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Abstract Every moment counts in action recognition. A
comprehensive understanding of human activity in video
requires labeling every frame according to the actions occur-
ring, placing multiple labels densely over a video sequence.
To study this problem we extend the existing THUMOS
dataset and introduceMultiTHUMOS, a newdataset of dense
labels over unconstrained internet videos. Modeling multi-
ple, dense labels benefits from temporal relations within and
across classes. We define a novel variant of long short-term
memorydeepnetworks formodeling these temporal relations
via multiple input and output connections. We show that this
model improves action labeling accuracy and further enables
deeper understanding tasks ranging from structured retrieval
to action prediction.

1 Introduction

Humans are great at multi-tasking: they can bewalkingwhile
talking on the phone while holding a cup of coffee. Further,
human action is continual, and every minute is filled with
potential labeled actions (Fig. 1). However, most work on
human action recognition in video focuses on recognizing
discrete instances or single actions at a time: for example,
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which sport Karpathy et al. (2014) or which single cooking
activity Rohrbach et al. (2012) is taking place. We argue this
setup is fundamentally limiting. First, a single description is
often insufficient to fully describe a person’s activity. Sec-
ond, operating in a single-action regime largely ignores the
intuition that actions are intricately connected. A person that
is running and then jumping is likely to be simultaneously
doing a sport such as basketball or long jump; a nurse that
is taking a patient’s blood pressure and looking worried is
likely to call a doctor as her next action. In this work, we go
beyond the standard one-label paradigm to dense, detailed,
multilabel understanding of human actions in videos.

There are two key steps on the path to tackling detailed
multilabel human action understanding: (1) finding the right
dataset and (2) developing an appropriatemodel. In this paper
we present work in both dimensions.

The desiderata for a video dataset include the follow-
ing: video clips need to be long enough to capture multiple
consecutive actions, multiple simultaneous actions need to
be annotated, and labeling must be dense with thorough
coverage of action extents. Video annotation is very time-
consuming and expensive, and to the best of our knowledge
no such dataset currently exists. UCF101 (Soomro et al.
2012),HMDB51 (Kuehne et al. 2011), andSports1M(Karpa-
thy et al. 2014) are common challenging action recognition
datasets. However, each video is associated with non-
localized labels (Sports1M), and the videos in UCF101 and
HMDB51 are further temporally clipped around the action.
MPII Cooking (Rohrbach et al. 2012) and Breakfast (Kuehne
et al. 2014) datasets contain long untrimmed video sequences
with multiple sequential actions but still only one label per
frame; further, they are restricted to closed-world kitchen
environments. THUMOS (Jiang et al. 2014) contains long
untrimmed videos but most videos (85%) only contain a sin-
gle action class.
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Fig. 1 In most internet videos there are multiple simultaneous human
actions. Here, we show a concrete example from a basketball video to
illustrate our target problem of dense detailed multi-label action under-
standing

To overcome these problems, we introduce a new action
detectiondataset calledMultiTHUMOS, significantly extend-
ing the annotations on 413 videos (30h) of THUMOS action
detection dataset. First, MultiTHUMOS allows for an in-
depth study of simultaneous human action in video: it extends
THUMOS from 20 action classes with 0.3 labels per frame
to 65 classes and 1.5 labels per frame. Second, MultiTHU-
MOS allows for a thorough study of the temporal interaction
between consecutive actions: the average number of dis-
tinct action categories in a video is 10.5 (compared to 1.1
in THUMOS). Going further, MultiTHUMOS lends itself
to studying intricate relationships between action labels:
the 45 new annotated classes include relationships such as
hierarchical (e.g., more general Throw or PoleVault and
more specific Basketball Shot or PoleVaultPlantPole) and
fine-grained (e.g., Guard vs. Block or Dribble vs. Pass in
basketball). Figure 1 shows an example of our dense multil-
abel annotation.

Reasoning about multiple, dense labels on video requires
models capable of incorporating temporal dependencies. A
large set of techniques exist for modeling temporal struc-
ture, such as hidden Markov models (HMMs), dynamic time
warping, and their variants. Recent action recognition lit-
erature has used recurrent neural networks known as long
short term memory (LSTM) for action recognition in videos
(Donahue et al. 2014). We introduce MultiLSTM, a new
LSTM-based model targeting dense, multilabel action anal-
ysis. Taking advantage of the fact that more than 45% of
frames in MultiTHUMOS have 2 or more labels, the model
can learn dependencies between actions in nearby frames and
between actions in the same frame, which allows it to subse-
quently perform dense multilabel temporal action detection
on unseen videos.

In summary, our contributions are:

1. We introduce MultiTHUMOS, a new large-scale dataset
of dense, multilabel action annotations in temporally
untrimmed videos, and

2. We introduce MultiLSTM, a new recurrent model based
on an LSTM that features temporally-extended input and
output connections.

Our experiments demonstrate improved performance ofMul-
tiLSTM relative to a plain LSTM baseline on our dense,
multilabel action detection benchmark.

2 Related Work

Visual analysis of human activity has a long history in com-
puter vision research. Thorough surveys of the literature
include Poppe (2010) and Weinland et al. (2010). Here we
review recent work relevant to dense labeling of videos.

2.1 Datasets

Research focus is closely intertwined with dataset creation
and availability. The KTH (Schuldt et al. 2004) and Weiz-
mann (Blank et al. 2005) datasets were catalysts for a body
of work. This era focused on recognizing individual human
actions, based on datasets consisting of an individual human
imaged against a generally stationary background. In subse-
quent years, the attention of the community moved towards
more challenging tasks. Benchmarks based on surveillance
video were developed for crowded scenes, such as the
TRECVID Surveillance Event Detection (Over et al. 2011).
Interactions between humans or humans and objects (Ryoo
and Aggarwal 2009; Oh et al. 2011) have been studied.

Another line ofwork has shifted toward analyzing “uncon-
strained” internet video. Datasets in this line present chal-
lenges in the level of background clutter present in the videos.
The Hollywood (Marszałek et al. 2009), HMDB (Kuehne
et al. 2011), UCF 101 (Soomro et al. 2012), Activi-
tyNet (Fabian Caba Heilbron et al. 2015), and THUMOS
(Jiang et al. 2014) datasets exemplify this trend. Task direc-
tion has also moved toward a retrieval setting, finding a
(small) set of videos from a large background collection,
including datasets such asTRECVIDMED(Over et al. 2011)
and Sports 1M (Karpathy et al. 2014).

While the push toward unconstrained internet video is pos-
itive in terms of the difficulty of this task, it has moved focus
away from human action toward identifying scene context.
Discriminating diving versus gymnastics largely involves
determining the scene of the event. TheMPIICookingdataset
(Rohrbach et al. 2012) and Breakfast dataset (Kuehne et al.
2014) refocus efforts toward human action within restricted
action domains (Table 1). The MultiTHUMOS dataset we
propose shares commonalities with this line, but emphasizes
generality of video, multiple labels per frame, and a broad
set of general to specific actions.
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Table 1 Our MultiTHUMOS
dataset overcomes many
limitations of previous datasets

Detection Untrimmed Open-world Multilabel

UCF101 (Soomro et al. 2012) – – Yes –

HMDB51 (Kuehne et al. 2011) – – Yes –

Sports1M (Karpathy et al. 2014) – Yes Yes –

Cooking (Rohrbach et al. 2012) Yes Yes – –

Breakfast (Kuehne et al. 2014) Yes Yes – –

THUMOS (Jiang et al. 2014) Yes Yes Yes –

MultiTHUMOS Yes Yes Yes Yes

2.2 Deep Learning for Video

In common with object recognition, hand-crafted features
for video analysis are giving way to deep convolutional fea-
ture learning strategies. The best hand-crafted features, the
dense trajectories of Wang et al. (2011), achieve excellent
results on benchmark action recognition datasets. However,
recent work has shown superior results by learning video
features (often combined with dense trajectories). Simonyan
and Zisserman (2014a) present a two-stream convolutional
architecture utilizing both image and optical flow data as
input sources. Zha et al. (2015) examine aggregation strate-
gies for combining deep learned image-based features for
each frame, obtaining impressive results on TRECVIDMED
retrieval. Karpathy et al. (2014) and Tran et al. (2015) learn
spatio-temporal filters in a deep network and apply them to a
variety of human action understanding tasks.Mansimov et al.
(2015) consider methods for incorporating ImageNet train-
ing data to assist in initializingmodel parameters for learning
spatio-temporal features. Wang et al. (2015) study temporal
pooling strategies, specifically focused on classification in
variable-length input videos.

2.3 Temporal Models for Video

Constructing models of the temporal evolution of actions
has deep roots in the literature. Early work includes Yam-
ato et al. (1992), using hidden Markov models (HMMs)
for latent action state spaces. Lv and Nevatia (2007) rep-
resented actions as a sequence of synthetic 2D human poses
rendered from different view points. Constraints on transi-
tions between key poses are represented using a state diagram
called an “Action Net” which is constructed based on the
order of key poses of an action. Shi and Cheng (2011)
proposes a semi-Markov model to segment a sequence tem-
porally and label segments with an action class. Tang et al.
(2012) extend HMMs to model the duration of each hidden
state in addition to the transition parameters of hidden states.

Temporal feature aggregation is another common strategy
for handling video data. Pooling models include aggregating
over space and time, early and late fusion strategies, and

temporal localization (Tong et al. 2014; Myers et al. 2014;
Oh et al. 2014).

Discriminative models include those based on latent
SVMs over key poses and action grammars (Niebles et al.
2010; Vahdat et al. 2011; Pirsiavash and Ramanan 2014). A
recent set of papers has deployed deep models using LSTM
models (Hochreiter and Schmidhuber 1997) for video anal-
ysis (Donahue et al. 2014; Ng et al. 2015; Srivastava et al.
2015; Yao et al. 2015). These papers have shown promising
results applying LSTMs for tasks including video classifica-
tion and sentence generation. In contrast, we develop a novel
LSTM that performs spatial input aggregation and output
modeling for dense labeling output.

2.4 Action Detection

Beyond assigning a single label to a whole video, the task
of action detection localizes this action within the video
sequence. An example of canonical work in this vein is Ke
et al. (2007). More recent work extended latent SVMs to
spatio-temporal action detection and localization (Tian et al.
2013; Lan et al. 2011). Rohrbach et al. (2015) detect cook-
ing actions using hand-centric features accounting for human
pose variation. Ni et al. (2014) similarly utilize hand-centric
features on the MPII Cooking dataset, but focus on multiple
levels of action granularity. Gkioxari and Malik (2014) train
SVMs for actions on top of deep learned features, and fur-
ther link them in time for spatio-temporal action detection.
In contrast, we address the task of dense multilabel action
detection.

2.5 Attention-Based Models

Seminal work on computational spatial attention models for
images was done by Itti et al. (1998). Recent action analysis
work utilizing attention includes Shapovalova et al. (2013)
who use eye-gaze data to drive action detection and localiza-
tion. Xu et al. (2015) use visual attention to assist in caption
generation. Yao et al. (2015) develop an LSTM for video
caption generation with soft temporal attention. Our method
builds on these directions, using an attention-based input
temporal context for dense action labeling.
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Fig. 2 Our MultiTHUMOS dataset contains multiple action annota-
tions per frame

3 The MultiTHUMOS Dataset

Research on detailed, multilabel action understanding requi-
res a dataset of untrimmed, densely labeled videos. However,
we are not aware of any existing dataset that fits these
requirements. THUMOS (Jiang et al. 2014) is untrimmed
but contains on average only a single distinct action labeled
per video. MPII Cooking (Rohrbach et al. 2012) and Break-
fast (Kuehne et al. 2014) datasets have labels of sequential
actions, but contain only a single label per frame and are fur-
ther captured in closed-world settings of a single or small set
of kitchens (Table 1).

To address the limitations of previous datasets, we intro-
duce a new dataset called MultiTHUMOS.1 MultiTHUMOS
contains dense, multilabel, frame-level action annotations
(Fig. 2) for 30h across 400 videos in the THUMOS ’14 action
detection dataset (referred to hereafter as THUMOS)In par-
ticular, all videos in the “Validation Data” and “Test Data”
sets were labeled. THUMOS training data consists of 3 sets
of videos: temporally clipped “Training Data”, temporally
untrimmed “ValidationData”with temporal annotations, and
temporally untrimmed “Background Data” with no tempo-
ral annotations. Test data consists of temporally untrimmed
“Test Data” with temporal annotations. We annotated all
video sets originally including temporal annotations, i.e.
“Validation Data” and “Test Data”.

Annotations were collected in collaboration with
Datatang,2 a commercial data annotation service. Workers
were provided with the name of an action, a brief (up to 1

1 The dataset is available for download at http://ai.stanford.edu/
~syyeung/everymoment.html.
2 http://factory.datatang.com/en/.

Fig. 3 Left MultiTHUMOS has significantly more labels per frame
than THUMOS (Jiang et al. 2014) (1.5 in MultiTHUMOS versus 0.3
in THUMOS). Right additionally, MultiTHUMOS contains up to 25
action labels per video compared to ≤3 labels in THUMOS

sentence) description, and 2 annotation examples, and asked
to annotate the start and end frame of the action in the videos.
An actionwas annotated if it occurred anywhere in the frame.
A single worker was used to annotate each video since the
workers are employees of the company, and a second worker
verified each annotation as part of Datatang’s quality control
process after annotation.

In total, we collected 32, 325 annotations of 45 action
classes, bringing the total number of annotations from 6, 365
over 20 classes in THUMOS to 38, 690 over 65 classes in
MultiTHUMOS. The classes were selected to have a diver-
sity of length, to include hierarchical, hierarchical within a
sport, and fine-grained categories, and to include both sport
specific and non-sport specific categories. The action classes
are described in more detail below. Importantly, it is not just
the scale of the dataset that has increased. The density of
annotations increased from 0.3 to 1.5 labels per frame on
average and from 1.1 to 10.5 action classes per video. The
availability of such densely labeled videos allows research on
interaction between actions that was previously impossible
with more sparsely labeled datasets. The maximum number
of actions per frame increased from 2 in THUMOS to 9Mul-
tiTHUMOS, and the maximum number of actions per video
increased from 3 in THUMOS to 25 inMultiTHUMOS. Fig-
ure 3 shows the full distribution of annotation density.

Using these dense multilabel video annotations, we are
able to learn and visualize the relationships between actions.
The co-occurrence hierarchy of object classes in images
based on mutual information of object annotations was
learned by Choi et al. (2010); we adapt their method to
per-frame action annotations in video. Figure 4 shows the
resulting action hierarchy. Classes such as squat and body
contract frequently co-occur; in contrast, classes such as run
and billiards rarely occur together in the same frame.

MultiTHUMOS is a very challenging dataset for four key
reasons.

1. Long tail data distribution First, MultiTHUMOS has a
long tail distribution in the amount of annotated data per
action class. This requires action detection algorithms to
effectively utilize both small and large amounts of anno-
tated data. Concretely, MultiTHUMOS has between 27s
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Fig. 4 We use the method of Choi et al. (2010) to learn the relationships between the 65 MultiTHUMOS classes based on per-frame annotations.
Blue (red) means positive (negative) correlation. The 20 original THUMOS classes are in green (Color figure online)

Fig. 5 MultiTHUMOS has a wider range of number of per-class
frames and instances (contiguous sequences of a label) annotated than
THUMOS. Some action classes like Stand or Run have up to 3.5K
instances (up to 18K s, or 5.0h); others like VolleyballSet or Hug have
only 15 and 46 instances (27 and 50s) respectively

to 5h of annotated video per action class (with the rarest
actions being volleyball bump, a pat, volleyball serve,
high five and basketball block, and the most common
actions being stand, walk, run, sit and talk to the camera).
In contrast, THUMOS is more uniformly annotated: the
dataset ranges from the rarest action baseball pitch with
3.7min annotated to the most common action pole vault
with 1h of annotated video. Figure 5 shows the full dis-
tribution.

2. Length of actions The second challenge is that Multi-
THUMOS has much shorter actions compared to THU-
MOS. For each action class, we compute the average
length of an action instance of that class. Instance of
action classes inTHUMOSare on average4.8 s long com-
pared to only 3.3 s long in MultiTHUMOS. Instances of
action classes in THUMOS last between 1.5 s on average
for clicket bowling to 14.7 s on average for billiards. In
contrast, MultiTHUMOS has seven action classes whose
instances last less than a second on average: two-handed
catch, planting the pole in pole vaulting, basketball shot,
one-handed catch, basketball block, high five and throw.
Shorter actions are more difficult to detect since there
is very little visual signal in the positive frames. There
are instances of actions throw, body contract and squat
that last only 2 frames (or 66ms) in MultiTHUMOS!
Accurately localizing such actions encourages strong
contextual modeling and multi-action reasoning.

3. Fine-grained actions The third challenge of MultiTHU-
MOS is the many fine-grained action categories with low
visual inter-class variation, including hierarchical (e.g.
throw vs. baseball pitch), hierarchical within a sport (e.g.
pole vault vs. the act of planting the pole when pole
vaulting), and fine-grained (e.g. basketball dunk, shot,
dribble, guard, block, and pass). It also contains both
sport-specific actions (such as different basketball or vol-
leyball moves), as well as general actions that can occur
in multiple sports (e.g. pump fist, or one-handed catch).
This requires the development of general action detection
approaches that are able to accurate model a diverse set
of visual appearances.

4. High intra-class variation The final MultiTHUMOS
challenge is the high intra-class variation as shown in
Fig. 6. The same action looks visually very different
across multiple frames. For example, a hug can be shown
from many different viewpoints, ranging from extreme
close-up shots to zoomed-out scene shots, and may be
between two people or a larger group. This encourages
the development of models that are insensitive to particu-
lar camera viewpoint and instead accurately focus on the
semantic information within a video.

With the MultiTHUMOS dataset providing new chal-
lenges for action detection, we now continue on to describing
our proposed approach for addressing these challenges and
making effective use of the dense multilabel annotation.

4 Technical Approach

Actions in videos exhibit rich patterns, both within a single
frame due to action label relations and also across frames
as they evolve in time. The desire to elegantly incorporate
these cueswith state-of-the-art appearance-basedmodels has
led to recent works (Donahue et al. 2014; Ng et al. 2015;
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Fig. 6 Our MultiTHUMOS dataset is very challenging due to high intra-class variation
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Srivastava et al. 2015) that study combinations of convolu-
tional neural networks (CNN) modeling frame-level spatial
appearance and recurrent neural networks (RNN) modeling
the temporal dynamics. However, the density of the action
labels in our dataset expands the opportunities for more com-
plex modeling at the temporal level. While in principle even
a simple instantiation of an ordinary RNN has the capacity
to capture arbitrary temporal patterns, it is not necessarily
the best model to use in practice. Indeed, our proposed Mul-
tiLSTM model extends the recurrent models described in
previous work, and our experiments demonstrate its effec-
tiveness.

4.1 LSTM

The specific type of Recurrent architecture that is commonly
chosen in previous work is the LSTM, which owing to its
appealing functional properties has brought success in awide
range of sequence-based tasks such as speech recognition,
machine translation and very recently, video activity classi-
fication. Let x be an input sequence (x1, ..., xT ) and y be an
output sequence (y1, ..., yT ). An LSTM then maps x to y
through a series of intermediate representations:

it = σ
(
Wxi xt + Whi ht−1 + bi

)
(1)

ft = σ
(
Wx f xt + Whf ht−1 + b f

)
(2)

ot = σ (Wxoxt + Whoht−1 + bo) (3)

gt = tanh (Wxcxt + Whcht−1 + bc) (4)

ct = ft ct−1 + it gt (5)

ht = ot tanh (ct ) (6)

yt = Whyht + by (7)

Here c is the “internal memory” of the LSTM, and the gates
i , f , o control the degree to which the memory accumulates
new input g, attenuates its memory, or influences the hidden
layer output h, respectively. Intuitively, the LSTM has the
capacity to read and write to its internal memory, and hence
maintain and process information over time. Compared to
standard RNNs, the LSTM networks mitigate the “vanish-
ing gradients” problem because except for the forget gate,
the cell memory is influenced only by additive interactions
that can communicate the gradient signal over longer time
durations. The architecture is parametrized by the learnable
weight matrices W and biases b, and we refer the reader to
Hochreiter and Schmidhuber (1997), Donahue et al. (2014)
for further details.

However, an inherent flaw of the plain LSTM architecture
is that it is forced to make a definite and final prediction at
some time step based on what frame it happens to see at that
time step, and its previous context vector.

4.2 MultiLSTM

Our core insight is that providing the model with more free-
dom in both reading its input and writing its output reduces
the burden placed on the hidden layer representation. Con-
cretely, the MultiLSTM expands the temporal receptive field
of both input and output connections of an LSTM. These
allow the model to directly refine its predictions in retrospect
after seeing more frames, and additionally provide direct
pathways for referencing previously-seen frames without
forcing the model to maintain and communicate this infor-
mation through its recurrent connections.

4.2.1 Multilabel Loss

In our specific application setting, the input vectors xt cor-
respond to the 4096-dimensional fc-7 features of the VGG
16-layer Convolutional Network which was first pretrained
on ImageNet and then fine-tuned on our dataset on an
individual frame level. We interpret the vectors yt as the
unnormalized log probability of each action class. Since each
frame of a video can be labeled with multiple classes, instead
of using the conventional softmax loss we sum independent
logistic regression losses per class:

L (y|x) =
∑

t,c

ztc log (σ (ytc)) + (1 − ztc) log (1 − σ (ytc))

where ytc is the score for class c at time t , and ztc is the binary
ground truth label for class c at time t .

4.2.2 Multiple Inputs with Temporal Attention

In a standard LSTM network, all contextual information is
summarized in the hidden state vector. Therefore, the net-
work relies on the memory vector to contain all relevant
information about past inputs, without any ability to explic-
itly revisit past inputs. This is particularly challenging in
the context of more complex tasks such as dense, multilabel
action detection.

To provide the LSTMwith a more direct way of accessing
recent inputs, we expand the temporal dimension of the input
to be a fixed-length window of frames previous to the current
time step (Fig. 7a). This allows the LSTM to spend its mod-
eling capacity onmore complex and longer-term interactions
instead of maintaining summary of the recent frames in case
it may be useful for the next few frames. Furthermore, we
incorporate a soft-attention weighting mechanism that has
recently been proposed in the context of machine translation
(Bahdanau et al. 2014).

Concretely, given a video V = {v1, . . . vT }, the input
xi to the LSTM at time step i is now no longer the
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Fig. 7 Components of our MultiLSTM model. a Connections to mul-
tiple inputs. b Multiple outputs. c Variant: output offset.

representation of a single frame vt , but a weighted com-
bination xi = ∑

t αi tvt where t ranges over a fixed-size
window of frames previous to i , and αi t is the contri-
bution of frame vt to input xi as computed by the soft
attention model. To compute the attention coefficients αi t ,
we use a model similar to Bahdanau et al. (2014). The
precise formulation that worked best in our experiments
is:

αi t ∝ exp
(
wT
ae

[
tanh(Whahi−1) � tanh(Wvavt )

])
(8)

Here � is element-wise multiplication, {wae,Wha,Wva} are
learned weights, and αt is normalized using the softmax
function with the interpretation that αt expresses the rela-
tive amount of attention assigned to each frame in the input
window. Intuitively, the first term tanh(Whahi−1) allows the
network to look for certain features in the input, while the
second term tanh(Wvavt ) allows each input to broadcast
the presence/absence of these features. Therefore, the multi-
plicative interaction followed by the weighted sum with wae

has the effect of quantifying the agreement between what is
present in the input and what the network is looking for. Note
that the standard LSTM formulation is a special case of this
model where all attention is focused on the last input window
frame.

4.2.3 Multiple Outputs

Analogous to providing explicit access to awindowof frames
at the input, we allow the LSTM to contribute to predictions
in a window of frames at the output (Fig. 7b). Intuitively,
this mechanism lets the network refine its predictions in ret-
rospect, after having seen more frames of the input. This
feature is related to improvements that can be achieved by
use of bi-directional recurrent networks. However, unlike bi-
directional models our formulation can be used in an online
setting where it delivers immediate predictions that become
refined with a short time lag.3 Given the multiple outputs, we
consolidate the predicted labels for all classes c at time t with
a weighted average yt = ∑

i βi t pit where pit are the predic-
tions at the i th time step for the t th frame, and βi t weights
the contribution. βi t can be learned although in our exper-
iments we use 1

N for simplicity to average the predictions.
The standard LSTM is a special case, where β is an indicator
function at the current time step. In our experiments we use
the same temporalwindows at the input and output. Similar to
the inputs, we experimented with soft attention over the out-
put predictions but did not observe noticeable improvements.
This may be due to increased fragility when the attention is
close to the output without intermediate network layers to
add robustness, and we leave further study of this to future
work.

4.2.4 Single Offset Output

We experimented with offset predictions to quantify how
informative frames at time t are towards predicting labels
at some given offset in time. In these experiments, the net-
work is trained with shifted labels yt+s , where s is a given
offset (Fig. 7c). In our dense label setting, this type of model
additionally enables applications such as action prediction in
unconstrained internet video [c.f. (Kitani et al. 2012)]. For
example, if the input is a frame depicting a person cocking
his arm to throw, the model could predict future actions such
as Catch or Hit.

5 Experiments

We begin by describing our experimental setup in Sect. 5.1.
We then empirically demonstrate the effectiveness of our
model on the challenging tasks of action detection (Sect. 5.2)
and action prediction (Sect. 5.3).

3 A similar behavior can be obtained with a bi-directional model by
truncating the hidden state information from future time frames to zero,
but this artificially distorts the test-time behavior of themodel’s outputs,
while our model always operates in the regime it was trained with.
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5.1 Setup

5.1.1 Dataset

We evaluate our MultiLSTM model for dense, multilabel
action detection on the MultiTHUMOS dataset. We use the
same train and test splits as THUMOS (see Sect. 3 for details)
but ignore the background training videos. Clipped training
videos (the “Training Data” set in THUMOS) act as weak
supervision since they are only labeled with the THUMOS-
subset of MultiTHUMOS classes.

5.1.2 Implementation Details

Our single-frame baseline uses the 16-layer VGG CNN
model (Simonyan and Zisserman 2014b), which achieves
near state of the art performance on ILSVRC (Russakovsky
et al. 2015). The model was pre-trained on ImageNet and all
layers fine-tuned on MultiTHUMOS using a binary cross-
entropy loss per-class. The input to our LSTM models is the
final 4096-dimensional, frame-level fc7 representation.

We use 512 hidden units in the LSTM, and 50 units in
the attention component of MultiLSTM that is used to com-
pute attention coefficients over a window of 15 frames. We
train the model with an exact forward pass, passing LSTM
hidden and cell activations from one mini-batch to the next.
However we use approximate backpropagation through time
where we only backpropagate errors for the duration of a sin-
gle mini-batch. Our mini-batches consist of 32 input frames
(approx. 3.2 s), and we use RMSProp (Tieleman and Hin-
ton 2012) to modulate the per-parameter learning rate during
optimization.

5.1.3 Performance Measure

We evaluate our models using average precision (AP) mea-
sured on our frame-level labels. The focus of our work is
dense labeling, hence this is the measure we analyze to eval-
uate the performance of our model. We report AP values for
individual action classes as well as mean Average Precision
(mAP), the average of these values across the action cate-
gories.

To verify that our baseline models are strong, we can
obtain discrete detection instances using standard heuristic
post-processing. Concretely, for each class we threshold the
frame-level confidences at λ (λ = 0.1 obtained by cross-
validation) to get binary predictions and then accumulate
consecutive positive frames into detections. For each class
C , let μ(C) and σ(C) be the mean and standard deviation
respectively of frame lengths on the training set. The score of
a detection for class C of length L with frame probabilities
p1 . . . pL is then computed as

score (C, p1, . . . , pL ) =
⎛

⎝
L∑

i

pi

⎞

⎠ × exp

(
−α (L − μ(C))2

σ(C)2

)

(9)

where the hyperparameter α = 0.01 is obtained by cross-
validation. Using this post-processing, our single-frame
CNN model achieves 32.4 detection mAP with overlap
threshold 0.1 on the THUMOS subset of MultiTHUMOS.
Since state of the art performance on THUMOS reports 36.6
detection mAP including audio features, this confirms that
our single-frameCNN is a reasonable baseline. Hereafter, we
compare our models without this post-processing to achieve
a comparison of the models’ dense labeling representational
ability.

5.2 Action Detection

We first evaluate our models on the challenging task of dense
per-frame action labeling on MultiTHUMOS. The Multi-
LSTM model achieves consistent improvements in mean
average precision (mAP) compared to baselines. A model
trained on Improved Dense Trajectories features Wang and
Schmid (2013) (using a linear SVM trained on top of a tem-
porally pooled and quantized dictionary of pre-computed
IDT features, provided by THUMOS’14) performs rela-
tively poorly with 13.3 mAP. This highlights the difficulty
of the dataset and the challenge of working with generic
hand-crafted features that are not learned for these specific
fine-grained actions. Additional variants of IDT could be
used to improve performance. For example, Fisher Vector
encoding of raw IDT features is commonly used to boost per-
formance. However, these methods can be computationally
expensive and are limited due to their reliance on underlying
hand-crafted features and lack of opportunity for joint train-
ing. Hence, we use neural network-based models for the rest
of our experiments.

A single-frameCNNfine-tunedonMultiTHUMOSattains
25.4% mAP. We trained a base LSTM network in the spirit
of Donahue et al. (2014) but modified for multilabel action
labeling. Specifically, the LSTM is trained using a multil-
abel loss function and tied hidden context across 32 frame
segments, as described in Sect. 4.2. This base LSTM boosts
mAP to 28.1%. Our full MultiLSTM model handily outper-
forms both baselines with 29.7% mAP. Table 2 additionally
demonstrates that each component of our model (input con-
nections, input attention and output connections) is important
for accurate action labeling.

Figure 8 compares per-class results of the CNN versus
MultiLSTM, and the base LSTM versus MultiLSTM. Mul-
tiTHUMOS outperforms the CNN on 56 our of 65 action
classes, and the LSTM on 50 out of 65 action classes. A
sampling of action classes is labeled. It is interesting to note
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Table 2 Per-frame mean average precision (mAP) of the MultiLSTM
model compared to baselines. Two-stream CNN is computed with
single-frame flow. LSTM is implemented in the spirit of Donahue et al.
(2014) (details in Sect. 4.2). We show the relative contributions of
adding first the input connections with averaging (LSTM + i), then
the attention (LSTM + i + a) as in Fig. 7a, and finally the output con-
nections to create our proposed MultiLSTM model (LSTM + i + a + o)
as in Fig. 7b

Model THUMOS mAP MultiTHUMOS
mAP

IDT (Wang and Schmid
2013)

13.6 13.3

Single-frame
CNN (Simonyan and
Zisserman 2014b)

34.7 25.4

Two-stream
CNN (Simonyan and
Zisserman 2014a)

36.2 27.6

LSTM 39.3 28.1

LSTM + i 39.5 28.7

LSTM + i + a 39.7 29.1

MultiLSTM 41.3 29.7

MultiLSTM achieves the highest mAP (bolded) on both THUMOS and
MultiTHUMOS

from the two plots that compared with the CNN, the LSTM
closes the gap with MultiLSTM on classes such as Frisbee
Catch, Pole Vault, and Basetkball Guard, which are strongly
associated with temporal context (e.g. a throw proceeds a
frisbee catch, and a person usually stands at the track for
some time before beginning a pole vault). This shows the
benefit of stronger temporal modeling, which MultiLSTM
continues to improve on the majority of classes.

Figure 9 analyzes per-frame mAP as the number of atten-
tion units (at both input and output) in theMultiLSTMmodel
is varied. We observe that increasing the number of attention
units improves performance up to a point (75 units), as would
be expected, and then decreases past that as the number of
parameters becomes too large. In practice, we use 50 units
in our experiments.

Figure 10 visualizes some results of MultiLSTM com-
pared to a baseline CNN. For ease of visualization, we
binarize outputs by thresholding rather than showing the per-
frame probabilistic action labels our model produces. The
CNN often produces short disjoint detections whereas Mul-
tiLSTMeffectivelymakes use of temporal and co-occurrence
context to produce more consistent detections.

The multilabel nature of our model and dataset allows
us to go beyond simple action labeling and tackle higher-
level tasks such as retrieval of video segments containing
sequences of actions (Fig. 11) and co-occurring actions
(Fig. 12). By learning accurate co-occurrence and temporal
relationships, the model is able to retrieve video fragments
with detailed action descriptions such as Pass and then Shot
or frames with simultaneous actions such as Sit and Talk.
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Fig. 8 Per-class average precision of theMultiLSTMmodel compared
to a a single-frame CNNmodel Simonyan and Zisserman (2014b); and
b an LSTM on MultiTHUMOS. MultiLSTM outperforms the single-
frame CNN on 56 out of 65 action classes, and the LSTM on 50 out of
65 action classes
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Fig. 9 Number of attention units versus per-frame mAP of the Mul-
tiTHUMOS model. Performance increases as the number of units is
increased, but decreases past 75 units. We use 50 units in our experi-
ments
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Fig. 10 Example timeline of multilabel action detections from our MultiLSTM model compared to a CNN (best in color) (Color figure online)

Pass, then Shot Pass, then Shot

Jump, then Fall Jump, then Fall

Throw, then OneHandedCatch Throw, then TwoHandedCatch

Clean, then Jerk Pitch, then OneHandedCatch

Fig. 11 Examples of retrieved sequential actions (correct in green, mistakes in red). Results are shown in pairs: first action frame on the left,
second action frame on the right (Color figure online)

5.3 Action Prediction

Dense multilabel action labeling in unconstrained internet
videos is a challenging problem to tackle in and of itself. In
this section we go one step further and aim to make predic-

tions about what is likely to happen next or what happened
previously in the video. By utilizing the MultiLSTM model
with offset (Fig. 7c) we are able to use the learned tempo-
ral relationships between actions to make inferences about
actions likely occurring in past or future frames.
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Shot&Guard Shot&No Guard Sit&Talk Stand&Talk

Dive&Bodyroll Dive&No Bodyroll Hug&Pat PlantPole&Run

Fig. 12 Examples of retrieved frames with co-occurring actions (correct in green, mistakes in red). The model is able to distinguish between subtly
different scenarios (Color figure online)
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Fig. 13 Action detection mAP when the MultiLSTM model predicts
the action for a past (offset < 0) or future (offset > 0) frame rather than
for the current frame (offset= 0). The input window of theMultiLSTM
model is shown ingray. Thus, the left plot is of amodel trainedwith input
from the past, and the right plot is of a model trained with the input
window centered around the current frame. mAP of the MultiLSTM
model is shown in red, and mAP of a model using ground-truth label
distribution is shown in gray (Color figure online)

We evaluate the performance of this model as a function
of temporal offset magnitude and report results in Fig. 13.
MultiLSTM prediction mAP is shown in red. The plot on
the left quantifies the prediction ability of the model within a
4 s (+/− 2s) window, provided an input window of context
spanning the previous 1.5 s. The model is able to “see the
future” – while predicting actions 0.5 s in the past is easiest
(mAP ≈ 30%), reasonable prediction performance (mAP
≈ 20–25%) is possible 1–2s into the future. The plot on
the right shows the prediction ability of the model using an
input context centered around the current frame, instead of
spanning only the past. Themodel is able to provide stronger

predictions at past times compared to future times, giving
quantitative insight into the contribution of the hidden state
vector to providing past context.

It is also interesting to compare MultiLSTM prediction
to a model using the ground-truth label distribution (shown
in gray). Specifically, this model makes action predictions
using the most frequent label for a given temporal offset
from the training set, per-class, and weighted by the Mul-
tiLSTM prediction probabilities of actions in the current
frame. The label distribution-basedmodel has relatively high
performance in the future direction as opposed to the past,
and at farther offsets from the current frame. This indi-
cates that stronger priors can be learned in these temporal
regions (e.g. frisbee throw should be followed by frisbee
catch, and 2s after a dive is typically background (no action)),
and MultiLSTM does learn them to some extent. On the
other hand, the label distribution-based model has poor per-
formance immediately before the current frame, indicating
that there is greater variability in this temporal region, e.g.
clapping may be preceded by many different types of sport
scoring actions, though a longer offset in the past may be
more likely background. In this temporal region, MultiL-
STM shows significantly stronger performance than using
priors, indicating the benefit of its temporal modeling in this
context.

Figure 14 shows qualitative examples of predictions at
frames 1s in the future from the current time. The model is
able to correctly infer that a Fall is likely to happen after a
Jump, and a BasketballShot soon after a Dribble.
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Jump → Fall Jump → Fall

Dribble → Shot Dribble → Shot

DiscusWindUp → Release DiscusWindUp → Release

VolleyballServe → VolleyballSpiking VolleyballServe → VolleyballSpiking

Dribble → Shot Jump → Fall

Fig. 14 Examples of predicted actions. For each pair of actions, the first one (left) is the label of the current frame and the second one (right) is
the predicted label 1 s into the future. Correct predictions are shown in green, and failure cases are shown in red (Color figure online)

6 Conclusion

In conclusion, this paper presents progress in two aspects of
human action understanding. First, we emphasize a broader
definition of the task, reasoning about dense, multiple labels

per frame of video. We have introduced a new dataset Mul-
tiTHUMOS, containing a substantial set of labeled data that
we will release to spur research in this direction of action
recognition. Second, we develop a novel LSTM-basedmodel
incorporating soft attention input-output temporal context for
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dense action labeling. We show that utilizing this model on
our dataset leads to improved accuracy of action labeling and
permits detailed understanding of human action.
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