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Abstract Pose estimation, tracking, and action recognition
of articulated objects from depth images are important and
challenging problems, which are normally considered sepa-
rately. In this paper, a unified paradigm based on Lie group
theory is proposed, which enables us to collectively address
these related problems. Our approach is also applicable to a
wide range of articulated objects. Empirically it is evaluated
on lab animals includingmouse and fish, as well as on human
hand.On these applications, it is shown to deliver competitive
results compared to the state-of-the-arts, andnon-trivial base-
lines including convolutional neural networks and regression
forest methods. Moreover, new sets of annotated depth data
of articulated objects are created which, together with our
code, are made publicly available.
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1 Introduction

With 3D cameras becoming increasingly ubiquitous in the
recent years, there has beengrowing interest in utilizingdepth
images for key problems involving articulated objects (e.g.
human full-body and hand) such as pose estimation (Shotton
et al. 2013; Tompson et al. 2014; Xu et al. 2015; Ober-
weger et al. 2015b; Tang et al. 2015; Tan et al. 2016; Zhou
et al. 2016), tracking (Branson and Belongie 2005; Oikono-
midis and Argyros 2011; Ballan et al. 2012; Qian et al. 2014;
Huang et al. 2016), and action recognition (Dollar et al. 2005;
Mahasseni and Todorovic 2016; Vemulapalli and Chellappa
2016; Rahmani andMian 2016). On the other hand, although
they are closely related, most existing research efforts tar-
geting these problems in literature are based on diverse and
possibly disconnected principles. Moreover, existing algo-
rithms typically focus on a unique type of articulated objects,
such as human full-body, or human hand. This leads us to
consider in this paper a principled approach to address these
related problems across object categories, in a consistent and
sensible manner.

Our approach possesses the following contributions: (1) a
unified Lie group-based paradigm is proposed to address the
problems of pose estimation, tracking, and action recogni-
tion of articulated objects from depth images. As illustrated
in Fig. 1, a 3D pose of an articulate object corresponds to a
point in the underlying pose manifold, a long-time track of
its 3D poses amounts to a long curve in the same manifold,
whilst an action is represented as a certain curve segment.
Therefore, given a depth image input, pose estimation corre-
sponds to inferring the optimal point in the manifold; action
recognition amounts to classifying a curve segment in the
same manifold as a particular action type; meanwhile for
the tracking problem, Brownian motion on Lie groups is
employed as the generator to produce pose candidates as

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-017-0998-6&domain=pdf
http://orcid.org/0000-0003-3261-3533


Int J Comput Vis (2017) 123:454–478 455

Fig. 1 A cartoon illustration of our main idea: an articulated object
can be considered as a point in certain manifold. Its 3D pose, a long
track of its 3D motion, and its action sequences (color-coded herein)
correspond to a point, a curve, and curve segments in the underlying
manifold respectively (Color figure online)

particles. This paradigm is applicable to a diverse range of
articulated objects, and for this reason it is referred to as Lie-
X. (2) Learning based techniques are incorporated instead
of the traditional Jacobian matrices for solving the incurred
inverse kinematics problem, namely, presented with visual
discrepancies of current results, how to improve on skeletal
estimation results. (3) Empirically our approach has demon-
strated competitive performance on fish, mouse, and human
hand from different imaging modalities, where it is also
specifically referred to as e.g. Lie-fish, Lie-mouse, Lie-hand,
respectively. The runtime speed of our pose estimation sys-
tem is more than realtime—it executes at around 83-267 FPS
(frame per second) on a desktop computer without resorting
to GPUs. Moreover, new sets of annotated depth images and
videos of articulated objects are created. It is worth noting
that the depth imaging devices considered in our empirical
context are also diverse, including structured illumination
and light field technologies, among others. These datasets
and our code are to be made publicly available in support of
the open-source research activities.1

2 Related Work

The recent introduction of commodity depth cameras has
led to significant progress in analyzing articulated objects,
especially human full-body and hand. In terms of pose esti-
mation, Microsoft Kinect is already widely used in practice

1 Our datasets, code, and detailed information pertaining to the project
can be found at a dedicated project webpage http://web.bii.a-star.edu.
sg/~xuchi/Lie-X.html.

at the scale of human full-body, while it is still a research
topic at human hand scale (Tompson et al. 2014; Oberweger
et al. 2015a; Xu et al. 2015; Oberweger et al. 2015b; Tang
et al. 2015; Tan et al. 2016; Zhou et al. 2016), partly due
to the dexterous nature of hand articulations. Tompson et al.
(2014) is among the first to develop a dedicated convolu-
tional neural net (CNN) method for hand pose estimation,
which is followed by Oberweger et al. (2015a). Oberweger
et al. (2015b) also utilizes deep learning in a synthesizing-
estimation feedback loop.Zhouet al. (2016) further considers
to incorporate geometry information in hand modelling by
embedding a non-linear generative process within a deep
learning framework. Xu et al. (2015) studies and evaluates a
theoretically motivated random forest method for hand pose
estimation. A hierarchical sampling optimization procedure
is adopted byTang et al. (2015) tominimize the error-induced
energy functions, where a similar energy function is opti-
mized via efficient gradient-based techniques in Tan et al.
(2016) for personalizing hand shapes to individual users.
Sinha et al. (2016) instead casts hand pose estimation as
a matrix completion problem with deeply learned features.
Meanwhile, various tracking methods have been developed
for full-body (Huang et al. 2016) and hand (Oikonomidis and
Argyros 2011; Ballan et al. 2012; Qian et al. 2014). A particle
swarm optimization (PSO) scheme is utilized in Oikono-
midis and Argyros (2011) to recover temporal hand poses by
stochastically seeking solution to the induced minimization
problem. A hybrid method is adopted in Qian et al. (2014)
that combines PSO furtherwith thewidely-used iterated clos-
est point technique. Ballan et al. (2012) considers learning
salient points on fingers, for which an objective function is
introduced to jointly take into account of edges, flow and
collision cues. Huang et al. (2016) describes a tracking-by-
detection (Andriluka et al. 2008) type method based on 3D
volumetric representation. 3D action recognition has also
drawn great amount of attentions lately (Nie et al. 2015;
Mahasseni and Todorovic 2016; Vemulapalli and Chellappa
2016;Rahmani andMian2016). For example,Mahasseni and
Todorovic (2016) tackles action recognition using variants of
recurrent neural nets. Rahmani and Mian (2016) considers a
mapping to a view-invariant high-level space by CNNs and
Fourier temporal pyramid. Moreover, the work of Nie et al.
(2015) discusses a method to jointly train models for human
full-body pose estimation and action recognition using spa-
tial temporal and-or graphs. On the other hand, it is a much
harder problem when a color camera is used instead of a
depth camera, such as Agarwal and Triggs (2006), where
pose estimation is formulated as a regression problem that
is subsequently addressed by relevance vector machine and
support vector machine. Now, let us look at the other two
articulated objects to be described in this paper, i.e. fish and
mouse. They are relatively simple in nature but are less stud-
ied. Existing literature (Branson and Belongie 2005; Dollar
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et al. 2005, 2010) are mostly 2D-based, and the focus is
mainly on pose estimation. Wiltschko et al. (2015) is a very
recent work in analyzing group-level behavior of lab mice
that relies on a simplified straight-line representation of a
mouse skeleton. We also would like to point out that there
are research efforts across object categories: Dollar et al.
(2010) estimates poses of zebrafish, lab mouse, and human
face;Meanwhile there are alsoworks that dealwithmore than
one problem, such as Nie et al. (2015). They have achieved
very promising results as discussed previously. Our work
may be considered as a renewed attempt to address related
problems and work with a broad range of articulated objects
under one unified principle. For more detailed overview of
related works, interested readers may consult to the recent
surveys (Poppe2007;Chen et al. 2013; Perez-Sala et al. 2014;
Barsoum 2016). Lie groups (Procesi 2007; Arnol’d 2013)
have been previously used in Tuzel et al. (2008) for detection
and tracking of relatively rigid objects in 2D, however this
requires the expensive image warping operations. Srivastava
et al. (2012) reviews in particular the recent development of
applying shape manifold based approaches in tracking and
action recognition. Its application in articulated objects is
relatively sparse. Lie algebraic representation is considered
in Mikic et al. (2003) for human full-body pose estimation
based on multiple cameras or motion captured data. Rather
than resorting to the traditional Jacobianmatrices as inMikic
et al. (2003), learning based modules are employed in our
approach to tackle the incurred inverse kinematics problem.
Vemulapalli et al. (2014), Vemulapalli and Chellappa (2016)
also extract Lie algebra based features for action recognition.
Instead of focusing on specific problem and object, here we
attempt to provide a unified approach.

Part-basedmodels have long been considered in the vision
community, such as the pictorial structures (Felzenszwalb
and Huttenlocher 2005), the flexible mixtures-of-parts (Yang
and Ramanan 2011), the poslet model (Bourdev and Malik
2009), the deep learningmodel (Tompson et al. 2014), among
others. Meanwhile the idea of characterizing the geometric
deformations of shapes or poses can be dated back to the
shape deformation based descriptors of of D’Arcy Thomp-
son (Bookstein 1977) in the early 1900s. The most related
works are probably (Dollar et al. 2010; Sun et al. 2015),
where the idea of group action has been utilized. More-
over, multiple types of objects are also evaluated in Dollar
et al. (2010) that focuses on the 2D pose estimation problem,
while Sun et al. (2015) is dedicated to 3D hand pose estima-
tion. On the other hand, our approach aims to address these
three related problems altogether in 3D, and we explicitly
advocate the usage of Lie group theory. Note that the con-
cept of pose indexed feature has been coined and employed
in Fleuret and Geman (2008) and Ali et al. (2009). In addi-
tion, learning based optimization has been considered in
e.g. Xiong and la Torre (2013), although in very different

contexts. Finally, the idea of learning the internal evaluation
metric is conceptually related to the recent learning to rank
approaches (Burges et al. 2005) in the information retrieval
community for constructing ranking models. In the mean-
time, the idea of learning based methods instead of Jacobian
matrices to tackle inverse kinematics is related to the recent
works that learn to descend instead of directly solving the
optimization problems at hand (Xiong and la Torre 2013;
Andrychowicz et al. 2016).

3 Notations and Mathematical Background

The skeletal representation is in essence based on the group
of rigid transformations in 3D EuclideanR3, a Lie group that
is usually referred to as the special Euclidean group SE(3).
In what follows, we provide an account of the related math-
ematical concepts that will be utilized in our paper.

An articulated object, such as a human hand, a mouse or
a fish, is characterized in our paper by a skeletal model in
the form of a kinematic tree that contains one or multiple
kinematic chains. As illustrated in Fig. 2, a fish or a mouse
skeleton both possess one kinematic chain, while a human
hand contains a kinematic tree structure of multiple chains.
Note that only the main spine is considered herein for the
mouse model. The skeletal model is represented in the form
of Jo joints interconnected by a set of bones or segments of
fixed lengths. Empirical evidence has suggested that it is usu-
ally sufficient to use such fixed skeletal models with proper
scaling, when working with pose estimation of articulated
objects in depth images (Sun et al. 2015). The pose of this
object can thus be defined as a set of skeletal joint locations.
Furthermore, we define the home position of an articulated
object as a set of default joint locations. Taking a mouse
model as depicted in the middle panel of Fig. 2 for example,
its home position could be a top-view upward-facing mouse
with the full body straight-up, and the bottom joint at the
coordinate origin. Note this bottom joint contains 6 degrees
of freedom (DoF) of the entire object, and is also referred to
as the base joint. Then the pose could also be interchangeably
referred to as the sequence of SE(3) transformations or group
actions applied to the home position,Θ = {θ1, . . . , θJo}. The
estimated pose is denoted as Θ̃ = {θ̃1, . . . , θ̃Jo} to better dif-
ferentiate from the ground-truth pose. Here θ could be either
ξ or ξ̂ (to be discussed later) when without confusion in the
context. To simplify the notation, we assume a kinematic
chain contains J joints. Clearly J = Jo for fish and mouse
models, while J < Jo for human hand or human full-body,
by focusing on one of the chains. A depth image is not only
a 2D image but also a set of 3D points (i.e. a 3D point cloud)
describing the surface profile of such object under a particu-
lar view. Ideally the estimated pose (the set of predicted joint
locations) is expected to align nicely with the 3D point cloud
of the object in the observed depth image.
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6 DoF
2 DoF
1 DoF
End effector

Fig. 2 A display of three different articulated objects considered in
our paper, which are for (from left to right) fish, mouse, and human
hand, respectively. Each of our skeletal models is an approximation

of the underlying anatomy, presented as a side-by-side pair. Note end-
effectors have zero degree of freedom (DoF). See text for details

Before proceeding further with the proposed approach,
let us pause for a moment to have a concise review of the
involved mathematical background. Motivated readers may
refer to Murray et al. (1994), Hsu (2002) and Lee (2003) for
further details.

Lie Groups A Lie group G is a group as well as a smooth
manifold such that the group operations of (g, h) �→ gh
and g �→ g−1 are smooth for all g, h ∈ G. For example,
the rotational group SO(3) is identified as the set of 3 ×
3 orthonormal matrices

{
R ∈ R

3×3 : RRT = I3, det(R) =
1
}
, with RT denoting the transpose, det(·) being the determi-

nant, and I3 being a 3 × 3 identity matrix. Another example
is SE(3), which is defined as the set of rotational and transla-
tional transformations of the form g(x) = Rx + t, with R ∈
SO(3) and t ∈ R

3. In other words, g is the 4 × 4 matrix of
the form

g =
(

R t
0T 1

)
, (1)

where 0 = (0, 0, 0)T . Note the identity element of SE(3)
is the 4 × 4 identity matrix I4. Both I3 and I4 will be sim-
ply denoted as I if there is no confusion in the context. Now
given a reference frame, a rigid-body transformation of two
consecutive joints x and x′ in a kinematic chain can be repre-

sented as

(
x′
1

)
← g

(
x
1

)
.Moreover the product of multiple

SE(3) groups (i.e. a kinematic chain) is still a Lie group. In
other words, as tree-structured skeletal models are consid-
ered in general for articulated objects, each of the induced
kinematic chains forms a Lie group.

Lie Algebras and Exponential Map The tangent plane of Lie
group SO(3) or SE(3) at identity I is known as its Lie algebra,
so(3) := TISO(3) or se(3) := TISE(3), respectively. An
arbitrary element of so(3) admits a skew-symmetric matrix

representation parameterized by a three dimensional vector
ω = (ω1, ω2, ω3)

T ∈ R
3 as

ω̂ =
⎛

⎝
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞

⎠ . (2)

In other words, the DoF of a full SO(3) is three. Note that
a rotational matrix can alternatively be represented by the
Euler angles decomposition (Murray et al. 1994). A bijective
mapping∨ : so(3) → R

3 and its reversemapping∧ : R3 →
so(3) are defined as ω̂∨ = ω, and ω∧ = ω̂, respectively. Let
ν ∈ R

3, an element of se(3) can then be identified as

ξ̂ =
(

ω̂ ν

0T 0

)
. (3)

With a slight abuse of notation, similarly there exist the bijec-
tive maps ξ̂∨ = ξ , and ξ∧ = ξ̂ , with ξ = (ωT , νT )T . Now
a tangent vector ξ ∈ R

6 (or its matrix form ξ̂ ∈ R
4×4)

is represented as ξ̂ = ∑6
i=1 ξ i∂i , with ξ i indexing the i-

th component of ξ . Here ∂1 = (1, 0, . . . , 0)T , . . ., ∂6 =
(0, . . . , 0, 1)T , or in their respective matrix forms,

∂1 =

⎛

⎜⎜
⎝

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞

⎟⎟
⎠ , ∂2 =

⎛

⎜⎜
⎝

0 0 1 0
0 0 0 0

−1 0 0 0
0 0 0 0

⎞

⎟⎟
⎠ , ∂3 =

⎛

⎜⎜
⎝

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟
⎠ ,

∂4 =

⎛

⎜⎜
⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟
⎠ , ∂5 =

⎛

⎜⎜
⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞

⎟⎟
⎠ , ∂6 =

⎛

⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞

⎟⎟
⎠ .

The exponential map Exp : se(3) → SE(3) in our context

is simply the familiar matrix exponential ExpI (ξ̂ ) = eξ̂ =
I + ξ̂ + 1

2 ξ̂
2 + . . . for any ξ̂ ∈ se(3). From the Rodrigues’s

formula, it can be further simplified as
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eξ̂ =
(
eω̂ Aν

0T 1

)
, (4)

with

A = I + ω̂

‖ω‖2
(
1 − cos ‖ω‖) + ω̂2

‖ω‖3
(‖ω‖ − sin ‖ω‖),

(5)

where ‖ · ‖ is the vector norm.
It has been known in the screw theory of robotics (Murray

et al. 1994) that every rigid motion is a screwmotion that can
be realized as the exponential of a twist (i.e. a infinitesimal
generator) ξ̂ , with its components ω and ν corresponding to
the angular velocity and translation velocity of the segment
(i.e. bone) around its joint, respectively.

Product of Exponentials and Adjoint Representation Con-
sider a partial kinematic chain involving j joints with j ∈
{1, 2, . . . , J }, which becomes the full chain when j = J .
With a slight abuse of notation, let gΘ1: j be the Lie group
action on the partial kinematic chain, and gθ j or simply g j

be the group action on the j-th joint. Its forward kinematics
can be naturally represented as the product of exponentials

formula, gΘ1: j = eξ̂1eξ̂2 . . . eξ̂ j . Therefore, for an end-

effector from the home configuration (or home pose)

(
x
1

)
,

its new configuration is described by

(
x′
1

)
= gΘ1: j

(
x
1

)
=

eξ̂1eξ̂2 . . . eξ̂ j

(
x
1

)
.As discussed inMurray et al. (1994), this

formula can be regarded as a series of transformations from
the body coordinate b (for local joint) of each joint to the spa-
tial coordinate s (for global kinematic chain). Let us focus
on a joint j and denote ξ̂ (b) and ξ̂ (s) the twists of this joint
in the body and spatial coordinates, respectively. Assume
the transformation of this joint to the spatial coordinate is

gΘ1: j−1 = eξ̂1eξ̂2 . . . eξ̂ j−1 . The two twists can be related by
the adjoint representation

ξ̂ (s) = AdgΘ1: j−1

(
ξ̂ (b)

)
:= gΘ1: j−1 ξ̂

(b)g−1
Θ1: j−1

,

which is obtained by

eξ̂ (s) = gΘ1: j−1e
ξ̂ (b)

g−1
Θ1: j−1

= e
gΘ1: j−1 ξ̂ (b)g−1

Θ1: j−1 ,

and repeatedly applying the identity geξ g−1 = egξg
−1

for
g ∈ SE(3) and ξ ∈ se(3).

Geodesics It is known that SE(3) can not be endowed with
a bi-invariant Riemannian metric. As a result several met-
ric choices are proposed, as in e.g. Altafini (2000). In what

follows we adopt the widely used Ad-invariant Riemannian
metric (Altafini 2000). Given two configurations g1 and g2,

the geodesic curve between them is g(t̃) =
(
R(t̃) At(t̃)
0T 1

)
,

with R(t̃) = R1e(Ω0 t̃), t(t̃) = (t2 − t1)t̃ + t1, t̃ ∈ [0, 1],
and Ω0 = LogI (R

−1
1 R2). Here the logarithm map LogI or

its simplified notion log can be regarded as the inverse of the
exponential map.

Brownian Motion on Manifolds We refer interested read-
ers to Hsu (2002) for a more rigorous account of Brownian
motion and stochastic differential geometry as they are quite
involved. Here it is sufficient to know that Brownian motion
can be regarded as a generalization of Gaussian random vari-
ables on manifolds, where the increments are independent
and Gaussian distributed, and the generator of Brownian
motion is the Laplace-Beltrami operator. In what follows
we will focus more on the computational aspect (Manton
2013). Let t̃ ∈ R denote a continuous variable, and δ > 0
be a small step size. Let ξt̃ = (ξ1

t̃
, . . . , ξ6

t̃
)T denote a ran-

dom vector sampled from normal distribution N (0,C), for
k = 0, 1, . . . with C ∈ R

6×6 being a covariance matrix.
Then a left-invariant Brownian motion with starting point
g(0) ∈ SE(3) can be approximated by

g
(
(k + 1)δ

) = g
(
kδ

)
e
{√

δ
∑6

i=1 ξ ik∂i

}
. (6)

In addition, these sampled points can be interpolated by
geodesics to form a continuous sample path. In other words,
for t̃ ∈ (

kδ, (k + 1)δ
)
we have

g(t̃) = g
(
kδ

)
e

{
t̃−kδ√

δ

∑6
i=1 ξ ik∂i

}
. (7)

4 Our Approach

In what follows we describe the proposed Lie-X approach for
pose estimation, tracking, and action recognition of various
articulated objects.

Preprocessing and Initial Poses For simplicity we assume
that there exists one and only one articulated object in an
input depth image or patch. A simple preprocessing step is
employed in our approach to extract individual foreground
objects of interest. This corresponds to the point cloud of
the object of interest extracted from the image. We then esti-
mate the initial 3D location of base joint as follows: The 2D
location of the base joint is set as the center of the point
cloud, while its depth value is the average depth of the point
cloud. Initial poses are obtained by first setting these poses as
the home pose of the underlying articulate object, i.e. bones
of the object are straight-up for the three empirical applica-
tions. For each of the initial poses, the initial orientation of
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the object is generated by perturbing the in-plane orientation
of the above-mentioned base joint from a uniform distribu-
tion over (−π, π). To account for the size variations, the
bone lengths of each initial pose estimate are also scaled by
a scalar that is uniformly distributed in the range of [0.9, 1.1].

Skeletal Models After preprocessing, an initial estimated
pose is provided for an input depth image. The objects of
interest are represented here in terms of kinematic chains.
Without loss of generality, in this paper we focus on fish
and mouse that both have one chain, as well as human hand
that possesses multiple chains, as depicted in the respective
panels of Fig. 2. Our fish and mouse models contain 21 and
5 joints (including the end-effectors) along the main spine,
respectively, while our hand model has 23 joints. Their cor-
responding DoFs are 25, 12, and 26, respectively. Overall
our models are designed as proper approximations following
the respective articulate objects’ anatomies. The base joint is
fixed at coordinate originwhich always has sixDoFs describ-
ing 3D locations and orientations of the entire object; One
DoF joints are applied to the rest fish joints characterizing the
yawoffishbones; TwoDoFs are used for the restmouse joints
to account for both yaw and pitch; Similarly in our human
hand model, two DoFs are used for each root joint of finger
chain, while one DoFs are used for the rest joints. In all three
models, zero DoFs are associated with the end-effectors, as
each of them can entirely be determined by the preceding
joints of the chain. Note that although simplified, the mouse
model includes the most essential components (joints of the
spine) at a reasonable resolution in our study. Our human
hand model follows that of the existing literature [e.g. Ober-
weger et al. (2015b) and Xu et al. (2015)] that works with the
widely-used NYU hand depth image benchmark (Tompson
et al. 2014).

4.1 Pose Estimation

Given a set of nt training images, define

Δθ j := 1

nt

∑

i∈{1,...,nt }
Δθ j (8)

the mean deviation over training images for the j-th joint
of the set of J joints. The deviation Δθ j characterizes the
amount of changes between the estimated pose and the
ground-truth pose, which is stated in Eq. (11). A global error
function can be defined over a set of examples that evalu-
ates the sum of differences from the mean deviation, as for
example the following form,

∑

j∈{1,...,J }
‖Δθ j‖22, (9)

with ‖ · ‖2 being the standard vector norm in Euclidean
space. Presented with the above visual discrepancies of cur-
rent results, our aim here is to improve skeletal estimation
results.

Traditionally Jacobian matrices are employed for solving
the incurred inverse kinematics problem. Here we instead
advocate the usage of an iterative learning pipeline. Figure 3
provides a visualmouse example that illustrates the execution
pipeline of our pose estimation procedure at test run. This is
also presented more formally in Algorithm 1. Meanwhile the
corresponding training process is explained in Algorithm 2.
Note that inside both the training and testing processes, an
internal evaluation metric or scoring function is used, which
is also learned from data. In what follows we are to explain
each of the components in detail.

At test run, our approach behaves as follows: Assume
for each of the J joints there are C rounds or iterations.
As presented in Algorithm 1, given a test image and an
initial pose estimation, for each joint j ∈ {1, . . . , J } fol-
lowing the kinematic chain of length J from the base joint,
at current round c ∈ {1, . . . ,C}, the current pose of the

joint will be corrected by the Lie group action er
(c)
j , with

the twist r (c)
j being the output of a local regressor, R(c)

j .

In other words, denote the short-hand notations g(C)

Θ̃1: j−1
:=

g(1:C)

θ̃1
g(1:C)

θ̃2
. . . g(1:C)

θ̃ j−1
, eξ̂

(1:c−1)
j := eξ̂

(1)
j eξ̂

(2)
j . . . eξ̂

(c−1)
j , and

g(c−1)
Θ̃1: j

:= g(1:C)

Θ̃1: j−1
eξ̂

(1:c−1)
j , The j-th joint spatial coordinate

can be updated by the following left group action

g(c)
Θ̃1: j

= g(c−1)
Θ̃1: j

er
(c)
j , (10)

with er
(c)
j being the latest group element used to further cor-

rect the spatial location of j-th joint at round c. It is worth
emphasizing that this process requires learning the set of local

regressors
{
R(c)

j

}
, where the output of each regressor, r (c)

j ,

is dedicated to a particular round c and joint j . Each of these
local models is learned based on local features, i.e. the pose-
indexed depth features that is described in details at Sect. 4.4.
In a sense, it endows our system with the ability to memorize
local gradient updating rules from similar training patterns.
This essentially forms the key ingredient that allows for
removal of the commonly used Jacobian matrices for error-
prorogation in our approach. Moreover, at test run, multiple
initial poses are generated for each input image. They will
then pass through our learned inverse kinematic regressors
and produce corresponding candidate poses. These output
poses will nevertheless be screened by our learned metric to
be discussed later, where the optimal one is to be picked as
the final estimated pose.
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Fig. 3 An illustrative example of our pose estimation pipeline in Algo-
rithm 1. In this example, a top-view depth image is used as the sole
input. After a brief preprocessing and obtaining an initial pose, an itera-
tive process is executed over each joint j and every round c, to produce
its output estimate. For demonstration purpose, we also present a 3D

virtual mouse fitted with the predicted skeletal model and with trian-
gle meshing and skin texture mapping, which is then rendered in its
top-view as well as side-view. Note the limbs of this virtual mouse are
pre-fixed to default configuration

At training stage, a set of K initial poses of the input
image is obtained in the same manner as those of the testing
stage. The aforementioned local regressors are then learned
as follows. Each example of the training dataset consists of
an instance: a pair of poses including the estimated pose and
the ground-truth pose, (θ̃

(c−1)
j , θ j ), as well as its label: the

deviation of estimation θ̃ j from ground-truth θ j , as

Δθ j = log
(
g(1:c−1)
Θ̃1: j

−1
gΘ1: j

)
. (11)

For the first joint j = 1 (the base joint in the kinematic
chain) and at the first round c = 1, the label of an exam-
ple will be the amount of changes from the first joint of the
initial pose to that of the ground-truth. Then at any round
c, its corresponding initial pose is obtained by executing the
current partial kinematic model until the immediate previous
round c − 1. Similarly for the second joint and at round c,
the initial pose in each of the training examples is attained
by executing the current partial model from base joint up
to round c − 1 of the current joint, and its label is then the
amount of changes from the current joint of the aforemen-
tioned initial pose to the second joint of the ground-truth. In
this way, the training examples are prepared separately over
joints and then across rounds until the very last joint J &
round C . Algorithm 2 presents the procedure of learning the

set of regressors
{
R(c)

j

}
, with each regressor R(c)

j of round

c and joint j being learned from its local context to make its
prediction, r (c)

j . Without loss of generality the random for-
est method (Breiman 2001) is engaged here as the learning
engine.

Algorithm 1 Pose Estimation: Testing Stage
Input: An unseen depth image
Output: Estimated skeletal joint locations and a prediction of its
evaluation score
Preprocessing to obtain Kt initial poses by random perturbation of
the home pose centered at the object point cloud.
for k=1:Kt do
for j=1:J do
for c=1:C do
Twist prediction by applying a learned local regressor R(c)

j :
(
θ̃

(c−1)
j , θ j

) �→ r (c)
j .

Update prediction of current joint spatial coordinate by apply-
ing the corresponding left group action of Eq. (10).

end for
end for

end for
Pick the best out of Kt candidates by applying the learned metric.

Note that our hand skeletal model contains five kinematic
chains, all of which share the hand base joint as root of the
tree. For each chain, the sub-chain resulting from the exclu-
sion of the base joint is independent of the other sub-chains
given that the root is set. This motivates us to consider the
following procedure: At test run, the base joint is first worked
out, following the process described above.After this is done,
Algorithm 1 is executed for each of the five sub-chains sep-
arately.

Learning the InternalEvaluationMetric Sincemultiple pose
hypotheses are presented in our approach, it remains to decide
on which one from the candidate pool we should choose as
the final pose estimate. Traditionally this can be dealt with by
either mode seeking or taking their empirical average as in
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Algorithm 2 Pose Estimation: Training Stage
Input: The set of training examples. For each example i , obtain K
initial poses by random perturbations from the base system estimate.
Output: a series of learned regressors {R(c)

j : j = 1, . . . , J ; c =
1, . . . ,C}.
for j=1:J do
for c=1:C do
Given the context, learn a local regressor R(c)

j .

Update prediction of current joint spatial coordinate by R(c)
j

using Eq. (10).
end for
Prepare the training set of j+1-th joint spatial coordinate by apply-

ing
{
R(c)

j′
} j,C

j ′=1,c=1
, the partial set of local regressors learned so far.

end for

e.g. Hough voting methods (Hough 1959; Leibe et al. 2004;
Gall et al. 2011) or random forests (Breiman 2001), respec-
tively; It could also be carried out by simply matching with
a small set of carefully crafted templates such as distance
transform or DOT (Hinterstoisser et al. 2010). Instead we
propose to learn a surrogate scoring function that is to be
consistent with the real evaluation metric employed during
practical quantitative analysis. This learned scoring function
then becomes a built-in module in our approach to select the
pose hypothesis with the least error.

More concretely, the widely used criteria of average joint
error (Xu and Cheng 2013) is adopted as the evaluation met-
ric for our scoring function to mimic. During training stage,
a set of nm training examples are generated, where a train-
ing example consists of an instance and a label: A training
instance contains an input depth image, its ground-truth pose
(i.e. skeletal joint locations) and an estimated pose as a set
of corresponding joint locations after random perturbations
from the ground-truth. Its label is the average joint error
between the estimated and the ground-truth poses. There-
fore a second type of regressor,Rm, is utilized here to learn
to predict the error at test run. Namely, given an unseen depth
image and an estimated pose, our regressor would produce a
real-valued score mimicking the average joint error as where
the ground-truth is known.

4.2 Tracking

Particle filters such as Isard and Blake (1998) have long been
regarded as a powerful mean for tracking, and is also con-
sidered in our context to address the tracking problem. To
facilitate a favorable balance between efficiency and effec-
tiveness, we consider a probabilistic particle filter based
approach only for the base joint, where particles are formed
by Brownian motion based sampling in the pose mani-
fold; Meanwhile the parameters of the remaining joints are
obtained by invoking the same inference machinery as in
our deterministic pose estimation algorithm. This design is

Select

Propagate

Measure

(st-1
(i),πt-1

(i))

(st
(i))

(st
(i),πt

(i))

Fig. 4 A visual illustration of one time-step update process of the par-
ticle filter paradigm considered in our tracking task

also motivated from our empirical observation that often the
object poses are also well-estimated when the prediction of
the base joint is in close vicinity of the true values. That is,
according to our observation the first joint is crucial in pose
estimation: If ξ1 is wrongly predicted, estimation results of
the remaining joints could be seriously damaged; When our
prediction of ξ1 is accurate, the follow-up joints estimates
would also be accurate.Algorithm3 further presents themain
procedure for our tracking task, which is also visually illus-
trated in Fig. 4, with a detailed description in the following
paragraphs.

Following the particle filter paradigm (Isard and Blake
1998) we consider a discretized time step t , and use x
to denote a latent random variable as well as y for its
observation. Here the state of a tracked object (i.e. the esti-
mated pose Θ̃ at time t) is denoted as xt and its history
is x1:t = (x1, . . . , xt ). Similarly, current observation is
denoted as yt , and its history as y1:t = (y1, . . . , yt ). The
underlying first-order temporal Markov chain induces con-
ditional independence property, which by definition gives
p(xt |x1:t−1) = p(xt |xt−1). Following the typical factoriza-
tion of this state-space dynamic model, we have

p(y1:t−1, xt |x1:t−1) = p(xt |x1:t−1)p(y1:t−1|x1:t−1)

= p(xt |xt−1)

t−1∏

i=1

p(yi |xi ),

with p(y1:t−1|x1:t−1) = ∏t−1
i=1 p(yi |xi ). We also need the

posterior probability p(xt |y1:t ) for filtering purpose,which in
our context is defined as p(xt |y1:t ) ∝ p(yt |xt )p(xt |y1:t−1),
with p(xt |y1:t−1) = ∫

p(xt |xt−1)p(xt−1|y1:t−1)dxt−1. In
other words, it is evaluated by considering the posterior
p(xt−1|y1:t−1) from the previous time step in a recursively
manner.
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The realization of the particle filter paradigm in our con-
text involves the three-step probabilistic inference process of
selection-prorogation-measurement, which serves as the one
time-step update rule in particle filter, and is also described
in Algorithm 3. Specifically, the process at current time-step
t corresponds to an execution of the selection-prorogation-
measurement triplet steps: The output of previous time-step
contains a set of Kr weighted particles

St−1 :=
{
(s(i)

t−1, π
(i)
t−1)

}Kr

i=1
.

Here each particle i , s(i)
t−1, corresponds to a particular realiza-

tion of the set of tangent vector parameters Θ̃(i) that uniquely
determines a pose, where each of the vectors is attached to a
joint following the underlying kinematic chain. The particle
s(i)
t−1 is also associated with its weight π

(i)
t−1 ∈ [0, 1]. Col-

lectively this set of weighted particles is thus regarded as an
approximation to the posterior distribution p(xt−1|y1:t−1).
The selection step operates by uniform sampling from the
cumulative distribution function (CDF) of p(xt−1|y1:t−1) to
produce a new set of Kr particles with equal weights. It
is followed by the propagation step where the manifold-
based Brownian motion sampling of Eq. (7) is employed
to realize p(xt |xt−1), i.e. to obtain the new state based on
discretized Brownian motion deviation from the previous
time-step. Note that this Brownian motion sampling is car-
ried out only on the base joint, while the remaining joints are
obtained by directly executing the same inference machin-
ery of Eq. (10) as in our pose estimation algorithm. Now,
the sample set constitutes an approximation to the predictive
distribution function of p(xt |y1:t−1). The measurement step
finally provides an updated weight π(i)

t for each particle s(i)
t

as follows: Let m(i)
t be the predicted error value of the i-th

particle s(i)
t , obtained by applying our learned metric. The

weight is thus evaluated as

π
(i)
t = 1√

2πσ
e−m(i)

t
2

2σ2 . (12)

After obtaining all the Kr weights, each of the weights, π
(i)
t ,

is further normalized as

π
(i)
t ← π

(i)
t

∑Kr
i ′=1 π

(i ′)
t

. (13)

The updated sample set now collectively approximates the
corresponding posterior distribution p(xt |y1:t ) at time t .

The set of weighted particles allows us to represent the
entire distribution instead of a point estimate as what we have
done during the pose estimation task. The final pose estimate,
x∗
t (i.e. Θ̃ at time t), is produced by weighted averaging over
this set of particles,

Algorithm 3 Tracking at time-step t
Input: St−1
Output: x∗

t , St
(1) Select:
calculate the normalized cumulative probabilities:
for i = 1 · · · Kr do
Sample a particle s′(i)

t uniformly from the CDF of p(xt−1|y1:t−1).
end for
(2) Propagate:
for i = 1 · · · Kr do
Obtain s(i)

t by sampling from
{
s′(i)
t

}
using the transition probability

p(xt |xt−1), which is realized by manifold-based Brownian motion
sampling of Eq. (7) of the tangent vector for the base joint, ξ1,
followed by directly executing Eq. (10) for each of the remaining
joints following the kinematic chain.

end for
(3) Measure:
for i = 1 · · · Kr do
Evaluate π

(i)
t by Eq. (12).

end for

normalize π
(i)
t by Eq. (13). Now St =

{
(s(i)

t , π
(i)
t )

}Kr

i=1
is ready.

(4) Estimate the pose
The estimated pose x∗

t is finally obtained by Eq. (14).

x∗
t ←

Kr∑

i=1

π
(i)
t s(i)

t . (14)

4.3 Action Recognition

Our approach can be further employed toworkwith the prob-
lem of action recognition. The key insight is that an action
instance (i.e. a pose sequence) corresponds to a curve seg-
ment in the manifold, whereas the set of all instances of
a particular action type corresponds to a group of curves.
Therefore, the task of action recognition can be cast as sep-
arating different groups of action curves. It motivates us to
consider a third type of learned predictor,Ra. Here dedicated
features are extracted as to be described next, and the output
concerns that of predicting its action categories.

Action Recognition Features As the length of action
sequences may vary, they are firstly normalized to the same
length (in practice 32 frames) using linear interpolation.
Local features from each frame of a sequence can be obtained
based on the tangent vectors (Lie algebras) of the estimated
joints in the manifold. Each temporal sequence is further
split into 4 equal-length segments, where the frames in a
segment collectively contain the set of tangent vectors as
local features. Moreover, a temporal pyramid structural rep-
resentation is utilized in a sense similar to that of the spatial
pyramid matching (Lazebnik et al. 2006), where features are
extracted using hierarchical scales of {4,2,1}, where 4 cor-
responds to the four segments introduced previously, and the
rest correspond to those coarser scales built over it layer by
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layer. In total it leads to seven temporal segments (or sets of
variable sizes) over these three scale spaces. For each such
segment, the mean and standard deviation of its underlying
pose representation (in terms of Lie algebras to be described
below) are then used as features. Now let us investigate the
details of these pose representations defined on single frames,
which can be decomposed into joints following the afore-
mentioned kinematic chain structure. For the base joint, we
use the Lie algebras of the transformation from the current
frame to the next frame. For the rest of the joints, we use
the Lie algebras of the transformation from previous joint to
the current joint and that of the transformation from current
frame to the next frame. Besides, we also use the 3D location
and orientation of the first joint (i.e. base joint) as features.
In particular for fish-related actions, rather than using the Lie
algebras of all 20 joints, we emphasize on robust estimation
by considering a compact feature representation: The first
component or sub-vector of the feature vector corresponds
to the Lie algebra of the base joint; The second and the third
components are the sub-vectors of the same length obtained
by averaging over the set of Lie algebras from second to
tenth joints, and from eleventh to the last joint, respectively.
Overall a 252-dim feature vector is thus constructed to fully
characterize an action sequence.

4.4 Random Forests, Pose-Indexed Depth Features, and
Binary Tests

There are three types of learned predictors (namely the set

of local regressors
{
R(c)

j

}
, the learned internal metric Rm,

and the action recognition predictor Ra) considered in our
approach. In general any reasonable learning method can be
used to realize these three types of predictors. In practice
the random forest method (Breiman 2001; Gall et al. 2011)
is engaged for these learning tasks, so it is worthwhile to
describe its details here.

For action recognition, a unique set of action features are
used as stated previously. In what follows, we thus focus on
the description of our pose-indexed depth features, which

are used in the first two types of regressors,
{
R(c)

j

}
, andRm.

Our feature representation can be regarded as an extension
of the popular depth features as discussed in Shotton et al.
(2013), Xu and Cheng (2013) by incorporating the idea of
pose-indexed features (Fleuret and Geman 2008; Ali et al.
2009) to model 3D objects. We start by focusing on a joint j
with its current 3D location x ∈ R

3, where a 3D offset u can
be obtained by random sampling from the home pose. Let
gΘ̃1: j (u) denote the Lie group left action of current object

pose Θ̃1: j applied onto u. Now the 3D location of the offset
is naturally x + gΘ̃1: j (u), and its projection onto 2D image

plane under current camera view is denoted as ū = Proj
(
x+

gΘ̃1: j (u)
)
. Similarly we can obtain another random offset v̄.

For a 2D pixel location x̄ = Proj
(
x
) ∈ R

2 of an image patch
I containing the object of interest, its depth value can be
denoted as dI (x̄). Now we are ready to construct a feature
φI,(ū,v̄)(x̄) or its short-hand notation φ, by considering two
2D offsets positions ū, v̄ from x̄:

φI,(ū,v̄)(x̄) = dI
(
x̄ + ū

)
− dI

(
x̄ + v̄

)
. (15)

Due to the visibility constraint, we are only able to obtain the
depth values of the projected 2D locations ū and v̄ from the
object surface. Thus Proj is a surjective map. Nevertheless,
this serves our intention of sampling random features well.
Following Breiman (2001), a binary test is defined as a pair
of elements, (φ, ε), with φ being the feature function, and ε

being a real-valued threshold. When an instance with pixel
location x passes through a split node of our binary trees, it
will be sent to the left branch if φ(x) > ε, and to the right
side otherwise.

Our random forest predictors are constructed based on
these features and binary tests for split nodes. Similar to exist-
ing regression forests in literature including e.g. Shotton et al.
(2013), at a split node, we randomly select a relatively small
set ofm distinct featuresΦ := {φi }mn=1 as candidate features.
For every candidate feature, a set of candidate thresholds Λ

is uniformly selected over the range defined by the empirical
set of training examples in the node. The best test φ∗, ε∗) is
chosen from these features and accompanying thresholds by
maximizing the following gain function. This procedure is
then repeated until there are L levels in the tree or once the
node contains fewer than ln training examples. More specif-
ically, the above-mentioned split test is obtained by

(φ∗, ε∗) = arg max
φ∈Φ,ε∈Λ

I(φ, γ ),

where the gain I(φ, ε) is defined as:

I(φ, ε) = E(S) −
( |Sl |

|S| E(Sl) + |Sr |
|S| E(Sr )

)
. (16)

Here |·| denotes the cardinality of the set, S denotes the set of
training examples arriving at current node, which is further
split into two subsets Sl and Sr according to the test (φ, ε).
Define Δθ j := 1

‖S‖
∑

i∈S Δθ j the mean deviation of the set
to j-th joint, and accordingly for Sl and Sr . The function E
is defined over a set of examples that evaluates the sum of
differences from the mean deviation:

E(S) =
∑

i∈S
‖Δθ j‖2. (17)

In the final decision stage, for the first two regression
modules, the mean-shift mode searching in Hough voting
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Lightfield camera
(Raytrix)
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Open-field cage

44 cm

44 cm

85
 c

mAverage mouse length 
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(a) (b)

Fig. 5 The capture setups used in constructing our a fish and b mouse depth image datasets, respectively

In use
Not used

Fig. 6 Following the evaluation protocol of Tompson et al. (2014),
Oberweger et al. (2015a, b) and Zhou et al. (2016), for NYU hand depth
image dataset, only a subset of 14 joints out of the total 23 hand skele-
tal joints is considered during performance evaluation for hand pose
estimation

space is used as e.g. in Gall et al. (2011), while for the third
module (action recognition) the classical random forest strat-
egy (Breiman 2001) is used to pick the category with largest
counts from the averaged histogram.

5 Empirical Evaluations

Empirically our Lie-X approach is examined on three differ-
ent articulated objects: fish, mouse, and human hand.

Performance Evaluation Metric Our performance evalua-
tion metric is based on the commonly-used average joint

error, computed as the averaged Euclidean distance in 3D
space over all the joints. Formally, letvg andve be the ground-
truth and estimated joint locations, respectively. The joint
error of the pose estimate ve is defined as e = 1

m

∑
i ‖vgi −

vei‖, where ‖ · ‖ is the Euclidean norm in 3D space. When
dealing with test images, let k = 1, . . . , ntst index over the
test images, and their corresponding joint errors denoted as
{e1, . . . , entst }. The average joint error is then defined as
1
ntst

∑
j e j .

Internal Parameters Throughout experiments, a fixed set
of values is always used for the internal parameters of our
approach, unless otherwise stated, as follows. For the first

type of regressors (namely the set of local regressors
{
R(c)

j

}
),

the number of trees is fixed to (3, 10, 10), while the tree
depth is (24, 24, 24) for the triplet of articulated objects (fish,
mouse, hand), respectively. For the second type (the learned
internal metricRm), the number of trees is (20, 20, 20), while
the tree depth is (15, 15, 20) for the triplet of articulated
objects (fish, mouse, hand), respectively. For the third type
(the action recognition predictor)Ra, the number of trees in
the forest is 50, and tree depth is 20. The number of features
is m = 8000, and the maximum number of examples in the
leaf node is ln = 5. The number of rounds at each joint is set
to C = 7, 3, and 3, for fish, mouse, and hand, respectively.
The local image patch sizes considered in our approach for
fish, mouse, and hand are normalized to 25×25, 100×100,
100×100mm2, respectively. These patches are used as input
to the local random forest regressors in our approach to esti-
mate the spatial coordinate of next joint based on current
joint following the kinematic chain. One important parame-
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Fig. 7 Sensitivity analysis of our Lie-X approach w.r.t. internal param-
eters for pose estimation tasks. In each of the five rows, average joint
error is plotted as a function of the respective internal parameter. It is
further displayed in three columns for fish, mouse, and hand, respec-

tively. In each of the panels, a red dot is placed to indicate the specific
parameter value empirically employed in our approach (Color figure
online)
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Table 1 Quantitative evaluation of competing methods on pose esti-
mation problem for fish and mouse respectively

Comparison methods on articulated objects Fish Mouse

RF 1.28 12.24

CNN 0.79 9.17

Lie-X (w/o multiple initial poses) 3.28 13.27

Lie-X (w/o learned metric) 1.71 9.82

Lie-X 0.68 6.64

Bold values indicate the best results
Performance is measured in terms of average joint error (mm)

ter is Kt , the number of initial poses in pose estimation. In
practice, after factoring-in the efficiency consideration, Kt is
set to 40, 40, 20 for pose estimation of fish, mouse, and hand,
respectively, throughout experiments. Similarly, the number
of initial poses for tracking is set to Kr = 200. For learn-
ing the internal evaluation metric, the number of candidates
is set to 8. Namely, given a training dataset of size nt , the
number of training examples for pose estimation becomes
Kt × nt , while the number of training examples for learning
the internal metric is nm = 8 × nt .

5.1 Datasets

To examine the applicability of our approach on diverse artic-
ulated objects, we demonstrate in this paper its empirical
implementation for fish, mouse, and human hand, respec-
tively, where three distinct real-life datasets are employed.
In particular, here we introduce our home-grown 3D image
datasets of zebrafish and lab mouse that are dedicated to
the related problems of pose estimation, tracking, and action
recognition. The images have been captured and annotated
by experts to provide the articulated skeleton information
describing the pose of the subject. The popular NYU hand

depth image dataset (Tompson et al. 2014) is also consid-
ered here. More details of the datasets are discussed next.
It is worth noting that different imaging modalities are uti-
lized across the three datasets: light-field depth images are
used for fish, while structured illumination depth cameras
are employed for mouse and human hand objects. Regard-
lessly our approach is demonstrated toworkwell across these
diverse image modalities.

Our Fish Dataset Depth images are acquired with a top-
mount Raytrix R5 light-field camera at a frame rate of 50 FPS
and a resolution of 1024× 1024, as displayed in Fig. 5a. The
depth images are obtained from the raw plenoptic images by
utilizing Raytrix on-board SDK. In total seven different adult
zebrafish of different genders and sizes are engaged in our
study. From the captured images, 2972 images containing
distinct poses are annotated. The training dataset of nt =
95, 104 images is thus formed by augmenting each fish object
of these images with 31 additional transformations, where
each transformation comeswith a randomscalingwithin [0.9,
1.1] and with a random in-plane rotation within (-π , π ). The
test dataset of pose estimation problem contains ntst = 1820
distinct fish images.

In addition to single-frame based pose annotations, we
also record, annotate, andmake available afish action dataset.
Kalueff et al. (2013) provides a comprehensive catalogue of
zebrafish actions, from which a subset of 9 action classes
are considered in this paper, which is listed below as well as
illustrated in Fig. 19:

Scoot Moves along a straight line.
J-turn Fine reorientation during which the body slightly

curves (30◦–60◦), with a characteristic bend at the
tail.
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Fig. 8 Cumulative error distribution curves for pose estimation of a
fish, b mouse and c hand, respectively. Horizontal axis displays the
distance amount in mm of the estimated poses from ground-truths. Ver-

tical axis presents the fraction of examples where their corresponding
estimated poses possess average joint errors within the current distance
range
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 9 Visual comparison of fish and mouse examples. Here pose esti-
mates of RF, CNN, as well as our Lie-X approach are compared together
with respective human-annotated ground-truths. a–f present six fish
examples, which is followed by g–l for six exemplar mouse results. In

each of the twelve panels, top row displays the full top-view together
with one or two zoom-in visual examinations. Meanwhile, the bottom
row also provides a side-view.Best viewed in color (Color figure online)
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Table 2 Quantitative evaluation
of competing methods on the
benchmark NYU
dataset (Tompson et al. 2014)
for hand pose estimation task

Comparison methods on hand pose estimation Average joint error (mm)

RF 24.81

CNN 18.82

Tompson et al. (2014) 21.00

Oberweger et al. (2015a) 20.00

Oberweger et al. (2015b) 16.50

Zhou et al. (2016) 16.90

Lie-X (w/o multiple initial poses) 20.50

Lie-X (w/o learned metric) 16.72

Lie-X 14.51

Bold value indicates the best results
Performance is in terms of average joint error (mm)

C-turn Fish body curves to form a C-shape en route to a
near 180◦ turn.

R-turn Involves routine angular turn of greater than 60◦.
Surface Moves up towards the water surface.
Dive Moves towards the tank bottom.
Zigzag Contains erratic movements with multiple darts in

various directions.
Thrash Consists of forceful swimming against the side or

bottom walls of the tank.
Freeze Refers to complete cessation of movement.

Our fish action dataset contains 426 training sequences
and 173 testing sequences, respectively, from seven different
fish over the aforementioned nine categories. The length of
each fish action sequence varies from seven frames to 135
frames.

OurMouse Dataset Mouse depth images are collected using
a top-mount Primesense Carmine depth camera at a frame
rate of 30 FPS and with a resolution 640 × 480. Figure 5b
presents our dedicated imaging set-up. Two different lab
mouse are engaged in our study. We select 3253 images con-
taining distinct poses and depth noise patterns, and augment
them with additional transformations following the same
protocol as above, which gives rise to the training dataset
here containing nt = 104,096 images. The testing dataset of
pose estimation problem contains ntst = 4125 distinct depth
images. For tracking problem, the test set consists of two
sequences of length 511 and 300 frames, respectively.

The NYU Hand Dataset We also evaluate our approach on
the benchark NYU hand depth image dataset (Tompson et al.
2014).2 It contains nt =72,757 depth images for training and
ntst = 8252 frames for testing. All images are depth images
captured by Microsoft Kinect using the structured illumina-
tion technique, which is the same as the Primesense camera

2 The NYU dataset is publicly available at http://cims.nyu.edu/
~tompson/NYU_Hand_Pose_Dataset.htm.

used in our mouse dataset. Depth images in the training set
are from a single user, while images in the test set are from
two users.While a ground-truth hand label contains 36 anno-
tated joints, only 14 of these joints are considered in many
existing efforts using this dataset, such as Tompson et al.
(2014), Oberweger et al. (2015a, b) and Zhou et al. (2016),
which is followed during our experiments. This is also pre-
sented in Fig. 6: Important hand joints are included in this
subset of 14 joints, such as all the finger tips and the hand
base.

5.2 Pose Estimation of Fish, Mouse, and Human Hand

In this subsection, we focus on the problem of pose estima-
tion for articulated objects such as fish, mouse, and hand. To
make a fair comparison with existing methods, we specifi-
cally implement two non-trivial baseline methods, namely
regression forest (RF), and convolutional neural network
(CNN). The RF method is a re-implementation of the classi-
cal regression method used by Microsoft Kinect (Shotton
et al. 2013), with the only difference being that our RF
implementation explicitly utilizes a skeletal model, instead
of estimating joint locations without skeletal constraints as
in Shotton et al. (2013). Two separate regression forests, F1
and F2, are trained for this purpose. Here F1 is used to esti-
mate the 3D location and in-plane orientation of the subject,
followed by F2 which produces a set of 3D pose candidates.
The number of trees trained are set to 7 and 12 for F1 and
F2, respectively. In both cases, the maximum tree depth is
fixed to L = 20. The standard depth invariant two-point off-
set features of Shotton et al. (2013) are also used. The CNN
method is obtained as follows: The pre-trainedAlexNet CNN
model from ImageNet is engaged as the initial model. To tai-
lor the training data for our CNN, objects of interest from the
training depth images are cropped according to their bound-
ing boxes. The depth values in each patch are rescaled to be
in the range of 0–255. Each object patch is replicated three
times to form into a RGB image, which is then resized as
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(a) (b)

(c) (d)

Fig. 10 Visual comparison of hand examples. Here pose estimates of
RF, CNN, as well as our Lie-X approach are compared together with
respective human-annotated ground-truths. In each of the four panels,

top row displays the full top-view together with four zoom-in visual
examinations. Meanwhile, the bottom row displays side-views of the
respective methods. Best viewed in color (Color figure online)
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Groundtruth Lie-X Oberweger et. al. (2015a) Oberweger et. al. (2015b) Zhou et. al. (2016)
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Fig. 11 Visual comparison of Lie-X as well as the state-of-the-art methods on the same four input hand images presented in Fig. 10. In each of
the panels, the corresponding example is presented with four zoom-in visual examinations. Best viewed in color (Color figure online)

an input instance of size 224 × 224. This together with its
corresponding annotation prepares a training example. Then
our CNN model is finally obtained by executing the Mat-
ConvNet package to train on these training examples for 50
epochs.

Sensitivity Analysis of the Internal Parameters As our
approach contains a number of internal parameters, it is of
interest to systematically investigate the influence of these
parameters w.r.t. the final performance of our system. Here
we consider five influential parameters, which are the num-
ber of initial poses Kt , the number of rounds C , the number
and depth of trees in our first type of regressors (i.e. the

local regressors
{
R(c)

j

}
), as well as the number of trees

used in our learned metric component Rm. Figure 7 dis-
plays the performance of Lie-X with respect to each of
these five parameters row-by-row. Meanwhile each of the
three columns presents the respective results for fish, mouse,
and hand. Each of the fifteen panels in this five by three

matrix is obtained by varying one parameter of interest
while keeping the other parameters fixed to default values.
In general, our system behaves in a rather stable manner
w.r.t. the change of internal parameters over a wide range
of values. Moreover, in each of the panels, a red colored
dot is placed to indicate the specific parameter value empir-
ically employed by our approach in this paper. It is worth
noting that the choice of these internal parameter values
represents a compromise between performance and effi-
ciency.

Comparison with Baselines and the State-of-the-art Meth-
ods To evaluate the performance of the proposed approach,
a series of experiments are conducted on the aforemen-
tioned datasets for fish, mouse, and hand pose estimation
tasks. Table 1 presents a comparison of Lie-X w.r.t. the
two non-trivial baseline methods (i.e. RF and CNN) on fish
and mouse pose estimation tasks. Overall, our approach
clearly outperforms the others by a significant margin, while
CNN achieves better results over RF. Moreover, the error
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Fig. 12 Visual comparison of Lie-X results and the state-of-the-art methods on ten additional hand examples. Each column presents an example,
while each row displays results from a particular competing method. Best viewed in color (Color figure online)

distributions of these comparison methods are also pre-
sented in Fig. 8a, b, where our approach clearly outperforms
the baselines most of the time. The superior performance
of our Lie-X approach is also demonstrated in Fig. 9,
which provides visual comparisons of pose estimation results
for six fish and six mouse examples, respectively, over
the three competing methods. From these visual exam-
ples, it is observed that the estimated poses from our
Lie-X approach tend to be more faithfully aligned with the

ground-truth when compared against the two baseline meth-
ods.

Our approach is also validated on the NYU hand depth
benchmark, as is displayed in Table 2. Overall, our CNN
baseline result is on par with the standard deep learning
results of e.g. Oberweger et al. (2015a) that also utilizes a
AlexNet-like CNN. This helps to establish that our base-
lines are consistent in terms of performance with what has
been reported in the literature, which are also used as pose
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Fig. 13 An example of fish pose estimation that visually illustrates the
inner-working of the learned internal metric in our approach applied
onto the Kt = 40 pose candidates of the input depth image. Here green
colored numbers correspond to the scores (lower the better here) and
ranking results obtained by applying the learned metric, red colored

numbers denote the corresponding actual evaluation scores and rank-
ing results by engaging the empirical evaluation metric of average joint
error when we have access to the ground-truth annotations. See text for
details (Color figure online)

estimation baselines on fish and mouse objects. Moreover,
the results of the state-of-the-art methods are also directly
compared here, including Tompson et al. (2014), Oberweger
et al. (2015b), and Zhou et al. (2016). It is worth pointing out
that the test error rate of our approach is 14.51 mm in terms
of average joint error. This is by far the best result on hand
pose estimation task to our knowledge, which improves over
the best state-of-the-art result of 16.50 mm of Oberweger
et al. (2015b) by almost 2 mm. More detailed quantitative
information is revealed through the error distributions of
comparison methods in Fig. 8c, where our approach clearly
outperforms the baselines and the state-of-the-art methods.
Similarly, visual comparison results are provided in Figs. 10

and 11, where our approach is again shown to clearly out-
perform other methods. More specifically, Figs. 10 and 11
present the visual results of all competing methods on the
same four exemplar hand images. Due to the access limit,
we are only able to present the side-view results on our
approach and the baseline methods of RF and CNN. Fig-
ure 10 provides additional visual results comparing our
approach to state-of-the-arts on ten more hand images (Fig.
12).

To reveal the inner working of our approach, in Figs. 13,
14, and 15, a visual example is respectively provided for pose
estimation of fish,mouse, and hand. It is evident that a diverse
set of pose candidates are obtained that covers distinct pose
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Fig. 14 An example of mouse pose estimation that visually illustrates
the inner-working of the learned internal metric in our approach applied
onto the Kt = 40 pose candidates. Here green colored numbers refer
to the scores (lower the better here) and ranking results obtained by

applying the learned metric, red colored numbers are the corresponding
actual evaluation scores and ranking results by engaging the empirical
evaluation metric of average joint error when we have access to the
ground-truth annotations. See text for details (Color figure online)

Fig. 15 An example of hand pose estimation that visually illustrates
the inner-working of the learned internal metric in our approach applied
onto the Kt = 20 pose candidates. Here green colored numbers present
the scores (lower the better here) and ranking results obtained by apply-

ing the learned metric, red colored numbers denote the corresponding
actual evaluation scores and ranking results by engaging the empirical
evaluation metric of average joint error when we have access to the
ground-truth annotations. See text for details (Color figure online)
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Initial Final

Fig. 16 Illustrating the convergence process on the samemouse exam-
ple presented in Fig. 14. It starts from an initial pose candidate to the
final pose estimation result, which is the top-left one among the list of
all 40 output candidates

Table 3 Runtime speed comparison with state-of-the-art methods for
hand pose pose estimation task

Comparison methods Uses GPU Frames per second (FPS)

Tompson et al. (2014) � 30

Oberweger et al. (2015a) � 5000

Oberweger et al. (2015b) � 400

Zhou et al. (2016) � 125

Lie-X × 123

Bold value indicates the best results
Note our Lie-X results are obtained using CPU only, while the rest
methods all utilize GPUs

location, orientation, and sizes. This is made possible due to
the adoption of multiple initial poses. Moreover, prediction
scores and associated orders from our learned metric module
in general closely resembles that of the empirical evalua-
tion metric. In addition, Fig. 16 presents several intermediate
pose estimation results from different joints and rounds on an
exemplar mouse image, when executing the pose estimation
pipeline as illustrated in Fig. 3. It is observed that each step
of the iterative process usually helps in converging toward
the final pose estimation.

With versus Without Multiple Initial Poses As presented in
Table 1 for fish and mouse objects and Table 2 for hand
objects, empirically we observe that the presence of multiple
initial poses always improves the pose estimation perfor-
mance. As presented in Figs. 13, 14, and 15, execution of
our pose estimation process, starting from multiple distinct
initial poses, results in unique pose estimates, each of which
can be regarded as a locally optimal result. This is due to the
highly non-convex nature of our problem, a well-known fact
for systems of rigid-bodies in general. These visual examples
also demonstrate the importance of having multiple initial
poses to avoid getting trapped into local optimal points that
are far from the ground-truth point.

With versusWithout the LearnedMetric To examine the use-
fulness of our learned internal metric, a special variant of our
approach without this component is engaged here, which is
also referred to as Lie-X w/o learned metric. Provided with
multiple output pose candidates, this variant differs from
our full-fledged approach by averaging over them for each
of the joints in the 3D Euclidean space, instead of scoring
them with the learned metric to pick up the best estimate.
Empirical experiments such as those presented in Table 1
for fish and mouse objects and Table 2 for hand objects
suggest a noticeable performance degradation when with-
out the learned metric. Clearly the learned internal metric
does facilitate in selecting from a global viewpoint the final
estimate, which is obtained from the pool of locally opti-
mal candidates using multiple initial poses. It has also been
demonstrates in Figs. 13, 14, and 15 that in our context a max
operation (i.e. with the learned metric) may well outperform
an average operation (i.e. w/o learned metric). In particular,
visually our learned internal metric is capable of produc-
ing predicted error scores that are nicely aligned with the

Fig. 17 Visual examples of common pose estimation errors made by
ourLie-X approach. These errors include orientation flips, displacement
along the z-direction and sub-optimal shape fits. Each of the columns

presents an exemplar depth image of fish, mouse, and hand, respec-
tively, while the first and second rows display its top and side views
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Fig. 18 Pose estimation versus tracking: an comparison of the aver-
age joint error on frames of a mouse test sequence when employing our
pose estimation (Algorithm 1) versus tracking (Algorithm 3) modules.
The horizontal dotted lines in green and blue colors are the respective

mean errors of pose estimation and tracking results. Visual compar-
isons at various time frames are presented in the bottom row (Color
figure online)

true average joint error when we have access to the ground-
truth.

Computational Efficiency All experiments discussed in this
paper are performed on a desktop PC with an Intel i7-
960 CPU and with 24Gb memory. At this moment, our
CPU implementation achieves an average run-time speed
of 83 FPS, 267 FPS, and 123 FPS for fish, mouse, and
hand tasks, respectively. Table 3 summarizes the run-time
speed comparisons with state-of-the-art hand pose estima-
tors on the NYU hand dataset (Tompson et al. 2014). Our
result of 123 FPS is obtained with only CPU access, nev-
ertheless it is still comparable with most of these recent
methods which are based on GPUs. Note the empirical run-
time speed of our approach could be further improved by
exploiting the computing power of modern GPUs. Mean-
while, an exceptionally high speed method is developed in
Oberweger et al. (2015a), which is made possible by the
usage of very shallow neural nets. This however comes with
degraded performance as shown in Table 2, with a significant
average joint error increase of 5.41 mm when compared to
our approach.

CommonPoseEstimationErrors ofOurApproach Although
our Lie-X approach performs relatively well in practical pose

estimation settings, inevitably it does make mistakes in prac-
tical situations. These common errors include the following
ones: orientation flips, displacement along the z-direction
and sub-optimal shape fitting. A visual illustration of these
common errors made by our approach is provided in Fig. 17.
As can be observed, usually our Lie-Fish results are best
aligned with the ground-truths. The mistakes of Lie-Mouse
are more noticeable. Meanwhile the visual displacements
of our Lie-Hand results from the ground-truths are most
significant. This is to be expected, as the corresponding com-
plexity levels of the three tasks varies from being relatively
simple (i.e. kinematic chains) to complex (i.e. kinematic
trees).

5.3 Tracking of Mouse

Our Lie-X approach is also examined on the tracking task
using the mouse tracking dataset described beforehand.
Compared with our single frame based pose estimation of
Algorithm 1, it is of interest to examine on howmuch we can
gain from our tracking algorithm of Algorithm 3, when tem-
poral information is available. Empirically ourmouse tracker
is shown to produce an improved performance of 7.19 mm
from the 8.42 mm results from our pose estimator on sin-
gle frames. This can also be observed from the bottom row
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Fig. 19 Key frames from the nine distinct fish action categories con-
sidered in our experiments. The colored dots display the trajectory of
the fishmotions, where blue and red mark the start and end of the action

respectively. Note for a better illustration of the distinct fish action cat-
egories, e, f present a side view of the surface and dive actions, while
a top view is adopted for the rest action types (Color figure online)

of Fig. 18 where visual comparisons are provides at several
time frames. By exploiting temporal information, the results
of our tracker are shown to produce less dramatic mistakes
comparing to that of pose estimation. It is again evidenced
quantitatively in Fig. 18, which presents a frame-by-frame
average joint error comparison of tracking versus pose esti-
mation on a test sequence. Clearly there exists a number
of very noisy predictions of pose estimation. In comparison
our tracking results are in general much less noisy. Over-
all, the tracking results outperforms post estimation with a
noticeable gap of at least 1 mm. Note the tracking results in
some frames are slightly inferior to that of the pose estima-
tion counterpart, which we attribute to the utilization of the
averaging operations in our tracker.

5.4 Action Recognition of Fish

To demonstrate the application of our approach on action
recognition tasks, in what follows we conduct experiments
on the aforementioned fish action dataset. In addition to the
proposed tangent vector (i.e. Lie algebras) based feature rep-
resentation, as comparison we also consider a joint based
feature representation. Here the main body of the feature
representation follows exactly as in the tangent vector repre-
sentation, including e.g. the adoption of a temporal pyramid
of {4, 2, 1}, with the only change as follows: Instead of tan-
gent vectors, the corresponding the 3D joint positions are
employed. This finally leads to an 888-dim feature vector
representation.
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(a) (b)

Fig. 20 Action recognition confusion matrices on our fish action dataset. a Is for joint position based features, while b is for tangent vector based
features. Their overall performance in terms of average classification accuracy for (a) and (b) is 79.19 and 91.33%, respectively

Figure 19 displays our fish dataset that contains nine
unique action categories. The standard evaluation metric of
average classification accuracy are considered in this con-
text. Empirically the comparison method that utilizing joint
position features achieves a performance of 79.19%, which
is significantly outperformed by our approach based on tan-
gent vector features with the average accuracy of 91.33%.
Figure 20 provides further information of category-wise
errors in the form of the confusion matrices. It is observed
that the joint based method tends to confuse among the sub-
set of actions of scoot, J-turn, c-turn, and r-turn, which are
indeed more challenging to be separated due to their inherent
similarities. Nonetheless, the performance on this subset is
dramatically improved in our approach with tangent vector
based features. We hypothesize that by following the natural
tangent vector representation, our approach gains the dis-
criminative power to separate these otherwise troublesome
action categories.

6 Conclusion and Future Work

A unified Lie group approach is proposed for the related key
problems of pose estimation, tracking, and action recognition
of diverse articulated objects from depth images. Empirically
our approach is evaluated on human hand, fish and mouse
datasets with very competitive performance. For futurework,
we plan to work with more diverse articulated objects such
as human full body and wild animals, as well as their
interactions with other articulated objects and background
objects.
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