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Abstract The number of categories for action recognition
is growing rapidly and it has become increasingly hard to
label sufficient training data for learning conventional mod-
els for all categories. Instead of collecting ever more data
and labelling them exhaustively for all categories, an attrac-
tive alternative approach is “zero-shot learning” (ZSL). To
that end, in this study we construct a mapping between
visual features and a semantic descriptor of each action
category, allowing new categories to be recognised in the
absence of any visual training data. Existing ZSL studies
focus primarily on still images, and attribute-based seman-
tic representations. In this work, we explore word-vectors
as the shared semantic space to embed videos and category
labels for ZSL action recognition. This is a more chal-
lenging problem than existing ZSL of still images and/or
attributes, because the mapping between video space-time
features of actions and the semantic space is more com-
plex and harder to learn for the purpose of generalising over
any cross-category domain shift. To solve this generalisation
problem in ZSL action recognition, we investigate a series
of synergistic strategies to improve upon the standard ZSL
pipeline. Most of these strategies are transductive in nature
which means access to testing data in the training phase.
First, we enhance significantly the semantic space mapping
by proposing manifold-regularized regression and data aug-
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mentation strategies. Second, we evaluate two existing post
processing strategies (transductive self-training and hubness
correction), and show that they are complementary. We eval-
uate extensively our model on a wide range of human action
datasets including HMDB51, UCF101, Olympic Sports and
event datasets including CCV and TRECVID MED 13. The
results demonstrate that our approach achieves the state-
of-the-art zero-shot action recognition performance with a
simple and efficient pipeline, and without supervised anno-
tation of attributes. Finally, we present in-depth analysis into
why and when zero-shot works, including demonstrating the
ability to predict cross-category transferability in advance.

Keywords Zero-shot action recognition · Zero-shot
learning · Semantic embedding · Semi-supervised learning ·
Transfer learning · Action recognition

1 Introduction

Action recognition is of established importance in the com-
puter vision community due to its potential applications in
video retrieval, surveillance and human machine interaction
(Aggarwal and Ryoo 2011). However the need for increasing
coverage and finer classification of human actions means the
number and complexity of action categories of interest for
recognition is growing rapidly. For example, action recogni-
tion dataset size and number of categories has experienced
constant growth since the classic KTH Dataset (Schuldt
et al. 2004) (6 classes, 2004): Weizmann Dataset (Gorelick
et al. 2007) (9 classes, 2005), Hollywood2 Dataset (Marsza-
lek et al. 2009) (12 classes, 2009), Olympic Sports Dataset
(Niebles 2010) (16 classes, 2010), HMDB51 (Kuehne et al.
2011) (51 classes, 2011) and UCF101 (Soomro et al. 2012)
(101 classes, 2012). The growing number and complexity
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of actions result in: (1) Enormous human effort is required
to collect and label large quantities of video data for learn-
ing.Moreover, compared to image annotation, obtaining each
annotated action clip is more costly as it typically requires
some level of spatio-temporal segmentation from the annota-
tor. (2) The growing number of categories eventually begins
to pose ontological difficulty, about how to structure and
define distinct action categories as they grow more fine-
grained and inter-related (Jiang et al. 2015). In this work, we
explore methods which do not explicitly create models for
new action categories frommanually annotated training data,
but rather dynamically construct recognitionmodels by com-
bining past experience in language together with knowledge
transferred from already labelled existing action categories.

The “zero-shot learning” (ZSL) paradigm (Lampert et al.
2009; Fu et al. 2012; Socher et al. 2013) addresses this goal
by sharing information across categories; and crucially by
allowing recognisers for novel/unseen/testing categories1 to
be constructed based on a semantic description of the cat-
egory, without any labelled visual training samples. ZSL
methods follow the template of learning a general mapping
between a visual feature and semantic descriptor space from
known/ seen/ training data . In the context of zero-shot action
recognition, ‘semantic descriptor’ refers to an action class
description that can be specified by a human user, either
manually, or with reference to existing knowledge bases, e.g.
wikipedia. The ZSL paradigm is most commonly realised by
using class-attribute descriptors (Lampert et al. 2014; Liu
et al. 2011; Fu et al. 2015a) to bridge the semantic gap
between low-level features (e.g. MBH or SIFT) and cate-
gories. Attributes are mid-level concepts that transcend class
boundaries (Lampert et al. 2009), allowing each category or
instance to be represented as a binary (Lampert et al. 2009;
Liu et al. 2011) or continuous (Fu et al. 2014b) vector. Visual
attribute classifiers are learned for a set of known categories,
and then a human can create recognisers for novel categories
by specifying their attributes. With a few exceptions (Liu
et al. 2011; Fu et al. 2015a; Xu et al. 2015), this paradigm
has been applied to images rather than video action recogni-
tion.

An emerging alternative to attribute-based ZSL is unsu-
pervised semantic embeddings (Socher et al. 2013; Frome
et al. 2013; Fu et al. 2014b, 2015b; Habibian et al. 2014b;
Norouzi et al. 2014; Xu et al. 2015; Akata et al. 2015). Unsu-
pervised semantic embedding spaces refer to intermediate
representations which can be automatically constructed from
existing unstructured knowledge-bases (such as wikipedia
text), rather than manually specified attributes. The most

1 We use known, seen and training interchangeably to refer to the cat-
egories with labeled visual training examples and novel, unseen and
testing interchangeably to refer to the categories to be recognized with-
out any labeled training samples.

common approaches (Socher et al. 2013; Fu et al. 2014b,
2015b; Xu et al. 2015; Akata et al. 2015) are to exploit a dis-
tributed vector representation of words produced by a neural
network (Mikolov et al. 2013) trained on a large text cor-
pus in an unsupervised manner. Regressors (cf classifiers
in the attribute space), are trained on the known dataset to
map low-level visual features into this semantic embedding
space. Zero-shot recognition is subsequently performed by
mapping novel category visual instances to the embedding
space via the regression, andmatching these to the vector rep-
resentation of novel class names (e.g. by nearest neighbour).
Several properties make the embedding space approaches
preferable to the attribute-based ones: (1) A manually pre-
defined attribute ontology is not needed as embedding space
is learned in an unsupervised manner. (2) Novel categories
can be defined trivially by naming them, without the require-
ment to exhaustively define each class in terms of a list of
attributes—which grows non-scale-ably as the breadth of
classes to recognise grows (Fu et al. 2014b;Akata et al. 2015).
(3) Semantic embedding allows easier exploitation of infor-
mation sharing across datasets (Xu et al. 2015;Habibian et al.
2014b) because category names from multiple datasets can
be easily projected into a common embedding space, while
attribute spaces are usually dataset specific, with datasets
having incompatible attribute schemas [e.g. UCF101 (Jiang
et al. 2013) andOlympic Sports (Liu et al. 2011) have disjoint
attribute sets].
The domain shift problem for ZSL of actions Although
embedding-based ZSL is an attractive paradigm, it has rarely
previously been demonstrated in zero-shot action recog-
nition. This is in part because of the pervasive challenge
of learning mappings, that generalize across the train-test
semantic gap (Fu et al. 2015a; Romera-Paredes and Torr
2015). In ZSL, the train-test gap is more significant than
conventional supervised learning because the training and
testing classes are disjoint, i.e. completely different with-
out any overlap. As a result of serious domain-shift (Pan and
Yang 2010),mapping from low-level visual feature to seman-
tic embedding trained on a known class data will generalise
poorly to novel class data. This is because the data distribu-
tions for the underlying categories are different. This violates
the assumptions of supervised learning methods and results
in poor performance. The domain shift problem—analysed
empirically in Fu et al. (2015a), Dinu et al. (2015), and the-
oretically in Romera-Paredes and Torr (2015)—is worse for
action than still image recognition because of the greater
complexity of categories in visual space-time features and
the mapping of space-time features to semantic embedding
space.
Our Solutions In this work, we explore four potential solu-
tions to ameliorate the domain shift challenge in ZSL for
action recognition as shown in Fig. 1, and achieve better
zero-shot action recognition: (1) The first strategy we con-
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Fig. 1 Wehave labelled data in target datasetXtrg
tr and auxiliary dataset

Xaux
1 and testing data in target dataset Xtrg

te . The objective is to use all
this data to classify testing data into a set of pre-defined categories
(aka unknown classes). Specifically, in the training phase I, target
labelled data Xtrg

tr is first augmented by data from auxiliary dataset
Xaux
1 to form a combined labelled dataset Xtr . We construct a K near-

est neighbour (KNN) graph on all labelled and testing data in visual
feature space to model the underlying manifold structure. In the train-
ing phase II, prototypes for known classes are generated by semantic

embedding Ztr = g(ytr ). Then we learn a visual-to-semantic mapping
f : Xtr → Ztr as manifold regularized regression. In the testing phase,
prototypes for unknown classes are first generated by semantic embed-
ding g(yte). Then target testing data Xte are projected into semantic
space via f (X). Finally simple nearest neighbour (NN) classifier is
used to categorize testing data as the label of closest prototype. On top
of NN classifier, self-training and hubness corrections are adopted at
testing phase to improve results by mitigating the domain shift prob-
lem. With this framework we achieve the state-of-the-art performance
on zero-shot action recognition tasks

sider aims to improve the generalisation of the embedding
space mapping. We explore manifold regularization (aka
semi-supervised learning) to learn a regressor which exploits
a regularizer based on the testing/unlabelled data to learn a
smoother regressor that better generalises to novel testing
classes. Manifold regularization (Belkin et al. 2006) is estab-
lished in semi-supervised learning to improve generalisation
of predictions on testing data, but this is more important in
ZSL since the gap between training and testing data is even
bigger due to disjoint categories. To our best knowledge,
this is the first transductive use of testing/unlabelled data for
zero-shot learning at training time. (2) The second strategy
we consider is data augmentation2 (aka cross-dataset trans-
fer learning) (Pan and Yang 2010; Shao et al. 2015). The idea
is that by simultaneously learning the regressors for multiple
action datasets, a more representative sample of input action
data is seen, and thus a more generalizable mapping from the
visual feature to the semantic embedding space is learned.

2 ‘Data augmentation’ in this context means including data from addi-
tional datasets; in contrast to its usage in deep learning which refers to
synthesising training examples by e.g. rotating and scaling.

This is straightforward to achieve with semantic embedding-
based ZSL because the datasets and their category name
word-vectors can be directly aggregated. In contrast, it is non-
trivial with attribute-based ZSL due to the need to develop
a universal attribute ontology for all datasets. Besides these
two new considerations to expand the embedding projection,
we also evaluate two existing post-processing heuristics to
reduce the effect of domain-shift in ZSL. These include (3)
self-training, which adapts test-class descriptors based on
unlabeled testing data to bridge the domain shift (Fu et al.
2014c) and (4) Hubness correction which re-ranks the test-
data’s match to novel class descriptions in order to avoid the
bias toward ‘hub’ categories induced by domain shift (Dinu
et al. 2015).

By exploring manifold regularization, data augmenta-
tion, self-training, and hubness correction, our word-vector
embedding approach outperforms consistently conventional
zero-shot approaches on all contemporary action datasets
(HMDB51, UCF101, Olympic Sports, CCV andUSAA). On
a more relaxed multi-shot setting, our representation is com-
parable with using low-level features directly. Interestingly,
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with unsupervised semantic embedding (word-vector) and
transductive access to testing data we are able to achieve
very competitive performance even compared to supervised
embedding methods (Fu et al. 2014b; Akata et al. 2015)
which require attribute annotation. Moreover, because our
method has a closed-form solution to the visual to semantic
spacemapping, it is very simple to implement, requiring only
a few lines of Matlab.
Transductive SettingOf the four strategies, manifold regular-
ization, self-training, and hubness correction assume access
to the full set of unlabelled testing data, which is called the
transductive setting (Belkin et al. 2006; Fu et al. 2015a).
This assumption would be true in many real-world prob-
lems. Video repositories, e.g. YouTube, can process large
batches of unlabelled videos uploaded by users. Transductive
zero-shot methods can be used to tag batches automatically
without manual annotation, or add a new tag to the ontology
of an existing annotated set.
New Insights In order to better understand ZSL, this study
performs a detailed analysis of the relationship between train-
ing and testing classes for zero-shot learning, revealing the
causal connection between known and novel category recog-
nition performance.
Contributions Our key contributions are threefold: (1) We
explore jointly four mechanisms for expanding ZSL by
addressing its domain-shift challenge, including three trans-
ductive learning strategies—manifold regularization, self-
training and hubness correction. Our model is both closed-
form in solving the visual to semantic mapping and unsu-
pervised in constructing the semantic embeddings. (2) We
show extensive experiments to demonstrate a very simple
implementation of this closed-formmodel that both runs very
quickly and is capable of achieving the state-of-the-art ZSL
performance on contemporary action/event datasets. (3) We
provide new insight, for the first time, into the underlying
factors affecting the efficacy of ZSL.

2 Related Work

2.1 Action Recognition

Video action recognition is now a vast and established area
in computer vision and pattern recognition due to the wide
application in video surveillance, interaction between human
and electronic devices. Extensive surveys of this area are con-
ducted by Aggarwal and Ryoo (2011), Poppe (2010). Recent
progress in this area is attributed to densely tracking points
and computing hand-crafted features which are fed into clas-
sical supervised classifiers (e.g. SVM) for recognition (Wang
et al. 2016).
Human Action Datasets Video datasets for action recogni-
tion analysis have experienced constant developing. Early

datasets focus on simple and isolated human actions per-
formed by a single person, e.g. KTH (Schuldt et al. 2004)
(2004) andWeizmann (Gorelick et al. 2007) (2005) datasets.
Due to the growth of internet video sharing, e.g. YouTube
and Vimeo, action datasets collected from online reposito-
ries are emerging, e.g. Olympic Sports (Niebles 2010) in
2010, HMDB51 (Kuehne et al. 2011) in 2011 and UCF101
(Soomro et al. 2012) in 2012.
EventDatasetsTo recognizemore complex eventswith inter-
actions between people and objects, event datasets including
Columbia Consumer Video dataset (CCV) (Jiang et al. 2011)
and the TRECVID Multimedia Event Detection (MED)
dataset (Over et al. 2014) are becoming popular.
Feature Representation Local space-time feature approaches
have become the the prevailing strategies due to not requir-
ing non-trivial object tacking and segmentation. In these
approaches, local interest points are first detected (Laptev
2005) or densely sampled (Wang et al. 2016). Visual descrip-
tors invariant to clutter, appearance and scale are calculated in
a spatiotemporal volume formed by the interest points. Dif-
ferent visual descriptors have been proposed to capture the
texture, shape and motion information, including 3D-SIFT
(Scovanner et al. 2007), HOG3D (Klaser et al. 2008) and
local trinary patterns (Yeffet and Wolf 2009). Among these,
dense trajectory features with HOG, HOF andMBH descrip-
tors (Wang et al. 2013) and its variant improved trajectory
features (Wang et al. 2016) produce state-of-the-art perfor-
mance on action recognition. Therefore,we choose improved
trajectory feature (ITF) for our low-level feature representa-
tion.

2.2 Zero-Shot Learning

Zero-shot learning aims to achieve dynamic construction of
classifiers for novel classes at testing time based on semantic
descriptors provided by humans or existing knowledge bases,
rather than labeled examples. This approach was popularised
by the early studies (Larochelle et al. 2008; Palatucci et al.
2009; Lampert et al. 2009). Since then numerous studies have
been motivated to investigate ZSL due to the scalability bar-
rier of exhaustive annotation for supervised learning, and the
desire to emulate the human ability to learn from description
with few or no examples.
ZSL Architectures Various architectures have been proposed
for zero-shot recognition of classes y given data X. Sequen-
tial architectures (Lampert et al. 2009; Fu et al. 2014b,
2015a; Liu et al. 2011; Zhao et al. 2013; Lazaridou et al.
2014; Norouzi et al. 2014) setup classifier/regressor map-
pings Z = f (X) to predict semantic representations Z,
followed by a recognition function y = r(Z). The visual fea-
ture mapping f (·) is learned from training data and assumed
to generalise, and the recogniser is given by the human or
external knowledge. Converging architectures (Akata et al.
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2015; Yang and Hospedales 2015; Romera-Paredes and Torr
2015; Frome et al. 2013) setup energy functions E(X,Z)

which are positive when X and Z are from matching classes
and negative otherwise. In this work, we adopt a sequential
regression approach for simplicity and efficiency of closed-
form solution, and amenability to exploiting the unlabelled
data manifold.
Attribute Embeddings The most popular intermediate repre-
sentation for ZSL has been attributes, where categories are
specified in terms of a vector of binary (Lampert et al. 2009;
Liu et al. 2011; Zhao et al. 2013) or continuous (Fu et al.
2014b; Akata et al. 2015; Romera-Paredes and Torr 2015)
attributes. However, this approach suffers inherently from
the need to agree upon a universal attribute ontology, and
the scalability barrier of manually defining each new class
in terms of an attribute ontology that grows with breadth of
classes considered (Fu et al. 2014b; Akata et al. 2015).
Word-VectorEmbeddingsWhile other representations includ-
ing taxonomic (Akata et al. 2015), co-occurence (Gan et al.
2015; Mensink et al. 2014; Habibian et al. 2014b) and
template-based (Larochelle et al. 2008) have been consid-
ered, word-vector space ZSL (Fu et al. 2015a; Akata et al.
2015; Xu et al. 2015; Lazaridou et al. 2014; Norouzi et al.
2014; Frome et al. 2013) has emerged as the most effec-
tive unsupervised alternative to attributes. In this approach,
the semantic class descriptor Z is generated automatically
from existing unstructured text knowledge bases such as the
Wikipedia. In practice, this often means the target Z of map-
ping Z = f (X) is given by the internal representation of a
textmodelling neural network (Mikolov et al. 2013). This can
be more intuitively understood as encoding each class name
in terms of a vector describing its co-occurance frequency
with other terms in a text corpus (Lazaridou et al. 2014).
In sequential architectures the final recognition is typically
performed with nearest neighbour (NN) matching of the pre-
dicted class descriptor (Xu et al. 2015; Lazaridou et al. 2014;
Norouzi et al. 2014).
Domain-Shift Every ZSL method suffers from the issue of
domain shift between the training class on which the map-
ping f (·) or energy function E(·, ·) is trained, and the disjoint
set of testing classes to which it is tested on. Although this
is a major reason why it is hard to obtain competitive results
with ZSL strategies, it is only recently this problem has been
studied explicitly (Dinu et al. 2015; Fu et al. 2015a; Romera-
Paredes and Torr 2015). In this work, we focus primarily
on how to mitigate this domain-shift problem in ZSL for
action recognition. That is, by making the training data more
representative thus learning a more general visual feature to
semantic space mapping (dataset augmentation), transduc-
tively exploiting both labelled and unlabelled data manifold
to learn an embedding mapping that generalises better to
the testing data (manifold regularized regression), and post-
processing corrections to adapt (self-training) the classifier

at the testing time therefore to improve its robustness (hub-
ness correction) to domain shift. While transductive (Dinu
et al. 2015; Fu et al. 2015a; Xu et al. 2015) strategies have
been exploited before as post-processing, this is the first time
it have been exploited for learning the embedding itself via
manifold regression.
ZSL Insights Previous studies have provided particular
insight into the ZSL problem, including Rohrbach et al.
(2010), Akata et al. (2015) who focus on exploring and
comparing different class-label embeddings (we use word-
vectors), Rohrbach et al. (2011) who explores scalability to
large scale settings, andDinu et al. (2015)who discusseswhy
ZSL is harder than supervised learning due to the hubness
problem. Our insights aim to complement the above studies
by exploringwhen positive transfer occurs, and showing how
it is possible to predict this in advance.

2.3 ZSL for Action Recognition

Despite clear appeal from ZSL, few studies have consid-
ered it for action recognition. Early attribute-centric studies
took latent SVM (Liu et al. 2011) and topic model (Fu et al.
2014b; Zhao et al. 2013) approaches, neither of which are
very scalable for large video datasets. Thus more recent
studies have started to consider unsupervised embeddings
including semantic relatedness (Gan et al. 2015) and word-
vectors (Xu et al. 2015). However, most prior ZSL action
recognition studies do not evaluate against a wide range
of realistic set of contemporary action recognition bench-
marks, restricting themselves to a single dataset of USAA
(Fu et al. 2014b; Zhao et al. 2013), or Olympic Sports (Liu
et al. 2011). In this work, we fully explore word-vector-based
zero-shot action recognition, and demonstrate its superiority
to attribute-based approaches, despite the latter’s supervised
ontology construction. Another line of work towards zero-
shot action recognition have been studied by Jain et al. (2015)
who proposed to exploit the vast object annotations, images
and textual descriptions, e.g. ImageNet (Deng et al. 2009).

2.4 ZSL for Event Detection

In contrast to action recognition, another line of work on the
related task of event detection typically dealswith temporally
longermultimedia videos. Themost widely studied test is the
TRECVID Multimedia Event Detection (MED) benchmark
(Over et al. 2014). In the zero-shotMED task (MED0EK), 20
events are to be detected among a 27K video (Test Set MED)
with no positive examples of each test event available for
training. Existing studies (Wu et al. 2014; Chen et al. 2014;
Habibian et al. 2014a) typically discover a ‘concept space’
by extracting frequent terms with pruning in video metadata
(per-video text description) and learning concept classifiers
on the 10KvideoResearch Set. Then for each of the 20 events
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to be detected, a query is generated as a concept vector from
the metadata of the event (textual description of event) (Wu
et al. 2014) or an event classifier is learned on 10 positive
examples of the testing event (Habibian et al. 2014a). The
testing videos are finally tested against the concept classifiers
and then matched to the query as inner product between con-
cept detection scores and query concepts (Wu et al. 2014) or
through the event classifier (Habibian et al. 2014a). Alterna-
tively, visual concept can be mined from noisy online image
repositories. In the concept space, a query is then gener-
ated from event name and keywords which are extracted
from event definitions (Chen et al. 2014). These approaches
rely on two assumptions: (1) A large concept training pool
(10K video) with per-video textual description annotated
by experts. (2) A detailed description of the event to be
detected is needed to generate the query. For example a typ-
ical event description includes the name—‘Birthday Party’,
Explication—‘A birthday in this context is the anniversary of
a person’s birth etc’, Object/People—‘Decorations, birthday
cake, candles, gifts, etc’. Since detailed per-video annota-
tions and detailed descriptions of event types are not widely
available in other video databases, in this work we focus on
exploring the TRECVID task with the more challenging but
also more broadly applicable setting of event name-driven
training and queries only. This setting is rarely studied for
TRECVID, except in the recent study (Jain et al. 2015)
which explores using a Fisher vector to encode compound
event/action names.

3 Methodology

To formalise the problem a list of notations are first given in
Table 1. We have a training video set Ttr = {Xtr , ytr } where
Xtr = {xi }i=1···nl is the set of dx dimensional low-level fea-
tures, e.g. Fisher Vector encoded MBH and HOG. For each
of the nl labelled training videos yi is the class names/labels
of each instance, e.g. “brush hair” and “handwalk”. We also
have a set of testing videos Tte = {Xte, yte} with nu unla-
belled testing video instances. The goal of ZSL is to learn to
recognise videos in Xte whose classes yte are disjoint from
any seen data at training time: ytr ∩ yte = ∅.

3.1 Semantic Embedding Space

To bridge the gap between disjoint training and testing
classes, we establish a semantic embedding spaceZ based on
word-vectors. In particularwe use a neural network (Mikolov
et al. 2013) trained on a 100 billion word corpus to realise a
mapping g : y → Z that produces a unique dz dimensional
encoding vector of each dictionary word.
CompoundNamesThe above procedure only deals with class
names that are unigram dictionary words. To process com-

Table 1 Basic notations

Notation Description

X ∈ R
dx×N ; xi Visual feature matrix for N instances;

Column representing the i-th instance

y ∈ Z
1×N ; yi Integer class labels for N instances; Scalar

representing the i-th instance

Z ∈ R
dz×N ; zi Semantic embedding for N instances;

Column representing the i-th instance

K ∈ R
N×N Kernel matrix

A ∈ R
dz×N Regression coefficient matrix

f : X → Z Visual to semantic mapping function

g : y → Z Class name embedding function

λA ∈ R Ridge regression regularizor

λI ∈ R Manifold regression regularizor

NG
K ∈ Z

+ KNN Graph parameter for manifold
regularizor

Nst
K ∈ Z

+ KNN parameter for Self-Training
procedure

pound names commonly occurring in action datasets, e.g.
“brush hair” or “ride horse”, that do not exist as individ-
ual tokens in the corpus, we exploit compositionally of the
semantic space (Mitchell and Lapata 2008). Various com-
position methods have been proposed (Mitchell and Lapata
2008; Milajevs et al. 2014) including additive, multiplica-
tive and others, but our experiments showed no significant to
using others besides addition, so we stick with simple addi-
tive composition.

Suppose the i th class name yi is composed of words
{yi j } j=1···w. We generate a single dz dimensional vector z
out of the word-vector yi by a averaging word-vectors for
constituent words {yi j }:

zi = 1

w
·

w∑

j=1

g(yi j ) (1)

3.2 Visual to Semantic Mapping

Mapping by Regression In order to map video features into
the semantic embedding space constructed above, we train a
regressionmodel f : X → Z from dx dimensional low-level
visual feature space to the dz dimensional embedding space.
The regression is trained using training instances Xtr =
{xi }i=1···nl and the corresponding embedding Ztr = g(ytr )
of the instance class name y as the target value. Variousmeth-
ods have previously been used for this task including linear
support vector regression (SVR) (Fu et al. 2014b, 2015a;
Xu et al. 2015) and more complex multi-layer neural net-
works (Socher et al. 2013; Lazaridou et al. 2014; Yang and
Hospedales 2015). Since we will use fisher vector encoding
(Perronnin et al. 2010) for features X, we can easily apply
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simple linear regression for f (·). Specifically, we use l2 reg-
ularized linear regression (aka ridge regression) to learn the
visual to semantic mapping.
Kernel Ridge Regression The fisher vector encoding gener-
ates a very high dimensional feature 2×ddescr×Nk where Nk

is the number of components in the GaussianMixture Model
(GMM) and ddescr is the dimension of raw descriptors. This
usually results in many more feature dimensions than train-
ing samples. Thuswe use the representer theorem (Scholkopf
and Smola 2002) and formulate a kernelized ridge regres-
sion with a linear kernel in Eq. (2). The benefit of kernelised
regression is to reduce computation as the closed-form solu-
tion to A only involves computing the inverse of a N × N
rather than a dx × dx matrix where N < dx .

k(xi , x j ) =
dx∑

d=1

(xid · x jd) (2)

The visual features x can be then projected into semantic
space via Eq. (3) where a j is the j th column of regression
parameter matrix A.

f (x) =
nl∑

j=1

a j k(x, x j ) (3)

To improve the generalisation of the regressor, we add
the l2 regularizer || f ||2K = Tr(AKAT ) to reduce overfitting
by penalising extreme values in the regression matrix. This
gives the kernel ridge regression loss:

min
f

1

nl

nl∑

i=1

||zi − f (xi )||22 + γ || f ||2K

min
A

1

nl
T r

(
(Z − AK)T (Z − AK)

)
+ γ Tr(AKAT )

(4)

where the regression targets are generated by the vector
representation of each class name zi = g(yi ) and Z =
[z1z2 · · · ]dz×nl ,A is the dz×nl regression coefficient matrix,
K is the nl ×nl kernel matrix and nl is the number of labelled
training instances. The loss function is convex with respect
to the A. Taking derivatives w.r.t A and setting the gradient
to 0 leads to the following closed-form solution where I is
the identity matrix.

A = Z (K + γAnlI)−1 (5)

The above mapping by Kernel Ridge Regression provides
a simple solution to embed visual instances into semantic
space. However the simple ridge regression only consid-
ers limited labelled training data Xtr without exploiting the
underline structure of the manifold on both labelled and
unlabelled data nor any additional related labelled data from

other datasets. In the following sections, we introduce two
approaches to improve the quality of mapping: (1)Manifold-
Regularized Regression and (2) Data Augmentation.

3.2.1 Manifold Regularized Regression

As discussed earlier, conventional regularization provides
poor ZSL due to disjoint training and testing classes. To
improve recognition of testing classes, we explore trans-
ductive semi-supervised regression. The idea is to exploit
unlabelled testing data Xte to discover the manifold struc-
ture in the zero-shot classes, and preserve this structure in
the semantic space after visual-semantic mapping. There-
fore, this is also known as manifold regularization. Note that
we use labelled to refer to training dataXtr and unlabelled to
refer to testing dataXte. So we use semi-supervisedmanifold
regularization in a transductive way, requiring access to the
unlabelled/testing data Xte during the training phase.

To that end, we introduce manifold laplacian regulariza-
tion (Belkin et al. 2006) into the ridge regression formulation.
This additional regularization term ensures that if two videos
are close to each other in the visual feature space, this rela-
tionship should be kept in the semantic space as well.

We model the manifold by constructing a symmetric K
nearest neighbour (KNN)graphW on the allnl+nu instances
where nl = |Ttr | denotes the number of labelled training
instances and nu = |Tte| denotes the number of unlabelled
testing instances. The KNN Graph is constructed by first
computing a linear kernel matrix between all instances. Then
for each instance we select the top K neighbours and assign
an edge between these nodes. This gives us a directed graph
which is then symmetrized by converting to an undirected
graph by connecting nodes with any directed edge between
them. LetD be a diagonal matrix with dii = ∑nl+nu

j=1 wi j , we
get the graph laplacian matrix L = D − W. The manifold
regularizer is then written as:

|| f ||2I = 1

2

nl+nu∑

i, j

wi j || f (xi ) − f (x j )||22

= 1

2

∑

i, j

wi j f
�(xi ) f (xi ) + 1

2

∑

i, j

wi j f
�(x j ) f (x j )

−
∑

i, j

wi j f
�(xi ) f (x j )

=
∑

i

dii f
�(xi ) f (xi ) −

∑

i, j

wi j f
�(xi ) f (x j )

(6)
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Further denoting f = [ f (x1) f (x2) · · · f (xnl+nu )] =
AK. Equation (6) can be rewritten in matrix form as:

|| f ||2I = Tr(f�fD) − Tr(f�fW)

= Tr(f�fL)

= Tr(K�A�AKL)

(7)

where K is a (nl + nu) × (nl × nu) dimensional kernel
matrix constructed upon all labelled and unlabelled instances
via Eq. (2). Combining all regularization terms we obtain
the overall loss function in Eq. (8), where for simplicity we

denote J =
[
Inl×nl 0nl×nu
0nu×nl 0nu×nu

]
and Z̃ = [Ztr 0dz×nu ]. The

final loss function can be thus written in the matrix form as:

min
A

1

nl
T r

(
(Z̃ − AKJ)�(Z̃ − AKJ)

)
+ γATr(AKA�)

+ γI

(nl + nu)2
Tr(K�A�AKL)

(8)

The loss function is convex w.r.t. the dz×(nl +nu) regres-
sion coefficient matrix A. A closed-form solution to A can
be obtained in the same way as Kernel Ridge Regression.

A = Z̃
(
KJ + γAnlI + γI nl

(nl + nu)2
KL

)−1

(9)

Equation (9) provides an efficient way to learn the visual
to semantic mapping due to the closed-form solution com-
pared to alternative iterative approaches (Fu et al. 2014b;
Habibian et al. 2014b). At testing time, the mapping can be
efficiently applied to project new videos into the embedding
withEq. (3).Notewhen γI = 0manifold regression becomes
exactly kernel regression.

3.2.2 Improving the Embedding with Data Augmentation

As discussed, the mapping often generalises poorly because:
(i) actions are visually complex and ambiguous, and (ii) even
a mapping well learned for training categories may not gen-
eralise well to testing categories as required by ZSL, because
the volume of training data is small compared to the com-
plexity of a general visual to semantic space mapping. The
manifold regression described previously ameliorates the lat-
ter issues, but we next discuss a complementary strategy of
data augmentation.

Another way to further mitigate both of these problems is
by augmentation with any available auxiliary dataset which
need not contain classes in common with the target test-
ing dataset Ttrg

te in which zero-shot recognition is performed.
This will provide more data to learn a better generalising

regressor z = f (x). We formalize the data augmenta-
tion problem as follows. We denote the target dataset as
Ttrg = {Xtrg, ytrg} split into training setTtrg

tr = {Xtrg
tr , ytrgtr }

and zero-shot testing set Ttrg
te = {Xtrg

te , ytrgte }. Zero-shot
recognition is performed on the testing set of the target
dataset (e.g. HMDB51). There are naux other available aux-
iliary datasets Taux

i=1···naux = {Xaux
i , yauxi } (e.g. UCF101,

Olympic Sports and CCV). We propose to improve the
regression by merging the target dataset training data and
all auxiliary sets. The auxiliary dataset class names yauxi are
projected into the embedding space with Zaux

i = g(yauxi ).
The auxiliary instances Xaux are aggregated with the tar-
get training data as Xtr = [Xtrg

tr Xaux
1 · · · Xaux

naux ] and

Ztr = [Ztrg
tr Zaux

1 · · · Zaux
naux ] where Ztrg

tr = g(ytrgtr ). The
augmented training data Xtr and class embeddings Ztr are
used together to train the regressor f .

To formulate the loss function in matrix form we denote
ntrgl = |Ttrg

tr |, ntrgu = |Ttrg
te |, nauxl = ∑

i
|Taux

i |. Let K̃ be

the (ntrgtr + ntrgte + nauxl ) × (ntrgtr + ntrgte + nauxl ) dimensional
kernel matrix on all target and auxiliary data, and L̃ is the
corresponding graph laplacian.We thenwrite the block struc-
tured J̃ matrix as:

J̃ =
[
I
(ntrgl +nauxl )×(ntrgl +nauxl )

0

0 0ntrgu ×ntrgu

]
(10)

The loss function of manifold regularized regression with
data augmentation is thus written in a matrix form as:

min
A

1

(ntrgtr + nauxl )
Tr

(
(Z̃tr − AK̃J̃)T (Z̃tr − AK̃J̃)

)

+ γATr(AK̃AT )

+ γI

(ntrgtr + ntrgte + nauxl )2
Tr(K̃TATAK̃L̃)

(11)

In the same way as before, we obtain the closed-form
solution to A:

A = Z̃tr

(
K̃J̃ + γA(ntrgtr + nauxl )I

+ γI (n
trg
tr + nauxl )

(ntrgtr + ntrgte + nauxl )2
K̃L̃

)−1 (12)

where by setting γI = 0 we obtain a kernel ridge regression
with only data augmentation. This solution can be conve-
niently implemented in a single line of Matlab.

3.3 Zero-Shot Recognition

Given the trained mappings f (·) and g(·) we can now com-
plete the zero-shot learning task. To classify a testing instance
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x∗ ∈ Xte, we apply nearest neighbour matching of the
projected testing instance f (x∗) against the vector represen-
tations of all the testing classes g(y) (named the prototype
throughout this paper):

ŷ = arg min
y∈yte

‖ f (x∗) − g(y)‖ (13)

Distances in such embedding spaces have been shown to
be best measured using the cosine metric (Mikolov et al.
2013; Fu et al. 2014b). Thus we l2 normalise each data point,
making Euclidean distance effectively equivalent to cosine
distance in this space.

3.3.1 Ameliorating Domain Shift by Post Processing

In the previous two sections we introduced two methods to
improve the embedding f for ZSL. In this section we now
discuss two post-processing strategies to further reduce the
impact of domain shift.
Self-training for Domain Adaptation The domain shift
induced by applying f (·) trained on Xtr to data of differ-
ent statistics Xte means the projected data points f (Xte)

do not lie neatly around the corresponding class projec-
tions/prototypes g(yte) (Fu et al. 2015a). To ameliorate this
domain shift, we explore transductive self-training to adjust
unseen class prototypes to be more comparable to the pro-
jected data points. For each category prototype g(y∗), y∗ ∈
yte we search for the Nst

K nearest neighbours among the unla-
belled testing instance projections, and re-define the adapted
prototype g̃(y∗) as the average of those Nst

K neighbours. Thus
if NNK (g(y∗)) denotes the set of K nearest neighbours of
g(y∗), we have:

g̃(y∗) := 1

Nst
K

Nst
K∑

f (x∗)∈NNK (g(y∗))
f (x∗) (14)

The adapted prototypes g̃(y∗) are now more directly compa-
rable with the testing data for matching using Eq. (13).
Hubness Correction One practical effect of the ZSL domain
shift was elucidated in Dinu et al. (2015), and denoted the
‘Hubness’ problem. Specifically, after the domain shift, there
are a small set of ‘hub’ test-class prototypes that becomenear-
est or K nearest neighbours to the majority of testing samples
in the semantic space, while others are NNs of no testing
instances. This results in poor accuracy andhighly biasedpre-
dictions with themajority of testing examples being assigned
to a small minority of classes. We therefore explore the sim-
ple solutions proposed by Dinu et al. (2015) which takes into
account the global distribution of zero-shot samples and pro-
totypes. This method is transductive as with self-training and
manifold-regression. Specifically, we considered two alter-

native approaches: Normalized Nearest Neighbour (NRM)
and Globally Corrected (GC).

The NRM approach eliminates the bias towards hub pro-
totypes by normalizing the distance of each prototype to all
testing samples prior to performing Nearest Neighbour clas-
sification as defined in Eq. (13).More specifically, denote the
distance between prototype y j and testing sample {x∗

i }i=1···nu
as di j = || f (x∗

i )−g(y j )||.We then l2 normalize the distances
between prototype y j and all nu testing samples in Eq. (15).
This normalized distance d̂i j replaces the original distance
di j for doing nearest neighbour matching in Eq. (13).

d̃i j = di j/

√√√√
nu∑

i

d2i j (15)

The alternatively GC approach damps the effect of hub
prototypes by using ranks rather than the original distance
measures. We denote the function Rank(y, x∗

i ) as the rank
of testing sample x∗

i w.r.t the distance to y. Specifically, the
rank function is defined as Eq. (16) where 1 is the indicator
function.

Rank(y, x∗
i ) =

∑

x∗
j∈Xte\x∗

i

1(|| f (x∗
j ) − g(y)|| ≤ || f (x∗

i − g(y))||) (16)

The rank function always return an integer value between
0 and |Xte| − 1. Thus the label of testing sample x∗

i can
be predicted by Eq. (17) in contrast to simple nearest by
neighbour Eq. (13).

ŷ = arg min
y∈yte

Rank(y, x∗
i ) (17)

Note, both strategies do not alter the ranking of testing
samples w.r.t. each prototype. However, the ranking of pro-
totypes w.r.t. each testing sample is altered thus potentially
improves the quality of NN matching. Overall, due to the
nature of a retrieval task which depends on the ranking of
testing samples w.r.t. prototypes, the performance of retrieval
task is not affected by the two hubness correction methods.

3.4 Multi-Shot Learning

Althoughour focus is zero-shot learning,we also note that the
semantic embedding space provides an alternative represen-
tation for conventional supervised learning. For multi-shot
learning, wemap all data instancesX into the semantic space
using projection Z = f (X), and then simply train SVM
classifiers with linear kernel using the l2 normalised projec-
tions f (X) as data. In the testing phase, testing samples are
projected into embedding space via the mapping f (X) and
categorised using the SVM classifiers.
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(a) (b) (c) (d)

Fig. 2 Example frames for different action datasets, a HMDB51, b UCF101, c Olympic Sports, d CCV

4 Experiments

4.1 Datasets and Settings

DatasetsExperiments are performed on five popular contem-
porary action recognition and event detection datasets includ-
ing a Large Human Motion Database (HMDB51) (Kuehne
et al. 2011), UCF101 (Soomro et al. 2012), Olympic
Sports (Niebles 2010) and Columbia Consumer Video
(CCV) (Jiang et al. 2011). HMDB51 is specifically created
for human action recognition. It has 6766videos fromvarious
sources with 51 categories of actions. UCF101 is an action
recognition dataset of 13320 realistic action videos, collected
from YouTube, with 101 action categories. Olympic Sports
is collected from YouTube, and is mainly focused on sports
events. It has 783 videos with 16 categories of events. CCV
contains 9682 YouTube videos over 20 semantic categories.
We illustrate some example frames in Fig. 2. The action/event
category names are presented in Table 2. We also evalu-
ate USAA (Fu et al. 2014b)—a subset of CCV specifically
annotated with attributes—in order to facilitate comparison
against attribute centric ZSL approaches. In addition to above
action/event datasets, we also studied a large complex event
dataset—TRECVID MED 2013. There are five components
to the dataset including Event Kit training, Background train-
ing, test set MED, test set Kindred and Research Set. We use
standard test set MED for zero-shot testing data and Event
Kit as training data.
Visual Feature Encoding For each video we extract improved
trajectory feature (ITF) descriptors (Wang and Schmid 2013)
and encode them with Fisher Vectors (FV). We first compute
ITFwith three descriptors (HOG, HOF andMBH).We apply
PCA to reduce the dimension of descriptors by half which
results in descriptors with 198 dimensions in total. Then we
randomly sample 256,000 descriptors from each of the five
action/event datasets and learn a Gaussian Mixture Model
with 128 components from the combined training descrip-
tors. Finally the dimension of FV encoded feature is equal
to dx = 2 × 128 × 198 = 50,688. The visual feature for
TRECVID MED 2013 dataset was extracted using ITF with
HOG and MBH descriptors encoded with Fisher Vectors.

We use the FV encoded feature provided by Habibian et al.
(2014b).
SemanticEmbedding SpaceWeadopted the skip-gramneural
network model (Mikolov et al. 2013) trained on the Google
News dataset (about 100 billion words). This neural net-
work can then encode any of approximately 3 million unique
worlds as a dz = 300 dimension vector.

4.2 Zero-Shot Learning on Actions and Events

Data Split Because there is no existing zero-shot learn-
ing evaluation protocol for most existing action and event
datasets we propose our own splits3.We first propose a 50/50
category split for all datasets. Visual to semantic space map-
pings are trained on the 50% training categories, and the other
50% are held out unseen for testing time. We randomly gen-
erate 50 independent splits and take the mean accuracy and
standard deviation for evaluation. Among the 50 splits, all
categories are evaluated as testing classes, and the frequency
is evenly distributed.

4.2.1 Evaluation of Components

To evaluate the efficacy of each component we considered an
extensive combination of blocks including manifold regular-
izer, self-training, hubness correction and data augmentation.
Specificallywe evaluated the followingoptions for each com-
ponent.

– Data Augmentation Using only within target dataset
training data (X) to learn the embedding f (x), or also bor-
rowing data from the auxiliary datasets (�) (Sect. 3.2.2).
For each of the four datasets HMDB51, UCF101,
Olympic Sports and CCV, the other three datasets are
treated as the auxiliary sets. Note, there are overlapping
categories between the auxiliary and target sets in the
sense of exact name match. For instance, the action class
Biking exists in both UCF101 and CCV. To avoid vio-
lating the zero-shot assumption we exclude these exact

3 The data split will be released on our website.
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Table 2 Category names of
each dataset

Dataset Category names

HMDB51 brush_hair, cartwheel, catch, chew, clap, climb, climb_stairs, dive,
draw_sword, dribble, drink, eat, fall_floor, fencing, flic_flac, golf,
handstand, hit, hug, jump, kick, kick_ball, kiss, laugh, pick, pour,
pullup, punch, push, pushup, ride_bike, ride_horse, run,
shake_hands, shoot_ball, shoot_bow, shoot_gun, sit, situp, smile,
smoke, somersault, stand, swing_baseball, sword, sword_exercise,
talk, throw, turn, walk, wave

UCF101 Apply Eye Makeup, Apply Lipstick, Archery, Baby Crawling, Balance
Beam, Band Marching, Baseball Pitch, Basketball Shooting,
Basketball Dunk, Bench Press, Biking, Billiards Shot, Blow Dry
Hair, Blowing Candles, Body Weight Squats, Bowling, Boxing
Punching Bag, Boxing Speed Bag, Breaststroke, Brushing Teeth,
Clean and Jerk, Cliff Diving, Cricket Bowling, Cricket Shot, Cutting
In Kitchen, Diving, Drumming, Fencing, Field Hockey Penalty,
Floor Gymnastics, Frisbee Catch, Front Crawl, Golf Swing, Haircut,
Hammer Throw, Hammering, Handstand Pushups, Handstand
Walking, Head Massage, High Jump, Horse Race, Horse Riding,
Hula Hoop, Ice Dancing, Javelin Throw, Juggling Balls, Jump Rope,
Jumping Jack, Kayaking, Knitting, Long Jump, Lunges, Military
Parade, Mixing Batter, Mopping Floor, Nun chucks, Parallel Bars,
Pizza Tossing, Playing Guitar, Playing Piano, Playing Tabla, Playing
Violin, Playing Cello, Playing Daf, Playing Dhol, Playing Flute,
Playing Sitar, Pole Vault, Pommel Horse, Pull Ups, Punch, Push
Ups, Rafting, Rock Climbing Indoor, Rope Climbing, Rowing, Salsa
Spins, Shaving Beard, Shotput, Skate Boarding, Skiing, Skijet, Sky
Diving, Soccer Juggling, Soccer Penalty, Still Rings, Sumo
Wrestling, Surfing, Swing, Table Tennis Shot, Tai Chi, Tennis
Swing, Throw Discus, Trampoline Jumping, Typing, Uneven Bars,
Volleyball Spiking, Walking with a dog, Wall Pushups, Writing On
Board, Yo Yo

Olympic Sports basketball layup, bowling, clean and jerk, discus throw, hammer throw,
high jump, javelin throw, long jump, diving platform 10m, pole
vault, shot put, snatch, diving springboard 3m, tennis serve, triple
jump, vault

CCV Basketball, Baseball, Soccer, IceSkating, Skiing, Swimming, Biking,
Cat, Dog, Bird, Graduation, Birthday, WeddingReception,
WeddingCeremony, WeddingDance, MusicPerformance,
NonmusicPerformance, Parade, Beach, Playground

matching classes in the auxiliary set. However, we con-
sider that semantic overlaps, e.g. Biking in UCF101 and
Ride Bike in HMDB51, should not be excluded because
recognizing such paraphrase of action category is the
problem to be solved by zero-shot learning and exploit-
ing such semantic relatedness is unique to word-vector
embedding approach.

– EmbeddingWecompare ridge regression (RR)withman-
ifold regularized ridge regression (MR) (Sect. 3.2).

– Self TrainingWith (�) or without (X) self-training before
matching (Sect. 3.3.1).

– Matching StrategyWe compare conventional NNmatch-
ing (NN) Eq. (13) versus Normalised Nearest Neighbour
(NRM) Eq. (15) and Globally Corrected (GC) matching
Eq. (17) (Sect. 3.3.1). Note that the hubness correction
methods (NRM and GC) do not change retrieval per-
formance. Therefore, NN/ NRM/ GC do not perform
differently on Olympic Sports and CCV.

– Transductive (Trans) Indicatingwhether the combination
of components is transductive (�) or not (X). The former
requires the access to unlabelled testing data.

Based on this breakdown of components, we note that
the condition (X–RR–X–NN–X) is roughly equivalent to the
methods in Socher et al. (2013) and Lazaridou et al. (2014),
and the conditions (X–RR–X–GC–�, X–RR–X–NRM–�)
are roughly equivalent to Dinu et al. (2015). We present the
results in Table 3.
Metrics HMDB, UCF and USAA are classification bench-
marks, sowe report average accuracymetric. Olympic Sports
and CCV are detection benchmarks, so we report mean aver-
age precision (mAP) metrics. We note that because distance
normalization (NRM) does not change the relative rank of
testing instances w.r.t. testing class, there is no difference
between NRM and NN for mAP. Therefore, we insert a ‘−’
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Table 3 Evaluation of the contribution of individual component (average % accuracy ± standard deviation for HMDB51, UCF101 and USAA and
mean average precision ± standard deviation for Olympic Sports and CCV)

Model Match ST Data Aug Trans HMDB51 UCF101 Olympic Sports CCV USAA

RR NN X X X 14.5± 2.7 11.7± 1.7 35.7± 8.8 20.7± 3.0 29.5± 5.5

RR NN � X � 17.0± 3.1 15.9± 2.3 37.3± 9.1 21.7± 3.2 30.2± 5.2

MR NN X X � 15.9± 3.1 12.9± 2.2 37.7± 9.5 21.4± 3.0 29.8± 4.0

MR NN � X � 18.6 ± 3.9 17.6± 2.7 38.6 ± 10.6 22.5 ± 3.4 35.5 ± 4.0

RR GC X X � 15.3± 2.7 13.5± 1.8 35.7± 8.8 20.7± 3.0 26.1± 6.7

RR GC � X � 17.0± 2.9 14.8± 2.0 37.3± 9.1 21.7± 3.2 29.0± 4.0

RR NRM X X � 16.1± 2.7 13.9± 1.5 – – 28.6± 7.2

RR NRM � X � 17.2± 2.9 16.1± 2.2 – – 28.6± 7.6

MR NRM X X � 18.0± 3.2 15.6± 2.0 – – 28.2± 5.4

MR NRM � X � 19.1 ± 3.8 18.0 ± 2.7 – – 31.6± 3.2

RR NN X � X 20.4± 2.9 15.7± 1.6 38.6± 7.5 30.3± 3.9 28.2± 4.6

RR NN � � � 23.6± 3.7 21.2± 2.4 42.0± 8.2 33.8 ± 4.7 42.8± 8.7

RR NRM X � � 21.0± 2.7 18.5± 1.7 – – 35.6± 2.6

RR NRM � � � 23.7± 3.4 22.2 ± 2.6 – – 42.6± 9.1

MR NN X � � 20.6± 2.9 17.2± 1.6 41.1± 7.7 30.4± 3.9 30.3± 4.9

MR NN � � � 23.5± 3.9 20.6± 2.4 43.2 ± 8.3 33.0± 4.8 41.2± 9.7

MR NRM � � � 24.1 ± 3.8 22.1± 2.5 – – 43.3 ± 10.9

Bold number indicates best performance
All ‘−’ indicate no difference in performance between NN and NRM

for Match-NRM on Olympic Sports and CCV. The perfor-
mance for these ‘−’ is the same as their NN counterparts.
Experimental Results We make the following observations
from the results in Table 3: (i) The simplest approach of
directly mapping features to the embedding space (X–RR–
X–NN–X (Socher et al. 2013; Lazaridou et al. 2014) works
reasonably well suggesting that semantic space is effec-
tive as a representation and supports ZSL. (ii) Manifold
regularization reliably improves performance compared to
conventional ridge regression by reducing the domain shift
through considering the unlabelled testing data (transductive
learning). (iii) Data augmentation also significantly improves
the results byproviding amore representative sample of train-
ing data for learning the embedding. (iv) In linewith previous
work self-training (Fu et al. 2015a) and Hubness (Dinu et al.
2015) post-processing improve results at testing time, and
this is complementary with our proposed manifold regular-
ization and data augmentation.

4.2.2 Comparison With State-of-the-Art

In addition to the above variants of our framework, we also
evaluate the following state-of-the-art approaches to ZSL on
action recognition tasks.As bothword-vector embedding and
manually labelled attributes are widely studied in the litera-
ture of zero-shot learning, we compare our approach using
both word-vector and attribute semantic embedding with the
state-of-the-art models. Attribute embedding is only evalu-

ated on UCF, Olympic Sports and USAA where attributes
are available.
Word-Vector Embedding For word-vector embedding, we
evaluate three alternative models:

1. Structured Joint Embedding (SJE) We use the code of
Akata et al. (2015) with FV encoded visual feature to
evaluate the performance on all 5 datasets. TheSJEmodel
employs bilinear ranking to ensure relevant labels (word-
vectors) are ranked higher than irrelevant labels.

2. Convex Combination of Semantic Embeddings (ConSE)
We implement the ConSE model (Norouzi et al. 2014)
with the same FV encoded feature and evaluate on all 5
datasets. The ConSE model firstly trains classifiers for
each known category p(y j |x). Given testing visual data
x, the semantic embedding of visual data is synthesized
by a linear combination of known category embeddings
as f (x) = ∑T

j=1 p(y j |x)z j where T is the top T known
classes.

3. Support Vector Embedding (SVE)Our preliminarymodel
published in Xu et al. (2015). This model learns the
visual-to-semantic mapping via support vector regres-
sion. Performance is reported on HMDB51 and UCF101
datasets.

Attribute Embedding In addition to word-vector embedding
based methods, we also compare against existing state-of-
the-art models using attribute embeddings. To enable direct
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comparisons with the same embedding, we carry out exper-
iments for our approach with attribute embedding as well
(although in this setting our data augmentation cannot be
applied). Specifically, we compare the following methods:

1. Direct Attribute Prediction (DAP) We implement the
method of Lampert et al. (2014), but using the same FV
encoded visual features and linear kernel SVM attribute
classifiers p(a|x). Recognition is then performed based
on attribute posteriors and manually specified attribute
descriptor p(a|y).

2. Indirect Attribute Prediction (IAP) (Lampert et al. 2014).
This differs from DAP by learning a per-category clas-
sifier p(y|x) from training data first and then use the
training category attribute-prototype dependency p(a|y)
to obtain attribute estimator p(a|x).

3. Human Actions by Attributes (HAA) (Liu et al. 2011).
We reproduce a simplified version of this model which
exploits the manually labelled attributes {am} for zero-
shot learning. Similar to DAP, a binary SVM classifier
is trained per attribute. In the testing phase, each testing
sample is projected into attribute space and then assigned
to the closest testing/unknown class based on cosine dis-
tance to the class prototype (NN).

4. Propagated Semantic Transfer (PST) (Rohrbach et al.
(2013, 2016)). Label propagation is adopted in this
approach to adjust the initial predictions of DAP. Specifi-
cally, a KNN graph is constructed in the attribute embed-
ding space and a smoothed solution is obtained transduc-
tively by semi-supervised label propagation (Zhou et al.
2004).

5. Multi-Modal Latent Attribute Topic Model (M2LATM)
(Fu et al. 2014b). It exploits both user-defined and discov-
ered latent attributes to facilitate zero-shot learning. This
model fuses multiple features—static (SIFT), motion
(STIP) and audio (MFCC), and thus has an advantage
compared to other methods evaluated that use vision
alone. We report the results on USAA from Fu et al.
(2014b).

6. Transductive Multi-View Bayesian Label Propagation
(TMV-BLP) (Fu et al. 2014a). This model builds a com-
mon space formultiple embeddings. It combines attribute
andword-vectors, and applies bayesian label propagation
to infer the category of testing instances. It evaluated on
USAA dataset with SIFT, STIP and MFCC features.

7. Transductive Multi-View Hypergraph Label Propaga-
tion (TMV-HLP) (Fu et al. 2015a). An improved version
of TMV-BLP. A distributed hypergraph was adopted
to replace the local neighbourhood graph in Fu et al.
(2014a).

8. Unsupervised Domain Adaptation (UDA). The UDA
model (Kodirov et al. 2015) learns dictionary on aux-
iliary data and adapts it to the target data as a constraint

on the target dictionary rather than blindly using the same
dictionary.

Mixed EmbeddingWe refer to exploiting attribute and word-
vector embeddings jointly as studied by Fu et al. (2015a) and
Akata et al. (2015). Although multi-view embedding is not
the focus of this work, we evaluate our model with a sim-
ple concatenation of attribute and word-vector embeddings.
Three alternatives are compared including TMV-BLP (Fu
et al. 2014a), UDA (Kodirov et al. 2015) and TMV-HLP (Fu
et al. 2015a).
Method Properties We indicate the nature of each approach
with four parameters. DA—if data augmentation is applied.
Trans—whether the approach requires transductive access
to testing data. Embed—what semantic embedding is used.
Embed-A, Embed-W and Embed A+W indicate attribute,
word vector, and both attribute+word vector embeddings
respectively. Feat—What visual feature is used. FV indi-
cates Fisher vector encoded dense trajectory feature; BoW
indicates bag of words encoded dense trajectory feature; and
SMS indicates joint SIFT, MFCC and STIP feature.
ExperimentalResultsThe full results are presented inTable 4,
from which we draw the following conclusions: (i) Our
non-transductive model (RR) is strong compared with alter-
nativemodelswith eitherword-vector embedding or attribute
embedding. For example, our RR model is able to beat
SJE and ConSE in UCF101, CCV and USAA with word-
vector embedding and beat DAP, IAP and HAA in Olympic
Sports and USAA. (ii) With transductive access to testing
data, our model MR–X–�–W is better than most alter-
native models with word-vector and competitive against
models with attribute embedding. (iii) The overall combi-
nation of all components, manifold regularized regression
(MR), Data Augmentation (DA) and Self-training and hub-
ness (Trans), with word-vector embedding (MR–�–�–W)
can yield very competitive performance. Depending on the
dataset, our overall model is comparable or significantly bet-
ter than the attribute-centricmethods, e.g. UCF101. (iv)With
mix-embedding (A+W) our model is still very competitive
against existing ZSL approaches and outperform TMV-BLP,
UDA and TMV-HLP. Apart from the above observations we
note that the ZSL performance variance is relatively high,
particularly in Olympic Sports and USAA datasets. This is
because specific choice of train/test classes in ZSL matters
more than specific choice of train/test instances in conven-
tional supervised learning. E.g., in olympic sports there are
highly related categories ‘high jump’—‘long jump’ and ‘div-
ing platform 10m’—‘diving springboard 3m’. Recognition
performance is higher when these pairs are separated in train-
ing and testing, and lower if they are both in testing. This issue
is explored further in Sect. 4.5.
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Table 4 Comparison with state-of-the-art approaches to ZSL. Both attribute and word-vector embeddings are studied for fair comparison

Model DA Trans Embed Feat HMDB51 UCF101 Olympic Sports CCV USAA

Random guess X X X X 4.0 2.0 12.5 10.0 25.0

RR (Ours) X X W FV 14.5± 2.7 11.7± 1.7 35.7± 8.8 20.7± 3.0 29.5± 5.5

MR (Ours) X � W FV 19.1± 3.8 18.0± 2.7 38.6± 10.6 22.5± 3.4 31.6± 3.2

MR (Ours) � � W FV 24.1 ± 3.8 22.1 ± 2.5 43.2 ± 8.3 33.0 ± 4.8 43.3 ± 10.9

SJE (Akata et al. 2015) X X W FV 12.0± 2.6 9.3± 1.7 34.6± 7.6 16.3± 3.1 21.3± 0.6

ConSe (Norouzi et al. 2014) X X W FV 15.0± 2.7 11.6± 2.1 36.6± 9.0 20.7± 3.1 28.2± 4.8

TMV-BLP (Fu et al. 2014a)a X � W SMS N/A N/A N/A N/A 41.0

TMV-HLP (Fu et al. 2015a)b X � W SMS N/A N/A N/A N/A 43.0

SVE (Xu et al. 2015) X X W BoW 12.9± 2.3 11.0± 1.8 N/A N/A N/A

RR (Ours) X X A FV N/A 12.6± 1.8 51.7± 11.3 N/A 44.2± 13.9

MR (Ours) X � A FV N/A 20.2 ± 2.2 53.5 ± 11.9 N/A 51.6 ± 10.0

DAP (Lampert et al. 2014) X X A FV N/A 15.2± 1.9 44.4± 9.9 N/A 37.9± 5.9

IAP (Lampert et al. 2014) X X A FV N/A 15.6± 2.2 44.0± 10.7 N/A 31.7± 1.6

HAA (Liu et al. 2011) X X A FV N/A 14.3± 2.0 48.3± 10.2 N/A 41.2± 9.8

PST (Rohrbach et al. 2013) X � A FV N/A 15.3± 2.2 48.6± 11.0 N/A 47.9± 10.6

M2LATM (Fu et al. 2014b) X � A SMS N/A N/A N/A N/A 41.9

TMV-BLP (Fu et al. 2014a)a X � A SMS N/A N/A N/A N/A 40.0

TMV-HLP (Fu et al. 2015a)b X � A SMS N/A N/A N/A N/A 42.0

UDA (Kodirov et al. 2015) X � A FV N/A 13.2± 1.9 N/A N/A N/A

MR (Ours) X � A+W FV N/A 20.8 ± 2.3 53.2 ± 11.6 N/A 51.9 ± 10.1

TMV-BLP (Fu et al. 2014a) X � A+W SMS N/A N/A N/A N/A 47.8

UDA (Kodirov et al. 2015) X � A+W FV N/A 14.0± 1.8 N/A N/A N/A

TMV-HLP (Fu et al. 2015a) X � A+W SMS N/A N/A N/A N/A 50.4

Bold number indicates best performance
N/A indicates not available due to the absence of attribute annotation or not reported by the original work
a Performances are estimated from Fig. 2a �(X + V ) and �(X + A) respectively in Fu et al. (2014a)
b Performances are estimated from Fig. 5c �(X + V ) and �(X + A) respectively in Fu et al. (2015a)

4.2.3 Generalising the Transductive Setting

In this section, we study the possibility to apply the trans-
ductive learning ideas investigated here to improve existing
zero-shot learning approaches with both word-vector and
attribute embeddings. In particular we consider transductive
generalisations of three alternative models SJE, ConSE and
HAA.
SJE SJE (Akata et al. 2015) uses a bi-linear mapping
to evaluate the compatibility between novel instances and
word-vectors. Suppose we have the bi-linear form x�Wz
to compute the compatibility score between category name
word-vector z (output embedding) and video instance x
(input embedding) which corresponds to Eq. (1) in Akata
et al. (2015). Given learned model W we can first project
video instance by this mapping as x�W. Then we can apply
self-training to adjust the novel category’s output embedding
z as,

z̃ = 1

|NNk(z)|
∑

i∈NNk (z)

(x�
i W) (18)

where the function NNk(·) returns the k nearest neighbour
of z w.r.t. all testing video instances {x�

i W}. The adjusted
category embedding replaces the original output embedding
for prediction. We can resolve the hubness issue for bi-linear
model as well. Specifically, we use the 1−x�Wz normalised
to between 0 and 1 as the distance and apply the samedistance
normalization trick introduced in Eq. (15).
ConSE We train SVM classifiers for each known category as
p(y j |x) and take the top T responses for a testing instance
to synthesize the embedding as,

f (xi) = 1

T

T∑

j=1

p(y j |xi )z j (19)

where z j is the semantic embedding of j-th known category.
To apply self-training, we simply do the same calculation
w.r.t. embeddings of testing videos as,

z̃ = 1

|NNk(z)|
∑

i∈NNk (z)

f (xi ) (20)
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Table 5 Study the possibility to generalize transductive settings to existing zero-shot learning approaches

Model Match ST Trans Embed Feat HMDB51 UCF101 Olympic Sports CCV USAA

SJE NN X X W FV 12.0± 2.6 9.3± 1.7 34.6± 7.6 16.3± 3.1 21.3± 0.6

SJE NN � � W FV 10.5± 2.4 8.9± 2.2 32.5± 6.7 15.4± 3.1 27.7± 7.1

SJE NRM X � W FV 12.7± 2.4 10.5± 1.7 – – 19.8± 6.7

SJE NRM � � W FV 10.6± 2.3 9.2± 2.0 – – 26.8± 9.2

ConSE NN X X W FV 15.0± 2.7 11.6± 2.1 36.6± 9.0 20.7± 3.1 28.2± 4.8

ConSE NN � � W FV 15.4± 2.8 12.7± 2.2 37.0± 9.9 21.2± 3.1 28.3± 4.2

ConSE NRM X � W FV 15.8± 2.6 12.7± 2.1 – – 26.2± 9.5

ConSE NRM � � W FV 16.3± 3.1 12.9± 2.2 – – 26.3± 9.4

HAA NN X X A FV N/A 14.3± 2.0 48.3± 10.2 N/A 41.2± 9.8

HAA NN � � A FV N/A 18.7± 2.4 49.4± 10.8 N/A 47.6± 10.5

HAA NRM X � A FV N/A 15.9± 1.9 – N/A 48.4± 8.9

HAA NRM � � A FV N/A 19.1± 2.3 – N/A 49.4± 9.0

Hubness correction can be integrated in the same way.
HAAWe do nearest neighbour matching in attribute embed-
ding space, so both self-training and hubness correction can
be applied in the same ways as our model.
Experimental ResultsThe results on generalizing othermeth-
ods to the transductive setting are presented in Table 5. We
observe that hubness correction (NRM) improves perfor-
mance on HMDB51 and UCF101 for all three models. The
effect is not so clear on USAA except for HAA. As hub-
ness correction does not change the rank of individual testing
instances w.r.t. testing category, no improvement is expected
onOlympic Sports and CCV fromNN toNRM. Self-training
is in general effective for ConSE and HAA but is detrimental
to SJE. Thismay be due to SJE’s ranking loss: It aims to rank,
rather than project video instances to the vicinity of their cat-
egory embedding. Therefore, the projected video instances
(x�W) do not form neat clusters in the word-vector space
which makes self-training ineffective.

4.3 Zero-Shot Learning of Complex Events

In this section, we experiment on the more challenging com-
plex event dataset—TRECVID MED 2013.

Data Split We study the 30 classes of the MED test set,
holding out the 20 events specified by the 2013 evalua-
tion scheme for zero-shot recognition, and training on the
other 10. We train on the total 1611 videos in Event Kit
Train (160 per event in average) and test on the 27K exam-
ples in MED test, of which only about 1448 videos are the
20 events to be detected. This is different to the standard
TRECVID MED 2013 0EK in which concept detectors are
trained on the Research Set (Habibian et al. 2014b, a; Wu
et al. 2014). This experimental design is chosen because we
want to exploit only per-category annotation (event name)
as semantic supervision, rather than requiring the per-video

sentence annotation used in the Research Set which is very
expensive to collect. We note that with few exceptions (Jain
and Snoek 2015) TRECVID MED 2013 is rarely addressed
with event name annotation only. With this assumption, it
means we use fewer training videos (1611) compared to the
10K video Research Set. Thus our results are not comparable
to existing TRECVID MED 2013 0EK benchmark results,
because we use vastly less training data (Tables 6, 7).
BaselinesWe compare 5 alternative baselines for TRECVID
MED zero-shot event detection.

1. Random guess—Randomly rank the candidates.
2. NN (X–RR–X–NN–X). Rank videos with l2 distance in

the semantic space.
3. NN+ST (X–RR–�–NN–�). Adjust prototypes with

self-training.
4. Manifold (X-MR-X-NN-�). Add manifold regulariza-

tion term in the visual to semantic regression model.
5. Manifold+ST (X-MR-�-NN-�)—manifold regulariza-

tion regression with self-training.

We were not able to investigate data augmentation for
TRECVID due to the different feature encoding from the
other action datasets.

We present the performance of zero-shot learning on
TRECVID MED 2013 in Fig. 3 and Table 8. Figure 3
reports the performance of 4 alternative models and ran-
dom guess baseline in detecting 20 events in mean average
precision (mAP) and the average over all events (Average).
Compared to Random guess (0.28%), our direct embedding
approach (NN) is effective at zero-shot video detection. Self-
Training and Manifold Regularization further improve the
performance. Table 8 puts the results in broader context by
summarising them in terms of absolute performance.
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Table 6 Events for training
visual to semantic regression

ID Event name ID Event name

E001 Attempting a board trick E002 Feeding an animal

E003 Landing a fish E004 Wedding ceremony

E005 Working on a woodworking project E016 Doing homework or studying

E017 Hide and seek E018 Hiking

E019 Installing flooring E020 Writing

Table 7 Events for testing
zero-shot event detection

ID Event name ID Event name

E006 Birthday party E007 Changing a vehicle tire

E008 Flash mob gathering E009 Getting a vehicle unstuck

E010 Grooming an animal E011 Making a sandwich

E012 Parade E013 Parkour

E014 Repairing an appliance E015 Working on a sewing project

E021 Attempting a bike trick E022 Cleaning an appliance

E023 Dog show E024 Giving directions to a location

E025 Marriage proposal E026 Renovating a home

E027 Rock climbing E028 Town hall meeting

E029 Winning a race without a vehicle E030 Working on a metal crafts project

Fig. 3 Zero-shot performance on TRECVID MED 2013 measured in mean average precision (mAP)

Table 8 Event detection performance on TRECVIDMED 2013. mAP
across 20 events to be detected

Embed ST Match Average mAP (%)

RR X NN 1.18

RR � NN 1.25

MR X NN 1.22

MR � NN 1.38

Random guess 0.28

4.4 Zero-Shot Qualitative Visualization

In this section we illustrate qualitatively the effect of our
contributions on the resulting embedding space matching
problem. For visualisation, we randomly sample 5 test-
ing classes from HMDB51 and project all samples from
these classes into the semantic space by (i) conventional
ridge regression; (ii) manifold regularized regression and

(iii) manifold regularized ridge regression with data aug-
mentation. The results are visualised in 2D in Fig. 4 with
t-SNE (Maaten and Hinton 2008). Three sets of testing
classes are presented for diversity. Data instances are shown
as dots, prototypes (class name projections) as diamonds,
and self-training adapted prototypes as stars. Colours indi-
cate category.

There are three main observations from Fig. 4: (i) Man-
ifold regularized regression yields better visual semantic
projections as instances of the same class tend to form
tighter clusters. This is due to the constraint of preserving
the manifold structure from the visual feature space. (ii)
Data augmentation yields an even more accurate projection
of unseen data, as instances are projected closer to the pro-
totypes and classes are more separable. (iii) Self-training is
effective as the adapted prototypes (stars) are closer to the
center of the corresponding samples (dots) than the origi-
nal prototypes (diamonds). These observations illustrate the

123



Int J Comput Vis (2017) 123:309–333 325

(a)

(b)

(c)

Fig. 4 A qualitative t-SNE illustration of ZSL with semantic space
representation for random testing class subsets (a–c). Variants: ridge
regression, manifold regression and data augmented manifold regres-

sion. Dots indicate instances, color categories, and star/diamond show
category prototypes with/without self-training, a Category set 1, b Cat-
egory set 2, c Category set 3

mechanism of our ZSL accuracy improvement on conven-
tional approaches.

These qualitative illustrations also give intuition about
why the previous result in Fig. 3 is one of a moderate overall
increase in mean AP that is the result of a varied impact of
the AP for individual classes. Depending on the data and ini-
tial prototype positions, the self-training sometimes makes a
very effective adjustment to the prototypes, and other times
it makes little adjustment to the prototype, and hence that
class’ AP. E.g., In Fig. 4a, Augmented: compare blue/yellow
classes versus red class.

4.5 Understanding ZSL and Predicting Transferrability

In this section we present further insight into considerations
on what factors will affect the efficacy of ZSL, through a
category-level analysis. The basic assumption of ZSL is that

the embedding f (x) trained on known class data, will also
apply to testing classes. As we have discussed throughout
this study, this assumption is stretched to some extent due
to the disjoint training and testing category sets. This leads
us to investigate how zero-shot performance depends on the
specific choice of training classes and their relation to the
held out testing classes.
Impact of training class choice on testing performance We
first investigate whether there are specific classes which, if
included as training data, significantly impact testing class
performance. To study this, we compute the correlation
between training class inclusion and testing performance.
Specifically, we consider a pair of random variables {btri , etej }
where btri is a binary scalar indicating if the i th class is in
the training set and e j is the recognition accuracy of the j th
testing class. We compute the correlation corr(i, j) between
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every pair of variables over the 50 random splits:

corr(i, j) = E[(btri − btri )(etej − etej )]
var(btri )var(etej )

. (21)

We use chord diagrams to visualize the relation between
categories in Fig. 5a. The strength of positive cross-category
correlation is indicated by the width of the bands connecting
the categories on the circle. I.e., a wide band indicates inclu-
sion of one category as training data facilitates the zero-shot
recognition of the other4.

We can make several qualitative observations from the
chord diagrams. The class correlation captures the depen-
dence of category B’s recognition rate on category A’s
presence in the training set. So for instance for A= ride horse
and B= ride bike, Fig. 5a shows that we would expect high
recognition accuracy of ride horse if ride bike is present in
training set and vice versa. However while cartwheel sup-
ports the recognition of handstand, the reverse is not true.
Cross-class transferability correlates with word-vector sim-
ilarity We next investigate the affinity between class names’
vector representations, and cross-class transferability. Class
name affinities are shown in Fig. 5b as chord diagrams. Visu-
ally there is some similarity to the cross-class transferability
presented in Fig. 5a. To quantify this connection between
transfer efficacy and classname relatedness, we vectorise the
correlation (Fig. 5a) and class name affinity (Fig. 5b) matri-
ces (51 × 51) into 2601 dim vectors and then compute the
correlation coefficients between the two vectors. The corre-
lation is 0.548, suggesting that class name relatedness and
efficacy for ZSL are indeed connected. This is to say, if class
A is present in training set and class B in testing set, and A
has high affinity with B in word-vector distance measure, we
could expect high performance in recognizing class B.

To qualitatively illustrate this connection, we list the top
10 positively correlated category pairs in Table 9. Here the
correlation of action 1 being in training and action 2 in testing
is given asFwdCorr, withBackCorr being the opposite. The
affinity between category names are given asWVAff which is
defined as percentile rank of word-vector distance (closer to
1 means more similar). Clearly highly correlated categories
have higher word-vector similarity.

Although zero-shot transfer overall is effective, there are
also some individual negative correlations. We illustrate the
distribution of positive and negative transfer outcomes in
Fig. 6. Here we sort all the class pairings into ten bins by their
name affinity and plot the resulting histogram (blue bars).
Clearly the majority of pairs have low classname affinity.

4 Due to the large number of categories we apply two preprocessing
steps before plotting: (1) Convert all correlation coefficients to positive
value by exponentially power scaling the correlation coefficient; (2)
Remove highly negative correlated pairs to avoid clutter.

For each bin of class-pairs, we also compute their average
correlation defined in Eq. 21 (Fig. 6, red line). There are
a few observations to be made: (i) Class name affinity is
clearly related to positive correlation: the correlation (red
line) goes up significantly for high-affinity class pairs. (ii)
There are a relatively small number of category pairs that
account for the high positive correlation outcomes (low blue
bars to the right). This suggests that overall ZSL efficacy is
strongly impacted by the presence of key supporting classes
in the training set. (iii) There are a larger number of category
pairs which exhibit negative transferability (red correlation
is negative around affinity of 0.2). However negative transfer
effects are quantitatively weak compared to positive transfer
(red correlation line gets only weakly negative but strongly
positive).
Predicting Transferability Based on the previous observa-
tions we hypothesize that class name affinity is predictive of
ZSL performance, and may provide a guide to selecting a
good set of training classes to maximise ZSL efficacy. This
is desirable in real application as it is often beneficial to
best utilize the limited availability to annotate most useful
training data for the recognition of novel categories. We for-
mally define the problem as given fixed testing categories
{y j |y j ∈ yte}, we find the S% subset of training categories
{yi |yi ∈ ytr } which maximize the performance of recog-
nizing testing classes based on their affinity to the testing
classes. We first of all explore three alternative (point-to-set)
distances to measure the affinity of each training class yi to
the set of testing classes {y j |y j ∈ yte}, specifically the max-
imal/mean/minimal class name affinity:

Rmax (yi , yte) = max
y j∈yte

(
1 − ||g(yi ) − g(y j )||

)

Rmean(yi , yte) = mean
y j∈yte

(
1 − ||g(yi ) − g(y j )||

)

Rmin(yi , yte) = min
y j∈yte

(
1 − ||g(yi ) − g(y j )||

)
(22)

These metrics provide a plausible means to quantify the rel-
evance of any potential training class to the testing set. We
explore their ability to predict transferability and hence con-
struct a good training set for a particular set of testing classes.

For this experiment, we use HMDB51 with the same 50
random splits introduced in Sect. 4.2. Keeping the testing
sets fixed, we train two alternative models based on differ-
ent subsets of each training split. Specifically: (1) Related
Model selects the top S%most related training classes [high
affinity measure by R(yi , yte)] to the testing set defined by
relatedness measure in Eq. (22) in order to learn the map-
ping; while (2) Unrelated Model selects the most 100− S%
unrelated. Fig. 7 shows the performance of both models as
S varies between 0 and 100, where Related selects the top
S% and Unrelated the bottom 100 − S%. Note that when
S = 0% and S = 100% the Unrelated and Related models
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(a) (b)

(c) (d)

Fig. 5 Chord Diagram to illustrate the category correlation discovered
from zero-shot recognition experiments. a, c illustrate the correlation
discovered from 50 random split zero-shot experiments; b, d illustrate
the class name affinity in word-vector embedding space measured as

cosine similarity, a HMDB51 class correlation, bHMDB51 class name
affinity, c Olympic Sports class correlation, d Olympic Sports class
name affinity

both select all training classes. Both are then equivalent to the
standard ZSL model X–RR–X–NN–X introduced in Table 3.
We illustrate the performance of both models and three alter-
native training-to-testing affinity measures in Fig. (7).

Themain observations are as follows: (i) A crossover hap-
pens at 30% for maximal class name affinity, which means
the model learned on the 30% subset of related training
classes outperforms the model learned on the much larger
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Table 9 Top 10 positive
correlated class pairs

Action 1 Action 2 Fwd Corr Back Corr WV Aff

Climb stairs Climb 0.94 0.92 0.98

Ride horse Ride bike 0.95 0.91 0.98

Situp Pushup 0.96 0.79 0.91

Sword exercise Sword 0.87 0.85 0.98

Handstand Cartwheel 0.62 0.96 0.97

Eat Drink 0.75 0.81 0.96

Smile Laugh 0.82 0.72 0.97

Walk Run 0.61 0.90 0.96

Shoot ball Dribble 0.52 0.87 0.97

Sword Draw sword 0.86 0.45 0.98

Fig. 6 The connection between transfer efficacy and classname affin-
ity: illustrated by class correlation versus class name affinity

70% of unrelated classes. (ii) The maximal class name affin-
ity is most predicative on the efficacy of zero-shot learning
as (1) the crossover point is the left most among all three
alternative strategies, and (2) at the equal data point (50%)
the related model most clearly outperforms the unrelated
model. (iii) Formaximal affinity, asmore classes are included
the related model increases in performance more rapidly
than the unrelated one, and saturates after the top 50% are
included. All these observations together indicate that given
limited labelling availability, including training classes that
are related to testing ones can benefit ZSL performance (as
the crossover is to the left of 50%).

4.6 Zero-Shot Recognition with Old and New Classes

Few existing zero-shot learning studies investigate the abil-
ity to recognise novel-category visual instances if they occur
among known-class instances at testing time. But this may
be the setting under which ZSL is used in real applications.
To evaluate how our model performs in the situation where
testing instances are mixed with data from training classes,
we follow the protocol proposed in Rohrbach et al. (2010).
Specifically, we choose the first data split from UCF101
dataset and hold out 0–1900 training videos evenly from each
training/known class for testing. ZSLmodels are then trained
on the reduced training set. In the testing phase, we label
all the held-out training videos as negatives of all testing

(a)

(b)

(c)

Fig. 7 Testing the ability to predict ZSL class transferability by class
name affinity: a comparison of models selecting related versus un-
related classes as training data, a Maximal class name affinity, bMean
class name affinity, c Minimal class name affinity

classes and evaluate AUC for each testing class. We com-
pare two models: (1) attribute-based model (DAP) used in
Rohrbach et al. (2010); and (2) our direct similarity based
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Fig. 8 Injecting training/known class samples to testing set

Fig. 9 Distribution of testing videos after subsampling

prediction (RR-NN) which corresponds to the final model
without data augmentation introduced in Table 3. By increas-
ing the number of distractor training videos, we observe from
Fig. 8 a steady increase of mean AUC for both attribute-
based approach (DAP) and our direct similarity matching
(RR-NN). This suggests that both DAP and our model are
fairly robust when novel classes must be detected among a
background of known classes.

4.7 Imbalanced Test Set

Transductive strategies have been studied by many existing
works (Fu et al. 2015a; Dinu et al. 2015), however none of
these works have ever studied the assumptions of test set
for successful transductive ZSL. In particular, we note that,
in zero-shot scenarios, testing categories could be highly
imbalanced. How does the transductive strategies general-
ize to imbalanced test set remains an untouched problem.
To verify this aspect, we carry out a particular experiment.
Specifically, we experiment on the first split of HMDB51 and
randomly subsample P%testing data fromeach of the first 12
testing categories for ZSL evaluation. We illustrate the dis-
tribution of testing videos per category for P = 10, 50, 90 in
Fig. 9.

Then we experiment the baseline model—NN and two
transductive variants—NN+ST andNN+NRM. By increas-
ing P from 10 to 90 we observe from Fig. 10 that both
self-training (red) and hubness correction (green) improve
consistently over non-transductive baseline (black dashed).

Fig. 10 Performance of ZSL for subsampled imbalanced test set

This suggests our transductive strategies are robust to imbal-
anced test set.

4.8 Multi-Shot Learning

We have thus far focused on the efficacy of unsupervised
word-vector embeddings for zero-shot learning. In this sec-
tion we verify that the same representation also performs
comparably to state-of-the-art for standard supervised (multi-
shot) action recognition. We use the standard data splits and
evaluation metrics for all four datasets.
Alternatives We compare our approach to:

1. Low-Level Feature (Wang and Schmid 2013) the state-
of-the-art results based on low-level features.

2. Human-Labelled Attribute (HLA) (Zheng and Jiang
2014) Exploits an alternative semantic space using
human labelled attributes. The model trains binary lin-
ear SVM classifiers for attribute detection and uses the
vector of attribute scores as a representation. A SVM
classifier with RBF kernel is then trained on attribute
representation to predict final labels.

3. Data Driven Attribute (DDA) (Zheng and Jiang 2014)
Learns attributes from data using dictionary learning.
These attributes are complementary to thehuman labelled
ones. Automatically discovered attributes are processed
in the same way as HLA for action recognition.

4. Mixed attributes (Mix) (Zheng and Jiang 2014) A com-
bination of HLA and DDA is applied to exploit the
complementary information in two attribute sets.

5. Semantic embedding model (Embedding) first learns
a word-vector embedding based on regularized linear
regression, as in ZSL. But the standard supervised learn-
ing data-split is adopted. All data are mapped into the
semantic space via regression and a linear SVM classi-
fier is trained for each category with the mapped training
data.

The resulting accuracies are shown in Table 10. We
observe that our semantic embedding is comparable to the
state-of-the-art low-level feature-based classification and is
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Table 10 Standard supervised
action recognition. Average
accuracy for HMDB51 and
UCF101 datasets. Mean average
precision for Olympic Sports
and CCV

Method HMDB51 UCF101 Olympic Sports CCV

Low-level feature (Wang and Schmid 2013) 58.4 84.6 92.1 68.0

HLA (Zheng and Jiang 2014) – 81.7 – –

DDA (Zheng and Jiang 2014) – 79.0 – –

Mix (Zheng and Jiang 2014) – 82.3 – –

Embedding 56.4 82.0 93.4 51.6

comparable or slightly better than the conventional attribute-
based intermediate representations despite the fact that no
supervised manual attribute definition and annotation is
required.

4.9 Efficiency and Runtime

Our ZSL algorithm is easy to implement and has favourable
efficiency.We estimate the computation complexity for solv-
ingmanifold regularized regression in Eq. (9) to be O(2N 3+
dzN ) (assume the schoolbook matrix multiplication algo-
rithm). Nevertheless, if the number of training data N is too
large to fit into memory, our model can be solved by stochas-
tic gradient descent (SGD). The gradient w.r.t. mapping A is

∇A = 1

nl

(
−2z̃ik�

i J + 2AkiJk�
i

)

+ 2γAAki + γI

(nl + nu)2
2Aki l�i K�

(23)

for which we estimate the computation complexity for each
iteration to be O(4dz + N 2).

In our implementation, it takes about 300 seconds (includ-
ing overhead) to train and test on 50 splits of the entire
HMDB51 benchmark dataset (6766 videos of 51 categories
of actions), or 520 seconds with data augmentation, using a
server with 32 Intel E5-2680 cores. The runtime is dominated
by the matrix inversion in Eq. (9).

5 Detailed Parameter Sensitivity Analysis

In the main experiments we set the free parameters ridge reg-
ularizor γA = 10−6, manifold regularizor γI = 40, manifold
Knn graph NG

K = 5, Self-Training Knn Nst
K = 100. In this

section we analyse the impact of these free parameters in our
model.

5.1 Word-Vector Dimension

We investigate how the specific word-vector model z = g(y)
affects the performance of our framework. For the study
of word-vector dimension we train word-vectors on 4.6M

Fig. 11 Zero-shot performance versus dimension of word-vector

Wikipedia documents5 and vary dimension from 32 to 1024.
We then evaluate the performance of zero-shot and multishot
learning versus different dimension of embedding space. The
results are given in Fig. 11.

We observe that word-vector dimension does affect the
zero-shot recognition performance. Performance generally
increases with dimension of word-vector from 32 to 4096
in HMDB51, UCF101 and Olympic Sports, while showing
no clear trend for CCV. In general a reasonable word-vector
dimension is between 256 and 2048.

5.2 Visual to Semantic Mapping

Ridge regression regularization We learn the visual to
semantic mapping with regularized linear regression. The
regularization parameter γA controls the regression model
complexity. Here, we study the impact of γA on zero-shot
performance. We measure the 50 splits’ average accuracy
by varying γA in the range of {0, 10−9, 10−8, . . . , 10−3}. A
plot of zero-shotmean accuracy versus regularization param-
eter is given in Fig. 12. From this figure we observe that
our model is insensitive to the ridge parameter for any non-
zero regularizer. However, when no regularization is used
the performance is close to random. This is due to all zero
or co-linear rows/columns in the kernel matrix which causes
numerical problems in computing the inverse.
Manifold regressionWehave seen that transductively exploit-
ing testing/unlabelled data in manifold learning improves
zero-shot performance. Two parameters are involved: the
manifold regularization parameter γI in Loss function (Eq. 8)

5 Google News Dataset is not publicly accessible. So we use a smaller
but public dataset—4.6M Wikipedia documents.
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Fig. 12 Zero-shot mean accuracy versus ridge regression parameter

(a)

(b)

Fig. 13 Zero-shot recognition accuracy with respect to manifold
regression parameters γI and NG

K , a HMDB51, b UCF101,

and NG
K in constructing the symmetrical KNN graph. γI

controls the preference for preserving the manifold struc-
ture in mapping to the semantic space, versus exactly fitting
the training data. Parameter NG

K determines the precision in
modelling the manifold structure. Small NG

K may more pre-
cisely exploit the testing data manifold, however it is more
prone to noise in the neighbours.

Here we analyse the impact of these two parameters,
γI and NG

K by measuring zero-shot recognition accuracy
on HMDB51 and UCF101. We evaluate the joint effect of
γI and NG

K while fixing γA = 10−6. Specifically we test
γI ∈ {20, 40, . . . , 100} and NG

K ∈ {1, 3, 5, . . . , 29}. The
results in Fig. 13 show that there is a slightly preference

(a) (b)

Fig. 14 Zero-shot recognition accuracy versus self-training parameter
K, a HMDB51, b UCF101

towards moderately low values of NG
K and γI , but the frame-

work is not very sensitive to these parameters.

5.3 Self-Training

We previously demonstrated in Table 3, that self-training
(Sect. 3.4) helps to mitigate the domain shift problem. Here,
we study the influence of the Nst

K parameter for KNN in
self-training. Note the Nst

K concerns the neighbouring data
distribution around prototypes at testing time rather than
manifold regularization KNN graph NG

K at training time. We
evaluate Nst

K ∈ {1, 2, 3, . . . , 200}. To thoroughly examine
the effectiveness of self-training, we investigate all baselines
with self-training introduced in Sect. 4.2 including

– X–RR–�–NN–� (NN+ST )
– X–RR–�–NRM–� (NRM+ST)
– X–RR–�–GC–� (GC+ST)
– X-MR-�-NN-� (Manifold+ST)
– X-MR-�-NRM-� (Manifold+NRM+ST)
– X-MR-�-NRM-� (Manifold+NRM+ST)
– �–RR–�–NN–� (NN+Aux+ST)
– �–RR–�–NRM–� (NRM+Aux+ST)

The accuracy versus Nst
K is illustrated in Fig. 14. Perfor-

mance is robust to Nst
K when Nst

K is above 20.

6 Conclusion

In this study, we investigated unsupervised word-vector
embedding space representation for zero-shot action recogni-
tion for the first time. The fundamental challenge of zero-shot
learning is the disjoint training and testing classes, and
associated domain-shift. We explored the impact of four
simple but effective strategies to address this: data augmen-
tation, manifold regularization, self-training and hubness
correction. Overall we demonstrated that given auxiliary
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and transductive access to testing data these strategies are
complementary, and together facilitate a highly effective sys-
tem that is even competitive against existing attribute-based
approaches. If manually labelled attributes are available, our
transductive strategies can produce the state-of-the-art per-
formance. Moreover, our model has a closed-form solution
that is very simple to implement (a few lines of matlab) and
runs very efficiently. Finally, we also provide a unique anal-
ysis of the inter-class affinity for ZSL, giving insight into
why and when ZSL works. This provides for the first time
two new capabilities: the ability to predict the efficacy of a
given ZSL scenario in advance, and a mechanism to guide
the construction of suitable training sets for a desired set of
target classes.

We have done some preliminary investigation of recognis-
ing novel classes when testing instances also include those of
known training classes—a setting which is practically valu-
able but little studied. Designing algorithms specifically to
deal with this challenging setting has received limited atten-
tion (Socher et al. 2013), and is still anopenquestion.Another
issue which is not fully addressed in this work is transferabil-
ity prediction. Given limited labelling ability, it is desirable
to annotate most useful training data to support zero-shot
recognition. We discussed one possible way—measuring the
semantic relatedness between candidate training class and
testing classes. However the relation could be more compli-
cated than pairwise, and the inclusion of a new training class
could affect recognition of unknown classes in together with
other training classes. How to best utilise labelling effort to
support zero-shot recognition remains an open question.
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