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Abstract Face recognition from image sets has numerous
real-life applications including recognition from security and
surveillance systems, multi-view camera networks and per-
sonal albums. An image set is an unordered collection of
images (e.g., video frames, images acquired over long term
observations and personal albums) which exhibits a wide
range of appearance variations. The main focus of the pre-
viously developed methods has therefore been to find a
suitable representation to optimally model these variations.
This paper argues that such a representation could not nec-
essarily encode all of the information contained in the set.
The paper, therefore, suggests a different approach which
does not resort to a single representation of an image set.
Instead, the images of the set are retained in their origi-
nal form and an efficient classification strategy is developed
which extends well-known simple binary classifiers for the
task of multi-class image set classification. Unlike existing
binary tomulti-class extension strategies, which requiremul-
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tiple binary classifiers to be trained over a large number of
images, the proposed approach is efficient since it trains only
few binary classifiers on very few images. Extensive experi-
ments and comparisons with existing methods show that the
proposed approach achieves state of the art performance for
image set classification based face and object recognition on
a number of challenging datasets.

Keywords Image set classification · Binary to multi-class
classification · Video based face recognition · Object
recognition

1 Introduction

Owing to a wide range of potential applications, face recog-
nition has been a research problem of significant importance
in the area of computer vision and pattern recognition. Most
of the effort in this regard has been tailored towards the clas-
sification from single images, that is, given a single query
image, we are required to find its best match in a gallery
of images. However, for many real-world applications (e.g.,
recognition from surveillance videos,multi-view camera net-
works and personal albums), multiple images of a person are
readily available and need to be explored for classification.
Face recognition from these multiple images is commonly
studied under the framework of ‘image set classification’ and
has attained significant research attention in the recent years
(Kim et al. 2007; Wang et al. 2008; Wang and Chen 2009;
Cevikalp and Triggs 2010; Harandi et al. 2011; Hu et al.
2012; Wang et al. 2012; Yang et al. 2013; Ortiz et al. 2013;
Zhu et al. 2013; Hayat et al. 2014).

Compared with single image based classification, image
set classification is more promising, since images in a set
provide richer information due to wide range of appear-
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ance variations caused by changing illumination conditions,
head pose variations, expression deformations and occlu-
sions. Although image set classification provides a plenitude
of data of the same object under different variations, it simul-
taneously introduces many challenges e.g., how to make an
effective use of this data. The major focus of existing image
set classificationmethods has therefore been to find a suitable
representation which can effectively model the appearance
variations in an image set. For example, the methods in Kim
et al. (2007), Yamaguchi et al. (1998), Oja (1983), Wang
et al. (2008), Wang and Chen (2009), Hayat et al. (2013) and
Hayat and Bennamoun (2014) use subspaces to model image
sets, and set representative exemplars (generated from affine
hull/convex hull) are used in Cevikalp and Triggs (2010) and
Hu et al. (2012) for image set representations. The mean of
the set images is used as part of image set representation in
Ortiz et al. (2013), Hu et al. (2012) and Lu et al. (2013) and
image sets are represented as a point on a manifold geometry
in Wang et al. (2012) and Harandi et al. (2011). The main
motivation behind a single entity representation of image sets
(e.g., subspace, exemplar image, mean, a point on the mani-
fold) is to achieve compactness and computational efficiency.
However, these representations do not necessarily encode all
of the useful information contained in the images of the image
set (as explained in detail in Sect. 2). In this paper, we take a
different approach which does not represent an image set by
a single entity. We instead retain all the images of the image
set in their original form and design an efficient classification
framework to effectively deal with the plenitude of the data
involved.

The proposed image set classification framework is built
on well-developed learning algorithms. Although, these
algorithms are originally designed for classification from
single images, we demonstrate that they can be tailored
for image set classification, by first individually classifying
the images of a query set followed by an appropriate vot-
ing strategy (see Sect. 4.2). However, due to the plenitude
of the data involved in the case of image set classifica-
tion, a straight forward extension of these algorithms (from
single image to image set classification) would be com-
putationally burdensome. Specifically, since most of the
popular learning algorithms (e.g., Support Vector Machines,
AdaBoost, linear regression, logistic regression and deci-
sion tree algorithms) are inherently binary classifiers, their
extension to a multi-class classification problem (such as
image set classification) requires the training of multiple
binary classifiers. One-vs-one and one-vs-rest are the two
most commonly adopted strategies for this purpose. For a
k-class classification problem, k(k−1)

2 and k binary classi-
fiers are respectively trained for one-vs-one and one-vs-rest
strategies. Although, one-vs-rest trains comparatively fewer
classifiers, it still requires images from all classes to train
each binary classifier. Adopting either of the well-known

one-vs-one or one-vs-rest strategies for image set classifi-
cation would therefore require a lot of computational effort,
since either the number of images involved is quite large
or a fairly large number of binary classifiers have to be
trained.

The proposed framework in this paper trains a very small
number of binary classifiers (mostly one or a maximum of
five) on a very small fraction of images for the task of multi-
class image set classification. The framework (see block
diagram in Fig. 1) first splits the training images from all
classes into two sets D1 and D2. The division is done such
that D1 contains uniformly randomly sampled images from
all classes with the total number of images inD1 being com-
parable to the number of images of the query image set. D2

contains all training images except the ones inD1. Next, a lin-
ear binary classifier is trained to optimally separate images of
the query set fromD1. Note thatD1 has some images which
belong to the class of the query set. However, since these
images are very few in number, the classifier treats them as
outliers. The trained classifier therefore learns to discrim-
inate the class of the query set from all the other classes.
Next, the learned classifier is evaluated on the images of
D2. The images of D2 which are classified to belong to the
images of the query set are of particular interest. Knowing the
original class labels of these training images, we construct a
histogram which is then used to decide about the class of the
query set. A detailed description of the proposed framework
is presented in Sect. 3 along with an illustration using a toy
example in Fig. 3.

Themain strengths of the proposedmethod are as follows.
(1) A new strategy is introduced to extend any binary classi-
fier for multi-class image set classification. Compared with
the existing binary to multi-class strategies (e.g., one-vs-one
and one-vs-rest), the proposed approach is computationally
efficient to train. It only requires the training of a fixed num-
ber of binary classifiers (1–5 compared with k or k(k−1)

2 )
using a small number of images. (2) Along with the pre-
dicted class label of the query image set, the proposedmethod
gives a confidence level of its prediction. This information
is very useful and can be used as an indication of a potential
miss-classification. The prior knowledge of a query image set
being miss-classified allows for the potential use of another
binary classifier. The proposed method can therefore accom-
modate the fusion of information from different types of
binary classifiers before declaring the final class label of the
query image set. (3) The proposed method is easily scalable
to new classes. Unlike many existing image set classifica-
tion methods, the computational complexity of the proposed
method is not affected much by the addition of new classes
in the gallery (see Sect. 4.2). Some of the existing methods
would require retraining on the complete dataset (when new
classes are enrolled), whereas, the proposed method requires
no additional training and can efficiently discriminate the
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Fig. 1 Block diagram of the proposed method. The training data is
divided into two setsD1 andD2.D1 contains uniformly randomly sam-
pled images from all classes such that the size of D1 is comparable to
the size of the query image set Xq . A binary classifier is trained, with
images of Xq (labelled +1) andD1 (labelled −1). The classifier is then

tested on the images of D2. Knowing the class labels of images of D2
which are classified +1, we formulate a histogram (see Eq. 1), which is
then used to decide about the class of Xq . See a toy example in Fig. 3
for illustration

query class from other classes using a fixed number of binary
classifiers (Sect. 4.7).

A preliminary version of our method appeared in Hayat
et al. (2014). This paper extends (Hayat et al. 2014) in the
following manners. (1) We encode a facial image in terms
of the activations of a trained deep convolutional neural net-
work. Compared with a shallow representation, the proposed
learned feature representation proves to be more effective in
discriminating images of different individuals (Sect. 3.1). (2)
In order to further enhance the effectiveness of the proposed
method, we propose three different sampling strategies. One
of the proposed strategies also takes into consideration the
head pose information of facial images which results in an
overall improved performance of the method (Sect. 3.4). (3)
We propose an extension of our method for the task of still to
video face recognition which is an important and challeng-
ing real-life problem with numerous applications to security
and surveillance systems (Sect. 4.4). (4) The efficacy of the
proposed method is demonstrated through extensive exper-
iments on four additional unconstrained real-life datasets
(Sect. 4). We further extend our experimental evaluations
by presenting a quantitative robustness analysis of different
aspects of the proposed method (Sect. 4.5).

2 Related Work

The main focus of the existing image set classification meth-
ods is to find a suitable representation which can effectively

model the appearancevariationswithin an image set. Twodif-
ferent types of approaches have been previously developed
for this purpose. The first approach models the variations
within the images of a set through a statistical distribu-
tion and uses a measure such as KL-divergence to compare
two sets. The methods based on this approach are called
parametric model-based methods (Arandjelovic et al. 2005;
Shakhnarovich et al. 2002). One of their major limitation is
their reliance on a very strong assumption about the exis-
tence of a statistical correlation between image sets. The
second approach for image set representation avoids such
assumptions. The methods based on this approach are called
non-parametric model-based methods (Kim et al. 2007;
Wang et al. 2008;Wang and Chen 2009; Cevikalp and Triggs
2010; Harandi et al. 2011; Hu et al. 2012; Wang et al. 2012;
Yang et al. 2013; Ortiz et al. 2013; Zhu et al. 2013; Hayat
et al. 2014; Uzair et al. 2013) and have shown to give a supe-
rior performance compared with the parametric model-based
methods. A brief overview of the non-parametric model-
based methods is given below.

Subspaces have been very commonly used by the non-
parametric methods to represent image sets. Examples
include image sets represented by linear subspaces (Kim
et al. 2007; Yamaguchi et al. 1998), orthogonal subspaces
(Oja 1983) and a combination of linear subspaces (Wang
et al. 2008; Wang and Chen 2009). Principal angles are
then used to compare subspaces. A drawback of these meth-
ods is that they represent image sets of different sizes by
a subspace of the same dimension. These methods cannot
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therefore uniformly capture the critical information from
image sets with different set lengths. Specifically, for sets
with a larger number of images and diverse appearance
variations, the subspace-based methods cannot accommo-
date all the information contained in the images. Image sets
can also be represented by their geometric structures i.e.,
affine hull or convex hull models. For example, Affine Hull
Image Set Distance (AHISD) (Cevikalp and Triggs 2010)
and Sparse Approximated Nearest Points (SANP) (Hu et al.
2012) use affine hull, whereas Convex Hull Image Set Dis-
tance (CHISD) (Cevikalp and Triggs 2010) uses the convex
hull of the images to model an image set. A set-to-set dis-
tance is then determined in terms of the Euclidean distance
between the set representative exemplars which are gener-
ated from the corresponding geometric structures. Although
these methods have shown to produce a promising perfor-
mance, they are prone to outliers and are computationally
expensive (since they require a direct one-to-one compari-
son of the query set with all sets in the gallery). Some of the
non-parametric model-based methods represent an image set
as a point on a certainmanifold geometry e.g., Grassmannian
manifold (Wang and Chen 2009; Harandi et al. 2011) and Lie
group of Riemannian manifold (Wang et al. 2012). Themean
of the set images has also been used either solely or as a part
of image set representation in Ortiz et al. (2013), Hu et al.
(2012) and Lu et al. (2013).

In this paper, we argue that a single entity (e.g., a sub-
space, a point on amanifold, or an exemplar generated from a
geometric structure) for image set representation can be sub-
optimal and could result in the loss of information from the
images of the set. For example, for image sets represented by
a subspace, the amount of the retained information depends
on the selected dimensions of the subspace. Similarly, gen-
erating representative exemplars from geometric structures
could result in exemplars which are practically non-existent
and are very different from the original images of the set.We,
therefore, take a different approach which does not require
any compact image set representation. Instead, the images are
retained in their original form and a novel classification con-
cept is proposed which incorporates well-developed learning
algorithms to optimally discriminate the class of the query
image set from all other classes. A detailed description of the
proposed framework is presented next.

3 Proposed Method

Our proposed method first encodes raw face images in terms
of the activations of a trained Convolutional Neural Network
(CNN) (Sect. 3.1). The encoded face images are then used
by the proposed image set classification algorithm, whose
detailed description is presented in Sect. 3.2. Two important
components of our proposed algorithm (choice of the binary

classifiers and sampling strategies) are further elaborated in
detail in Sects. 3.3 and 3.4, respectively. The proposed image
set classification algorithm is then finally illustrated with the
help of a toy example in Sect. 3.5.

3.1 Convolutional Feature Encoding

We are interested in mapping raw face images to a discrim-
inative feature space where faces of different persons are
easily separable. For this purpose, instead of using shallow
or local feature representations (as in Hayat et al. 2014), we
represent face images in terms of activations of a trained deep
Convolutional Neural Network (CNN) model. Learned rep-
resentations based on CNNs have significantly outperformed
hand-crafted representations on nearly all major computer
vision tasks (Chatfield et al. 2014; Jia et al. 2014; An et al.
2015; Khan et al. 2014). To this end, we adapt the parame-
ters ofAlexNet (Krizhevsky et al. 2012) (originally trained on
1.2 million images of 1000 object classes) for facial images.
AlexNet consists of 5 convolutional and 3 fully-connected
layers. In order to adapt the parameters of the network for
facial images, we first encode faces of BU4DFE dataset (Yin
et al. 2008) in terms of the activations of last convolutional
layer. These encoded faces are then used as input to fine-
tune the parameters of the three fully connected layers after
changing the number of neurons in the last layer from 1000
(object categories in the ILSVRC Russakovsky et al. 2015)
to 100 (number of subjects in the BU4DFE dataset). After
learning the parameters of the fully connected part of the
network, we append it back to the convolutional part, and
fine-tune the complete network for facial images of BU4DFE
dataset. Once the network parameters have been adapted, we
feed the raw face images to the network’s input layer after
mean normalization. The processed output from the first fully
connected layer of the network is considered to be our con-
volutional feature representation of the input face images.
Apart from representing images in terms of the activations
of AlexNet adapted for facial images of BU4DFE dataset,
we also explore their representation in terms of activations of
VGG-Face CNNmodel (Parkhi et al. 2015) which is specifi-
cally trainedon2.6million facial images of 2, 622 subjects.A
performance comparison of different feature encoding meth-
ods is presented in Sect. 4.6ii.

3.2 Image Set Classification Algorithm

3.2.1 Problem Description

For k classes of a training data, we are given k image sets
X1,X2, . . .Xk and their corresponding class labels yc ∈
[1, 2, . . . k]. An image set Xc = {x(t)|y(t) = c; t =
1, 2, . . . Nc} contains all Nc training images x(t) belonging
to class c. Note that for training data with multiple image
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sets per class, we combine the images from all sets into a
single set. During classification, we are given a query image

set Xq = {x(t)}Nq
t=1, and the task is to find the class label yq

of Xq .
The proposed image set classification algorithm is sum-

marized in Algorithm 1. The details are presented below.

1. After encoding all the face images in terms of their convo-
lutional activations, the images from all training sets are
gathered into a single setD = {X1,X2, . . .Xk}. Next,D
is divided into two sets:D1 andD2 by adopting one of the
sampling strategies described in Sect. 3.4. The division
is done such that D1 contains an equal representation of
images from all classes of the training data and the total
number of images inD1 is comparable to that ofXq . The
class label information of images in D1 and D2 is stored
in sets yD1 = {y(t) ∈ [1, 2, . . . k], t = 1, 2, . . . ND1} and
yD2 = {y(t) ∈ [1, 2, . . . k], t = 1, 2, . . . ND2} respec-
tively.

2. Next, we train a binary classifier C1. Training is done
on the images of Xq and D1. All images in Xq are
labelled +1, while the images in D1 are labelled −1.
Since images from all classes are present inD1, the clas-
sifier learns to separate images of Xq from the images of
the other classes. Note thatD1 does have a small number
of images from the same class as of Xq . However, since
these images are very few, the binary classifier treats them
as outliers and learns to discriminate the class of the query
image set from all other classes (Sect. 4.5ii).

3. The trained classifier C1 is then tested on the images of
D2. The images in D2 classified as +1 (same as images
of Xq ) are of interest. Let yD+

2
⊂ yD2 contain the class

labels of images of D2 classified +1 by the classifier C1.
4. A normalized frequency histogram h of class labels in

yD+
2
is computed. The cth value of the histogram, hc,

is given by the percentage of the images of class c in
D2 which are classified +1. Formally, hc is given by the
ratio of the number of images of D2 belonging to class c
and classified as +1 to the total number of images of D2

belonging to class c. This is given by,

hc =

∑

y(t)∈yD+
2

δc(y(t))

∑

y(t)∈yD2

δc(y(t))
,where

δc(y(t)) =
{
1, y(t) = c

0, otherwise.

(1)

5. A class in D2 with most of its images classified as +1
can be predicted as the class of Xq . The class label yq of
Xq is therefore given by,

yq = argmax
c

hc. (2)

We can also get a confidence level d of our prediction of
yq . This is defined in terms of the difference between the
maximum and the second maximum values of histogram
h,

d = max
c∈{1···k} hc − max

c∈{1···k}\yq
hc. (3)

We are more confident about our prediction if the pre-
dicted class is a ‘clear winner’. In the case of closely
competing classes, the confidence level of the prediction
will be low.

6. We declare the class label of Xq (as in Eq. 2) provided
that the confidence d is greater than a certain threshold.
The value of the threshold is determined empirically by
performing experiments on a validation set. Otherwise, if
the confidence level d is less than the threshold, steps 1–5
are repeated, for different random samplings of images
into D1 and D2. After every iteration, a mean histogram
h̄ is computed using the histogram of that iteration and
the previous iterations. The confidence level d is also
computed after every iteration using,

d = max
c∈{1···k} h̄c − max

c∈{1···k}\yq
h̄c. (4)

Iterations are stopped if the confidence level d becomes
greater than the threshold or after a maximum of five iter-
ations. Performing more iterations enhances the robust-
ness of the method (since different images are selected
into D1 and D2 for every iteration) but at the cost
of an increased computational effort. Our experiments
revealed that a maximum of five iterations is a good
trade-off between the robustness and the computational
complexity (Sect. 4.6iii).

7. If the confidence level d (see Eq. 4) is greater than the
threshold, we declare the class label of Xq as yq =
argmaxc h̄c. Otherwise, if the confidence level is lower
than the threshold, declaring the class label would highly
likely result in amiss-classification. Inwhich case,weuse
another binary classifier C2. The procedure is repeated
for a different binary classifierC2. The decision about yq
is thenmade based on the confidence levels ofC1 andC2.
The prediction of the more confident classifier is consid-
ered as the final decision. The description regarding the
choice of the binary classifiers C1 and C2 is given next.

3.3 The Choice of Binary Classifiers

The proposed framework requires a binary classifier to dis-
tinguish between images of Xq and D1. The choice of the
binary classifier should be based on its ability to generalize
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Algorithm 1 The proposed Image Set Classification algorithm
Input: Training image sets X1,X2, . . .Xk ; Query image set Xq ; threshold
1: D ← {X1,X2, . . .Xk} � D: All training images
2: D1 ← ⋃

c D1c where D1c is a random subset of Xc
3: D2 ← D \ D1 � D is divided into D1 and D2
4: C1 ← train(D1,Xq ) � Xq labeled +1 and D1 labeled −1
5: lD2 ← test (C1,D2) � Test D2 on classifier C1. lD2 : binary labels of D2 images
6: yD+

2
← lD2 , yD2 � labels of images in D2 classified +1

7: h ← yD+
2
, yD2 � Normalized histogram, see Eq 1

8: d ← h � Confidence level, see Eq. 3
9: if d > threshold then
10: yq ← argmaxc hc
11: else
12: repeat � Repeat for different random selections in D1 and D2
13: d, h̄ ← Repeat steps 2-8
14: until d ≥ threshold or repeated 5 times
15: if d > threshold then
16: yq ← argmaxc h̄c
17: else
18: d, h̄ ← Repeat steps 2-14 for another binary classifier C2
19: h̄ ← Consider one from C1 and C2 with higher d
20: yq ← argmaxc h̄c
21: end if
22:end if
Output: Label yq of Xq

well to unseen data during the testing phase. Moreover, since
the binary classifier is being trained on images of Xq andD1

and that some images inD1 have the same class as ofXq , the
binary classifier should not overfit on the training data and
treat these images as outliers. For these reasons, a Support
Vector Machine (SVM) with a linear Kernel is deemed to
be an appropriate choice. It is known to produce an excel-
lent generalization to unknown test data and can effectively
handle outliers.

Two classifiers (C1 and C2) are used by the proposed
framework. C1 is a linear SVM with L2 regularization and
L2 loss function, while C2 is a linear SVM with L1 regular-
ization and L2 loss function (Fan et al. 2008). Specifically,
given a set of training example-label pairs

(
x(t), y(t)

)
, y(t) ∈

{+1,−1}, C1 solves the following optimization problem,

min
w

1

2
wTw + C

∑

t

(
max

(
0, 1 − y(t)wT x(t)

))2
, (5)

while, C2 solves the following optimization problem,

min
w

|w|1 + C
∑

t

(
max

(
0, 1 − y(t)wT x(t)

))2
. (6)

Here, w is the coefficient vector to be learned and C > 0
is the penalty parameter used for regularization. After the
learning of the SVMparameterw, classification is performed
based on the value ofwT x(t). Note that the coefficient vector
w learned by classifier C2 (trained for the challenging exam-
ples) is sparse. Learning a sparse w for C2 further enhances

the generalization capability for the challenging cases. We
have also evaluated other binary classifiers which include
non-linear SVMwith Radial Basis Function (RBF) and Chi-
Square kernels and random decision forests (Sect. 4.6i).

3.4 Sampling Strategies

Given all the training image sets X1,X2, · · ·Xk , we gather
these images (of the training data) into a set D. Next, the
images inD are sampled into two subsets (D1 andD2) which
are used by the proposed algorithm, as explained in Sect. 3.2.
For the sampling of the images of D to generate D1 and
D2, we introduce three different sampling strategies. The
following two general rules of thumb have been followed
for sampling: (1) the total number of images in D1 are kept
comparable to the number of images of the query set Xq .
Since our proposed image set classification algorithm trains
a binary classifier to discriminate betweenD1 andXq , a huge
disparity between number of images in D1 and Xq could
result in a trained binary classifier which is biased towards
the majority class. (2) Images in the sampled set D1 have an
equal representation (>0) from all the classes of the train-
ing data. The detailed description of the proposed sampling
strategies follows next.

3.4.1 Uniform Random Sampling

Let D1c be a randomly sampled subset of Xc with a set size

ND1c , where ND1c =
⌈
Nq
k

⌉
, such that ND1c �= 0 in any case,
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then the set D1 is formed by the union operation: D1 =
⋃

c D1c, c = 1, 2, . . . k. D2 is obtained by D2 = D \ D1.

3.4.2 Bootstrapped Sampling

We first perform bootstrapping and sample a set D′ from D
such that D′ ⊂ D and

∣
∣D′∣∣ = 	0.8 |D|
. Images in D′ are

randomly picked fromD.D1 andD2 are then uniformly ran-
domly sampled from D′ by following the same procedure
described in Sect. 3.4.1. Sampling from the bootstrapped
set D′ over multiple iterations gives a data augmentation
effect which eventually introduces robustness and results in
an improved performance of the proposedmethod (Sect. 4.6).

3.4.3 Pose-Based Sampling

During our experiments, a visual inspection of the challeng-
ingYouTube celebrities dataset (Sect. 4.1) revealed thatmany
of the miss-classified query image sets had face images with
a head pose (such as profile views) which is otherwise not
very commonly present in other training images. For such
cases, only those images in D2 with the same pose as those
of images of Xq (irrespective of their classes) are classified
as +1. Our proposed pose-based sampling strategy aims to
address this issue. The basic intuition here is to first esti-
mate the pose of the images, and use this pose information
to assign images into D1 and D2. For example, if most of
the images of Xq are in right profile views, our sampling
of the training images into D1 and D2 should consider only
images with the right profile views. This helps to overcome
any bias in the classification introduced by the head pose
during classification.

In this strategy, we first determine the pose group of the
face images using the pose group approximation method
(described next). We then sample D′ from D such that D′
has only those images from D whose pose group is similar
to the images of the query image set Xq . Images fromD′ are
then uniformly randomly sampled into D1 and D2 by fol-
lowing the procedure explained in Sect. 3.4.1. Note that D′
is supposed to have an equal representation of images from
all training image sets. However, we might not necessarily
have images with the same pose as those of Xq for all train-
ing sets. From such training sets, we select the images with
the most similar poses into D′. The employed pose group
approximation method Hayat et al. (2015) is described next.

3.4.4 Pose Group Approximation

An image is said to belong to a pose group g ∈ {1, 2, . . .G},
if its pose along the pitch direction (y-axis) is within
θg ± 15◦. For our purpose, we define G = 5 and θ =[−60, −30, 0, 30, 60

]
. The process of pose group approx-

imation has two steps: training and testing.

Training Let Xg ∈ R
m×ng contain ng images x(t) ∈ R

m

whose pose is within θg ±15◦. We automatically select these
images from a Kinect data set (see Sect. 4.1). The pose of
Kinect images can be determined by the random regression
forest based method of Fanelli et al. (2011a). From Xg , we
want to extract the directions of major data orientation (prin-
cipal directions). To achieve that, we first subtract the mean
image from Xg and compute its covariance matrix Σg as
follows,

X̄g = Xg − 1

ng

∑

t

x(t), (7)

Σg = X̄g X̄
T
g . (8)

The singular value decompositionof the covariancematrix
Σg results in Σg = UgSgVg . The component Ug contains
the eigenvectors arranged in the descending order of their
significance. FromUg , we select the top k eigenvectors corre-
sponding to the k largest eigenvalues anduse themas columns
to construct a matrix Sg ∈ R

m×k . Sg is therefore a subspace
whose columns represent the predominant data structure in
the images of Xg . Next, during the testing phase of our pose
group approximation approach,Sg is used for a linear regres-
sion based classification strategy.

Testing The pose group P(x(t)) of the image x(t) is deter-
mined by,

P(x(t)) = argmin
g

∥
∥
∥x(t) − x̃(t)

g

∥
∥
∥
2
, (9)

where x̃(t)
g is linearly constructed from Sg as follows,

x̃(t)
g = Sgα

(t)
g . (10)

The above equation has an analytical solution given by,

α(t)
g = (ST

g Sg)
−1ST

g x
(t). (11)

A few sample results of our pose group approximation
method are presented in Fig. 2. The pose group P(x(t)) of
all the images of the training data as well as the images of
the query set Xq is determined by following the procedure
explained above. Next, we sample images from D into D′
such that images inD′ have the same pose as those of images
of Xq . We ensure the inclusion of an equal representation of
all classes inD′. In case of classes with no or very few images
with the same pose as of Xq , images with nearly similar
poses are selected. After getting D′, we sample D1 and D2

by following the same procedure as explained in Sect. 3.4.1.
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Fig. 2 Sample results of pose group approximation

(a) (b) (c) (d)

Fig. 3 Toy example to illustrate the proposedmethod.Consider a train-
ing set with three classes and the task is to find the class ofXq (a). Data
points from the three training image sets X1, X2, X3 and a query image
set Xq are shown. b Data points from Xq and D1 (uniformly randomly
sampled from X1, X2 and X3) are shown. c The learnt SVM boundary

between Xq (labelled +1) and D1 (labelled −1). d The data points of
D2 w.r.t. the learnt SVM boundary. Since the points of X3 in D2 lie
on the same side of the boundary as the points of Xq , the proposed
method declares Xq to be from X3. Figure best seen in color (Color
figure online)

3.5 Illustration with a Toy Example

The proposed image set classification algorithm is illustrated
with the help of a toy example in Fig. 3. Let us consider a three
class set classification problem in which we are given three
training sets X1, X2, X3 and a query set Xq . The data points
of the training sets and the query set are shown in Fig. 3a.
First, we formD1 by randomly sampling points fromX1,X2

and X3. Fig. 3b shows the datapoints of D1 and Xq . Next,
a linear SVM is trained by labelling the datapoints of Xq

as +1 and D1 as −1. Note that SVM (Fig. 3c) ignores the
miss-labelled points (the points of X3 inD1) and treats them
as outliers. Finally, we classify the data points of D2 from
the learned SVM boundary. Figure 3d shows that the SVM
labels the points of X3 inD2 as +1. The proposed algorithm
therefore declares the class of X3 to be the class of Xq .

4 Experiments

We perform experiments to evaluate the performance of
the proposed method for two tasks (1) image set classi-

fication based face and object recognition, and (2) still
to video imagery based face recognition. For image set
classification based object recognition, experiments are per-
formed on ETH-80 dataset (Leibe and Schiele 2003) while
Honda/UCSD (Lee et al. 2003), CMU Mobo (Gross and
Shi 2001), YouTube celebrities (Kim et al. 2008), a com-
posite RGB-D Kinect dataset (obtained by combining three
Kinect datasets), PubFig (Kumar et al. 2009), COX (Huang
et al. 2013) and FaceScrub (Ng and Winkler 2014) datasets
are used for image set classification based face recogni-
tion. For still to video face recognition, the COX dataset
is used. It should be noted that most of the previous
image set classification methods have only been evaluated
on Honda, CMU Mobo, ETH-80 and YouTube celebrities
dataset. Amongst these datasets, only YouTube celebrities
dataset is a real life dataset whereas Honda, CMUMobo and
ETH-80are considered relatively easy since they are acquired
in indoor lab environment under controlled conditions. Apart
from the challenging Youtube celebrities dataset, this paper
also presents a comparative performance evaluation of our
method with the existing methods (Yamaguchi et al. 1998;
Kim et al. 2007; Wang et al. 2008; Wang and Chen 2009;
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Cevikalp and Triggs 2010; Harandi et al. 2011; Hu et al.
2012; Wang et al. 2012; Ortiz et al. 2013; Zhu et al. 2013;
Yang et al. 2013; Hayat et al. 2014) on three additional real-
life datasets collected under unconstrained conditions. These
include PubFig, COX and FaceScrub datasets.

Below, we first give a brief description of each of these
datasets followed by the adopted experimental protocols
(Sect. 4.1). We then present a performance comparison of
our proposed method with the baseline multi-class classifi-
cation strategies (Sect. 4.2) followed by a comparison with
the existing state of the art image set classification meth-
ods (Sect. 4.3). The performance analysis for still to video
based face recognition is presented in Sect. 4.4. A quantita-
tive robustness analysis of different aspects of the proposed
method is presented in Sect. 4.5. Finally, an ablative study to
asses the contributions and impact of different components
of our proposed method towards its overall performance is
presented in Sec 4.6. A comparison of the computational
complexity of different methods is given in Sect. 4.7.

4.1 Datasets and Experimental Settings

The Honda/UCSD Dataset Lee et al. (2003) contains 59
video sequences (with 12 to 645 frames in each video) of 20
subjects. We use Viola and Jones face detection (Viola and
Jones 2004) algorithm to extract faces from video frames.
The extracted faces are then resized to 20 × 20. For our
experiments, we consider each video sequence as an image
set and follow an evaluation configuration similar to Lee et al.
(2003). Specifically, 20 video sequences are used for train-
ing and the remaining 39 sequences are used for testing.
Three separate experiments are performed by considering
all frames of a video as an image set and limiting the total
number of frames in an image set to 50 and 100 (to evaluate
the robustness for fewer images in a set). Each experiment
is repeated 10 times for different random selections of the
training and testing image sets.
The CMU Mobo (Motion of Body) Dataset Gross and Shi
(2001) contains a total of 96 video sequences of 24 sub-
jects walking on a treadmill. The faces from the videos are
extracted usingViola and Jones (2004) and resized to 40×40.
Similar to Wang et al. (2012) and Hu et al. (2012), we con-
sider each video as an image set and use one set per subject for
training and the remaining sets for testing. For a consistency,
experiments are repeated ten times for different training and
testing sets.
YouTube Celebrities Kim et al. (2008) dataset contains
1910 videos of 47 celebrities. The dataset is collected from
YouTube and the videos are acquired under real-life scenar-
ios. The faces in the dataset exhibit, therefore, a wide range
of diversity and appearance variations in the form of chang-
ing illumination conditions, different head pose rotations and
expression variations. Since the resolution of the face images

is very low, face detection by Viola and Jones (2004) fails for
a significant number of frames for this dataset.We, therefore,
use tracking (Ross et al. 2008) to extract faces. Specifically,
knowing the location of the face window in the first frame
(provided with the dataset), we use the method of Ross et al.
(2008) to track the face region in the subsequent frames. The
extracted face region is then resized to 30 × 30. In order to
perform experiments, we treat the faces acquired from each
video as an image set and adopt a five fold cross validation
experimental setup similar to Wang et al. (2008), Wang and
Chen (2009), Hu et al. (2012) and Wang et al. (2012). The
complete dataset is divided into five equal folds with mini-
mal overlap. Each fold has nine image sets per subject, three
of which are used for training and the remaining six are used
for testing.
Composite Kinect Dataset is achieved by combining three
distinct Kinect datasets: CurtinFaces (Li et al. 2013), Biwi
Kinect (Fanelli et al. 2011a) and an in-house dataset acquired
in our laboratory. The number of subjects in each of these
datasets is 52 (5000 RGB-D images), 20 (15,000 RGB-D
images) and 48 (15000 RGB-D images) respectively. The
random forest regression based classifier of Fanelli et al.
(2011b) is used to detect faces from the Kinect acquired
images. The images in the composite dataset have a large
range of variations in the form of changing illumination con-
ditions, head pose rotations, expression deformations, sun
glass disguise, andocclusions byhand. For performance eval-
uation, we randomly divide RGB-D images of each subject
into five uniform folds. Considering each fold as an image
set, we select one set for training and the remaining sets for
testing. The experiments are repeated five times for different
selections of training and testing sets.
ETH-80 Object Dataset contains still RGB images of eight
object categories. These include cars, cows, apples, dogs,
cups, horses, pears and tomatoes. Each object category is
further divided into ten subcategories such as different brands
of cars or different breeds of dogs. Each subcategory contains
images under 41 orientations. For our experiments, we use
the 128×128 cropped images [1] and resize them to 32×32.
We follow an experimental setup similar to Wang and Chen
(2009), Kim et al. (2007) and Wang et al. (2012). Images of
an object in a subcategory are considered as an image set.
For each object, five subcategories are randomly selected for
training and the remaining five are used for testing. Ten runs
of experiments are performed for different random selections
of the training and testing sets.
Public Figures Face Database (PubFig) Kumar et al. (2009)
is a real-life dataset of 200 people collected from the internet.
The images (static RGB) of the dataset have been acquired
in uncontrolled situations without any user cooperation. The
sample images of a subject in Fig. 4 illustrate the large vari-
ations in the images caused by pose, lighting, expressions,
backgrounds and camera positions. For our experiments, we
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Fig. 4 Sample images from different datasets. Note the high intra class variations in the form of different head poses, illumination variations,
expression deformations and occlusions

divide equally the images of each subject into three folds.
Considering each fold as an image set, we use one of them
for training and the remaining two are used for testing. Exper-
iments are repeated five times for different random selections
of images for the training and testing folds.
The COX (Huang et al. 2013) Dataset contains 1000 high
resolution still images and 4000 uncontrolled low resolution
video sequences of 1000 subjects. The videos have been cap-
tured inside a gymnasiumwith subjectswalkingnaturally and
without any restriction on expression and head orientation.
The dataset contains four videos per subject. The face resolu-
tion, head orientation and lighting conditions in each video
are significantly different from the others. Sample images
of a subject from this dataset are shown in Fig. 4. For our
image set classification experiments, we use the frames of
each video as an image set and follow a leave-one-out strat-
egy where one image set is held out for testing and remaining
are used for training. For consistency, four runs of experi-
ments are performed by swapping the training and testing
image sets.

For still to video based face recognition experiments,
we consider the high resolution still images (which were
acquired with the full user cooperation) as our gallery. The
low resolution images of the video sequence are used as the
probe image set. Still to video based face recognition exper-
iments are performed by following the standard evaluation
protocol described in Huang et al. (2014). The still images
and images from the video sequences of 300 individuals are

randomly selected to learn a common embedding space for
both the low and high resolution images using the technique
in Sharma et al. (2012). The images of the remaining 700
individuals are used for testing. Experiments are repeated
five times for different random shuffling of subjects between
the training and testing sets. A common embedding space is
learnt because the gallery and probe data possess very dif-
ferent visual characteristics i. e. the gallery contains good
quality frontal face images acquired with full-user coopera-
tion whereas the probes are low quality non-frontal images
acquired without any cooperation.
FaceScrub Ng and Winkler (2014) is a large dataset of 530
(265males and265 females) celebrities and famouspersonal-
ities. The dataset is collected from the internet and comprises
a total of 107,818 RGB face images with approximately 200
images per person. Few sample images of a person in Fig 4
show the wide range of appearance variations in the images
of an individual from the dataset. For our experiments, we
divide the images of each person into ten folds. Considering
each fold as an image set, we use one fold for training and
the remaining are used for testing. Experiments are done five
different times for a different random selection of images
into each fold.

Following the evaluation configurations described above,
we perform experiments and compare our method with the
baseline methods, and current state of the art methods. A
detailed analysis, extensive performance evaluations and
comparisons are presented next.
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Table 1 Performance
comparison with the baseline
methods

Methods Honda Mobo YTC Kinect

one-vs-one 92.1 ± 2.2 94.7 ± 2.0 67.7 ± 4.0 94.3 ± 3.5

one-vs-rest 94.6 ± 1.9 96.7 ± 1.6 68.4 ± 4.2 94.6 ± 3.3

This paper 100.0 ± 0.0 98.3 ± 0.7 77.4 ± 3.5 98.3 ± 1.7

ETH PubFig COX FS

one-vs-one 96.2 ± 2.9 87.4 ± 0.5 67.4 ± 11.5 80.1 ± 1.5

one-vs-rest 97.6 ± 1.5 89.1 ± 0.1 68.2 ± 11.4 80.3 ± 1.5

This paper 96.1 ± 1.8 98.6 ± 0.3 74.1 ± 10.2 91.5 ± 0.5

Average identification rates (percentage) of our method and two well-known multi-class classification strate-
gies. See Table 2 for a comparison of the computational complexity

4.2 Comparison with the Baseline Methods

Linear SVM based one-vs-one and one-vs-rest multi-class
classification strategies are used as baselinemethods for com-
parison. Note that these baseline methods are suitable for
classification from single images. For image set classifica-
tion, we first individually classify every image of the query
image set followed by a majority voting to decide about the
class of the query image set. Experimental results in terms
of average identification rates and standard deviations on all
datasets are presented in Table 1. Note that for the Honda
dataset, we perform three experiments i.e., by considering
all frames of the video as an image set, then limiting the
number of images in a set to 100 and 50 (see Sect. 4.3).
Here, the results presented for the Honda/UCSD dataset are
only for all frames of the videos considered as image sets.
The results show that, amongst the compared baseline multi-
class classification strategies, one-vs-rest performs slightly
better than one-vs-one. Our method performs better than the
baseline methods on all datasets except ETH-80. A possi-
ble explanation for a lower performance on the ETH-80 is
that the proposed method trains a binary classifier on images
of Xq and D1, which is then evaluated on D2. The set D1

contains
⌈
Nq
k

⌉
images with same label as Xq . For larger k,

these images are few in number and do not affect training of
the binary classifier. However, for smaller values of k (as is
the case for ETH-80 dataset, k = 8) the proportion of these
images is higher and causes slight performance degradation.
A quantitative robustness analysis of the proposed method
for different values of k is presented in Sect. 4.5iii.

Table 2 presents a comparison of the computational com-
plexity in terms of the required number of binary classifiers
and the number of images used to train each of these clas-
sifiers. One-vs-one trains k(k−1)

2 binary classifiers and uses
images from two classes to train each classifier. Although
the number of trained classifiers for one-vs-rest are compar-
atively less (k compared with k(k−1)

2 ), the number of images
used to train each binary classifier is quite large (all images of
the dataset are used). In comparison, our proposed method

trains only few binary classifiers (a maximum of five for
the challenging cases) and the number of images used for
training is also small. A main difference of our method from
baseline strategies is that it performs all computations at run-
time.

4.3 Comparison with Existing Image Set Classification
Methods

We present a comparison of our method with a number of
recently proposed state of the art image set classification
methods. The compared methods include Mutual Subspace
Method (Yamaguchi et al. 1998), Discriminant Canonical
Correlation Analysis (DCC) (Kim et al. 2007), Manifold-
to-Manifold Distance (MMD) (Wang et al. 2008), Manifold
Discriminant Analysis (MDA) (Wang and Chen 2009), the
Linear version of the Affine Hull-based Image Set Distance
(AHISD) (Cevikalp andTriggs 2010), theConvexHull-based
Image Set Distance (CHISD) (Cevikalp and Triggs 2010),
Sparse Approximated Nearest Points (SANP) (Hu et al.
2012), Covariance Discriminative Learning (CDL) (Wang
et al. 2012), Mean Sequence Sparse Representation Classi-
fication (MSSRC) (Ortiz et al. 2013), Set to Set Distance
Metric Learning (SSDML) (Zhu et al. 2013), Regularized
Nearest Points (RNP) (Yang et al. 2013) and Non-Linear
Reconstruction Models (NLRM). We use the implementa-
tions provided by the respective authors for all methods. The
parameters for all methods are optimized for best perfor-
mance.

Specifically, for MSM, Principal Component Analysis
(PCA) is applied to retain 90% of the total energy. For
DCC, the dimensions of the embedding space are set to
100. The number of retained dimensions for a subspace
are set to 10 (90% energy is preserved) and the corre-
sponding 10 maximum canonical correlations are used to
compute set-set similarity. For datasets with one training set
per class (Honda/UCSD, CMU, Kinect, PubFig, COX and
FaceScrub), we randomly divide the training set into two
subsets to construct the within class sets as in Kim et al.
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Table 2 Complexity analysis
Method Total binary classifiers Images to train each classifier

One-vs-one k(k−1)
2 {1081} 2Nc {600}

One-vs-rest k {47}
k∑

c=1
Nc {14000}

This paper 1 − 5 2Nq {200}
The proposed method trains just few binary classifiers and the number of images used for training is very
small. The typical parameters values for YouTube celebrities dataset are given in brackets

Table 3 Performance comparison on Honda/UCSD dataset

MSM DCC MMD MDA AHISD CHISD SANP

All 88.2 ± 3.8 92.5 ± 2.2 92.0 ± 2.2 94.3 ± 3.3 91.2 ± 1.7 93.6 ± 1.6 95.1 ± 3.0

100 85.6 ± 4.3 89.2 ± 2.4 85.5 ± 2.1 91.7 ± 1.6 90.7 ± 3.2 91.0 ± 1.7 94.1 ± 3.2

50 83.0 ± 1.7 82.0 ± 3.3 83.1 ± 4.4 85.6 ± 5.8 89.8 ± 2.1 90.5 ± 2.0 91.9 ± 2.7

CDL MSSRC SSDML RNP NLRM This paper

All 98.9 ± 1.3 97.9 ± 2.6 86.4 ± 3.6 95.9 ± 2.1 100.0 ± 0.0 100.0 ± 0.0

100 96.2 ± 1.2 96.9 ± 1.3 84.3 ± 2.2 92.3 ± 3.2 100.0 ± 0.0 100.0 ± 0.0

50 93.9 ± 2.2 94.3 ± 1.4 83.4 ± 1.7 90.2 ± 3.2 100.0 ± 0.0 100.0 ± 0.0

Average identification rates (percentage) and standard deviations of different methods when tested on the Honda/UCSD dataset. These experiments
are performed by considering all the frames of the video as an image set and limiting the set length to 100 and 50 frames. The results show that the
proposed method does not only achieve the best performance but it also maintains consistency in its performance for reduced set lengths

(2007). The parameters for MMD and MDA are used from
Wang et al. (2008) and Wang and Chen (2009) respectively.
The number of connected nearest neighbours to compute the
geodesic distance is either set to 12or to the number of images
in the smallest image set of the dataset. The ratio between
the Euclidean distance and the geodesic distance is optimized
for all data sets. In case of MMD, the distance is computed
in terms of maximum canonical correlation. No parameter
settings are required for AHISD. For CHISD, the same error
penalty term (C = 100) as in Cevikalp and Triggs (2010)
is used. For SANP, the same weight parameters as in Hu
et al. (2012) are adopted for optimization. For GEDA, we set
k[cc] = 1, k[proj] = 100 and v = 3 (the value of v is searched
over a range of 1-10 for best performance). The number of
eigenvectors r used to represent an image set is set to 9 and
6, respectively, for Mobo and YouTube celebrities and 10
for all other datasets. No parameter settings are required for
CDL. For RNP (Yang et al. 2013), PCA is applied to pre-
serve 90% of the energy and the same weight parameters as
in Yang et al. (2013) are used. No parameter configurations
are required for MSSRC and SSDML. For NLRM, we use
majority voting and perform PCA to retain the dimensions
of the embedded space to 400.

The experimental results, in terms of the average identifi-
cation rates and standard deviations of the different methods
on the Honda/UCSD dataset, are presented in Table 3. The
proposed method achieves a perfect classification for all

frames of the video sequence (considered as an image set) as
well as when the total number of images in the set is reduced
to 100 and 50. This proves that our method is robust w.r.t. the
number of images in the set and it is suitable for real-life sce-
narios (where only a limited number of images are available
in a set).

The average identification rates and standard deviations of
the different methods when tested on CMUMobo, YouTube
Celebrities (YTC), Kinect, ETH-80, PubFig, COX and Face-
Scrub (FS) datasets are summarized in Table 4. The results
prove that the proposed method outperforms most of the
existing methods on all datasets. The gain in performance
is more significant for YTC, PubFig and FS datasets. Note
that YTC, PubFig and FS are very challenging datasets since
their images have been acquired in real life scenarios with-
out any user cooperation. The proposed method achieves a
relative performance boost of 8.4, 11.0 and 12.7% on YTC,
PubFig and FS datasets, respectively. Another notable aspect
of the proposed method is that it not only works for image
set classification based face recognition but also achieves a
very high identification rate of 96.1% for the task of image
set classification based object recognition.

The performance of all methods is further analyzed in
Figs. 5, 6 on four real-life datasets which include YTC,
PubFig, COX and FS. Specifically, Cumulative Match Char-
acteristics (CMC) and Receiver Operating Characteristics
(ROC) curves for the top performing methods are presented
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Fig. 5 Cumulative match characteristic (CMC) curves on YTC, PubFig, COX and FS datasets. Figure best seen in colors . a YTC, b PubFig, c
COX, d FaceScrub (Color figure online)
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Fig. 6 Receiver operating characteristics (ROC) curves on YTC, PubFig, COX and FS datasets. Figure best seen in colors. a YTC, b PubFig, c
COX, d FaceScrub (Color figure online)

in Figs. 5, 6 respectively. The results in Fig. 5 suggest that the
proposed method consistently achieves the highest rank-1 to
rank-10 identification rates formost of the evaluated datasets.
ROC curves in Fig. 6 show that the proposed method outper-
forms all others. Equal error rates are shown in Fig. 7 to
compare the verification performance of different methods
on all datasets. The results show that the proposed method
achieves superior performance by producing the lowest equal
error rates compared with the existing methods on almost all
of the evaluated datasets.

The state of the art performance of the proposedmethod is
attributed to the fact that (unlike existingmethods) it does not
resort to a single entity representation (such as a subspace,
the mean of set images or an exemplar image) for all images
of the set. Any potential loss of information is therefore
avoided by retaining the images of the set in their origi-
nal form.Moreover,well-developed classification algorithms
are efficiently incorporated within the proposed framework
to optimally discriminate the class of the query image set
from the remaining classes. Furthermore, since the proposed
methodprovides a confidence level for its prediction, the clas-
sification decisions from multiple classifiers can be fused to
enhance the overall performance of the method.

4.4 Still to Video Face Recognition

We also validate our proposed approach for still-to-video
based face recognitionwhichfinds its usefulness in numerous
real-life applications such as face recognition from surveil-
lance cameras. The only modification required to adapt the
proposed method to the case of still to video face recogni-
tion is to perform more iterations in steps 1–5 of the original
algorithm. For this, we enforce an upper limit of 10 iterations.
Table 5 compares our proposed method against a number of
recentworks,which can be adapted to the case of still to video
based face recognition. These include the baseline Near-
est Neighbour (NN) Classifier, Neighbourhood Component
Analysis (NCA) (Goldberger et al. 2004), Information The-
oretic Machine Learning (ITML) (Davis et al. 2007), Local
Fisher Discriminant Analysis (LFDA) (Sugiyama 2007),
Large Margin Nearest Neighbor (LMNN) (Weinberger and
Saul 2009), Nearest Feature Classifiers (NFC) (Chien and
Wu 2002), Hyperplane Distance Nearest Neighbor (HKNN)
(Vincent and Bengio 2001), K-local Convex Distance Near-
est Neighbors (CKNN), Mahalanobis Distance (MD), Point
to Set Distance Metric Learning (PSDML) (Zhu et al. 2013)
and Learning Euclidean to Riemannian Metric (LERM)
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Fig. 7 Equal error rates (EERs) of different methods on all datasets. Figure best seen in colors. a Honda, b CMU, c YTC, d Kinect, e PubFig, f
FaceScrub, g COX, h ETH-80 (Color figure online)

(Huang et al. 2013). Experiments are conducted using COX
still-to-video dataset. The results in Table 5 illustrate the
superior performance of our method and its suitability for
the challenging and important problem of still to video based
face recognition from surveillance imagery.

4.5 Robustness Analysis

In order to analyse the robustness of the proposed method
with respect to its different aspects, we conduct quantita-
tive experimental evaluations. In this regards, the following
aspects are explored. (i) Number of images in the gallery and
the probe sets (ii) number of images in sets D1 & D2, and
(iii) number of enrolled subjects in the gallery. These exper-
imental evaluations and the achieved results are discussed
next.
(i) Size of Gallery and Probe Image SetsWe perform experi-
ments on YouTube celebrities dataset by enforcing an upper
limit on number of images in the sets. Specifically, by keep-
ing the size of the probe image sets fixed, we first gradually
reduce the number of images in gallery sets from250 to 8.We
then keep the size of the gallery image sets fixed, and gradu-
ally decrease the size of the probe image sets. The achieved
experimental results for reduced gallery and probe sets are
presented in Fig 8a, b respectively. The results suggest that

the performance of the proposed method is quite robust to
the size of the probe image sets. Reducing the size of the
probe image sets to as low as 8 images achieves a classifi-
cation accuracy of 72.1% (compared to 77.4% for full size).
Reducing the size of the gallery image set beyond 25 images,
however, does cause a noticeable performance drop. The pro-
posedmethod can still achieve a performance of 61.4%when
the gallery set size is reduced to only 8 images.
(ii) Size of D1 and D2 The proposed method trains a
binary classifier between images of Xq and D1 which is

then evaluated onD2.D1 has ND1c=
⌈
Nq
k

⌉
uniformly sampled

images from each class of the training data. It also contains
ND1cmiss-labelled images (which have the same label asXq ).
Increasing the size ofD1 will decrease the size ofD2 and also
increase the number of miss-labelled images inD1. This will
cause the performance to drop. In order to quantitatively eval-
uate the robustness of the proposed method against number
of images inD1 andD2, we gradually increase the number of
images sampled from each class of the training data to form
D1 from ND1c to mND1c . Experimental results on YouTube
celebrities dataset for m = {0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7}
are presented in Table 6. The results show that the perfor-
mance of the method only drops from 77.7 to 73.2% when
there is a 14 fold increase (from m = 0.5 to m = 7) in the
number of images in D1. A possible reason for this perfor-

123



494 Int J Comput Vis (2017) 123:479–498

Table 5 Still to video face recognition

Method Accuracy Method Accuracy

NNC 11.5 CKNN Vincent and Bengio (2001) 9.4

NCA Goldberger et al. (2004) 42.8 MD 15.1

ITML Davis et al. (2007) 24.9 PSDML Zhu et al. (2013) 15.6

LFDA Sugiyama (2007) 29.2 HKNN Vincent and Bengio (2001) 7.0

LMNN Weinberger and Saul (2009) 40.8 LERM Huang et al. (2014) 48.8

NFC Chien and Wu (2002) 12.7 This paper 51.2
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Fig. 8 Classification performance on YouTube celebrities dataset for reduced number of images in the a gallery and b probe sets

mance drop is the imbalance between Xq and D1 for larger
values of m. We also perform experiments by excluding the
miss-labelled images from D1. A classification accuracy of
78.8 is achieved for m = 0. These evaluations suggests
robustness of the proposedmethod against number of images
in D1 and D2. Although increasing the size of D1 increases
the number of miss-labelled images, the overall proportion
of these images stays the same i. e. 1

k of all the images. For
a large value of k (the number of enrolled subjects in the
gallery), the proportion of these images is too small to sig-
nificantly impact the performance of the proposed method.
(iii) Number of Enrolled Subjects In our experimental evalua-
tions (Sect. 4), the efficacy of the proposed method has been
demonstrated on a wide range of datasets in which num-
ber of enrolled subjects vary from 20 to 1000. Furthermore,
in the previous experiment (Sect. 4.5ii), it was shown that
for a larger value of k, the fraction of miss-labelled images
in D1 ( 1k of all images) is small and does not significantly
affect the training of the binary classifier and the overall per-
formance of the proposed method. In this experiment, we
want to quantitatively evaluate the affect of k (the number of
enrolled subjects in the gallery) on the performance of the

Table 6 Performance evaluation by changing the number of images in
D1 and D2

Images Performance Images Performance

0.5 ND1c 77.7 ± 3.8 3 ND1c 74.8 ± 3.5

1 ND1c 77.4 ± 3.5 4 ND1c 73.8 ± 3.3

1.5 ND1c 76.9 ± 3.8 5 ND1c 73.5 ± 3.3

2 ND1c 76.3 ± 3.5 6 ND1c 73.3 ± 3.3

2.5ND1c 75.7 ± 3.5 7 ND1c 73.2 ± 3.3

Originally, ND1c=
⌈
Nq
k

⌉
images are sampled from each class of the

training data to from D1. Here, we evaluate the method by chang-
ing the number of these images from ND1c to mND1cwhere m =
{0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7}

proposedmethod. In this regards, we perform experiments on
YouTube celebrities dataset for k = {47, 40, 30, 20, 15}. For
each value of k, we further do evaluations by considering dif-
ferent number of images in the gallery sets (full length, 200,
100, 50, 25). The experimental results presented in Fig. 9
suggest a gradual performance drop for a reduced number of
enrolled subjects in the gallery. The performance drop how-

123



Int J Comput Vis (2017) 123:479–498 495

All 200 100 50 25

Maximum Number of Images in the Gallery Set

0

10

20

30

40

50

60

70

80
C

la
ss

ifi
ca

tio
n 

A
cc

ur
ac

y 
%

Enrolled Subects vs Gallery Set Size

k=47
k=40
k=30
k=20
k=15

Fig. 9 Performance evaluation for different number of enrolled sub-
jects and maximum number of images in the gallery

ever is quite insignificant when the gallery sets contain more
images. The performance drop for lower values of k is more
pronounced when the gallery sets contain fewer images.

4.6 Ablative Analysis

We conduct experiments on YouTube celebrities dataset to
study the contribution of the different components of the pro-
posedmethod towards its overall performance. The following
aspects are explored:
(i) Binary Classifiers Experiments are performed by consid-
ering different binary classifiers which include linear SVM
(Fan et al. 2008), non-linear SVMwithRadial Basis Function
(RBF) kernel (Chang and Lin 2011), non-linear SVM with
Chi-Square kernel (Vedaldi and Zisserman 2012) and ran-
dom decision forests (Breiman 2001). Experimental results
in Table 7 show that the choice of the binary classifier does
not significantly impact the performance.Although, formany
classification tasks, non-linear SVMs perform better com-
pared with linear SVMs, in our case, they show a comparable
performance. This can be due to strong discriminative feature
representation in terms of activations of aConvolutionNeural
Network. CNN based features in combination with a linear
SVM have shown superior performance for many challeng-
ing classification tasks (Sharif Razavian et al. 2014; Khan
et al. 2016). We, therefore, select linear SVM because of its
computational efficiency. We note that for linearly insepa-
rable data, linear SVM may perform poorly. In such a case,
any non-linear binary classifier can easily be employed in
conjunction with the proposed technique.
(ii) Feature Descriptors Experiments are performed on
YouTube celebrities dataset by considering differentmethods
of encoding facial images. These include Local Binary Pat-

Table 7 Performance evaluation for different choices of binary classi-
fiers

Classifier Accuracy

Linear SVM C1 74.2 ± 3.6

Linear SVM C2 73.3 ± 3.7

Non-linear SVM RBF Kernel 74.1 ± 3.5

Non-linear SVM Chi-square Kernel 74.7 ± 3.5

Random decision forests 73.8 ± 3.6

Table 8 Performance evaluation for different feature descriptors

Features Dimensions Accuracy

LBPs 944 71.5 ± 3.8

LBPs (PCA Whitening) 400 74.6 ± 3.5

Gabor 4000 70.8 ± 3.7

Gabor (PCA Whitening) 400 73.8 ± 3.8

AlexNet 4096 78.5 ± 3.7

AlexNet (PCA Whitening) 400 77.4 ± 3.5

VGG-Face 4096 86.0 ± 3.4

VGG-Face (PCA Whitening) 400 84.3 ± 3.4

terns (LBPs) (Ojala et al. 2002), Gabor features (Yang et al.
2004), activations of AlexNet (Krizhevsky et al. 2012) fine-
tuned on BU4DFE dataset (Yin et al. 2008) and activations of
VGG-Face CNN model (Parkhi et al. 2015). For LBPs, each
image is divided into 4 × 4 non-overlapping blocks and 59
dimensional histograms are extracted from each block. His-
tograms from all 16 blocks are then concatenated to get the
final 944 dimensional feature vector. For Gabor features, we
generate a bank of 40 Gabor wavelet filters at five scales
and eight orientations. An image is then convolved with
these filters, and the down sampled magnitude responses are
considered as feature representation. For CNN models, we
consider the 4096 dimensional activations of the first fully
connected layer of the model as feature representation of
the input image. Experimental results in Table 8 show that
the learned feature representations in terms of activations
of CNN models perform significantly better compared with
LBPs and Gabor features. We also evaluate these features
in combination with Principal Component Analysis (PCA)
whitening. The results show that PCA whitening achieves
a performance improvement for LBPs and Gabor features,
while a slight performance drop for learned features.
(iii) Number of Iterations Fig 10 shows performance evalua-
tion for different number of maximum iterations of steps 1-5
of the proposed method. The results show that performing
more iterations improves the robustness of our approach and
results in a slightly improved recognition performance. This,
however, requires more computational effort. A total of five
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Fig. 10 Performance evaluation for different number of iterations of
steps 2–8 (Algorithm 1) of the proposed method. Considering the per-
formance and required computational load, we select a total of five
iterations as an optimal choice

Table 9 Ablative analysis for different sampling strategies and ensem-
ble of classifiers

Sampling strategies Ensemble effect

Uniform random 74.6 C1 74.2

Bootstrapped 75.2 C2 73.3

Posebased 77.4 C1 and C2 77.4

iterations is therefore a good trade off between recognition
performance and computational complexity.
(iv) SamplingStrategiesThe results inTable 9 show that boot-
strapped sampling introduces more robustness and enhances
performance. Incorporating pose based information during
sampling further enhances the performance of the proposed
method (since most of the images in the sampled set have the
same pose as the pose of the images of the query image set).
By doing so, the trained binary classifier learns to discrim-
inate between the images of the query set from the others
(rather than discriminating them based upon their poses). A
visual inspection of the failure cases revealed that most of
the miss-classifications happened when the pose difference
between most of the images of the gallery and probe set is
greater than 45◦.
(v) Ensemble Effect The results in Table 9 show that use of the
two binary classifiers (see Sec 3.3) complement each other
and result in a performance boost.

Based on our empirical evaluations and ablative analysis
on YTC dataset, we attribute the performance achieved by
our proposed method to the following reasons. The proposed
method can naturally accommodate fusion of information
from multiple classifiers. This can be a binary classifier

Table 10 Timing comparison on the YouTube celebrities dataset

Method Train Test Method Train Test

MSM N/A 1.1 SANP N/A 22.4

DCC 27.9 0.2 CDL 549.6 7.2

MMD N/A 68.1 MSSRC N/A 54.2

MDA 7.2 0.1 SSDML 389.3 18.5

AHISD N/A 3.1 RNP N/A 1.4

CHISD N/A 5.3 Ours N/A 6.5

Time in seconds required for offline training and online testing of one
image set on YouTube celebrities dataset. ‘N/A’ means that the method
does not perform any offline training

trained multiple times for different random samplings of the
negative set. Further, it can simultaneously fuse information
from different types of binary classifiers. ConvolutionNeural
Networks based learnt feature representations also achieve a
significant performance boost for the proposed method.

4.7 Timing Analysis

Table 10 lists the times (in seconds) for different methods
using the respective Matlab implementations on a core i7
machine. Specifically, the time required for the offline train-
ing and the time needed to test one image set on the YouTube
celebrities dataset are provided. The reported time for our
method corresponds to five iterations of steps 1–5 of our
algorithm (see Sect. 3.2). For MSM (Yamaguchi et al. 1998),
AHISD (Cevikalp and Triggs 2010), CHISD (Cevikalp and
Triggs 2010) and RNP (Yang et al. 2013), the reported test
time also includes the time required to compute subspaces
and projection matrices of the training data. These can be
computed offline. It takes approximately 0.9 s to compute
them for the training data of YouTube celebrities dataset.

Based upon their computational requirements, we can
categorize the evaluated methods as online (which do all
computations at run time e.g., Yamaguchi et al. 1998;
Cevikalp and Triggs 2010; Hu et al. 2012; Ortiz et al. 2013;
Yang et al. 2013) and offline (which do training component
offline and only testing is done at run time e.g., Kim et al.
2007; Wang and Chen 2009; Wang et al. 2012; Zhu et al.
2013; Yang et al. 2013). Both of these categories of meth-
ods have their strengths and limitations. A major strength of
online methods is their scalability. New classes can easily be
addedwithout requiring retraining on the complete dataset. A
major limitation of online methods (including ours) is that all
the computation is done at run-time and comparatively more
memory storage is required. In our implementation, we noted
that, on average, our method requires approximately 450MB
of RAM to classify a query image set on YouTube celebrities
dataset. In comparison, offline methods are efficient at run
time and require less computational resources.
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5 Conclusion

A new approach is introduced to efficiently extend well
known binary classifiers for multi-class image set classifica-
tion. Compared with the popular one-vs-one and one-vs-rest
binary tomulti-class strategies, the proposed approach is very
efficient as it trains fixed number of binary classifiers (one
to five) and uses very few images for training. The proposed
approach can also simultaneously fuse information from dif-
ferent types of binary classifiers, which further enhances its
robustness and accuracy. Extensive experiments have been
performed to validate the proposed approach for the tasks of
video based face recognition, still to video face recognition
and object recognition. The experimental results and a com-
parison with the existing methods show that the proposed
method consistently achieves state of the art performance.
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