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Abstract In this paper, we simultaneously estimate cam-
era pose and non-rigid 3D shape from a monocular video,
using a sequential solution that combines local and global
representations. We model the object as an ensemble of par-
ticles, each ruled by the linear equation of the Newton’s
second law of motion. This dynamic model is incorporated
into a bundle adjustment framework, in combination with
simple regularization components that ensure temporal and
spatial consistency. The resulting approach allows to sequen-
tially estimate shape and camera poses, while progressively
learning a global low-rank model of the shape that is fed
back into the optimization scheme, introducing thus, global
constraints. The overall combination of local (physical) and
global (statistical) constraints yields a solution that is both
efficient and robust to several artifacts such as noisy and
missing data or sudden camera motions, without requir-
ing any training data at all. Validation is done in a variety
of real application domains, including articulated and non-
rigid motion, both for continuous and discontinuous shapes.
Our on-line methodology yields significantly more accurate
reconstructions than competing sequential approaches, being
even comparable to the more computationally demanding
batch methods.
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1 Introduction

Reconstructing deformable 3D shapes from single images or
monocular videos is an active area of research in computer
vision, with applications in very different domains. Medical
imaging ismaybe one of themostmotivating exampleswhere
these techniques shall be deemed to be applied, for instance
to obtain full 3D reconstructions of the organs in non-invasive
surgery (Maier-Hein et al. 2014). For instance, a sequential
estimation is mandatory in endoscopy to achieve an interac-
tion between the estimated 3D model and the doctor in real
time. Augmented reality and the entertainment industry are
other fields that could greatly benefit from such techniques,
by e.g. filming a person with standard cameras and captur-
ing his/her motion or the deformation of the clothes (Koh
et al. 2014). Unfortunately, recovering non-rigid shape from
a single viewpoint is a severely under-constrained problem,
in which many different 3D configurations can have very
similar image projections. The problem becomes even more
challenging if the camera is allowed to move, and on top of
the ambiguities induced by the deformation itself, we also
need to consider those introduced by the camera motion.
This is the scenario addressed by Non-Rigid Structure from
Motion (nrsfm) approaches, and which we contemplate in
this paper. In short, the goal of thenrsfm is to simultaneously
recover the camera motion and 3D shape of a deformable
object from monocular images. Solving the inherent large
number of parameters and ambiguous solutions of this prob-
lem requires introducing prior knowledge about the camera
trajectory and scene deformation.

The most standard approach to solve these ambiguities is
using statistical priors to approximate the global deformable
structure as a linear combination of low-rank bases of shapes
(Brand 2001;Bregler et al. 2000;Moreno-Noguer et al. 2011;
Torresani et al. 2008), by means of a linear combination of
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3D point trajectories (Akhter et al. 2008; Park et al. 2010;
Valmadre and Lucey 2012), or even using a shape-trajectory
combination (Gotardo andMartínez 2011b). This is typically
used with additional smoothness constraints that further dis-
ambiguate the problem (Bartoli et al. 2008; Garg et al. 2013;
Paladini et al. 2009). Yet, while low-rank methods can effec-
tively encode global deformations, they cannot, in general,
handle non-linear motion patterns and strong local deforma-
tions. Piecewise strategies (Chhatkuli et al. 2014; Russell
et al. 2011; Taylor et al. 2010; Varol et al. 2009) allow
recovering larger deformations, although their performance
highly depends on having overlapping features in neighbor-
ing patches, or require large number of correspondences to
enforce local rigidity constraints (Chhatkuli et al. 2014; Tay-
lor et al. 2010; Varol et al. 2009), which can be hard to
obtain in practice. In any event, these previous approaches
batch process all frames of the sequence at once, after video
capture, preventing them from being used on-line and in
real-time applications, where nrsfm may have an enormous
potential. This has been recently addressed in Agudo et al.
(2014a, 2012), Paladini et al. (2010) and Tao et al. (2013),
which, however, still focus on global models only valid for
relatively small deformations (Paladini et al. 2010; Tao et al.
2013) or continuous warps (Agudo et al. 2014a, 2012).

An alternative to statistical and low-rank approaches
is to directly model the physical laws that locally gov-
ern object kinematics. Drawing inspiration from computer
graphics (Popovic and Witkin 1999), there have been sev-
eral attempts at using these models for tracking non-rigid
motion (Metaxas and Terzopoulos 1993) and modeling

human activities (Brubaker et al. 2009). Unfortunately,
these methods are usually focused to specific types of
motion, and their underlying laws rely on non-linear rela-
tions complex to optimize. An interesting exception is
Salzmann and Urtasun (2011), which directly uses the
Newton’s second law of motion to build a convex for-
mulation for tracking purposes. This work, though, is not
sequential, does not estimate the camera pose, as we do,
and depends on priors computed from training data, spe-
cially when dealing with complex models such as human
motion.

In this paper, we combine the best of global-statistical and
local-physical approaches. In particular, we exploit Newton’s
second law of motion to introduce a force perturbed second-
order Markov model that rules the local motion of every
particle conforming the shape. The joint dynamics are then
optimized using a bundle adjustment (BA) framework, with
simple regularization terms that ensure temporal and global
spatial consistency of the estimated shape and camera poses.
This yields a sequential estimate of the shape and camera
poses, while also allowing to progressively learn a low-rank
global model of the shape, which is fed back into the opti-
mization scheme. The overall approach is still sequential,
fast, can cope with missing data and with different types of
deformations such as articulated, isometric and stretchable,
without requiring pre-trained data. We demonstrate its effec-
tiveness on a variety of scenarios such as those depicted in
Fig. 1, ranging from full body and face human motion cap-
ture to 3D reconstruction of organic tissues. In all cases, we
show comparable results to competing batch algorithms, but

Actress Paper Bending Drink Heart Back Stretch

Fig. 1 3DReconstruction of time-varying shapes using our physically-
inspired velocity model for different types of deformations. We show
that our approach is applicable in a wide range of domains, from
non-rigid motion (for continuous shapes such as faces, back, paper
and a beating heart) to articulated motion (drink and stretch). Top 3D

reconstruction of one specific frame, and particle trajectories (each rep-
resented with a different color). Bottom A specific frame of the input
sequence with 2D tracking data. The reader is referred to the experi-
mental section for more details. The figure is best viewed in color
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Table 1 Qualitative comparison
of our approach with other
state-of-the-art techniques

Char. Method

EM-PPCA MP PTA CSF2 KSTA SPM SBA BA-FEM GLSMM

Sequential X X X X X X � � �
Rank X X X X X X � X �
Missing data � � X � � X � � �
Articulated � � � � � � X X �
Learning � � X � � � � X �
We consider the methods: EM-PPCA (Torresani et al. 2008), MP (Paladini et al. 2009), PTA (Akhter et al.
2008), CSF2 (Gotardo and Martínez 2011b), KSTA (Gotardo and Martínez 2011a), SPM (Dai et al. 2012),
SBA (Paladini et al. 2010), BA-FEM (Agudo et al. 2014a) and our approach denoted as GLSMM. The
comparison is done in terms of whether: the solution is sequential or not (sequential), a specific rank of a
deformation model is required to constrain the solution (rank), it can handle missing observations (missing
data), it can cope with articulated motion and finally, whether the method can learn a deformation model on
the fly (learning)

at a much smaller cost and a potential real-time applicability.
Additionally, our approach yields remarkable improvement
when compared to other sequential nrsfm techniques.

The part of this work regarding the use of local mod-
els based on particle dynamics was already presented in
Agudo and Moreno-Noguer (2015). Here, we have com-
bined these local constraints with global low-rank shape
representations that are progressively and on-line learned.
Additional theoretical discussions and mostly, synthetic and
real results demonstrating the wide range of scenarios where
our approach is applicable, are included in this version.

2 Related Work

nrsfm is an inherently ambiguous problem that to be solved
requires a priori knowledge of either the nature of the
deformations or the camera motion properties. Early nrsfm
approaches extended the Tomasi and Kanade (1992) fac-
torization algorithm to the non-rigid case by representing
deformations as linear combinations of basis shapes under
orthographic projection (Bregler et al. 2000; Xiao et al.
2006). On top of this, spatial (Torresani et al. 2008) and tem-
poral (Bartoli et al. 2008; Del Bue et al. 2006; Torresani
et al. 2008) smoothness priors have been considered to fur-
ther limit the solution space. Later, Dai et al. (2012) relaxed
the amount of extra prior knowledge by directly imposing a
low-rank constraint on the factorization of the measurement
matrix. Other approaches have modeled deformation using a
low-rank trajectory basis per 3D point (Akhter et al. 2008),
including priors on trajectories in terms of 3D point differen-
tials (Valmadre and Lucey 2012) and enforcing smoothness
on their paths (Gotardo and Martínez 2011b). One inher-
ent limitation of these methods, is that they are highly
sensitive to the number of bases chosen to represent the tra-
jectory, making them very problem specific. Additionally,

while being adequate to encode global deformations, low-
rankmethods’ applicability is limited to smoothly deforming
objects.

Recently, results from this field have significantly ad-
vanced. Stronger deformations have been tackled using
piecewise models (Chhatkuli et al. 2014; Fayad et al. 2010;
Russell et al. 2011; Taylor et al. 2010), even combining seg-
mentation and reconstruction under local rigidity (Russell
et al. 2014), or eliminating the rank dependency by means
of Procustean normal distributions (Lee et al. 2013). In Garg
et al. (2013), a variational approach integrating a low-rank
shapemodelwith spatial smoothness allowed per-pixel dense
reconstructions.

In any event, all aforementioned nrsfm works are batch
and they process all frames of the sequence at once, pre-
venting thus, on-line and real-time computations. While
sequential solutions exist for the rigid case (Newcome and
Davison 2010; Lim et al. 2011), sequential estimation of
deformable objects based only on the measurements up to
that moment remains a challenging and unsolved problem.
There are just a few attempts along this direction (Agudo
et al. 2016, 2014a, 2012; Paladini et al. 2010; Tao et al.
2013). Specifically, Paladini et al. (2010) proposed a 3D-
implicit low-rank model to encode the time-varying shape,
estimating the remaining model parameters by BA over a
temporal sliding window. Based on a similar framework, Tao
et al. (2013) proposed an incremental principal component
analysis to recursively update the low-rank model. Linear
elasticity by means of finite element models was introduced
into an extended Kalman filter to encode extensible deforma-
tions in real time (Agudo et al. 2012), even computing the full
camera trajectory (Agudo et al. 2016). Very recently, Agudo
et al. (2014a, b) presented the first approach to reconstruct
both sparse and dense 3D shapes in a sequentialmanner, rely-
ing on a linear subspace of basis shapes computed by modal
analysis. However, despite being very promising, thesemeth-
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ods are only valid to handle smoothly deforming objects, as
is the case of Paladini et al. (2010) and Tao et al. (2013), and
cannot be applied to articulated motion (Agudo et al. 2012,
2014b, 2016).

An alternative to these approaches is to consider the object
as a system of individual particles and represent global defor-
mation by locally modeling the underlying physical laws
that govern each of the particles. This has been typically
used in computer graphics for simulation purposes (Baraff
1989; Popovic and Witkin 1999), and further exported
to computer vision applications, for non-rigid tracking of
surfaces (Metaxas and Terzopoulos 1993) or articulated bod-
ies (Brubaker et al. 2009; Salzmann and Urtasun 2011;
Vondrak et al. 2008). Yet, none of these approaches tack-
les the problem of besides retrieving shape, estimating the
camera pose parameters.

Contribution In this paper we propose a way to combine
the best of local and global methods, yielding an approach
that is able to overcome most of the limitations of previous
methods. In particular, our technique: (1) is sequential and
efficient, (2) is applicable to articulated bodies and non-rigid
surfaces, (3) handles local non-linearities and deformations
of different nature including isometric, extensible and break-
able surfaces, (4) does not require training data, and (5) can
cope discontinuous tracks andmissing data.We are not aware
of any previous nrsfm approach able to simultaneously
tackle all these challenges. Table 1 provides a qualitative
comparison of our approach with respect to the most rele-
vant state-of-the-art approaches.

3 Overview of the Approach

In this paper, we present an approach that combines the
strengths of local-physical models with those of global-
statistical shape representations. It has the following main
features:

– Local Physical Model We model the local behavior of
the deformable shape by considering particle dynamics
equations. This allows recovering accurate shape repre-
sentations and dealingwith local non-linearities and even
discontinuous motions. Also remarkable, is the fact that
our model is based on simple classical mechanics equa-
tions which do not require using training data.

– Global Statistical Model We progressively learn a
global low-rank shape model that is used to obtain a
coarse but fast approximation of the shape.

– Integration of Local and Global Models We inte-
grate both global and local constraints in a coarse-to-fine
sequential manner, estimating shape and camera pose
upon the arrival of a new image.

Fig. 2 Force-perturbed motion model for a system of particles. We
use a kinematic model derived from Newton’s second law of motion. A
particle is moving with constant velocity while no forces are acting on
it (blue particles). External forces f t can change the dynamical behavior
dt of a single particle (red and green particles), and hence, change the
configuration yt of the deformable object (Color figure online)

In the next sections we describe each of these ingredients
and how they are combined.

4 Local Physical Model

In this section, we first describe some basic concepts from
dynamics in classical mechanics, which will then be used
to introduce a local motion model for deformable objects
approximated as a system of particles.

4.1 Classical Mechanics Motion Model

The local deformation model we propose holds on the New-
ton’s second law of motion, which is satisfied by particles
moving in an inertial frame of reference. We next review its
general formulation.

We assume our object is represented as an assemblage of
n discrete particles (as shown in Fig. 2). Let yti ∈ R

3 be the
3D position of the i th particle at a time instant t and mi its
mass, assumed to be constant. When a force f ti is applied to
this particle, Newton’s second law of motion states that it
produces a proportional acceleration ai :

f ti = miati = mi
dvti
dt

, (1)

where vti is the instantaneous velocity of the particle, and f ti
is the sum of all external forces applied to the particle.

In order to derive the formulation of our kinematic model
we first approximate the acceleration at time t using back-
ward second-order finite differences:

f ti ≈ mi

[
yt−2
i − 2yt−1

i + yti
(�t)2

]
, (2)

that relates the current force f ti with the current 3D loca-
tion yti and the locations at previous time instances yt−1

i

and yt−2
i . We also considered a wider temporal window by
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using a third-order finite difference model.1 Nevertheless,
for the experiments we report in the results section, we did
not observe major differences in the reconstruction accuracy,
and hence, we kept the second order model, as it is compu-
tationally less expensive.

We next extend the model to all the n particles of the
deformable object.

Let yt=[(yt1)�, . . . , (ytn)
�]� be a 3n dimensional vector

composed of the 3D locations of all particles at time t ; and
f t=[(f t1)�, . . . , (f tn)

�]� a 3n dimensional vector containing
all instantaneous forces. We can then re-write Eq. (2) for all
the particles using the following linear system:

f t = [
M −2M M

] ⎡
⎣yt−2

yt−1

yt

⎤
⎦ , (3)

where M is a 3n × 3n diagonal matrix with entries being
the masses of each particle. In practice, we omit them and
set M = I, the 3n × 3n identity matrix. We also omit the
term �t in Eq. (2). By doing both these approximations, the
forces we estimate will be up to scale, and will be expressed
per unit of mass and increment of time, or equivalently, in
length units.2 This lets us to directly relate forces applied to
the particles to their displacement. Note that this relation can
be obtained without the need to compute any inverse matrix.
This is in contrast to other physically-based methods where
the inversion of a stiffness matrix can be a computationally
expensive step. In our case the 3D position of the particles
at time t can be written based on the following dynamical
model:

yt = f t + 2yt−1 − yt−2 = f t + dt , (4)

where dt = 2yt−1 − yt−2 is a displacement vector. Observe
that when f t = 0 this dynamical model boils down to a
second-orderMarkovmodel inwhich each particlewillmove
with a constant velocity dt (see the blue particles in Fig. 2).
However,when external forces are acting f t �= 0, the particles
can change their dynamics, accelerating or even reaching the
rest. It is worth to point that a similar kinematic model was
already used in Agudo et al. (2012), but in contrast to our
paper, it was a first order Markov model and used to encode
the camera motion, and not to encode the motion of each
particle conforming the time-varying shape, as we do here.

1 A third-order backward model to code the displacement vec-
tor can be expressed by considering 4-time instances as f ti ≈
mi

[
−yt−3

i + 4yt−2
i − 5yt−1

i + 2yti
(�t)2

]
.

2 [force]
[mass][time]−2 = [mass][length][time]−2

[mass][time]−2 = [length]

4.2 Local Deformation Model for nrsfm

We next describe how to employ the proposed dynamic
model to simultaneously, and in a sequential manner, esti-
mate deformable shape and camera pose.

Let us consider a deformable object as an ensemble of
n particles. At time t we represent the 3D position of all
particles with the (previously defined) 3n dimensional vector
yt . If we assume an orthographic camera model, the image
projection of this object can be written as:

Pt = [pt1, . . . ,ptn] = RtYt + Tt , (5)

where Pt is the 2 × n measurement matrix, pti = [uti , vti ]�
are the image coordinates of the i th particle, Rt is a 2 × 3
truncated version of the rotation matrix, and Tt is a 2 × n
matrix that stacks n copies of the bidimensional translation
vector tt . To represent the 3D shapeYt , we use a permutation
operator P(yt ) that rearranges the entries of yt into a 3 × n
matrix such that the i th column of Yt corresponds to the 3D
coordinates of the point i .
Problem Formulation Given 2D point tracks up to frame t of
a monocular video, our problem consists in sequentially and
simultaneously estimating the camera motion

(
Rt , tt

)
and

the deformable 3D shape Yt .
To solve this under-constrained problem, we initially rep-

resent the deformable object using Eq. (4), which after
applying the operator P(·), can be rewritten as:

Yt = Ft + Dt , (6)

where Dt = 2Yt−1 − Yt−2 is the displacement vector, that
at frame t is already known, as it only involves the particles
position at previous time instances. Therefore, the current 3D
shape estimation is reduced to estimating the forces Ft .

In order to estimate Ft and the pose parameters Rt and
tt , we perform a BA over a temporal sliding window on the
last frames. This is indeed similar to what was done in other
sequential nrsfm approaches (Agudo et al. 2014a; Paladini
et al. 2010), with the key difference that at this point we
do not rely on a low-rank model to parameterize the object
deformation. The use of the Newton’s second law of motion
yields to our method higher generalization properties and
major resilience to large non-linear deformations. Indeed, as
we will discuss in the following section, we will eventually
use a low-rank model to initialize the optimization, but after
this initialization is done, the low-rank model does no longer
constrain the shape.

Our BA optimization is performed over a temporal win-
dow on the last three frames, in which we jointly represent
the projection equations as:
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⎡
⎣Pt−2

Pt−1

Pt

⎤
⎦ =

⎡
⎣Rt−2

Rt−1

Rt

⎤
⎦

⎡
⎣ Yt−2

Yt−1

Ft + Dt

⎤
⎦ +

⎡
⎣Tt−2

Tt−1

Tt

⎤
⎦ . (7)

Since the measurement matrix Pt may contain lost tracks
due to occlusions or outliers, we define V t as the set of
visible points at time t . We then estimate the model parame-
ters by minimizing the following energy function in terms of
{R j , t j ,Ft }, with j = {t − 2, t − 1, t}3:

E = Eimg + αpEpose + αsEshape + αeEext (8)

where:

Eimg =
t∑

j=t−2

∑
ν∈V j

‖p j
ν − R j (q j )y j

ν − t j‖2F (9)

minimizes the reprojection error of all observed points in V j .
‖ · ‖F represents the Frobenius norm and R j are the rota-
tion matrices, which are parameterized using quaternions,

R j (q j ), to guarantee orthonormality R jR j� − I2 = 0. A
second energy term, Epose, serves for regularizing the esti-
mated pose enforcing the rotation matrices and translation
vectors of consecutive frames to be similar:

Epose =
t∑

j=t−1

‖q j−q j−1‖2F + αt

t∑
j=t−1

‖t j−t j−1‖2F , (10)

whereαt is the specificweight for the translation energy term.
Similarly, we have introduced a regularization for the shape,
to penalize strong variations in consecutive frames:

Eshape = ‖Yt (Ft ) − Yt−1‖2F , (11)

where the current shape Yt is only function of the estimated
force (see Eq. (6)). Finally, we have also considered spatial
priors to control the extensibility of the surface. To this end,
we regularize the change in the euclidean distance over ne
edges of the object using a Gaussian kernel, where dre repre-
sents the initially estimated reference length for edge e, and
dte is the length at the current frame:

Eext =
ne∑
e=1

1√
2πσ

exp

(
− dre

2

2σ 2

)
|dre − dte(F

t )|. (12)

Note that this prior is not a hard constraint, and hence it still
permits non-isometric deformations.

3 Note that although R j and t j for j = {t − 2, t − 1} are allowed
to change while optimizing the pose and shape at frame t , their value
is not propagated back in time. That is, our approach remains purely
sequential.

The proposed approach relies on a few hyper-parameters:
the regularization weights αp, αt , αs and αe in Eq. (8) and
the standard deviation σ in Eq. (12). All these parameters are
determined empirically using a validation sequence, and kept
constant for the rest of all experiments. Specifically, we will
set σ = 0.1, and the regularization weights will be adjusted
to bring the error of each energy term in Eq. (8) to a similar
order of magnitude.

4.3 Non-linear Optimization

We optimize the energy E(R j , t j ,Ft ) in Eq. (8) using sparse
Levenberg–Marquardt. Note, again, that in contrast to com-
peting approaches (Bregler et al. 2000; Dai et al. 2012), we
can deal with missing data and do not require all points to be
tracked throughout the whole sequence.

Since we estimate a perturbation force per point, the com-
plexity of our BA algorithm is dominated by the solution of
the linearized system. This system is governed by a Jaco-
bian matrix JE of size Nc × (3n + 6w), where w is the
size of the temporal window, w = 3 in our case. Nc are
the number of constraints introduced by the four terms of
the energy function E , including the total number of visi-
ble observations over the temporal window, and the number
of constraints to enforce pose and shape smoothness. For
instance, in Fig. 3(left) we depict the structure of the Jaco-
bian corresponding to the stretch sequence, in which n = 41
and Nc = 302, yielding a matrix of size 302 × 141. Note
that this matrix is very sparse, with only 4.53% of non-null
elements.

Solving the BA problem requires computing the Hessian
matrix, approximated by HE = J�

E JE , of size (3n + 6w) ×
(3n + 6w). This matrix multiplication can be done very effi-
ciently,4 by exploiting the high degree of sparsity of JE .
Indeed, the most computationally demanding step of the BA
is in inverting HE , which is an almost fully dense matrix, as
seen in Fig. 3(right). Computing this inverse can be done in
O((n + w)3) time, which considering that n >> w boils
down to a O(n3) cost. With these values, we may achieve
real-time performance for models with less than n = 100
points. For instance, in the experiments we report in the next
section, we achieve a frame rate of about 5 fps when dealing
with a model of approximately 40 points. Since these results
are obtained with non-optimized Matlab code, they can still
be significantly speeded up.

4 The computational complexity of the product A�A, where A is a
sparse m × n matrix with nnz non-zero elements is O(nnz + m + n),
that is, it depends linearly on nnz , the row sizem and column size n of the
matrix, but is independent of the productmn. See: http://es.mathworks.
com/help/matlab/math/sparse-matrix-operations.html#f6-13058.
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Fig. 3 Structure of Jacobian and Hessian matrices. We sketch the
patterns of the Jacobian JE and Hessian HE matrices for the stretch
sequence. In this case, the number of 3D points of the shape is n = 41
and no missing tracks are assumed. The number of links between par-
ticles is 51. This yields a total of Nc = 302 constraints for the Jacobian
matrix, corresponding to the number of rows. They are split into the
reprojection error term (shown in red), the pose (green) and shape (blue)
smoothness priors and the extensibility (magenta) term. The number of
columns of JE corresponds number of unknown shape and pose para-
meters, which is 3n + 18 = 141 in this case. Note, that the Jacobian is
very sparse, and only 4.53% of its elements are non-null. In contrast, the
approximation J�

E JE to the Hessian matrix is almost fully dense (Color
figure online)

4.4 Shape at Rest and Per Frame Initialization

Since the minimization of our energy function is highly
non-convex, a very important element will refer to the initial-
ization required at each frame. In Sect. 6 we will discuss how
this initialization is performed using a coarse approximation
of the shape provided by a global model that we iteratively
learn and refine.

Additionally, we need to estimate the shape at rest and the
initial pose values of the first frames. For this purpose, we
follow Agudo et al. (2014a, b) and Paladini et al. (2010), and
assume that the sequence contains a few initial frames where
the object does not undergo large deformations. We use a
standard practice done in nrsfm, that is running a rigid fac-
torization algorithm (Marques and Costeira 2008) on these
first frames to obtain a shape and pose estimate. Let us denote
by s0 the shape at rest. Once this initialization is done, we
then run our approach,which just for the first incoming image
uses the assumption that yt−2 = yt−1, i.e., it assumes each
particle has null velocity.

5 Global Statistical Model

The main contribution of our work is that the optimiza-
tion we just described is performed at a local level, for
each particle, and we just consider constraints induced by
their close neighborhood. This is in contrast to most exist-
ing nrsfm approaches, that typically apply constraints in a
global manner, usually in the form of low-rank models. For
batch methods (Dai et al. 2012; Del Bue et al. 2006; Garg
et al. 2013; Torresani et al. 2008), these low-rank models are
learned after processing all frames of the sequence at once.
For sequential ones (Paladini et al. 2010; Tao et al. 2013),
the low-rank model is incrementally learned.

In this paper we show that we can also use a low-rank
model as a soft-constraint, but in contrast to other sequential
approaches (Agudo et al. 2014a),wedonot assume any initial
genericmode, and learn them from scratch, and progressively
learn them upon the arrival of new data.

The scheme for building and growing this low-rankmodel
is very simple. Let us assume that at frame t , a shape basis
S = [s1, . . . , sr ] of r modes is available. Themodes si are 3n-
dimensional shape vectors. We then estimate the input shape
yt using the procedure described in the previous section. This
shape can be approximated in terms of a low-rank model:

ŷt = s0 + Sψ t , (13)

where s0 is the shape at rest andψ t is an r -dimensional vector
with the weights of the linear combination. Denoting by (·)†
the pseudoinverse operation, these weights are computed as:

ψ t = (S�S)−1S(yt − s0) = S†(yt − s0). (14)

Given the current estimated shape yt , we then define its
geometric error as the vector difference between yt and ŷt ,
its best approximation using the low-rank model:

gt = yt − ŷt . (15)

If the magnitude of this error is above a certain threshold ε,
we then incorporate the geometric error into the basis. That
is:

if ‖gt‖ > ε then

S ← [S, gt/‖gt‖]. (16)

Note that we are just incorporating into the low-rank model
the part of yt (i.e., a 3D displacement) which cannot be
modeled with the current basis. By doing this, we avoid aug-
menting the basis with redundant information.

Additionally, it is worth to point that since the estimation
of yt using local constraints is robust tomissing observations,
the estimation of the global basis, which takes as inputs the
estimations of the local model, will also be robust to missing
data.
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6 Initializing Local Optimization with Global
Constraints

The energy function we have defined in Eq. (8) involves
seven different parameterswithin a temporalwindowof three
frames:Rt−2,Rt−1,Rt , tt−2, tt−1, tt andFt . Upon the arrival
of a new image, and its associated measurement matrix Pt ,
these parameters need to be given an initial value. In particu-
lar Rt−2, Rt−1, tt−2 and tt−1 are initialized to the values we
have estimated when evaluating frames t − 2 and t − 1. The
translation vector tt is simply initialized to the mean of the
measurement matrix Pt .

The initialization of Rt and Ft is a bit trickier, and is
precisely at this point where we integrate global and local
constraints (see Fig. 4). The idea is to first initialize the
camera rotation assuming the deformation is spanned by the
estimated linear subspace. This is done by iterating between
the rotation matrix Rt and the weights of the subspace ψ t .
Once these parameters are fixed, estimating Ft is straight-
forward. We next detail these steps.

The initialization of Rt is by itself an iterative process.
We first start by estimating the rotation matrix that yields the
best fit of Yt onto the current observations Pt , assuming just
a rigid motion. That is, we initially seek to retrieve the value
of Rt such that:

arg min
Rt

∑
ν∈V t

‖ptν − Rtytν − tt‖2F (17)

where all parameters but Rt are known. Recall that Rt is a
2 × 3 truncated matrix, which can be computed from a full
rotation matrix Qt ∈ SO(3) using Rt = �Qt , and where �

is the orthographic camera matrix. In order to solve Eq. (17),
while ensuring the resulting Qt to lie on SO(3) group, we

Fig. 4 Global-to-local optimization. 3D reconstruction of two frames
for the stretch sequence using our global-to-local approach. The learned
low-rank model is used to obtain a coarse solution of the deformation
(green crosses), and then the local-physical model is applied to refine
the solution (red dots). The zoomed views of specific joints are shown
on the side of each figure. The ground truth is represented with purple
circles (Color figure online)

have followed a standard Newton algorithm for optimizing
on manifolds (Ma et al. 1999; Shaji and Chandran 2008),
which usually converges in one single iteration. We refer the
reader to these for further details.

Once we have an initial estimate for Rt , we compute an
initial solution for the shape, and constrain it to lie on the
linear low-rank model we have learned. To do this, let Sν

and s0,ν be the νth 3D point on all vectors of the subspace
and on the shape at rest, respectively. We estimate the modal
weights ψ t using the following minimization over all set of
visible point V t :

arg min
ψ t

∑
ν∈V t

‖ptν − Rt (s0,ν + Sνψ
t) − tt‖2F . (18)

This can be solved in closed-form using a Cholesky factor-
ization:

ψ t =
(∑

ν∈V t

RtSν

)−1 (∑
ν∈V t

(
ptν − Rt s0,ν − tt

))
(19)

Equations (17) and (18) are alternated in order to com-
pute an initial value for Rt consistent with the low-rank
model. Finally, after convergence, we can initialize f t (or
equivalently thematrixFt ) by applying the proposed physics-
based model f t = yt − dt , where the shape is obtained from
yt = s0 + Sψ t .

The outcome of this iterative procedure is an initialization
of the pose and shape parameters, assuming a smooth camera
motion and a global deformation model for the shape. This
is then further refined based on the local deformation model
defined in Eq. (8). Figure 5 shows the progressive reduction
of the reprojection error after each of these stages.

7 Experimental Evaluation

In this section we present experimental results for different
types of deformations, including articulated and non-rigid
motion (someexamples are shown inFig. 1).Avideo summa-
rizing all results can be found in.5 Weprovide both qualitative
results and quantitative evaluation, where we compare our
method to several state-of-the-art approaches. In particular,
we report the standard 3D reconstruction error, which is com-
puted as:

ε3D = 1

n f

n f∑
t=1

‖Ỹt − Ỹt
GT ‖F

‖Ỹt
GT ‖F

, (20)

where Ỹt is the estimated 3D reconstruction, Ỹt
GT is the

corresponding ground truth, and n f is the total number of

5 http://www.iri.upc.edu/people/aagudo.
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Fig. 5 Optimization steps. Reprojection error per frame of a mocap
sequence. Blue line initial error after initializing the pose and shape at
frame t with the results of frame t − 1. Green line error obtained after
optimizing shape and pose considering just global shape constraints.
Red line error obtained after optimizing shape and pose considering
local shape constraints. Each step is initialized with the output of the
previous one (Color figure online)

non-rigid frames in the sequence (i.e., we do not consider the
initial rigid frames used to estimate the shape at rest). The
ε3D is computed after aligning the estimated 3D shape with
the 3Dground truth using Procrustes analysis over all frames.

7.1 Motion Capture Data

We first evaluate our method on several existing datasets
with 3D ground truth. We use the following motion cap-
ture sequences: Drink, Stretch and Yoga from Akhter et al.
(2008), for evaluating articulated motion; the face deforma-
tion sequences Jacky and Face, from Torresani et al. (2008)

and Paladini et al. (2009), respectively; and finally the syn-
thetic bending Shark sequence from Torresani et al. (2008).

We compare our GLSMM approach (from Global-to-
Local SequentialMotionModel) against GSMMand LSMM
which correspond to our approaches but just considering
either global or local constraints, respectively), and against
eight state-of-the-art methods, both batch and sequential
approaches. Among the batch algorithms we consider: EM-
PPCA (Torresani et al. 2008), the Metric Projections (MP)
(Paladini et al. 2009), the DCT-based 3D point trajectory
(PTA) (Akhter et al. 2008), the Kernel Shape Trajectory
Approach (KSTA) (Gotardo and Martínez 2011a), the Col-
umn Space Fitting (CSF2) (Gotardo and Martínez 2011b)
and the block matrix method for SPM (Dai et al. 2012). We
also consider the following sequential methods: Sequential
BA (SBA) (Paladini et al. 2010), and the BA with Finite Ele-
ments formulation (BA-FEM) of Agudo et al. (2014a). The
parameters of these methods were set in accordance with
their original papers. We exactly use the same initialization
for our proposed method, SBA (Paladini et al. 2010) and
BA-FEM (Agudo et al. 2014a).

Table 2 summarizes the results.As expected, the version of
our approach that considers both local and global constraints,
outperforms by a large margin the version that only consid-
ers global constraints, and by a smaller margin the version
with local constraints. Additionally, our GLSMM method
sequentially learns an incremental low-rank model, which
is not possible by the other two modalities. GLSMM also
consistently outperforms the other sequential methods, spe-
cially SBA (Paladini et al. 2010) while being more generally
applicable than BA-FEM (Agudo et al. 2014a), that cannot
model articulated motion. Our results are indeed compara-
ble to batch methods, where all frames need to be available
in advance. Note that trajectory-based methods were pro-
posed to exploit the time-varying evolution of a single point,

Table 2 Quantitative comparison on motion capture sequences

Seq. Process Met.

Batch Sequential

EM-PPCA MP PTA CSF2 KSTA SPM SBA BA-FEM GSMM LSMM GLSMM

Drink 5.56 (5) 4.14 (6) 1.38 (13) 1.14 (6) 0.94 (12) 1.60 (12) 11.25 (12) – 4.48 1.93 1.92

Jacky 1.80 (5) 2.74 (5) 2.69 (3) 1.93 (5) 2.12 (4) 1.82 (7) 2.90 (16) 3.43 (15) 2.84 2.80 2.79

Face 7.30 (9) 3.77 (7) 5.79 (2) 6.34 (5) 6.14 (8) 2.67 (9) 6.92 (27) 6.89 (2) 4.82 4.49 4.33

Stretch 13.72 (15) 8.13 (5) 3.85 (8) 2.46 (8) 2.00 (7) 1.86 (11) 17.61 (20) – 6.52 5.76 5.65

Yoga 11.89 (14) 12.98 (8) 2.42 (8) 1.84 (7) 2.12 (7) 1.65 (10) 15.84 (20) – 7.89 6.65 6.65

Shark 1.82 (2) 9.34 (23) 5.91 (6) 1.09 (5) 1.03 (3) 6.29 (2) 8.81 (5) – 6.89 6.99 6.73

Bold values indicate the best solutions in every case
Reconstruction error ε3D[%] for batchmethodsEM-PPCA (Torresani et al. 2008),MP (Paladini et al. 2009), PTA (Akhter et al. 2008), CSF2 (Gotardo
and Martínez 2011b), KSTA (Gotardo and Martínez 2011a) and SPM (Dai et al. 2012); and for sequential methods SBA (Paladini et al. 2010),
BA-FEM (Agudo et al. 2014a) and our approach denoted as GLSMM.We also report the results of GSMM and LSMM, our implementations when
just considering global or local constraints, respectively. For low-rank based methods, we chose the basis rank (in brackets) that yielded the lowest
ε3D error
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Fig. 6 Motion capture sequences. 3D reconstruction results for three
sample frames in each of the human mocap sequences (drink, stretch
and yoga). We also show the corresponding 3D reconstruction error.

Red dots correspond to the shape estimated with our approach, and
purple circles are the ground truth. Below each result we display the
corresponding reconstruction error (Color figure online)

so a batch estimation with all frames available is required.
Additionally, most of these methods are very sensitive to the
choice of the specific rank of the deformation model. We
do not require any of this fine tuning. Figure 6 shows the
3D reconstruction results on several frames of some of the
mocap sequences.

7.1.1 Robustness to Noisy Observations

We also use the mocap sequences to evaluate the robustness
of our approach against noise in the observations. For this
purpose, we corrupt the observations using Gaussian noise
with standard deviation σ = ρ

100γ , where ρ controls the
amount of noise. The parameter γ represents the maximum
distance of an image point to the centroid of all the points.
The results are summarized in Table 3. Note that the noise
also corrupts the initialization, thus changing the reference
lengths dre used in the extensibility energy term of Eq. (12).
Nevertheless, the solution we estimate is very stable even for
large levels of noise.

7.1.2 Robustness to Initialization

Regarding the initialization, we have carried out two types of
studies. On one side, we have evaluated the robustness of the
approach to the initial value of the force parameterFt . By set-
ting it to zero in all mocap sequences, we have observed that
the reconstruction results remain virtually the same, com-
pared to the initialization strategy describe in Sect. 6. There
is, however, an increase in the number of iterations required
to converge. In particular, the convergence time has grown
according to the following values: Drink (25.73%); Jacky
(6.36%); Face (2.45%); Stretch (36.45%); Yoga (58.79%);
Shark (33.47%).

Additionally, we have also evaluated the stability of the
approach to inaccuracies of the shape at rest computed using
a rigid factorization (Sect. 4.4). In particular we have consid-
ered the mocap sequences with larger non-rigid components

Table 3 Quantitative results against noisy observations

Seq.
ρ 0 0.5 1 1.5 2

Drink 1.92 1.98 2.19 2.44 2.71
Jacky 2.79 2.85 3.14 3.58 4.08
Face 4.33 4.35 4.41 4.60 4.62
Stretch 5.65 5.68 5.72 5.82 5.85
Yoga 6.65 6.80 7.14 7.04 7.40
Shark 6.73 6.66 6.94 7.98 8.90

ρ = 0 ρ = 1 ρ = 2

Top Reconstruction error ε3D[%] for mocap sequences under noisy
measurements using the proposed approach. The level of noise is
parameterized byρ.BottomTogivemeaning to the noise values,we rep-
resent the same input frame under different amounts of noise. Observe
that for ρ = 2 there are remarkable differences w.r.t. the ground truth
(ρ = 0), especially on the configuration of the legs, hips and right hand

in the initial frames (i.e., stretch, yoga and drink) and have
produced different initializations with increasing amount of
frames. The more frames used for initialization, the more
non-rigid component was included in these frames, and
hence, the rigid factorization provided worse initial recon-
structions. The amount of non-rigid component is quantified
by ‖Unon-rigid‖F/‖YGT‖F , where Unon-rigid represents the
3D non-rigid deviation of the shape fed to the non-rigid algo-
rithm with respect to the initial shape YGT. The results are
reported in Table 4. As expected, the amount of non-rigid
deformation grows with the number of frames used for the
initialization. Nevertheless, this has almost no effect on the
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Table 4 Quantitative evaluation
of our approach with respect to
the number of frames used to
initialize, and the corresponding
non-rigid motion in [%]

Stretch sequence

Number of frames 5 10 15 20 25 30 35 40

Non-rigid motion[%] 2.29 4.15 6.75 9.22 9.95 9.98 9.99 9.99

ε3D[%] 5.94 6.00 5.80 5.65 5.52 5.48 5.44 5.40

Yoga sequence

Number of frames 5 10 15 20 25 30 35 40

Non-rigid motion[%] 0.43 1.05 1.73 2.46 3.22 4.00 4.77 5.51

ε3D[%] 6.01 6.46 6.57 6.65 6.81 6.96 7.09 7.32

Drink sequence

Number of frames 5 10 15 20 25 30 35 40

Non-rigid motion[%] 0.15 0.28 0.46 0.94 1.65 2.48 3.38 4.31

ε3D[%] 1.90 1.91 1.92 1.92 1.94 1.94 1.93 1.93

Observe that our solution remains stable even when the initial frames contain non-rigid motion

Table 5 3DReconstruction error ε3D[%] formotion capture sequences
when adding ±25% noise in optimization weights

Seq. −25% Original error +25%

Drink 1.87 1.92 2.25

Jacky 2.79 2.79 2.82

Face 4.19 4.33 4.82

Stretch 6.24 5.65 6.46

Yoga 6.85 6.65 6.59

Shark 6.26 6.73 7.29

accuracy of our algorithm for the rest of the sequence, which
remains very stable.

7.1.3 Parameter Tuning

The contribution of each energy term in the cost function of
Eq. (8) can be controlled by means of the weights αp, αt ,
αs . We tuned these parameters on the stretch sequence, and
used the same values for the rest of sequences. Yet, these
parameters do not need to be carefully tuned. In Table 5 we
report the 3D reconstruction error over all mocap sequences

after changing these weights by a±25% their original value.
Observe that the reconstruction results barely change.

7.2 Real Videos

We next present qualitative evaluation on seven different
real sequences that demonstrate the appropriateness of our
approach for shape recovery in varying situations, going
from surfaces undergoing smooth continuouswarps to abrupt
deformations produced by a newspaper being torn apart.
We also use these videos to provide a qualitative evaluation
against missing observations (structured and random) and a
quantitative comparison with respect to state-of-the-art tech-
niques when 3D ground truth is available.

7.2.1 Actress Sequence

The Actress sequence is made of 102 frames showing a
woman simultaneously talking andmoving her head.We rely
on the sequence tracks from Bartoli et al. (2008), and as is
also done in sequentialmethods (Agudo et al. 2014a; Paladini
et al. 2010), we use the first 30 frames to compute the ini-
tial model. Figure 7, shows the 3D reconstruction we obtain,

Fig. 7 Actress sequence. Top Frames #31, #48, #66, #84 and #91 with 2D tracking data and reprojected 3D shape represented by cyan circles and
red dots, respectively. Bottom Original viewpoint and side views of our 3D reconstruction (Color figure online)
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Fig. 8 Learning an incremental low-rank shape model. We represent
the rank global model for each frame of the sequences. TopActress and
Tear sequence.Middle Back and Bending sequence. Bottom ASL1 and
ASL2 sequence. It is worth point out that for the Tear experiment, the
value the of rank strongly increases when the paper is split in two parts
(Color figure online)

rotated according to the estimated rotation matrices, that is
comparatively very similar to those obtained by Agudo et al.
(2014a) and Paladini et al. (2010). However, we model the
deformation at a local level, and this will allow us to code
more non-linear deformations as we will show in subsequent
examples. In Fig. 8weplot the number of bases needed to rep-
resent the global model, reaching a maximum number of 7.

7.2.2 Tear Sequence

The Tear sequence (Taylor et al. 2010) contains 167 frames
of a paper being split in two parts. We use the point tracks
provided by (Russell et al. 2011). Again, the first 30 frames of
the sequence are used to initialize the model. For this specific
experiment we set the weight αe of the extensibility term in
Eq. (8) to zero, to allow the model to be split in two, without
the need of exactly knowing the edges that suffer the cut.

Since the deformation on this video is very local, it was
originally tackled using piecewise techniques (Taylor et al.
2010; Russell et al. 2011). Our particle-based approach also
handles this type of deformation without much difficulty.
Figure 9 shows a few 3D reconstructions obtained with our
approach and with CSF2 (Gotardo and Martínez 2011b)
using a low-rank basis of dimension 5. Although both solu-

Table 6 Quantitative comparison on back sequence

Seq. Process Met.

Batch Sequential

PQ CSF2 KSTA NOM EM-PND GLSMM

Back 15.20a 8.80 (2) 9.33 (2) 9.17a 8.10 7.63

Bold value indicates the best solutions in every case
Reconstruction error ε3D[%] for batch methods PQ (Fayad et al. 2010),
CSF2 (Gotardo and Martínez 2011b), KSTA (Gotardo and Martínez
2011a), NOM (Russell et al. 2011) and EM-PND (Lee et al. 2013)
a Numbers for PQ and NOM baselines are from (Russell et al. 2011).
We denote our approach as GLSMM. For low-rank based methods, we
chose the basis rank (in brackets) that yielded the lowest ε3D error

tions are similar, CSF2 renders the cut before the actual
separation in two parts is produced. This is because this
method processes all frames at once, which can produce cer-
tain de-synchronization between the actual 2D observations
and the retrieved shape. Interestingly, note it Fig. 8 how the
rank of the global model rapidly increases when the paper is
split in two, between frames #40 and #90.

7.2.3 Back Sequence

The Back sequence consists of 150 frames showing the back
of a person deforming sideways and flexing. We use the
sparse point tracks of Russell et al. (2011) and the first 20
frames to compute the initial model. For this experiment,
we also have the 3D ground truth obtained from stereo, and
which we use for comparison.

In this case, we compare against the following batchmeth-
ods: piecewise quadratic model (PQ) of Fayad et al. (2010),
the network of overlapping models using also quadratic
models (NOM) (Russell et al. 2011), the Procustean nor-
mal distribution model (EM-PND) (Lee et al. 2013), and
the trajectory-shape-based methods CSF2 (Gotardo and
Martínez 2011b) and KSTA (Gotardo and Martínez 2011a)
which obtained very good performance in the mocap exper-
iments of the previous section. A summary of the results
is reported in Table 6. For this real experiment, we obtain
a mean reconstruction error ε3D[%] of 7.63, outperform-
ing even batch state-of-the-art methods. In addition, recall
that our solution is sequential, while all other approaches
are batch. Figure 10 shows a few 3D reconstructed frames
obtained with our approach and with CSF2 (Gotardo and
Martínez 2011b). This is one of the batch methods with bet-
ter performance in the mocap experiments of the previous
section, specially under significant changes of the camera
rotation, like those produced in this particular experiment.
We observe, however, that this approach suffers from certain
reconstruction errors, especially in regions reconstructed as
convex while they should be concave (the natural shape of
a back is dominated by a global concave configuration). In
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Fig. 9 Tear sequence. Top Frames #31, #52, #64, #82 and #123 with
2D tracking data and reprojected 3D shape represented by cyan circles
and red dots, respectively. Bottom 3D views of the reconstructed shape

using our approach and CSF2 (Gotardo and Martínez 2011b). Note
that the batch method CSF2 assumes the paper starts splitting before it
actually happens (Color figure online)
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Fig. 10 Back sequence. Top Frames #30, #53, #82, #113, #137 and
#148 with 2D tracking data and reprojected 3D shape with cyan circles
and red crosses, respectively. Bottom 3D views of the reconstructed

shape using our sequential method, CSF2 (Gotardo and Martínez
2011b), that batch processes all frames simultaneously. In magenta we
highlight small artifacts of the reconstruction (Color figure online)

Fig. 10 we highlight in magenta these regions which do not
seem very realistically plausible.

7.2.4 Paper Bending Sequence

We next present the results on a Paper Bending sequence of
100 frames already used in Bartoli et al. (2008). In this exper-
iment we show a qualitative evaluation under the presence
of randomly distributed missing data, which our BA-based
approach can naturally handle. In particular, we add a pattern

of 20%ofmissing data in themeasurementmatrix. In Fig. 11,
we showour 3D reconstruction resultswith andwithoutmiss-
ing observations, being in both cases very similar andvisually
correct. For this experiment, we include the reconstruction
result obtained with KSTA, the batch approach proposed by
Gotardo and Martínez (2011a), using a basis of rank 2. Note
however that the performance of this algorithm drops signif-
icantly, even without the presence of outliers. This is due, as
pointed in Garg et al. (2013), to the fact that trajectory-based
algorithms become unstable when dealing with small camera

123



384 Int J Comput Vis (2017) 122:371–387

G
LS

M
M

K
ST

A
G
LS

M
M

Fig. 11 Paper Bending sequence. Top Input frames #20, #40, #60, #80
and #100. The 2D input tracks are displayed as cyan circles, and the
reprojected 3D points (after estimating the shape with our approach) are
shown as red and blue dots. Blue dots correspond to missing data. Bot-
tom The next three rows show the 3D view of the reconstructed shape
obtained with our sequential GLSMM method without missing data,

using the KSTA (Gotardo and Martínez 2011a) algorithm that batch
processes all frames simultaneously, and again using our approach but
considering a random pattern of 20% of missing measurements. Since
this sequence only shows small changes in the rotation, KSTA (Gotardo
andMartínez 2011a) becomes highly non-stable, even without the pres-
ence of missing data (Color figure online)

Fig. 12 ASL1 sequence. Top Frames #45, #67, #77, #92 and #115with
2D tracking data and reprojected 3D shape represented as cyan circles
and red dots, respectively. Missing points are shown in blue. Bottom

Original viewpoint and side views of the 3D reconstruction obtained
with our approach (Color figure online)

rotations, as is the case of this experiment. Similar results are
obtained using CSF2 (Gotardo and Martínez 2011b).

7.2.5 ASL Sequences

In this subsection we test two sequences taken from the
American Sign Language (ASL) dataset, which show a per-
son moving the head while talking and hand gesturing. We
use these sequences to provide a qualitative evaluation of our

approach under the presence of structured missing data, due
to self-occlusions produced by the interference of the hands
or lack of visibility of certain regions due to the motion of
the head. The ASL1 sequence consists of 115 frames and
77 feature points, with a 17.4% of missing data. The ASL2
sequence consists of 114 frames and also 77 feature points,
with a 11.5% ofmissing data. In both cases, we use the sparse
point tracks of Gotardo and Martínez (2011a) and the first
40 frames to compute the initial model. In Figs. 12 and 13,
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Fig. 13 ASL2 sequence. Top Frames #41, #58, #70, #92 and #114with
2D tracking data and reprojected 3D shape represented as cyan circles
and red dots, respectively. Missing points are shown in blue. Bottom

Original viewpoint and side views of the 3D reconstruction obtained
with our approach (Color figure online)
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Fig. 14 Beating heart sequence. Top Frames #34, #49, #55, #66 and
#79 with 2D tracking data and reprojected 3D shape with cyan circles
and red dots, respectively. Middle 3D reconstruction of the shape by
using a wire model, and other views with the original texture. Bottom

Same views using KSTA (Gotardo and Martínez 2011a). Again, the 3D
reconstruction of this approach seems to be highly non-stable, because
the sequence is acquired with small camera rotation. Best viewed in
color

we show that our approach can handle this type of struc-
tured occlusions. This is in contrast to other state-of-the-art
approaches, such as SPM (Dai et al. 2012), which cannot
handle these artifacts.

7.2.6 Beating Heart Sequence

Finally, we also show that our approach can be appropri-
ate to handle medical imaging, where sequential, real time
approaches are of paramount importance. For this purpose
we present the Beating Heart sequence, consisting of 79
frames, acquired during bypass surgery, and which was pro-
vided by Garg et al. (2013). We use a sparse version of 50

feature points to show the generality of our approach. In
Fig. 14, we represent the 3D reconstruction for this chal-
lenging sequence, which could be obtained at about 5 frames
per second. We also provide a qualitative comparison with
KSTA Gotardo and Martínez (2011a) using a basis of rank
6. Again, the small camera motion of this sequence seems to
significantly impact the performance of the approach (Fig. 8).

8 Conclusion

In this paper we have exploited Newton’s second law of
motion to model the non-rigid deformation of an object rep-
resented by a system of particles. We have introduced this
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simple physics-based dynamical model into a BA frame-
work, yielding an approach that allows to simultaneously
and on-the-fly recover camera motion and time-varying
shape. We have also used this approach to progressively
learn a low-rank global model of the whole shape, which
is fed back to the optimization framework in order to fur-
ther constrain the local dynamics of the particles. Our
system can handle different types of deformations, includ-
ing articulated, non-rigid, isometric and extensible cases.
Additionally, we do not require any training data and the
overall solution is remarkably fast. All our claims have been
experimentally validated in mocap and real sequences of
a large variety of scenarios going from articulated human
body, medical images of a beating heart sequence, and
even a piece of paper that is split in two. In all cases we
have shown similar performance to computationally inten-
sive batch approaches, and being remarkably more accurate
than other state-of-the-art sequential approaches. Regarding
real-time capability, our approach ensures that the com-
putational cost per frame is bounded and does not grow
with the number of frames. We believe our method is
a suitable groundwork for later exploitation in real-time
applications. Our future work is oriented to generalize our
model to full perspective projection cameras and incorpo-
rating feature tracking and outlier detection into a single
process.
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