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Abstract We propose a novel approach, max-margin het-
erogeneous information machine (MMHIM), for human
action recognition from RGB-D videos. MMHIM fuses het-
erogeneous RGB visual features and depth features, and
learns effective action classifiers using the fused features.
Rich heterogeneous visual and depth data are effectively
compressed and projected to a learned shared space and inde-
pendent private spaces, in order to reduce noise and capture
useful information for recognition. Knowledge from various
sources can then be shared with others in the learned space
to learn cross-modal features. This guides the discovery of
valuable information for recognition. To capture complex
spatiotemporal structural relationships in visual and depth
features, we represent both RGB and depth data in a matrix
form. We formulate the recognition task as a low-rank bilin-
ear model composed of row and column parameter matrices.
The rank of the model parameter is minimized to build a
low-rank classifier,which is beneficial for improving the gen-
eralization power. We also extend MMHIM to a structured
prediction model that is capable of making structured out-
puts. Extensive experiments on a new RGB-D action dataset
and two other public RGB-D action datasets show that our
approaches achieve state-of-the-art results. Promising results
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are also shown if RGB or depth data are missing in training
or testing procedure.

Keywords Action recognition · RGB-D videos ·
Heterogeneous data · Feature learning

1 Introduction

Understanding visual data captured by depth sensors such
as Kinect (Shotton et al. 2013) has been receiving increas-
ing interests in the computer vision community thanks to
the recent advent of cost-effective depth sensors. In addition
to RGB visual data captured by conventional RGB cameras,
depth data encode rich 3D structural information of the entire
scene, which is one of its key benefits. Such important infor-
mationhas shown tobehelpful in reducingbackgroundnoise,
and thus has alreadybeenwidely leveraged in pose estimation
(Xu and Cheng 2013), layout estimation (Zhang et al. 2013),
tracking (Zhou et al. 2015), image understanding (Wang et al.
2015), surface recovery (El et al. 2015), and action recogni-
tion (Kong and Fu 2015).

Action recognition from easy-to-use and low-cost depth
sensors, such as Kinect sensors, attempts to predict the action
labels from RGB-D videos. Thanks to the extra depth data,
background noise that is frequently seen in action videos can
bemarkedly reduced, thereby boosting the classification per-
formance. Previous work Shotton et al. (2013), Oreifej and
Liu (2013), Wang et al. (2012b) and Hadfield and Bowden
(2013) showed that effective usage of 3D structural informa-
tion facilitates recognition tasks as it simplifies intra-class
motion variations and reduces cluttered background noise.
Plenty of action descriptors specifically designed for depth
action videos have been proposed, for example, action graph
(Li et al. 2010), histogram of oriented 4D normals (Oreifej
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and Liu 2013), super normal vector (Yang et al. 2014),
and depth spatiotemporal interest points (Xia and Aggarwal
2013; Hadfield and Bowden 2013).

Despite their effectiveness, those methods are limited to
the scenario where depth data must be available. Depth data-
based methods developed in Yang et al. (2014), Oreifej and
Liu (2013), Xia andAggarwal (2013) andHadfield and Bow-
den (2013) would fail if depth data are not available due
to the failure of depth sensors in RGB-D sensing devices.
In addition, a working depth sensor may fail to compute a
depth measurement due to fundamental physical limitations,
which consequently causes missing depth data problem. For
example, a human subject is too close to or too far from the
depth sensor or interacting objects have reflective surfaces.
Furthermore, depth data normally contain spatiotemporal
discontinuous regions. These regions make the depth data
very noisy, and consequently hinder the application of feature
extraction methods such as surface normal (Yang et al. 2014;
Oreifej and Liu 2013) and spatiotemporal interest points (Xia
and Aggarwal 2013; Hadfield and Bowden 2013) in these
regions. If the discontinuous regions unfortunately appear in
the body parts that were supposed to provide discriminative
cues, such as arms or legs, the recognition performance will
be undoubtedly degraded where depth information is used as
a the only cue.

Visual data and depth data can be complementary to each
other. Recent work El et al. (2015), Jia et al. (2014) and
Wang et al. (2015) has demonstrated that the fusion of visual
data and depth data can notably improve the performance. It
was also shown in Jia et al. (2014) and Kong and Fu (2015)
that implicit correlations between visual and depth data can
be learned to handle the case where one of them is unavail-
able. Moreover, RGB data are robust with no discontinuities.
Numerous feature descriptors (e.g. gradient and optical flow)
can be extracted from RGB data, providing abundant and
robust features for recognition tasks. Furthermore, human
bodies consist ofmultiple structural objects, and thusmotions
of human body parts are highly correlated. Existing work for
action recognition from depth sequences (Yang et al. 2014;
Oreifej and Liu 2013) attempted to capture spatiotemporal
correlation information of body partmovements by aggregat-
ing features from neighborhoods. However, the information
would unfortunately be collapsed (Tenenbaum and Freeman
2000) if co-occurrence features are concatenated into a high
dimensional vector and then linearly projected onto a sub-
space.

In this paper, we propose a novel max-margin heteroge-
neous informationmachine (MMHIM) for action recognition
from RGB-D sequences. MMHIM treats visual and depth
data as two modalities, and learns both features shared
between them and private features for classification. More
specifically,we project the original features of the twomodal-
ities onto a shared space, and learn cross-modal features

Fig. 1 MMHIMprojects and compresses bothRGBvisual features and
depth features to a learned shared feature space and modality-specific
private feature spaces. Features in these spaces are all used for learning
classification boundaries. These two steps iterate until convergence

shared between them for classification in order to effectively
capture cross-modal knowledge. The learned cross-modal
features inherit the characteristics of both RGB and depth
data that capture motion, 3D structural, and spatiotempo-
ral relationship information. In addition, private features
are learned by projecting the original features to modality-
specific spaces. These private features capture unique and
intrinsic information of a modality, for example, edge cue
in visual modality and distance cue in depth data. The
use of both shared cross-modality features and private fea-
tures allows us to leverage all discriminative information
for classification. These two types of features are learned
through data compression and noise “filtering” during the
projection procedure, and are jointly optimized with the
learning of the action classifiers. This automatically discov-
ers compact yet discriminative features for the classifiers,
and thus improves recognition performance (see Fig. 1). A
structured prediction model is also proposed in this work,
which allows us to model the agreement between low-level
heterogeneous features and high-level structured outputs.
We show in the experiment that the learned features are
expressive and discriminative for differentiating action cat-
egories, even if one modality is missing in training or
testing.

We represent both visual and depth features in a matrix
form, which naturally encodes spatiotemporal structural
relationships. Even though feature matrices are projected
onto a low-dimensional space, the structural information
of body parts is conserved and motion information is
compressed and denoised. This overcomes the aforemen-
tioned problem of the collapsed information in feature
vectors.

The recognition problem is formulated in a low-rank bilin-
ear framework, particularly designed for feature representa-
tions in a matrix form. The proposed model learns feature
projection matrices and classification parameter matrices,
which operate as featureweighting in both rows and columns,
respectively. The projection matrices are optimized to map
original heterogeneous visual and depth features onto a
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shared feature space and private feature spaces. The shared
space is the optimal space for building robust and effective
cross-modal features for recognition; while the features in a
private space inherit unique information of the correspond-
ing modality. An information measure is incorporated in the
learning of projectionmatrices to help reduce noise in the fea-
ture projection procedure. Classification is performed using
both the learned cross-modal features and private features.
The rank of the model is minimized to increase the general-
ization power and decrease computational cost (Wolf et al.
2007).

We propose an efficient algorithm to optimize MMHIM.
Without approximations nor hard constraint on the rank of
the parameter matrices, we present a regularized risk mini-
mization problem that produces low-rank projectionmatrices
and action classifiers by minimizing the Frobenius norm of
the parameter matrices. This allows us to use existing effi-
cient SVMsolvers. The learning problem is iteratively solved
with a bundle method (Teo et al. 2007; Do andArtieres 2009)
being the solver for the inner optimization problem.

Themain contribution of thiswork is theMMHIM, a novel
formalism for RGB-D action recognition.With inputs of fea-
ture matrices rather than vectors, MMHIM keeps inherent
spatiotemporal structural information within features, which
plays a key role in recognition. In addition, MMHIM learns a
shared space for fusing heterogeneous data (RGB and depth
data in this work), where knowledge can be shared between
them. MMHIM directly minimizes the rank of parameter
matrices, and produces compact yet expressive cross-modal
features through the use of information measure. MMHIM
is also able to handle structured prediction problem. An effi-
cient solver is developed for MMHIM in this work. We show
that MMHIM achieves superior performance over state-of-
the-art methods.

1.1 Overview of Our Approach

We study the use of both visual and depth data for action
recognition fromRGB-D videos. Note that a RGB-D has two
channels, a RGB color video that is similar to a conventional
color video used in action recognition, and an extra depth
video that encodes distance information from the human sub-
ject to the camera.

The flowchart of the training procedure in our approach is
illustrated in Fig. 2. Our approach consists of the following
four main steps:

1. Preprocessing. Our approach uniformly samples a fixed
number K of frames for all videos in a dataset. This pro-
cedure makes all the videos have equal length.

2. Low-level feature extraction. Given a RGB-D video sam-
ple (contains a color video and a depth video), we

Fig. 2 Flowchart of our approach in training. Please refer to Sect. 1.1
for details

compute the gradient and the optical flow over both the
color video and the depth video.

3. Feature representation. The histograms of oriented gra-
dients (HOG) and histograms of optical flow (HOF)
descriptors are adopted to represent the gradient and opti-
cal flow, respectively. Consequently, each channel (color
video or depth video) of a RGB-D video will generate
two features, i.e., HOG features and HOF features.

4. Model learning. The proposed MMHIM takes the low-
level HOG and HOF features extracted from color and
depth videos as inputs. Compact yet discriminative fea-
tures are then summarized by MMHIM, and used for
classification. Note that MMHIM jointly learns discrim-
inative features and action classifiers at the same time.

Given a testing RGB-D video, our approach first samples
K frames fromeach channel of the testing sample.ThenHOG
and HOF features are extracted over both the preprocessed
color video and the depth video. The HOG and HOF action
descriptors are fed into the trained MMHIM to compute the
shared and private features, and finally the action label is
predicted based on the computed features.

2 Related Work

2.1 Action Recognition from RGB-D Videos

Previous action recognition approaches mainly focus on
RGB action videos (Kong et al. 2014; Raptis and Sigal 2013;
Tang et al. 2012; Ji et al. 2013). These studies used low-level
interest point features (Tang et al. 2012), mid-level semantic
features (Kong et al. 2014) or human pose (Raptis and Sigal
2013), or learned features using deep learning techniques (Ji
et al. 2013). However, misclassification exists due to large
intra-class motion and pose variations.

Thanks to the advent of low-cost Kinect sensors (Shot-
ton et al. 2013), much effort has been devoted to object
recognition (Chen et al. 2014; Bo et al. 2011; Wang et al.
2015) and action recognition (Li et al. 2010; Oreifej and
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Liu 2013; Yang et al. 2014; Hadfield and Bowden 2013;
Wang et al. 2012a, b) from depth images. A group of RGB-
D or depth action video datasets were introduced in Ni et al.
(2011),Wang et al. (2012b), Oreifej and Liu (2013), Hadfield
and Bowden (2013) and Ofli et al. (2013) such as RGBD-
HuDaAct dataset, MSR Pair Actions dataset, and Hollywood
3D dataset. These studies showed that depth data capture
3D structural information, which helps reduce background
noise and intra-class variations. Effective features have been
proposed for the recognition task using depth data, such as
histogram of oriented 4D normals (Oreifej and Liu 2013;
Yang et al. 2014) and depth spatiotemporal interest points
(Xia and Aggarwal 2013; Hadfield and Bowden 2013). Fea-
tures from depth sequences can be encoded by Luo et al.
(2013), or be used to build actionlets (Wang et al. 2012b) for
recognition. The work in Sung et al. (2012) and Koppula and
Saxena (2013) built layered action graph structures to model
actions and subactions in a RGB-D video. Recent work Liu
and Shao (2013) also showed that features of RGB-D data
can be learned using deep learning techniques.

The methods in Li et al. (2010), Oreifej and Liu (2013),
Yang et al. (2014), Hadfield and Bowden (2013), Wang et al.
(2012a), and Luo et al. (2013) only use depth data, and thus
would fail if depth data weremissing. In contrast, ourmethod
uses both RGB and depth data, and can handle the case
if one modality is missing. Even though existing work Hu
et al. (2015), Jia et al. (2014), Lin et al. (2014), Liu and
Shao (2013) and Wang et al. (2012b) used RGB and depth
modalities, they only learned features shared between the
two modalities and did not learn modality-specific or private
features. Private features capture unique information of one
modality and provide extra discriminative information for
classification. In addition, the methods in Hu et al. (2015),
Lin et al. (2014), Liu andShao (2013) andWang et al. (2012b)
were not developed for dealing with missing modality prob-
lem and their performance in missing modality scenario is
unknown. Moreover, they used features in a vector form, in
which spatiotemporal structures would not be well repre-
sented (Tenenbaum and Freeman 2000; Kobayashi 2014). In
this work, we use features in a matrix form (Pirsiavash et al.
2009), which naturally captures both spatiotemporal struc-
tural information and motion information. Our experiments
show that features in a matrix format significantly improve
the performance even though the rank of the parametermatri-
ces in MMHIM is constrained to be 1.

An unsupervised setting was considered in Wu et al.
(2015). In their work, long-range action relations such as
the occurrence of put-milk-back-to-fridge and fetch-milk-
from-fridge is modeled in RGB-D temporal sequences.
Heterogeneous feature learning was also investigated in Hu
et al. (2015). Their method projects various types of features
including skeleton features and local HOG features into a
shared feature space, and then uses SVM as the classifiers.

The projectionmatrices are learned byminimizing the recon-
struction loss. Different from this work, our approach jointly
learns heterogeneous features and action classifiers. The pro-
jection matrices in our work are learned by minimizing the
noise after projection and classification error using the pro-
jected features. The solution to the recognition task leverages
auxiliary databases was studied in Jia et al. (2014) and Lin
et al. (2014). Their methods assume actions can be recon-
structed by entries in the auxiliary databases. Instead of using
an auxiliary database to compute action representations, our
method uses the information from the classifiers to guide the
learning of discriminative action representations. This will
learn the features that are optimized for classification. An
efficient binary range-sample feature for depth data was pro-
posed in Lu et al. (2014). This new type of depth feature has
shown to be invariant to possible changes in scale, viewpoint,
and background, and it is fast due to the binary property.

2.2 Action Recognition from Color Videos

In recent studies, human actions were popularly represented
by local salient features detected by spatio-temporal interest
points (Dollar et al. 2005; Schüldt et al. 2004; Laptev 2005;
Klaser et al. 2008), structure features of interest points (Ryoo
and Aggarwal 2009), trajectories (Wang et al. 2013; Raptis
and Soatto 2010; Ni et al. 2015), holistic body shape (Liu
et al. 2008), or key poses (Raptis and Sigal 2013), etc. Tem-
poral evolution of human actions was captured in Fernando
et al. (2015) and Kong et al. (2014). Bag-of-words (BoW)
model is a common method for encoding these features in
a vector format. BoW model first detects local or global
features [e.g., spatiotemporal interests (Dollar et al. 2005;
Laptev 2005) or histograms of oriented gradient (Dalal and
Triggs 2005)] from videos. Then a clustering method such as
k-means is employed to quantize these features into so-called
visual words. After that, a histogram of the words contained
in a video is computed and is considered as the vector format
representation for the video. All these approaches use hand-
crafted features, which normally require expensive human
labor and expert knowledge to design extraction algorithms.

Thanks to recent deep learning techniques, human actions
can be effectively learned from low-level observations (Ji
et al. 2013; Karpathy et al. 2014; Simonyan and Zisserman
2014; Vondrick et al. 2016; Ma et al. 2016; Fernando et al.
2016). Specifically, these approaches use convolutional neu-
ral networks (CNNs) to perform convolution operation on
images and build representations for video frames in a vec-
tor format. However, they generally require a large number
of training samples as the CNNs they use have thousands of
parameters to be learned and are very complex. Another line
of research attempts to describe human actions using high-
level semantics (Liu et al. 2011; Kong et al. 2014), i.e., action
attributes. These binary action attributes explain whether a
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particular motion pattern is observed in a video, such as “arm
raise up” and “leg move forward”.

Human interaction recognition (Kong et al. 2014; Lan
et al. 2012; Ryoo and Aggarwal 2009; Marszałek et al.
2009) and human-object interaction (Zhou et al. 2015) were
also explored in recent years. Previous studies Ryoo and
Aggarwal (2009) andMarszałek et al. (2009) recognize inter-
actions in the same way as single-person action recognition
approaches (Dollar et al. 2005; Laptev 2005). Specifically, an
interactions was represented as a motion descriptor includ-
ing all the people in a video, and then an action classifier
was adopted to classify this interaction. Context information
was exploited in Kong et al. (2014) and Lan et al. (2012)
in order to capture the motion relationships between people.
The context information between a pair of motion attributes
was captured in Kong et al. (2014). They described human
interactions by this context information, which was called
interactive phrases in their work. Action context between
individuals was modeled in Lan et al. (2012). Their model
can automatically determine which two individuals are hav-
ing interactions.

2.3 Feature Learning

Feature learning methods (Kobayashi 2014; Pirsiavash et al.
2009; Argyriou et al. 2008; Xu et al. 2014) have been
proposed to learn better feature representations for the recog-
nition task. The methods in Pirsiavash et al. (2009) and
Kobayashi (2014) adopt linear projections to learn better
features in a matrix form for classification. They reduce the
degree of freedom of the model parameter matrix by decom-
posing it into two parts and enforcing a hard restriction on
their rank. Different from them, we elegantly use features
from two modalities for recognition. In addition, we use
an effective information measure to produce more compact
cross-modal features. The work in Argyriou et al. (2008)
learned a few common features across tasks using a regular-
izer, which couples the tasks and enforces sparsity.

Multimodal approaches (Jia et al. 2014; Xie and Xing
2013; Xu et al. 2014) attempt to discover common features
between features of various modalities. The work in Jia et al.
(2014) treatedRGBand depth videos as twomodalities. They
used a cross-modality regularizer to link the two modali-
ties in order to deal with the missing modality problem. A
multimodal metric learning method in Xie and Xing (2013)
embeds data of arbitrary modalities into a single latent space.
The optimal distance metric is learned to better measure the
similarity between data of different modalities. The method
in Xu et al. (2014) extends information bottleneck (Tishby
et al. 1999) to a multi-view model. Multiple information
sources are filtered through a “bottleneck”, and then amargin
maximization approach is used to strengthen the discrimina-
tion of the model.

Fig. 3 Examples of HOG feature computed on a a color image and b
a depth image, and optical flow computed on c a color image and d a
depth image
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Fig. 4 Feature matrix of size nxyt × n f is constructed from features
(e.g., HOG) computed on all the frames. nxyt is the total number of
pixels in all the feature frames, and n f is the dimensionality of each
local feature

Deep models have received lots of attentions in recent
years, and various deep models have been developed for
multi-modal learning (Ngiam et al. 2011;Andrew et al. 2013;
Srivastava and Salakhutdinov 2014; Wang et al. 2015). The
SplitAEmethod in Ngiam et al. (2011) assumes that a shared
representation can be extracted from a single view, and can
be used to reconstruct all views. Deep canonical correlation
analysis (DCCA) was proposed in Andrew et al. (2013) to
learn the correlations between two views using a deep archi-
tecture of nonlinear transformations. A multimodal deep
Boltzmann machine (DBN) was presented in Srivastava and
Salakhutdinov (2014). Their model uses modality-specific
DBNs to build a layer of joint representation to fuse features
from two modalities. The work in Wang et al. (2015) com-
bined SplitAE and DCCA, and proposed three extensions for
multimodal learning.

3 Max-Margin Heterogeneous Information
Machine

The goal of this work is to utilize heterogeneous features
from RGB-D action videos, and learn compact yet discrim-
inative features for action recognition. Denote N RGB-D
action videos for training purpose by {Xi , yi }Ni=1, where

Xi = {X [v]
i , X [z]

i } ∈ X contains a RGB visual feature matrix

X [v]
i ∈ Xv and a depth feature matrix X [z]

i ∈ Xz extracted
from RGB-D data, and yi ∈ Y is the corresponding action
label. Each feature matrix contains both HOG and HOF fea-
ture descriptors (see Fig. 3). Note that X [v]

i and X [z]
i in our

work are defined as feature matrices of size nxyt × n f (see
Fig. 4), different from feature vectors (such as bag-of-word
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models) containing nxyt × n f elements that are popularly
used in the computer vision community. In this work, fea-
tures X [v]

i and X [z]
i are extracted from a spatiotemporal grid

of nxyt = nx × ny × nt , and n f is the dimensionality of
each local feature. HOG and HOF features are concatenated
horizontally, i.e., n f is the dimensionality of concatenated
features. Action representation in a matrix form allows us to
capture inherent structure of features, such as spatiotemporal
relationships. However, these relationships are collapsed in
a vector form feature representation. Note that one can pull
out other dimensions rather than the feature dimension in
X [v]
i and X [z]

i , but the structure of nxyt pixels in the feature
matrices will not be conserved by the proposed model.

RGB-D action data Xi contain two modalities, visual fea-
tures X [v]

i and depth features X [z]
i . The major challenge for

effectively using the two-modality features is that they come
from different distributions, and thus their similarities could
not be measured directly. To solve this problem, we would
like to learn two projection functionsW [v]

o andW [z]
o for visual

features X [v]
i and depth features X [z]

i , respectively. Each of
the projection functions maps the corresponding features to a
spaceO shared between the twomodalities:W [v]

o : Xv → O,
andW [z]

o : Xz → O. After learning the projection functions,
a classification model Ww can be learned to classify given
the learned shared features O ∈ O.

The learned shared features O may not capture all the dis-
criminative information for classification. Some important
cues are not shared between modalities. We takes this into
account by introducing private features for each modality.
Twomodality-specific projectionmatricesW [v]

q andW [z]
q are

adopted to learn private features Q[v] ∈ Qv and Q[z] ∈ Qz

from the original visual and depths features, respectively:
W [v]

q : Xv → Qv , and W [z]
q : Xz → Qz . Classification

models W [v]
w and W [z]

w can also be learned given the learned
privates features Q[v] and Q[z].

In this work, we learn all the projection matrices and
classification models simultaneously. Therefore, the learned
projections are optimized for classification. We focus on
learning a discriminant function F : X ×Y → R that scores
each training sample (Xi , yi ). The function F is applied to
compute the compatibility among the input RGB-D features
Xi , the learned cross-modal features O , the private features
Q, and the action label yi . A list of mathematical symbols
used this paper is given in Table 1.

3.1 Model Formulation

Suppose we are given M types of modalities X [m]
i |Mm=1.

Here, m is the index of modality, which can be either visual
(m = 1 or m = v) or depth (m = 2 or m = z). We rep-
resent both of the two modality features in a matrix form
in order to capture inherent spatiotemporal structure. In this
paper, we are interested in a binary linear discriminant func-
tion F(Xi , y|W ) = Tr(WTXi ) = ∑M

m=1 Tr(W
[m]TX [m]

i )

parameterized by a model weight matrixW . In this work, we
learn both shared features and private features from visual
and depth modalities in order to capture rich discriminative
information for classification. The graphical illustration of
our model is shown in Figure 5. The one-vs-one scheme
is adopted to extend our binary classifiers to a multi-class
classifier.

Table 1 List of mathematical
symbols

Variable Size Meaning

m Scalar Modality indicator. m can be visual (m = v or m = 1) or depth
modality (m = z or m = 2).

nxyt Scalar Number of spatiotemporal feature points.

n f Scalar Dimensionality of each feature point.

do Scalar Dimensionality of the shared features O .

dq Scalar Dimensionality of the private features Q[m].
X [m] nxyt × n f Feature matrix of modality m.

O nxyt × do The learned shared features.

Q[m] nxyt × dq The learned private features of modality m.

W [m]
o n f × do Projection matrix of modality m for learning shared features.

W [m]
q n f × dq Projection matrix of modality m for learning private features.

Ww nxyt × do Classification matrix for the shared features O .

W [m]
w nxyt × dq Classification matrix for the private features Q[m] of modality m.

W [m]
O nxyt × d f Parameter matrix for extracting shared features and classifying the

features. W [m]
O = WwW

[m]
o .

W [m]
Q nxyt × d f Parameter matrix for extracting private features and classifying the

features. W [m]
Q = W [m]

w W [m]
q .
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X [v] X [z]

W [v]
o W [z]

o W [z]
qW [v]

q

Q[v] Q[z]

Ww

O

Fig. 5 Graphical illustration of the proposed MMHIM model. Param-
eter matrix W [m]

o (m = 1, · · · , M) projects the m modality data, X [m],
into a learned shared space, and W [m]

q (m = 1, · · · , M) projects the
data X [m] into private spaces. Classification is performed using both
the learned shared features and private features

Shared information between visual and depth modalities
captures complex correlations between them. Model param-
eter W [m]

O is used to extract shared information and classify
actions.Oneof the challenges inRGB-Daction recognition is
that the twomodalities, visual features and depth features, are
in different feature spaces, and thus their similarities cannot
be directly computed. We solve this problem by decompos-
ing the model parameterW [m]

O into two components,Ww and

W [m]
o : W [m]

O = WwW
[m]T
o , which induces a bilinear model

(Pirsiavash et al. 2009). Parameter matrix W [m]
o ∈ Rn f ×do

(m = 1, · · · , M) projects them-th modality data, X [m], onto
a learned shared space, and parametermatrixWw ∈ Rnxyt×do

is applied to classify the projected data regardless of the
modality. Ww is a spatiotemporal template defined over do
features at each spatiotemporal location. Obviously, the rank
of the model parameter matrix W [m]

O will be enforced to be
at most do.

In addition to the shared features, each modality may
also contain discriminative information but cannot be shared
with the other modality. We capture such private features of
modality m for classification using model parameter W [m]

Q .

Similar to W [m]
O for shared features, W [m]

Q is also decom-

posed into two components, W [m]
w and W [m]

q . Parameter

matrix W [m]
q ∈ Rn f ×dq projects the original low-level data

of modality m to a low-dimensional space, and W [m]
w ∈

Rnxyt×dq is used to classify the projected data,which is essen-
tially a spatiotemporal template for the projected data of dq
features. The rank of the model parameter W [m]

Q is enforced
to be at most dq .

Once the optimal model parameter matrix W is learned
from training data, the action label y∗

i of a sample Xi can be
computed by

y∗
i = sign

[
Tr(WTXi )

]
= sign

[
Tr(WT

O Xi + WT
QXi )

]

= sign
[∑

m

Tr( W [m]
o WT

wX [m]
i︸ ︷︷ ︸

shared information

+ W [m]
q W [m]T

w X [m]
i︸ ︷︷ ︸

private information

)
]
,

(1)

where sign(·) is the sign function.
We train the MMHIM in Eq. (1) in a max-margin frame-

work. Based on the empirical risk minimization principle,
we formulate our learning problem as

min
Ww,W [m]

w ,W [m]
o ,W [m]

q

λ · r(Ww,W [m]
w ,W [m]

o ,W [m]
q )

∣
∣
∣
m

+ φ(W [m]
o ,W [m]

q )

∣
∣
∣
m

+ η · l(Ww,W [m]
w ,W [m]

o ,W [m]
q )

∣
∣
∣
m
.

(2)

For succinctness, “|m” indicates that the parameters of the
twomodalities (m = v andm = z) are jointly optimized.φ(·)
is a regularizer for reducing noise in the projected data, r(·) is
an additional regularization term related to the margin of our
bilinear model, and l(·) computes training loss for the two-
modality data. λ and η are trade-off parameters balancing the
importance of the corresponding terms.

3.1.1 Margin Regularizer r(Ww,W [m]
w ,W [m]

o ,W [m]
q )|m

Regularizer r(Ww,W [m]
w ,W [m]

o ,W [m]
q )|m∈{v,z} is used to

measure the margin of the bilinear classifier. Minimizing
r(Ww,W [m]

w ,W [m]
o ,W [m]

q )|m∈{v,z} is equivalent to maximiz-
ing the margin of the bilinear model, thereby improving the
generalization power. The margin regularizer r(·) is defined
as

r(Ww,W [m]
w ,W [m]

o ,W [m]
q )

∣
∣
mx

= 1

2

[
ro(Ww,W [m]

w ,W [m]
o ,W [m]

q )
∣
∣
m︸ ︷︷ ︸

margin for shared features

+ rq(Ww,W [m]
w ,W [m]

o ,W [m]
q )

∣
∣
m︸ ︷︷ ︸

margin for private features

]
, (3)

ro(Ww,W [m]
w ,W [m]

o ,W [m]
q )|m

= 1

2

[
Tr(WwW

[v]T
o W [v]

o WT
w)

+ Tr(WwW
[z]T
o W [z]

o WT
w)

]
, (4)

rq(Ww,W [m]
w ,W [m]

o ,W [m]
q )|m = 1

2

×
[
Tr(W [m]

w W [v]T
q W [v]

q W [m]T
w )
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+ Tr(W [m]
w W [z]T

q W [z]
q W [m]T

w )
]
. (5)

The regularization term r(Ww,W [m]
w ,W [m]

o ,W [m]
q )|m con-

siders the classifier margins of the models for both shared
features and private features, ro(·) and rq(·). It naturally
induces low-rank classifierswith themaximumrankofdo and
dq for the two types of features, respectively. This restricts the
degree of freedom of model parameter matrices. As shown
in Wolf et al. (2007), the VC-dimension of low-rank clas-
sification models was proven to be less than that of the
concatenated linear models.

Regularizer r(Ww,W [m]
w ,W [m]

o ,W [m]
q )|m is minimized to

extract discriminative information from both cross-modal
features O and private features Q for action recognition. It
works together with φ(W [m]

o ,W [m]
q )|m in Eq. (6) to extract

discriminative information and filter out noise for the recog-
nition task.

3.1.2 Projection Regularizer φ(W [m]
o ,W [m]

q )|m

Regularizer φ(W [m]
o ,W [m]

q )|m is a function that attempts to
summarize and compress the original two-modality data.
Since the raw RGB and depth data may not be in the same
space, we use this term to compress the data, and discover
shared and modality-specific knowledge between the two
modalities. We define this term as

φ(W [m]
o ,W [m]

q )|m =
[

φo(W
[m]
o ,W [m]

q )
∣
∣
m︸ ︷︷ ︸

shared information

+ φq(W
[m]
o ,W [m]

q )
∣
∣
m︸ ︷︷ ︸

private information

+ φr (W
[m]
o ,W [m]

q )
∣
∣
m︸ ︷︷ ︸

redundant information

]
, (6)

φo(W
[m]
o ,W [m]

q )|m = I (X [v], O) + I (X [z], O), (7)

φq(W
[m]
o ,W [m]

q )|m = I (X [v], Q[v]) + I (X [z], Q[z]), (8)

φr (W
[m]
o ,W [m]

q )|m = I (Q[v], O) + I (Q[z], O), (9)

where I (·, ·) computesmutual information between twovari-
ables J and K :

I (J, K ) =
∑

j

∑

k

p( j)p(k| j) log p(k| j)
p(k)

. (10)

X [m] = {X [m]
i }Ni=1 (m = v or m = z) represents a set of all

training samples in the m-th modality, O = 1
2 (X

[v]W [v]
o +

X [z]W [z]
o ) ∈ O is the learned low-dimensional cross-modal

features in the shared space, Q[m] = X [m]W [m]
q denotes the

private features of the m-th modality.

Equations (7) and (8) are utilized to introduce cross-
modality and private knowledge to the model through the
learning of the shared features O and the private features Q.
Cross-modal features O inherit information from both RGB
and depth data, including motion, structure, and spatiotem-
poral relationship information. Private features, on the other
hand, capture information that is not sharable, such as dis-
tance cue in the depth data. We show in the experiments that
the learned features play an important role in the recognition
of RGB-D actions and in case of missing one modality in
training or testing phase. Equation (9) aims at reduce redun-
dancies between the shared and private features.

In addition, the term φ(W [m]
o ,W [m]

q )|m helps to reduce
noise and produce compact representations for cross-modal
features O and private features Q. In the learning of the
features O and Q, a large amount of noise irrelevant to
action labels would also be introduced to low-dimensional
spaces, and thus degrades the recognition performance.
By minimizing φ(W [m]

o ,W [m]
q )|m , both noisy and discrim-

inative information in O and Q will be reduced, but
the later one can be well captured by the regularizer
r(Ww,W [m]

w ,W [m]
o ,W [m]

q )|m in Eq. (3). Parameter λ for reg-

ularizer r(Ww,W [m]
w ,W [m]

o ,W [m]
q )|m is used for balancing

the importance of the noise filter in MMHIM.

3.1.3 Loss Function l(Ww,W [m]
w ,W [m]

o ,W [m]
q )|m

Loss function l(Ww,W [m]
w ,W [m]

o ,W [m]
q )|m computes train-

ing loss given the learned model parameter matrices. We
consider binary classifiers in this work, and define a hinge
loss function h(y, f (x)) = max(0, 1 − y f (x)) for each
modality, which is similar to the one in the binary SVM:

l(Ww,W [m]
w ,W [m]

o ,W [m]
q )|m (11)

=
∑

i

[
h
(
yi ,Tr(W

[v]
o WT

wX [v]
i )

)+h
(
yi ,Tr(W

[z]
o WT

wX [z]
i )

)

(12)

+ h
(
yi ,Tr(W

[v]
q W [v]T

w X [v]
i )

)+h
(
yi ,Tr(W

[z]
q W [z]T

w X [z]
i )

)]
.

(13)

Here, the losses in Eq. (12) are incurred by the shared features
O , and the ones inEq. (13) are incurred by the private features
Q.

3.1.4 Learning Formulation

Plugging Eqs. (3), (6), and (11) into Eq. (2), optimal param-
eter matrices {W [m]

o ,W [m]
q ,W [m]

w ,Ww}|m can be learned by
the following constrained optimization problem:
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min
Ww,W [m]

w ,W [m]
o ,W [m]

q

∑

m

{
I (X [m], O) + I (X [m], Q[m])

+ I (Q[m], O) + 1

4
λ
[
Tr(WwW

[m]T
o W [m]

o WT
w)

+ Tr(W [m]
w W [m]T

q W [m]
q W [m]T

w )
]

+ η ·
∑

i

(ξ
[m]
i + ε

[m]
i )

}
,

s.t. yiTr(W
[m]
o WT

wX [m]
i ) � 1 − ξ

[m]
i , ∀i,∀m,

yiTr(W
[m]
q W [m]T

w X [m]
i ) � 1 − ε

[m]
i , ∀i,∀m,

ξ
[m]
i � 0, ∀i,∀m,

ε
[m]
i � 0, ∀i,∀m,

(14)

where ξ
[m]
i and ε

[m]
i are slack variables for the shared features

and the private features of them-th modality in the i-th RGB-
D video, respectively.

3.2 Model Learning

The above constrained optimization problem can be solved
by a coordinate descent algorithm that solves for one set of
parameter matrices at each step with the others fixed. Each
step in the algorithm is a regularized risk minimization prob-
lem, which can be solved using a bundle method1 (Teo et al.
2007; Do and Artieres 2009). In a nutshell, the bundle algo-
rithm iteratively builds an increasingly accurate piecewise
quadratic lower bound of the objective function. We adopt
the bundle method as the inner problem solver due to its
efficiency and good convergence.

We first reformulate the optimization problem (14) as an
unconstrained regularized risk minimization problem:

min
Ww,W [m]

w ,W [m]
o ,W [m]

q

η ·
∑

i

∑

m

L [m]
i +

∑

m

R[m], (15)

where

L [m]
i = max

(
0, 1 − yiTr(W

[m]
o WT

wX [m]
i )

)

+ max
(
0, 1 − yiTr(W

[m]
q W [m]T

w X [m]
i )

)

R[m] = I (X [m], O) + I (X [m], Q[m]) + I (Q[m], O) + 1

2
λ·

[
Tr(WwW

[m]T
o W [m]

o WT
w)

+Tr(W [m]
w W [m]T

q W [m]
q W [m]T

w )
]
,

(16)

are empirical loss and regularizers, respectively.Wesolve this
optimization problem using a coordinate descent algorithm
that iteratively update one variable at a time.

1 https://forge.lip6.fr/projects/nrbm

Update Ww. Specifically, if {W [m]
w ,W [m]

o ,W [m]
q } are fixed,

the optimization problem is

min
Ww

1

2
λ

∑

m

Tr(WwW
[m]T
o W [m]

o WT
w)

+ η
∑

i

∑

m

max
(
0, 1 − yiTr(W

[m]
o WT

wX [m]
i )

)
.

(17)

To efficiently solve this problem, we define A = ∑
m W [m]T

o

W [m]
o , and define two auxiliary variables Ŵw = WwA

1
2 and

X̂ [m]
i = XiW

[m]
o A− 1

2 . Note that A is a matrix of size d × d
that is in general invertible for small d. Then the problem
(17) can be equivalently rewritten as

min
Ŵw

1

2
λTr(ŴT

wŴw)+η
∑

i

∑

m

max
(
0, 1 − yiTr(Ŵ

T
w X̂ [m]

i )
)

.

(18)

This is an unconstrained regularized risk minimization prob-
lem equivalent to linear SVM if Ŵw and X̂ [m]

i are vectorized.
We solve this problem using a bundle method. After learning
Ŵw, the original parameter matrix Ww can be reconstructed

by Ww = ŴwA− 1
2 .

Update W [m]
w . We fix {Ww,W [m]

o ,W [m]
q }, and solve

min
W [m]

w

1

2
λ

∑

m

Tr(W [m]
w W [m]T

q W [m]
q W [m]T

w )

+ η
∑

i

∑

m

max
(
0, 1 − yiTr(W

[m]
q W [m]T

w X [m]
i )

)
.

(19)

Similar to the optimization procedure of parameter matrix
Ww, we also define B = W [m]T

q W [m]
q , and introduce

two auxiliary variables W
[m]
w = W [m]

w B
1
2 and X

[m]
i =

X [m]
i W [m]

q B− 1
2 . Then the optimization problem (19) can be

equivalently given by

min
W

[m]
w

1

2
λ

∑

m

Tr

(

W
[m]T
w W

[m]
w

)

+ η
∑

i

∑

m

max
(
0, 1 − yiTr(W

[m]T
w X

[m]
i )

)
.

(20)

This is also an unconstrained regularized risk minimization

problem. If W
[m]
w and X

[m]
i are vectorized, this problem can

be solved using standard linear SVM solver. After learning

W
[m]
w , the original parameter matrix W [m]

w can be recon-

structed by W [m]
w = W

[m]
w B− 1

2 .

Update W [m]
o . When {Ww,W [m]

w ,W [m]
q } are fixed, W [m]

o for
each modality can be optimized in a similar form to Eq. (15)
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and (16) but with Ww as constant. We define C = WT
wWw,

and further define two auxiliary variables, W̃o and X̃i , as

W̃ [m]
o = W [m]

o C
1
2 and X̃ [m]

i = X [m]T
i WwC− 1

2 . Then, the

parameter matrix W̃ [m]
o for each modality can be optimized

independently by

min
W̃ [m]

o

1

2
Tr

(
W̃ [m]T

o W̃ [m]
o

)
+ λI (X̃ [m], Õ)

+ η
∑

i

max
(
0, 1 − yiTr(W̃

[m]T
o X̃ [m]

i )
)

,

(21)

with the assumption that the conditional distribution

p(Ww,C− 1
2 |X [m], O) is a uniform distribution2. This is

also an unconstrained regularized risk minimization prob-
lem and can be solved by a bundle algorithm if W̃ [m]

o and
X̃ [m]
i are unfolded into vectors. We repeat this step twice,

each of which is fed with visual features X [v]
i or depth fea-

ture X [z]
i . After optimizing W̃ [m]

o , W [m]
o can be recovered by

W [m]
o = W̃ [m]

o C− 1
2 .

Update W [m]
q . When {Ww,W [m]

w ,W [m]
o } are fixed,W [m]

q can
be optimized by

min
W [m]

q

1

2
Tr

(
W [m]

w W [m]T
q W [m]

q W [m]T
w

)
+ λI (X [m], Q[m])

+ λI (Q[m], O)

+ η
∑

i

max
(
0, 1 − yiTr(W

[m]
q W [m]T

w X [m]
i )

)
,

(22)

We use the similar method that is used in learning W [m]
o . We

define D = W [m]T
w W [m]

w , and further introduce two auxiliary

variables Ŵ [m]
q = W [m]

q D
1
2 and X̂ [m]

i = X [m]T
i W [m]

w D− 1
2 .

Then the parameter matrix W [m]
q for modality m can be

learned by

min
Ŵ [m]

q

1

2
Tr

(
Ŵ [m]T

q Ŵ [m]
q

)
+ λI

(
X̂ [m], Q̂[m])

+ λI (Q̂[m], Ô) + η
∑

i

max
(
0, 1 − yiTr(Ŵ

[m]T
q X̂ [m]

i )
)

,

(23)

The learning of parameter Ŵ [m]
q can be solved using the bun-

dle algorithm. One of the key steps in the bundle algorithm
is computing the subgradient of the mutual information term
I (Ô, Q̂[m]) in the objective function in Eq. (23) with respect
to the model parameter Ŵ [m]

q . In this work, the subgradient
with respect to the (i, j)-th element in the model parameter
Ŵ [m]

q can be computed by

2 Please refer to the supplemental material for details.

∂ I (Ô, Q̂[m])
∂Ŵ [m]

q(i, j)

= Tr
{[

p(Ô)
(
log

Ŵ [m]+
o Ŵ [m]

q

p(Q̂[m])
+ 1

)]T

· Ŵ [m]+
o · Ii j

}
,

(24)

where Ŵ [m]+
o computes the pseudo-inverse of Ŵ [m]

o : Ŵ [m]+
o

= Ŵ [m]T
o (Ŵ [m]

o Ŵ [m]T
o )−1. Ii j is a matrix (of size n f × dp)

with all 0s but with 1 at (i, j).
We solve the optimization problem (23) twice, each of

which is fed with visual features X [v]
i or depth features X [z]

i .

After optimizing Ŵ [m]
q , W [m]

q can be recovered by W [m]
q =

Ŵ [m]
q D− 1

2

The proposedMMHIM is solved by iteratively optimizing
problems (18), (20), (21), and (23) until convergence. This
is a biconvex problem as optimizing one parameter matrix
holding the others fixed is a convex problem. The algorithm
converges as optimizing each of model parameter matrices
reduces objective function value.

3.3 Using Feature Vectors for Classification

The proposed approach takes feature matrices as input in
order to capture spatiotemporal structures of human body
parts. However, compared with features in vector format,
there are not too many features represented in a matrix form.
In order to utilize existing vector-based features [such as
skeleton feature vectors (Du et al. 2015; Wang et al. 2012b)
or normal vectors (Oreifej and Liu 2013; Yang et al. 2014)],
we propose a generalized framework that utilizes features in
both a vector format and a matrix format.

Skeleton features are popularly used in action recognition
from RGB-D videos due to its high discriminative power
(Du et al. 2015; Wang et al. 2012b; Xia and Aggarwal 2013).
We extract skeleton feature using Du et al. (2015) in this
work, represent it in a vector format, and use it for classifi-
cation together with visual and depth cues that are defined
in a matrix format. A new potential linear function wT

s x
[s] is

added to the discriminant function in Eq. (1). Here, ws is a
vector of model parameters, and x [s] is a vector of skeleton
features. The linear function wT

s x
[s] measures the compati-

bility between the skeleton features x [s] and the action label
+1/-1. By adding wT

s x
[s], the new discriminant function is

y∗
i = sign

[
Tr(WT

O Xi + WT
QXi ) + wT

s x
[s]]. (25)

Note that we do not learn a shared feature space for the
skeleton feature in this work, different from visual and depth
features where a shared feature space is learned.

The model parameter ws can be jointly learned with other
model parameters {W [m]

o ,W [m]
q ,W [m]

w ,Ww}|m using the fol-
lowing optimization formulation similar to (15):
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min
ws ,Ww,W [m]

w ,W [m]
o ,W [m]

q

η ·
∑

i

∑

m

L [m]
i +

∑

m

R[m], (26)

where

L [m]
i = max(0, 1 − yiw

T
s x

[s])

+ max
(
0, 1 − yiTr(W

[m]
o WT

wX [m]
i )

)

+ max
(
0, 1 − yiTr(W

[m]
q W [m]T

w X [m]
i )

)

R[m] = I (X [m], O) + I (X [m], Q[m]) + I (Q[m], O)

+ 1

2
λ
[
‖w‖2 + Tr(WwW

[m]T
o W [m]

o WT
w)

+ Tr(W [m]
w W [m]T

q W [m]
q W [m]T

w )
]
.

(27)

The optimization problem can be solved by a coordinate
descent algorithm similar to the onewe proposed in Sect. 3.2.
If we update ws and fix all the other parameters, the learning
problem can be written as

min
ws

1

2
λ‖w‖2 + max(0, 1 − yiw

T
s x

[s]), (28)

which is a standard linear SVM optimization problem and
can be solved using a off-the-shelf SVM solver.

3.4 Structured Prediction Model

The main limitation of the above MMHIM model is that
it cannot be used in structured prediction problems. In this
work, we further extend the MMHIM to a structured predic-
tionmodel that can capture the correlations betweenmultiple
outputs. We consider a special case of learning a multi-class
MMHIM Tr[WTΦ(X, y)] for nc action categories. Here, W
is model parameter matrix and Φ(X, y) is a feature func-
tion that models the agreement between low-level features X
and action label y. Various structured prediction models can
be developed based on Structured MMHIM by using more
complex model structures (e.g., a sequence of video frames,
multiple body parts in part-based models). This allows us
to learn shared and private features, and structured labels
jointly.

The key in the structured prediction model is the feature
function Φ(Xi , yi ). In this work, we define the feature func-
tion as

WTΦ(Xi , yi ) = WT
OΦO(Xi , yi ) + WT

QΦQ(Xi , yi ). (29)

Similar to the ones inEq. (1), bothWT
O andWT

Q canbe decom-
posed into two components, a classification component and
a projection component. These components in WT

O or WT
Q

are used to score the visual modality and depth modality in
the sample Xi .

We define the potential functions WT
OΦO(X, y) and

WT
QΦQ(X, y) as

Tr[WT
OΦO(X, y)] =

∑

m

∑

a∈Y
WT

w,a · 1(y = a) · X [m]W [m]
o ,

Tr[WT
QΦQ(X, y)] =

∑

m

∑

a∈Y
W [m]T

w,a · 1(y = a) · X [m]W [m]
q ,

(30)

where a is an index for action labels and 1(·) is an indica-
tor function. Note that as we are considering a multi-class
classification problem, the classification parameters Ww in
WO and W [m]

w in WQ contain nc classification templates,
respectively: Ww = [Ww1,Ww2, · · · ,Wwnc ] and W [m]

w =
[W [m]

w1 ,W [m]
w2 , · · · ,W [m]

wnc ], where each Wwt or W
[m]
wt can be

regarded as a classifier for action category t ∈ {1, · · · , nc}.
Feature function ΦO(Xi , yi ) can be explicitly expressed as

ΦO(Xi , yi ) = (0, 0, · · · , Xi , · · · , 0, 0)T ∈ Rnc×d . (31)

Here, ΦO(Xi , yi ) is a matrix with nc rows. Xi locates in the
yi -th (out of nc) row of ΦO(Xi , yi ), and d is the length of
Xi . Similarly, feature function ΦQ(Xi , yi ) can be given by

ΦQ(Xi , yi ) = (0, 0, · · · , Xi , · · · , 0, 0)T ∈ Rnc×d . (32)

Compared to MMHIM, Structured MMHIM only takes
feature vectors as input and thus does not capture spatiotem-
poral structure information. Feature functions ΦO(·) and
ΦQ(·) in Structured MMHIM are matrices corresponding
to feature matrix X in MMHIM, and are projected using
projection matricesW [m]

o andW [m]
q , respectively. A straight-

forward way to design feature functions ΦO(·) and ΦQ(·) in
Structured MMHIM is to follow the structured support vec-
tor machine (SSVM) (Joachims et al. 2009), where feature
vectors are used in computing these feature functions. Fol-
lowing Joachims et al. (2009), feature vector Xi should be
placed in the yi -th row of ΦO(Xi , yi ) (Eq. 31). Extensions
to using feature matrix in Structured MMHIM is feasible but
it requires the redesign of projection matrices and the classi-
fication parameter matrices.

We learn the Structured MMHIM using the formulation
similar to the one proposed in (14), which is

min
Ww,W [m]

w ,W [m]
o ,W [m]

q

∑

m

{
I
(
Φ(X [m], y),Φ(O, y)

)

+ I
(
Φ(X [m], y),Φ(Q[m], y)

)
+ I

(
Φ(Q[m], y),Φ(O, y)

)

+ 1

2
λ
[
Tr

(
WwW

[m]T
o W [m]

o WT
w

)

+Tr
(
W [m]

w W [m]T
q W [m]

q W [m]T
w

) ]
+ η

∑

i

(ξ
[m]
i + ε

[m]
i )

}
,
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s.t. Tr
(
W [m]

o WT
wΔΦ(X [m]

i , yi )
)

� 1 − ξ
[m]
i , ∀i,∀m,

Tr
(
W [m]

q W [m]T
w ΔΦ(X [m]

i , yi )
)

� 1 − ε
[m]
i , ∀i,∀m,

ξ
[m]
i � 0, ∀i,∀m,

ε
[m]
i � 0, ∀i,∀m, (33)

where ΔΦ(X [m]
i , yi ) = Φ(X [m]

i , yi ) − Φ(X [m]
i , y).

It should be noted that the key in Structured MMHIM is
the feature functions ΦO(·) and ΦQ(·). Structured MMHIM
is flexible in graph structure and is capable of predicting
structured labels whileMMHIMcannot. In the following, we
design a Structured MMHIM for modeling temporal frames
with varying length, which cannot be performed inMMHIM.

Example We use Structured MMHIM to model temporal
frames in videos in this example. Consider a graph G =
{V, E}, where V is a set of nodes and E is a set of edges.
Here, a node corresponds to a (RGB or depth) video frame
and an edge links two successive frames. StructuredMMHIM
projects the t-th RGB and depth video frames (X [v]

t and
X [z]
t ) onto a shared feature space to learn shared features,

and projects the two modalities onto independent private
spaces to learn modality-specific features as well. Structured
MMHIM predicts an action label yt ∈ Y for each frame in
a video using both shared and private features. A majority
voting scheme is adopted on all the frames in a video to infer
the label of the video.

Suppose a video has T frames, then the potential functions
WT

OΦ(X, y) andWT
QΦ(X, y) in the StructuredMMHIM can

be defined as

Tr[WT
OΦO(X, y)]

=
∑

m

{ T∑

t=1

∑

a∈Y
[WT

w,a · 1(yt = a) · X [m]
t W [m]

o ]
︸ ︷︷ ︸

unary potential

+
T−1∑

t=1

∑

a∈Y

∑

b∈Y
[Ww,a,b · 1(yt = a) · 1(yt+1 = b)]

}

︸ ︷︷ ︸
pairwise potential

,

(34)

Tr[WT
QΦQ(X, y)]

=
∑

m

{ T∑

t=1

∑

a∈Y
[W [m]T

w,a · 1(y = a) · X [m]
t W [m]

q ]
︸ ︷︷ ︸

unary potential

+
T−1∑

t=1

∑

a∈Y

∑

b∈Y
[W [m]

w,a,b · 1(yt = a) · 1(yt+1 = b)]
}

︸ ︷︷ ︸
pairwise potential

.

(35)

Here, Ww = {Ww,a}|a=1,··· ,nc and W [m]
w = {W [m]

w,a}|a=1,··· ,nc
are classification matrices, {Ww,a,b}|a,b=1,··· ,nc and
{W [m]

w,a,b}|a,b=1,··· ,nc are classification parameters, and W [m]
o

and W [m]
q are projection matrices for shared and private fea-

tures, respectively.
The first terms in the above two equations are unary poten-

tial functions and the second terms are pairwise potentials.
Unary potentials model the compatibility between the low-
level projected frame features X [m]

t W [m]
o (or X [m]

t W [m]
q ) and

the classification template WT
w,a (or W [m]T

w,a ); while the pair-
wise potentials capture the compatibility between successive
frames. We refer to this model as Structured MMHIM-2
and the original StructuredMMHIM in Eq. (30) and Eq. (33)
as Structured MMHIM-1.

Comparison Structured MMHIM-1 proposes a general
framework for structured prediction. It is not defined on
a graph structure. By extending its potential functions in
Eq. (30) to Eq. (34) and Eq. (35), the new structured model,
Structured MMHIM-2, defines a graph for modeling frame
sequences. Eq. (34) projects all the depth and RGB frames
onto a shared space, and learn modality-specific features at
the same time. Eq. (35) models the correlations between
successive frames in a video. Both Structured MMHIM-1
and MMHIM have to sample a fixed number of frames (10
frames in this work) in order to fix the size of input matrices;
while Structured MMHIM-2 is not restricted to the num-
ber of frames in a video. Both Structured MMHIM-1 and
MMHIM do not capture the correlations between successive
frames in a video; while StructuredMMHIM-2 considers the
correlations. MMHIM takes feature matrices as input, while
Structured MMHIM-1 and Structured MMHIM-2 take fea-
ture vectors as input.

3.5 Model Properties

We would like to discuss key properties of the proposed
MMHIM here.

Matrix format feature representation used in this work
naturally considers spatiotemporal motion structure. Recall
that the feature matrix X is of size nxyt ×n f . It pulls apart the
feature dimension from the collapsed spatiotemporal dimen-
sion (x-y-t). In such a representation, the spatiotemporal
structure is kept bynxyt pixels in the featurematrix X .Motion
relationships of body parts also exist in the rows of X . After
projection using Wo or Wq , the structure of nxyt pixels in
X and the motion relationships are still conserved in the
projected feature matrix XWo or XWq , as Wo or Wq only
operates on the columns of X .

However, if we use a feature vector x instead of a fea-
ture matrix X , the spatiotemporal structure and the motion
relationships between body parts will not be conserved in
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the projected features WT
o x or WT

q x. This is because all the
elements in x are involved in the projection. Even though
the feature vector x itself captures the structure information
using a spatiotemporal pyramid, for example, the informa-
tion will collapse after projection due to the involvement of
other elements in x.

The matrix form representation used in this work is dif-
ferent from the 4th-order tensor format in Pirsiavash et al.
(2009). Their method captures width, height, temporal extent
and feature dimension of a spatiotemporal window. The rank
restriction in their work forces a spatiotemporal template to
be separable along the x, y, t axis. By comparison, our rep-
resentation considers spatiotemporal structures jointly. We
put spatiotemporal dimensions together, and pull out feature
dimension in this work.

Low-rank bilinear model MMHIM naturally models feature
matrices using two model parameter matrices Wo (or Wq )
and Ww. The rank of the proposed model is minimized to
provide a better generalization power (Wolf et al. 2007). We
show in the experiments that such a bilinear model can learn
complex mappings, and the performance is even better than
deep models (Liu and Shao 2013).

Informationmeasure This is computed in the process of data
projection in order to compress data and reduce noise in the
learned space. We validate its effectiveness in the experi-
ments.

Cross-modal features OurMMHIM learns cross-modal fea-
tures from RGB and depth data. The cross-modal features
are discriminative for classification as they capture implicit
correlations between RGB and depth data, and inherit the
characteristics of them including motion, 3D structural, and
spatiotemporal correlation information.

Knowledge transfer The learned projectionmatrixW [m]
o and

W [m]
q transfers information from original data X [m] to the

learned shared features O and private features Q. This helps
exploit cross-modal knowledge if one modality is missing in
testing.

Structured prediction Structured MMHIM is capable of
predicting structured outputs. This allows us to fuse het-
erogeneous cues and capture relationships between multiple
outputs at the same time. Structured MMHIMs can be used
in temporal series domain while MMHIM cannot be.

The third modality Our MMHIM uses two modalities and
can be extended to using the third modality. For Kinect
sensors, the third modality could be the skeleton features,
which capture motion information from body joints. How-
ever, existing skeleton features are generally represented in

Fig. 6 Examples frames ofNEU-UBdataset. The 6 action classes from
left to right are a “Lateral Bend”, b “Left Leg Lift”, c “Right Leg Lift”,
d “Squat”, e “Step Backward”, and f “Step Forward”

a vector format (Du et al. 2015; Wang et al. 2012b). In order
to project the skeleton features into the feature space shared
with visual and depth modalities, the raw skeleton features
need to be represented in a matrix format so that it can be fed
into MMHIM. A possible modification for changing vector-
based skeleton features into matrix-based skeleton features
can be made by: (1) Fixing the number of spatiotemporal
locations of the features. (2) Pulling out the feature dimen-
sion. Consequently, the modified skeleton features are in
matrix format and can be shared with the other two sources
in the learned space. Nevertheless, this requires us to design
a new feature representation for skeleton features, which is
beyond the scope of this paper.

4 Experiments

4.1 Datasets and Settings

We collect a new RGB-D action dataset named NEU-UB
dataset to test our approach. Example frames displayed in
Fig. 6 show that depth videos in this dataset are extremely
noisy. Therefore, it would be challenging for themethods that
only use depth modality. This dataset was captured by three
types of devices, including a Kinect sensor, Vicon sensors,
and IMU sensors. We utilize the RGB and depth data gener-
ated by the Kinect sensor in this work. The NEU-UB dataset
contains 6 action categories, including “Lateral Bend”, “Left
Leg Lift”, “Right Leg Lift”, “Squat”, “Step Backward”, and
“Step Forward”. Each action is performed by 20 subjects.
Each actor repeats an action 5 times, to provide a total of
600 RGB-D videos. Visually similar temporal segments in
different action categories frequently occur in this dataset,
for example, “Step Backward” and “Step Forward”.

The proposedmethod is also evaluated on theMSRAction
Pairs dataset (Oreifej and Liu 2013) andMSRDaily Activity
dataset (Wang et al. 2012b). MSR Action Pairs dataset is an
indoorRGB-Daction dataset containing 12 types of activities
performed by 10 subjects with both RGB and depth videos.
Each actor repeats an action for three times, to provide a total
of 360 videos for each of the RGB and depth modalities.
MSR Daily Activity dataset contains 16 types of activities
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Fig. 7 Confusion matrix of a RGB-only (overall accuracy= 80.00%), b depth-only (overall accuracy= 58.25%), and c full MMHIM method
(overall accuracy= 83.51%) on the NEU-UB dataset. Misclassification examples are also shown on the right

performed by 10 subjects. Each actor repeats an action twice,
providing a total of 320 videos for each of the RGB and depth
channels.

4.2 NEU-UB Action Dataset

Videos in this dataset are temporally normalized to 10 frames
with spatial resolution of 120× 160. Histograms of oriented
gradient feature and histograms of oriented flow feature are
both extracted from color and depth videos in this dataset.
A total of nxyt = 3000 patches are extracted from each
video,with the feature dimensionality of n f = 93. The cross-
validation training strategy is adopted for this dataset. The
videos of the first 10 subjects are used for training, videos of
4 subjects are used for cross-validation, and the remaining
videos of the other subjects are adopted for testing.

4.2.1 Classification Performance

Confusion matrices of the proposed MMHIM using RGB
data, depth data, and the fullRGB-Ddata onNEU-UBdataset
are illustrated in Fig. 7. MMHIM achieves 83.51% accuracy
in classifying actions in RGB-D videos. Misclassifications
are mainly due to visually similar movements, for exam-
ple, “Step backward” and “Step forward”, “Step backward”
and “Right leg lift” (shown on the right hand side). 13% of
“Lateral bend” videos are misclassified as “Squat”. This is
mainly due to similar temporal segments in “Lateral bend”.
The videos in “Lateral bend” has long durationswith a person
standing still, which is very similar to the ones in “Squat”.
13% of “Step backward” videos are misclassified as “Step
forward” due to motion similarities. The two actions mainly
differ in the distance changes from the human subject to the
camera along temporal axis, which is not very clear in color
videos. 7 and 9% of “Step backward” videos are also mis-
classified as “Left leg lift” and “Right leg lift”, respectively.
The underlying reason is that in these misclassified videos,

Table 2 Recognition accuracy of comparison methods on NEU-UB
dataset

Methods Accuracy (%)

HON4D (Oreifej and Liu 2013) 58.42

SNV (Yang et al. 2014) 60.18

Linear SVM 75.44

LTTL (Jia et al. 2014) 77.89

Bilinear SVM (Pirsiavash et al. 2009) 80.70

BHIM (Kong and Fu 2015) 81.22

Structured MMHIM-1 82.63

MMHIM 83.51

Structured MMHIM-2 85.56

MMHIM+Skeleton 87.78

Bold value indicates the best result in comparison

human subjects perform other similar actions (lift his/her leg)
during their action executions, which confuse MMHIM.

4.2.2 Comparison Results

We use Du et al. (2015) to extract skeleton features, and rep-
resent the features in a vector format. MMHIM+Skeleton
method is built using the formulation in Sect. 3.3. We
compare MMHIM+Skeleton method, MMHIM, Structured
MMHIM-1, Structured MMHIM-2, with existing methods
(Pirsiavash et al. 2009; Jia et al. 2014; Oreifej and Liu 2013;
Yang et al. 2014; Kong and Fu 2015) on NEU-UB dataset.
Linear SVM is adopted as baseline. Comparison results are
shown in Table 2.

Results show that MMHIM+Skeleton method outper-
forms all the comparison approaches. MMHIM+Skeleton
method achieves 87.78% accuracy, outperforming MMHIM
by 4.27% due to the use of skeleton features. Skeleton fea-
tures naturally capturemotion informationof 20 joints,which
is helpful in discriminating visually similar action categories.
Structured MMHIM-2 outperforms MMHIM by 2.05% on
NEU-UB dataset as it captures the correlation between two
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Fig. 8 Visualizations of a raw RGB features X [v], b raw depth features X [z], c the projected visual features X [v]W [v]
o , d the projected depth

features X [z]W [z]
o , e the learned cross-modal features O in the shared space, f the projected visual features X [v]W [v]

q , and g the projected depth

features X [z]W [z]
q

successive frames using pairwise potentials in Eq. (34) and
Eq. (35). By contrast, MMHIM only samples 10 frames
in a video and does not capture the correlation informa-
tion. MMHIM achieves 83.51% accuracy, 2.29% higher than
the BHIM with the same features. This demonstrates the
benefit of learning private features in MMHIM. Given RGB-
D data, MMHIM learns two extra pieces of information,
i.e., private features for RGB data and private features for
depth data. By encouraging minimum redundant informa-
tion with the learned shared features, the learned private
features capture unique information that is not sharable with
the other modality. For example, this information can be a
2D edge cue in visual RGB modality and a distance cue
in depth modality. Such information is discriminative for
classification, and thus using this extra information can fur-
ther improve the classification performance in MMHIM.
MMHIM outperforms linear SVM due to the learning of
better feature representations. Linear SVM simply concate-
nates visual and depth features into a long vector, which may
not be able to capture complex correlations between visual
and depth modalities. However, MMHIM finds the opti-
mal space for fusing the two modalities, and thus improves
the performance. Similar to MMHIM, bilinear SVM also
learns a shared feature space for the two modalities. Nev-
ertheless, MMHIM filters out redundant information and
reduces noise in the learned features using the information
measure φ(W [m]

o ,W [m]
q )|m in Eq. (6). This improves the dis-

criminative power of the features. Compared with Jia et al.
(2014), the learned features in MMHIM are optimized for
classification, thereby being able to represent visually sim-
ilar actions. Methods in Oreifej and Liu (2013) and Yang
et al. (2014) achieve surprisingly low performance com-
pared with MMHIM due to noisy depth data. Thanks to
the ability of effectively using visual data, MMHIM extracts
discriminative features from visual data, and thus outper-
forms (Oreifej and Liu 2013; Yang et al. 2014). On the
other hand, MMHIM represents features in a matrix form.
This allows us to construct a low-rank bilinear model that
can improve the generalization power. The learned fea-
tures and parameter matrices in MMHIM are visualized in
Fig. 8.

4.2.3 Single Modality

We evaluate the performance of MMHIM in single modality
scenario, and investigate the contribution of each modality
in recognition. In this experiment, we train MMHIM using
one single modality data (RGB or depth), and test it using the
samemodality data.MMHIM and StructuredMMHIM-1 are
compared to linear SVM (with HOG, HOF, and HOGHOF
features), bilinear SVM, and BHIM (Kong and Fu 2015).3

In addition, we independently build two MMHIMs, each of
which is fed with RGB or depth modality. The prediction
scores from the twoMMHIMs are averaged to predict action
labels. We refer to this method as MMHIM-ind. Results are
shown in Table 3.

Recognition accuracy in Table 3 shows that MMHIM
achieves superior performance in amajority of cases. Despite
the method HOGHOF+linear SVM achieves better results
over HOG or HOF-based method, these linear SVM meth-
ods do not fully take advantage of rich correlations between
multiple features. MMHIM, on the contrary, finds better
feature spaces to suppress noise and extract discriminative
features, and thus achieves significantly better performance.
MMHIM outperforms bilinear SVM by 7.20% given depth
data. Compared with bilinear SVM, MMHIM utilizes infor-
mation measure to compress data, and elegantly reduces
redundancy in the data. MMHIM also outperforms BHIM
due to the learning of discriminative private features. Given
single RGB or depth modality, the “shared features”4 O and
the private features Q[m] in MMHIM may capture similar
discriminative information. The private features capture little
additional discriminative information compared to the share
features, and thus the improvement of MMHIM over BHIM
is only around1%.The improvement ofMMHIMoverBHIM
increases to 2.29% if twomodalities are provided. The shared
features will be compromised in order to capture the overlap-
ping information between the two modalities. Consequently,

3 Please refer to the supplemental material for formulations of bilinear
SVM, BHIM, and MMHIM in single modality learning
4 Technically, the feature O here is not shared between two modalities
as it is only computed from RGB data.
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Table 3 Comparison results on
NEU-UB Dataset given
depth-only, RGB-only, and
RGB-D data

Methods RGB (%) Depth (%) Depth+RGB (%)

HOG+linear SVM 76.67 46.14 72.11

HOF+linear SVM 77.19 36.49 69.47

HOGHOF+linear SVM 77.19 47.54 75.44

Bilinear SVM (Pirsiavash et al. 2009) 78.07 51.05 80.70

BHIM (Kong and Fu 2015) 78.77 56.84 81.22

MMHIM-ind 80.00 58.25 68.25

Structured MMHIM-1 79.82 61.05 82.63

MMHIM 80.00 58.25 83.51

it may not be able to capture all the discriminative informa-
tion within one modality. In this case, private features will
be acting as complementary features to shared features, and
thus the improvement increases. Results also clearly show
that RGB information contributes more to the classification
than the depth information on this dataset. This is possibly
because the motion variations of depth videos in different
categories are subtle, and depth videos in NEU-UB dataset
are much noisier than RGB videos.

Results also show thatMMHIM significantly outperforms
MMHIM-ind by 15.26% given RGB-D (Depth+RGB) data.
MMHIM-ind achieves low performance because depth data
are noisy and will lower down the overall performance if
we simply combine prediction results on RGB and depth
data. MMHIM-ind trains on RGB and depth data indepen-
dently, and does not leverage the correlations between the
two modalities to improve the discriminability. We observe
in experiment that prediction results ofMMHIM-ind onRGB
data are always inconsistent with the predictions on noisy
depth data. If we simply combine the prediction scores of
the twomodalities by averaging, the accurate results on RGB
data will be compromised, and thus the overall performance
is low (68.25% in Table 3). On the contrary, MMHIM learns
shared features and private features fromRGB-Ddata jointly.
Even though the depth data are noisy, MMHIM projects
the data onto a subspace where the discriminative informa-
tion of depth data and RGB data can be jointly discovered.
This enhances the discriminative power of the learned fea-
tures from depth data, and thus makes MMHIM outperform
MMHIM-ind.

4.2.4 Knowledge Transfer

We evaluate the performance of our MMHIM in missing
modality scenarios, where onemodality ismissing in training
or testing. MMHIM is tested in the following four scenar-
ios: depth data are missing in testing (RGB-D→RGB),
RGB data are missing in testing (RGB-D→Depth), depth
data are missing in training (RGB→RGB-D), and RGB

data are missing in training (Depth→RGB-D). We compare
MMHIMwith linear SVM, bilinear SVM, BHIM (Kong and
Fu 2015) and StructuredMMHIM-1, and investigate how the
knowledge transferred from observed modality influences
the performance of the five methods. We also build a base-
line, MMHIM-ind, which trains an independent classifier for
each modality, and uses the relevant classifier in prediction
phase according to the presence of modality.

Recognition results in Table 4 show that MMHIM sig-
nificantly outperforms linear and bilinear SVM due to the
use of a matrix form feature representation, and the learned
cross-modal features and private features. MMHIM outper-
formsMMHIM-ind as the shared information between depth
and RGB modalities is discovered and used in the training
of MMHIM. The performance gap is significant when RGB
modality is missing in testing (RGB-D→ Depth) as RGB
data are more discriminative in the NEU-UB dataset. With-
out RGB modality in testing, MMHIM-ind will be confused
by noisy depth data. The effectiveness of private features in
MMHIM can be clearly seen from performance gap between
MMHIM and BHIM, especially in the scenario of RGB-
D→Depth, whereMMHIM outperforms BHIM by 22.11%.
By extracting private features from the testing depth videos,
MMHIM is capable of using extra discriminative informa-
tion for classification, while BHIM can only use raw noisy
depth features.

4.2.5 Sensitivity to Dimensionality

We also evaluate the sensitivity of MMHIM to the dimen-
sionality do of the shared feature space and dq of the private
feature space. The performance variations of MMHIM given
different parameters do and dq are visualized in Fig. 9 in
order to better show how MMHIM is affected by these two
parameters. do and dq range from 5 to 90 with step 5 (do or
dq should be less than n f = 93). Results show that MMHIM
is not sensitive to the dimensionality do and dq . The perfor-
mance variation with respect to do is only 1.4% and it is only
1.75% with respect to dq .
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Table 4 Knowledge transfer results on NEU-UB dataset

Methods RGB-D → RGB (%) RGB-D → Depth (%) RGB → RGB-D (%) Depth → RGB-D (%)

Linear SVM 16.67 36.32 63.85 47.92

MMHIM-ind 80.00 58.25 N/A N/A

Bilinear SVM (Pirsiavash
et al. 2009)

68.77 58.60 57.72 50.53

BHIM (Kong and Fu 2015) 81.93 59.82 77.19 54.91

Structured MMHIM-1 80.70 82.46 76.84 55.26

MMHIM 81.93 81.93 78.60 55.26

X → Y denotes that X is the training data and Y is the testing data. do = dq = 10 for both bilinear SVM and MMHIM, and dimensionality of
features in linear SVM is nxyt · n f . “N/A” indicates the model is not applicable
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Fig. 9 RGB-D action recognition results on ourMMHIMonNEU-UB
dataset with different a dimensionality do of the shared feature space
and b dimensionality dq of the private feature space

4.3 MSR Action Pairs Dataset

We follow the same preprocessing scheme used in the pre-
vious dataset. The same split training strategy in Oreifej and
Liu (2013) is adopted, where RGB-D videos of the first 5
subjects are used as training data.

4.3.1 Comparison Experiment

We compare with existing methods (Oreifej and Liu 2013;
Wang et al. 2012b; Yang et al. 2012, 2014; Jia et al. 2014;
Kong and Fu 2015), and use linear SVM as baseline. We also
extend the bilinear SVM (Pirsiavash et al. 2009) to capture
two-modality data, and use it as baseline.

Results in Table 5 show that MMHIM outperforms all the
comparison approaches. MMHIM achieves 100% accuracy,
significantly outperforming linear SVM by 12.22%. Linear
SVM simply concatenates RGB and depth features into a
long vector, while MMHIM finds the optimal space for fus-
ing the two features. Both bilinear SVM and MMHIM learn
a shared feature space for feature fusion. However, MMHIM
gains 3.89% improvement over bilinear SVM, demonstrat-
ing the benefit of noise reduction in MMHIM. In order to
reduce noise in data projection, MMHIM uses the informa-

Table 5 Recognition accuracy of comparison methods onMSRAction
Pairs dataset

Methods Accuracy (%)

Linear SVM 87.78

Bilinear SVM (Pirsiavash et al. 2009) 96.11

Deep Motion Maps (Yang et al. 2012) 66.11

Skeleton+LOP+Pyramid (Wang et al. 2012b) 82.22

LTTL (Jia et al. 2014) 91.48

HON4D (Oreifej and Liu 2013) 96.67

SNV (Yang et al. 2014) 98.89

BHIM (Kong and Fu 2015) 100

Structured MMHIM-1 97.78

Structured MMHIM-2 100

MMHIM 100

Bold values indicate the best result in comparison

tion measure φ(W [m]
o ,W [m]

q )|m in Eq. (6) to compress data
and reduce information irrelevant to our recognition task.
MMHIM also outperforms (Oreifej and Liu 2013; Wang
et al. 2012b; Yang et al. 2012, 2014), which shows the ben-
efits of effectively utilizing both visual and depth data, and
representing features in a matrix form. Using a matrix form
feature representation allows us to construct a low-rank bilin-
ear model that can improve the generalization power. The
effectiveness of a matrix form feature representation can also
be clearly seen from the performance difference between
MMHIM and Structured MMHIM-1. The learned features
and parameter matrices inMMHIM are visualized in Fig. 10.

4.3.2 Sensitivity to Parameters

In this experiment, we investigate the sensitivity of MMHIM
to themaximumrankofdo, the parameterη and the parameter
λ in Eq. (2). dq is fixed to 10.

We first test the sensitivity of MMHIM to the maximum
rank do. MMHIM is compared with linear SVM and bilinear
SVM with various do values. Note that there are a total of
nxyt · do elements in the shared space for each modality in
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Fig. 10 Visualizations of a the projected visual features X [v]W [v]
q ,

b the projected depth features X [z]W [z]
q in the private space, and c

the learned cross-modal features O in the shared space

MMHIM and bilinear SVM. To conduct a fair comparison,
for linear SVM, we use PCA to reduce the dimensionality of
feature vectors of each modality to nxyt · do, making sure all
the five methods have the same number of elements in the
low-dimensional features. The projected visual and depth
features are concatenated into a long vector and fed to linear
SVM. In bilinear SVM and MMHIM, the original feature
matrix X [m] is projected by W [m]

o . The rank parameter do is
set to 1, 5, and 31, respectively.

The performance of the five methods on depth features,
RGB features, and RGB-D features are shown in Table 6.
Results indicate that MMHIM achieves higher performance
in most of the cases given low-dimensional features, and its
performance on RGB-D data is not sensitive to parameter do.
When do = 1, the projected featurematricesmay lose certain
amount of information. However, the structural information
is reserved in MMHIM, resulting in significant higher per-
formance over linear SVM. In addition, the learned shared
space in MMHIM is optimized for classification, while it
is not the case in PCA. Compared with bilinear SVM, noisy
information is reduced inMMHIM, and thus it achieves supe-
rior performance, for example, an increase of 26.66% given
RGB-D data.

Even though linear SVM captures full information from
visual and depth features when do = 31, it simply concate-
nates depth andRGB features, suggesting that the similarities
between the two types of features are directly compared. This

may not be appropriate since they are from different distri-
butions. In contrast, our MMHIM solves this problem by
projecting the two features into a shared feature space. The
learning of a shared feature space allows us to effectively
use the two types of features for recognition. MMHIM out-
performs bilinear SVM especially in the case of RGB data,
where the performance gain is 18.89%.

MMHIM achieves superior results over BHIMwhen do =
5 due to the learning of private features. An improvement
of 8.33% can be observed given RGB data. The learned
cross-modal features in BHIM lose too much discriminative
information using the information measure φ(W [m]

o ,W [m]
q ).

MMHIM, on the contrary, uses extra private features to cap-
ture rich discriminative information.

Figure 11 illustrates RGB-D action recognition per-
formance variations of MMHIM on MSR Action Pairs
dataset given different values of parameter λ and parame-
ter η. Parameter λ is set: λ ∈ {0.00001, 0.00005, 0.0001,
0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100},
and parameter η is set: η ∈ {0.0001, 0.0005, 0.001, 0.005,
0.01, 0.05, 0.1, 0.5, 1}. Figure 11a shows that MMHIM is
insensitive to λ if λ � 50; the largest performance variations
is only 2.22%. However, the performance drops to 77.78% if
λ = 100 as MMHIM focuses on the margin regularizer but
pays less attention to the training loss. Figure 11b demon-
strates that MMHIM is insensitive to parameter η when
η � 0.1; the variation is only 2.22% The performance drops
to 86.11% when η = 0.5 and it further drops to 67.22%
when η = 1. This is because if η is set to some relatively
large values (η = 1 for example), MMHIM prefers to learn
very complex decision boundaries to minimize training loss.
This affects the generalization performance ofMMHIM, and
results in low recognition performance.

4.3.3 Knowledge Transfer

We evaluate the performance of our MMHIM, and inves-
tigate the effectiveness of the cross-modal features, the
private features, and the information measure if one modal-

Table 6 Comparison results with various dimensionality do of the feature space

Methods do = 1 do = 5 do = 31

Depth (%) RGB (%) RGB-D (%) Depth (%) RGB (%) RGB-D (%) Depth (%) RGB (%) RGB-D (%)

Linear SVM 47.22 42.78 51.67 72.78 70.00 75.00 86.11 87.22 87.78

Bilinear SVM
(Pirsiavash et al. 2009)

53.89 50.00 70.56 90.00 87.22 91.11 92.78 80.00 96.11

BHIM (Kong and Fu
2015)

83.33 91.11 96.11 88.33 76.11 98.33 93.89 97.22 100

Structured MMHIM-1 83.33 91.11 97.22 90.00 82.78 98.33 95.00 98.33 100

MMHIM 84.44 91.67 97.22 90.00 84.44 100 96.11 98.89 100

The dimensionality of features for each modality in linear SVM is nxyt · do
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Fig. 11 RGB-D action recognition results of our MMHIM on MSR
Action Pairs dataset with different values of a parameter λ and b param-
eter η

ity is missing in training or testing. MMHIM is tested in
four scenarios as in the previous dataset: RGB-D→RGB,
RGB-D→Depth, RGB→RGB-D, and Depth→RGB-D.
We compare MMHIM with linear SVM, bilinear SVM, and
BHIM (Kong and Fu 2015), and verify their performance in
knowledge transfer.

Recognition results in Table 7 show that MMHIM
markedly outperforms BHIM, linear and bilinear SVM
in this knowledge transfer experiment. MMHIM achieves
better performance over BHIM in this experiment, espe-
cially when RGB data are missing, i.e. RGB-D→Depth
and Depth→RGB-D. The underlying reason is that pri-
vate features can capture extra discriminative information for
classification. IfRGBmodality ismissing, the depthmodality
itself is noisy and can affect the performance. Using private
features, the depth modality is projected to two spaces (one
for learning shared features and the other for private fea-
tures), and thus extra discriminative information can be used
for classification. The performance gain over linear SVM is
noticeable, indicating the effectiveness of using amatrix form
feature representation, and cross-modal and private features
in MMHIM. The improvement of MMHIM over bilinear
SVM is also significant, especially in RGB→RGB-Dwhere
the increase is 17.22%. MMHIM achieves better perfor-
mance over BHIM in this experiment, especially when RGB
data aremissing, i.e. RGB-D→Depth andDepth→RGB-D.

4.4 MSR Daily Activity Dataset

RGB and depth sequences in this dataset are spatially
and temporally normalized, and the people of interest are
extracted from these sequences. We follow the same training
protocol in Wang et al. (2012b). Skeleton feature vectors in
Sect. 3.3 are adopted to build a MMHIM+Skeleton method,
where skeleton features are extracted using Du et al. (2015).
Our methods are first compared with existing approaches
(Yang et al. 2012; Liu and Shao 2013; Zanfir et al. 2013;
Oreifej and Liu 2013; Wang et al. 2012b; Yang et al. 2014;
Kong and Fu 2015; Hu et al. 2015) on this dataset, and then
evaluated given RGB, depth, and RGB-D data, respectively.
Linear SVM and bilinear SVM are used as baseline.

Comparison results are shown inTable 8.MMHIM+skele-
ton achieves superior performance over state-of-the-artmeth-
ods due to the effective use of visual, depth, and skeleton
data. Its performance gain over MMHIM (without skeleton
data) is 8.10%, suggesting the benefit of using skeleton fea-
ture vectors. MMHIM+skeleton significantly outperforms
BHIM due to the fusion of three types of features and the
ability of using private features. Structured MMHIM-2 out-
performsMMHIMby 1.88%onMSRDailyActivity dataset,
indicating the importance of modeling correlations between
frames on this dataset. MMHIM notably outperforms linear
SVM by 22.50% owing to the learning of shared and private
feature spaces for the two types of features, and a matrix
form representation that naturally captures spatiotemporal
structural information. Recognition accuracy of MMHIM is
also higher than bilinear SVM thanks to the use of infor-
mation measure, which is helpful in suppressing useless
information and noise. MMHIM outperforms recent surface
normal-based approaches (Oreifej and Liu 2013; Yang et al.
2014). Although these approaches essentially capture struc-
tural information in the feature design stage, they only focus
on depth sequences, and do not utilize valuable visual infor-
mation. In addition, the two approaches use the full length
feature vectors and do not learn a better feature space for
classification.MMHIMachieves better performance than the
actionlet ensemble approach (Wang et al. 2012b) since we

Table 7 Knowledge transfer results on MSR Action Pairs dataset

Methods RGB-D→RGB (%) RGB-D→Depth (%) RGB→RGB-D (%) Depth→RGB-D (%)

linear SVM 83.33 81.67 87.22 86.11

Bilinear SVM (Pirsiavash
et al. 2009)

90.56 93.89 81.67 91.67

BHIM (Kong and Fu 2015) 97.78 92.78 97.78 93.33

Structured MMHIM-1 97.78 93.89 97.78 95.00

MMHIM 98.89 94.44 98.89 96.11

X → Y denotes that X is the training data and Y is the testing data. do = 31 for both bilinear SVM and MMHIM, and dimensionality of features
in linear SVM is nxyt · do. The number of elements in the input feature vector/matrix to the three methods is the same
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Table 8 Recognition accuracy
of comparison methods on MSR
Daily Activity Dataset

Methods Skeleton Accuracy (%)

Linear SVM No 65.00

Bilinear SVM (Pirsiavash et al. 2009) No 85.63

Depth Motion Maps (Yang et al. 2012) No 43.13

Moving Pose (Zanfir et al. 2013) Yes 73.80

CNN (Liu and Shao 2013) No 75.00

DBN (Liu and Shao 2013) No 77.90

Local HON4D (Oreifej and Liu 2013) No 80.00

RGGP (Liu and Shao 2013) No 82.10

Actionlet Ensemble (Wang et al. 2012b) Yes 85.75

SNV (Yang et al. 2014) No 86.25

BHIM (Kong and Fu 2015) No 86.88

JOULE (Hu et al. 2015) Yes 95.00

Structured MMHIM-1 No 86.88

MMHIM No 87.50

Structured MMHIM-2 No 89.38

MMHIM+Skeleton Yes 95.60

Bold value indicates the best result in comparison

Table 9 Comparison results on
MSR Daily Activity Dataset
given depth-only, RGB-only,
and RGB-D data

Methods Depth (%) RGB (%) Depth+RGB (%)

HOG+linear SVM 70.00 55.56 66.67

HOF+linear SVM 67.78 57.78 68.89

HOGHOF+linear SVM 67.78 57.78 71.11

Bilinear SVM (Pirsiavash et al. 2009) 72.50 67.50 85.63

BHIM (Kong and Fu 2015) 81.88 77.50 86.88

MMHIM 82.50 79.38 87.50

elegantly use visual and depth information, and effectively
compress informative cues and remove noise before clas-
sification. We also compare with two deep models, CNN
and DBN in Liu and Shao (2013). The two models do
not perform very well (even worse than the hand-crafted
HON4D method with linear SVM classifier, and bilinear
SVMmethod) possibly due to small size of the training data.
This also demonstrates that linear and bilinear models are
able to learn complex mappings compared to deep models,
especially if the training data is scarce.

Performance of the proposed MMHIM on the RGB-only,
depth-only, and RGB-D data in the MSR Daily Activity
dataset is also reported in this paper. Recognition accu-
racy in Table 9 shows that MMHIM achieves satisfactory
results even though only one modality of features is pro-
vided. MMHIM outperforms BHIM by 1.88% given RGB
data due to the use of private features. RGB cue is not
as discriminative as depth cue in the MSR Daily Activ-
ity dataset as the motions in various actions are similar
and objects are relatively small. However, using private
features can capture additional discriminative information
that may be lost in the learning of share features. The

improvement of MMHIM over linear and bilinear SVM is
remarkable, which is 14.72 and 10.00% given depth data,
respectively. This mainly contributes to the use of private
features and the information measure in MMHIM. Private
features enable us to use extra discriminative information,
and information measure reduces non-helpful information
for classification.

4.5 Discussions

The three datasets, NEU-UB Action dataset, MSR Action
Pairs dataset, MSR Daily Activity dataset, vary in terms of
actions and noise. NEU-UB dataset contains 6 actions with
basic limbmovement, including “lateral bend”, “left leg lift”,
“right leg lift”, “squat”, “step backward”, “step forward”.
Actions inMSRAction Pairs dataset are human-object inter-
actions, such as “pick up/put down box”, “lift/place box”,
“push/pull chair”, “wear/take off hat”, “put on/off backpack”,
“stick/remove poster”. MSR Daily Activity dataset consists
of actions that are often seen in daily life, such as “drink”,
“call cellphone”, and “lay down on sofa”.
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The performance variation on the three datasets is mainly
due to the noise level in depth videos, and visual similarity
andmotion-object relationships inRGBvideos. Compared to
existing MSR Action Pairs dataset and MSR Daily Activity
dataset, depth videos in NEU-UB dataset are more noisy.
This can be clearly seen from the performance difference
using depth videos on these datasets. Given depthmodality in
training and testing, MMHIM only achieves the recognition
accuracy of 58.25% on NEU-UB dataset, 24.25% lower than
the results on MSR Daily Activity dataset.

Some of RGB videos of different categories in NEU-UB
dataset are visually similar, for example, “step forward” and
“step backward”. The major difference between them is the
temporal size change of the human body in videos, which
is difficult to capture. Therefore, MMHIM only achieves
80.00% accuracy in RGBmodality learning. By comparison,
the major difference in actions in MSR Action Pairs dataset
is the motion-object shape relationship. The relationship is
easy to capture as particular human motion is acted to oper-
ate an object, and objects differ in their sizes. That is why
a majority of approaches achieve high performance on this
dataset. RGB action videos in MSR Daily Activity dataset
usually involve objects of small size, such as a cup, a book,
and a cellphone. This makes the motion-object relationships
difficult to capture in actions involving small objects, and
MMHIM achieves the lowest performance (79.38%) among
the three datasets.

MMHIM is implemented in Matlab and trained on a
3.5GHzmachinewith 64GBmemory. The training onNEU-
UB dataset, MSR Action Pairs dataset, and MSR Daily
Activity dataset takes about 4, 7, and 6min, respectively.
Memory usage for training on the three datasets are 3, 2, and
1.5GB, respectively.

5 Conclusion

We have proposed a max-margin heterogeneous informa-
tion machine (MMHIM) for action recognition from RGB-D
sequences. MMHIM effectively utilizes RGB visual and
depth data for classification. The two modality data are used
to learn cross-modality features to capture their correlations,
and learn private features to capture their modality specific
characteristics. Features are represented in a matrix form
in MMHIM, which essentially characterizes spatiotempo-
ral relationships of human body parts. This naturally allows
us to construct a low-rank bilinear model to use these fea-
ture matrices, and learn cross-modality and private features.
These two types of features are denoised using the informa-
tion measure. Classification is performed using the denoised
shared and private features.We learn a low-rankMMHIM by
directlyminimizing the rank of themodel, in order to increase
the generalization power.An efficient optimization algorithm

is proposed in this work with an off-the-shelf SVM solver as
the inner optimization solver. The MMHIM is extensively
evaluated on three public RGB-D action datasets, and out-
performs state-of-the-art approaches.
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