods in terms
of the performance versus size trade-off by a large margin,
on all datasets. Even for very short image codes of 64 bytes,
it is able to outperform most of the state of the art that uses
codes of 2048 bytes. In this setting, we can store hundreds of
millions of images on a single machine with 64 Gb of RAM,
which demonstrates the scalability of our approach.

6.4 Qualitative Results

Figure 9 shows the top retrieved images by our final best per-
forming retrieval system based on ResNet101 (including QE
and DBA) on some Oxford 5k queries (purple rectangle on
the leftmost images). For every querywe also provide the cor-
responding average precision (AP) curve (green curve) and
compare it with the ones obtained for the baseline R-MAC
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Fig. 8 Results for short image codes. Our method with PQ and PCA
compression, compared to finetuned MAC and R-MAC (Radenovic
et al. 2016), CroW (Kalantidis et al. 2016), MAC and R-MAC (Tolias

et al. 2016), Neural codes (Babenko et al. 2014), NetVlad (Arandjelovic
et al. 2016), SPoC (Gong et al. 2014), andmVOC/BoW(Radenovic et al.
2015)
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Query 1 (1) 2 (2) 3 (3) 4 (5) 5 (4) 6 (7) 7 (8) 8 (21) 9 (6) 10 (80) 11 (13) 12 (11)
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Fig. 9 Top retrieved images and AP curves for a few Oxford queries
(purple rectangle from leftmost images). On the plot, R-MAC baseline
is red, our learned version is blue, multi-resolution is purple, and the
full system with QE and DBA is green. Green, gray and red borders on

images respectively denote positive, null and negative images. Below
each image is its retrieval rank, using the same colour code (Color figure
online)

(red curve), our learned architecture (blue curve), and its
multi-resolution flavor (purple curve). The results obtained
with the proposed trained model are consistently better in
terms of accuracy. In many cases, several of the correctly

retrieved images by our method were not well scored by the
baseline method, that placed them far down in the list of
results.
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7 Conclusions

We have presented an effective and scalable method for
instance-level image retrieval that encodes images into
compact global signatures that can be comparedwith the dot-
product. The proposed approach combines three ingredients
that are key to success. First, we gathered a suitable training
set by automatically cleaning an existing landmarks dataset.
Second, we proposed a learning framework that relies on a
triplet-based ranking loss, and that leverages this training set
to train a deep architecture. Third, for the deep architecture,
we built on the R-MAC descriptor, cast it as a fully differen-
tiable network so we could learn its weights, and enhanced
it with a proposal network that focuses on the most relevant
image regions. Extensive experiments on several benchmarks
show that our representation significantly outperforms the
state of the art when using global signatures, evenwhen using
short codes of 64 or 128 bytes. Our method also outperforms
the state of the art set by more complex methods that rely
on costly matching and verification, and does so while being
faster and more memory-efficient.
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