
Int J Comput Vis (2017) 123:184–205
DOI 10.1007/s11263-016-0968-4

Particle-SfT: A Provably-Convergent, Fast Shape-from-Template
Algorithm

Erol Özgür1 · Adrien Bartoli1

Received: 21 March 2016 / Accepted: 17 October 2016 / Published online: 3 November 2016
© Springer Science+Business Media New York 2016

Abstract The Shape-from-Template (SfT) problem is to
recover the 3D shape of a deformable object from a single
image, given a 3D template and a deformation constraint.
We propose Particle-SfT, a new SfT algorithm which han-
dles isometric and non-isometric deformations. We build
Particle-SfT upon a particle system guided by deformation
and reprojection constraint projections. Reconstruction is
achieved by evolving particles to a globally attractive equilib-
rium, while taking observable external forces such as gravity
into account, if any. Particle-SfT may be used to refine an
existing initial shape. However, in practice we simply use
the template as initial guess. This is because, as opposed to
the existing refining methods, Particle-SfT has an extremely
wide convergence basin. Particle-SfT is also faster than the
existing refining methods. This is because it moves pieces of
the shape’s mesh independently to achieve larger step size
by optimal constraint projection. We proved its convergence
to a fixed-point. We experimented it with synthetic and real
data. It has the same accuracy as the best performing isomet-
ric method and consistently outperforms all existing elastic
methods in almost all cases, while being much faster.
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1 Introduction

A deformable object, like this paper that may be gently
bent between your fingers, may take many different shapes
whose projection produces the same image. Inferring the 3D
shape of an object from a single image thus requires more
constraints. SfT uses a 3D template of the object and a defor-
mation constraint as priors to recover the unknown shape
from the given input image. SfT has been well studied for the
isometric deformation (Brunet et al. 2014; Chhatkuli et al.
2014; Bartoli et al. 2015; Östlund et al. 2012; Salzmann
and Fua 2011) and marginally studied for elastic defor-
mations (Malti et al. 2013, 2015; Haouchine et al. 2014).
Because SfT is fundamentally a non-convex problem, an
SfT method is either initializing or refining. An initializing
method computes a suboptimal solution, which is iteratively
improved by a refiningmethod. One of themain current open
problems in SfT is finding a refining method which would
be fast and have a large convergence basin. This problem
exists for both the isometric and non-isometric deformation
cases.

We propose Particle-SfT, an SfT algorithm which uses
a particle model guided by optimal constraint projections.
We design our particle model specifically to embed the two
fundamental constraint sets required in SfT to converge to
the observed shape, the deformation constraints and the
reprojection constraints.Weassume that keypoint correspon-
dences between the template and the image are given. These
may be computed prior to shape reconstruction using for
instance SIFT (Lowe 1999) followed by (Pilet et al. 2008;
Pizarro and Bartoli 2012). Our SfT method then proceeds in
two steps: instantiation and evolution.Wefirst instantiate par-
ticles at the keypoint correspondences and, if necessary, add
extra particles so that a homogeneous distribution is obtained
on the template’s surface. Each particle has a position, amass
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and is subject to a set of internal and external constraints
and forces. The internal constraints are used to represent
SfT’s deformation constraints. They are created by ‘sewing’
the particles to each other along a specific pattern, which
is specifically designed to prevent effects such as folding
of the object’s surface. The external constraints are used to
represent SfT’s reprojection constraints. They are created as
strong attractors between each particle and its corresponding
sight-line traced from the perspective camera, modeling pro-
jection to the input image.We then evolve the particle system
by recursively applying optimal constraint projections until
equilibrium.

Particle-SfT has three strong features. First, it can be con-
trolled both in position and in force, and can thus evolve
under any known external forces such as gravity. Second, it
can represent materials of various stiffness. In other words,
Particle-SfT can represent very stiff objects such as a piece
of paper and extensible objects such as cloth, in a unified
framework. Existing algorithms are all specific to a type of
deformation, whether isometric or elastic. In Particle-SfT,
the internal constraints are expressed by two stiffness para-
meters, one for stretching and one for bending. In practice,
in the isometric case, this reduces to a single parameter, the
one which controls the bending stiffness, since there is no
stretching. In the elastic case both stiffness parameters are
lower than one and may usually be chosen equal. The design
of Particle-SfT would allow it to handle objects with inho-
mogeneous stiffness, should a stiffness map be provided in
the template. Reconstructing extensible objects requires one
to provide boundary conditions, which fit easily as exter-
nal constraints in Particle-SfT. Third, Particle-SfT is fast.
This is because it handles the constraints independently and
optimally. Therefore it takes large and precise steps. Exist-
ing methods use local approximation of all the constraints
(for instance using Gauss-Newton (Brunet et al. 2014)).
This limits them to take smaller steps and to converge more
slowly.

From a practical standpoint, Particle-SfT hasmany advan-
tages. First, it has an extremely wide convergence basin due
to the globally attractive equilibrium of the involved iter-
ations. Second, Particle-SfT is algorithmically simple, has
linear complexity in the number of particles and the number
of iterations, and its constraints can be separated into groups
of parallelizable isolated constraints (i.e., constraints that
do not have common particles). Third, Particle-SfT yields
similar results in accuracy to the best performing isometric
SfT method and outperforms all existing elastic SfT meth-
ods in almost all cases. Importantly, existing elastic SfT
methods all require one to provide a very good initialization
whereas Particle-SfT converges to a sensible solution even
when initialized very far from the solution. Third, Particle-
SfT runs about 15 times faster than the refining isometric SfT
method (Brunet et al. 2014) and at least 4 times faster than

the refining elastic methods (Malti et al. 2013; Haouchine
et al. 2014).

2 Previous Work

Shape-from-Template SfT methods may be grouped by the
type of deformation constraint they implement on the object’s
surface. Many use isometry, which preserves geodesic dis-
tances (Östlund et al. 2012; Bartoli et al. 2015; Brunet
et al. 2014; Chhatkuli et al. 2014; Perriollat et al. 2011;
Salzmann and Fua 2009, 2011; Salzmann et al. 2008;
Varol et al. 2012), and is by far the most studied model
in SfT. Some complement this constraint by a learnt sta-
tistical model (Salzmann and Fua 2011). Others consider
non-isometric models, namely conformity, which preserves
angles (Bartoli et al. 2015), linear elasticity (Malti et al. 2013,
2015) and non-linear elasticity (Haouchine et al. 2014).
The latter three methods depend on the material’s Young
modulus. Stretchable surfaces were also reconstructed using
shading (Moreno-Noguer et al. 2009).

SfT methods may be initializing or refining. Initializing
methods have a convex formulation (Östlund et al. 2012;
Perriollat et al. 2011; Salzmann and Fua 2009, 2011; Salz-
mann et al. 2008; Varol et al. 2012; Malti et al. 2015) or
are analytical solutions (Bartoli et al. 2015; Chhatkuli et al.
2014). Refining methods use non-convex numerical opti-
mization (Brunet et al. 2014; Malti et al. 2013; Haouchine
et al. 2014). Initializing methods are typically less accurate
than refining methods, and are often used to provide an ini-
tialization to a refining method. Particle-SfT is a refining
method.

Physics- and particle-based methods In terms of physics-
based models, the Finite Element Method (FEM) was used
in tracking (Kass et al. 1988; Metaxas 1993), to reconstruct
beam-like structures (Ilić et al. 2007), and in Non-Rigid
Structure-from-Motion (Agudo et al. 2014) (NRSfM). Par-
ticle dynamics was used to track particle like rigid objects
(e.g., billiard balls, basketballs) and articulated body motion
in 3D using a learnt model (Salzmann and Urtasun 2011),
and in NRSfM (Agudo and Moreno-Noguer 2015).

NRSfM and SfT are related but different problems. The
NRSfM methods proposed in (Agudo et al. 2014, 2016;
Agudo and Moreno-Noguer 2015) are template-free but
reconstruct small incremental deformations. The NRSfM
methods in (Agudo et al. 2014; Agudo and Moreno-Noguer
2015) need at least three sequential images. They work
with the orthographic camera model and have non-convex
cost functions requiring careful initialization for Levenberg-
Marquardt refinement. The particle-based NRSfM method
in (Agudo and Moreno-Noguer 2015) uses forces (New-
tonian dynamics). TheNRSfMmethod in (Agudo et al. 2016)
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works with the perspective cameramodel, needs two sequen-
tial images with previously reconstructed shape, and uses
forces. Our method uses the perspective camera, a template,
a single image, projections (projective dynamics) and recon-
structs a large deformation.

In computer graphics, physics-based models (Provot
1996) and projective particle-based models (Müller et al.
2006) were used to produce highly realistic object defor-
mations. The convergence of projective particle dynamics
approaches was however not proved so far.

We use a projective particle-based model for the first
time in SfT, and prove the convergence of Particle-SfT, the
proposed companion algorithm, using the fixed-point the-
ory (Agarwal et al. 2001) and contractivemappings (Rhoades
1977).

Particle Shape-from-Template compared to previousmethods
The Particle-SfT algorithm is refining, iterative and provably
convergent. It is simple, fast and versatile (it handles isomet-
ric and non-isometric deformations) compared to other SfT
methods. It is guided by optimal constraint projections and,
if available, by external forces.

We present our contributions as follows. First, we give
the reprojection and deformation constraints and their opti-
mal projections. These projections are the key elements of
Particle-SfT but they cannot be directly used as the deforma-
tion constraint is not position attractive. Second, we combine
these reprojection and deformation constraint projections
to obtain a particle-pairwise joint constraint mapping. This
yields an attractive behavior on the particle pairs towards the
sought-after shape of the deformed object. We then put for-
ward three propositions and a new fixed-point theorem about
the joint constraintmappings.Thesepropositions and thenew
fixed-point theorem are necessary to show the convergence
of Particle-SfT. We prove the convergence of Particle-SfT
in Proposition 3, whose premises are established in Proposi-
tions 1 and2, andTheorem1.Proposition1proves the asymp-
totic regularity of a joint constraint mapping and this guar-
antees the minimization of its related cost function. Proposi-
tion 2 shows that a joint constraint mapping satisfies a gener-
alized contractiveness condition which allows us to study the
convergence of the set of joint constraint mappings. The new
fixed-point theorem, Theorem 1, unifies a family of asymp-
totically regular mappings satisfying the same generalized
contractiveness condition. It gives the necessary conditions
on the uniqueness of the fixed-point solution. This shows that
the solution is not always unique. Finally, we experimentally
validate Particle-SfT against existing methods.

3 Problem Formulation

We first give the notation and assumptions, then define the
particle system and finally formulate the problem.

Notation We use the following notation:

• n ∈ N is the number of particles.
• x ∈ R

3 is a 3D point, x = [ x�
1 , . . . , x�

n ]� ∈ R
3n is a

3D shape vector and x̂ ∈ R
3n is its estimate. Positions

are in meters.
• M is a closed and bounded (i.e., compact) subset of the
Euclidean space R3n , and the metric d : M × M →
R+ = [0,∞) is defined as:

d(x, y) =
n
∑

i=1

‖ xi − yi ‖ , ∀ x, y ∈ M ⊂ R
3n

(1)

where ‖ · ‖ is the Euclidean norm.
• u ∈ R

2 is a 2D image point and u = [u�
1 , . . . ,u�

n ]� ∈
R
2n is an image shape vector. Image point coordinates

are in pixels.
• f ∈ R

3 is a 3D external force vector and f =
[ f�1 , . . . , f�n ]� ∈ R

3n is a shape force vector. Forces
are in Newtons. Forces are given.

• m ∈ R+ is the mass of a particle and m = [m1, . . . ,

mn ]� ∈ R
n+ is the shape mass vector. Masses are in

kilograms.
• K ∈ R

3×3 is the intrinsic parameter matrix of the per-
spective camera model for the input image. The intrinsic
parameter matrix is known.

• E = { i j } is the edge set containing the indices of con-
nected pairs of particles.

• S = { si j } is the set of the correction strengths of the
edges defined in E .

• R ⊂ M ⊂ R
3n is the reprojection constraint set of the

particles.
• D i j ⊂ M ⊂ R

3n is a deformation constraint set for
one pair of particles i j ∈ E .

• T = ( xT , ρT , sT , hT ) is the template with the shape
xT , density ρT , elasticity sT (e.g., Young’smodulus) and
surface thickness hT parameters.

• C = { (K, u), f } is the external constraint parameter
set.

Particle system The particle system P = ( x, E, S, m ) is
a model of the object. It imitates the behavior of the object
by obeying the object’s internal deformation constraints as
well as the object’s external constraints such as reprojec-
tion in the image and forces due to gravity. We instantiate
the particle system’s shape with the template’s shape, i.e.,
x = xT , the edge set E with the procedure described in
Sect. 4.2, the correction strength set S as a function of the
template’s elasticity parameter sT (the function is assumed
to be known; this is discussed in Sect. 8), and massesm from
the template’s density parameter ρT and the triangles issued
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of the particles’ Delaunay triangulation (Marton et al. 2009).
More precisely, the mass of a particle is determined by sum-
ming one third of the mass of all triangles containing this
particle. A triangle’s mass is the product of the material’s
density and the triangle’s volume. In practice, for a set of
particles homogeneously distributed on the template’s sur-
face, a particle’s mass can be approximated well enough by
dividing the object’s known mass by the number of parti-
cles.

Problem statement We look for a shape x of particles P
that best fits the deformation constraints and that satisfies the
reprojection constraints:

min
x∈R

⎛

⎝

∑

i j ∈E
min
y∈D i j

d( x, y )

⎞

⎠ (2)

In this formulation, we chose to enforce perfect reprojec-
tion constraints. This is because they are provided by a
directmeasurement of the sought-after shape of the deformed
object from an image. The deformation constraints how-
ever are approximate because, in reality, an object never
deforms isometrically. There is always a non-isometric coun-
terpart in the deformation, even if small. Enforcing perfect
isometry on the deformed object would strongly push the
object towards its rest shape. Another reason why we do not
want to enforce perfect isometry is that the particle-based
model is a discrete approximation of a surface and must
not preserve the edges’ length exactly to be able to deform.
Lastly, our experiments show that the obtained precision on
the reconstructed 3D shapes is good, which confirms our
modeling choice. We also prefer working on the constraints
that are applied on the whole shape, although they affect
only pairs of particles. This simplifies the formulation and
derivation of equations. We solve problem (2) through an
iterative algorithm, considering it as a common fixed-point
problem of the joint constraint mappings i.e., reprojection
and deformation constraint projections. We prove the con-
vergence of our algorithm to a fixed point which is also a
stable equilibrium point of problem (2). The solution pro-
vided by our algorithm is also robust to noise on the image
points. This is because particles are connected to each other
through multiple edges across the triangles of a triangu-
lated surface mesh (shown in red in Fig. 2, left) forming
a subset of the deformation constraints of the object. These
larger distance connections across triangles make the parti-
cles less sensitive to depth errors induced by image noise,
compared to the shorter ones (shown in black in Fig. 2,
left).

4 Constraints and Mappings

4.1 Reprojection

Constraint We define the reprojection constraints between
the particles’ positions and the shape reprojection set R as
follows:

f i (x) = ‖ xi − Tri xi ‖ = 0 , i ∈ [1, n] (3)

where Tr ∈ R
3×3 is an orthogonal projection of a particle

onto its sight-line r ∈ R. We express a sight-line set as
ri = {O + θ p̄i | θ ∈ R } where O = [0, 0, 0]� is the
optical center of the camera and p̄i = pi / ‖pi‖ ∈ R

3 are the
known unit sight-line vectors obtained from the image shape

vector u as pi = K−1
[

u�
i , 1
]�

, where ui is the position
of the i-th particle in the input image. Each sight-line r is a
convex and linear set.

Mapping The orthogonal projection Tr, which solves the
reprojection constraint (3) in one step by bringing the particle
at x /∈ r back onto its sight-line r, is defined as:

Tr = p̄ p̄� (4)

Note that Tr x always exists. Since a sight-line set r is con-
vex and Tr is its orthogonal projection (i.e., a nearest point
mapping), then Tr x is a unique point. We handle the repro-
jection constraints of a pair of particles pi ∈ P and p j ∈ P
in a shape x ∈ R

3n as:

x = TR i j x (5)

where TR i j = diag(I3 , . . . ,I3 , Tri , I3 , . . . ,I3 ,

Tr j , I3 , . . . ,I3 ) ∈ R
3n × 3n withI3 being a 3×3 identity

matrix.

4.2 Deformation

Constraint We define a deformation constraint between a
pair of connected particles at xi and x j of a shape x through
the following implicit convex signed distance function:

gi j (x) = ‖ xi − x j ‖ − �i j = 0 , i j ∈ E (6)

where �i j is the known distance of the pair, obtained from
the template. This deformation constraint tells us how far
a deformed pair is from the closest equilibrium and also in
which relative configuration (a positive value for a stretched
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Fig. 1 Convex implicit signed distance function as deformation constraint

pair and a negative value for a shrunk pair). An equilibrium
is a relative placement of particles pi ∈ P and p j ∈ P
anywhere in R

3 such that ‖ xi − x j ‖ = �i j .

Mapping Whenever gi j (x) 	= 0, we would like to find the
projection step �x which solves the deformation constraint
as gi j (x + � x) = 0. To do so, we fix one particle of a
pair, say pi at xi , with respect to the other. This allows us
to illustrate the convex signed distance function gi j (x) as in
Fig. 1. Remark that the shape of gi j (x) between the positions
of particles becomes linear. This is also true the other way
around when the roles of particles pi and p j are exchanged.

Fixing one particle therefore lets us express gi j (x+�x) =
0 exactly with a first-order representation as:

gi j (x+ �x) = gi j (x) + ∇gi j (x)
� �x = 0 (7)

Remark also that the gradient of gi j (x) at a particle’s position
is piecewise constant, and especially it does not vary between
any point and the closest solution, e.g., the red circle in Fig. 1.
We can thus solve constraint (7) with an exact projection step
along the constant gradient direction:

�x = − gi j (x)

‖∇gi j (x) ‖2 ∇gi j (x) (8)

We now propose to solve constraint (6) in one step bymoving
both particles simultaneously with respect to each other by
sharing the projection step (8) rather than moving only one
with respect to the other. This is possible because the gradient
vectors of gi j (x) at the particles’ positions are aligned on
the same 3D line passing through the particles’ positions xi
and x j . We share the projection step between the particles
with respect to their mass ratios αi = m j/(mi + m j ) and
α j = mi/(mi + m j ). The heavier a particle, the smaller
its α and therefore the smaller its displacement. Remark that
αi + α j = 1. Therefore the sumof the displacements of both
particles remains equal to the exact projection step length.We
rewrite Eq. (8) explicitly for the displacement of particles pi
and p j only as:

[

�xi
�x j

]

=
⎡

⎢

⎣

−αi
gi j (x)

‖∇i gi j (x) ‖2 ∇i gi j (x))
−α j

gi j (x)

‖∇j gi j (x) ‖2 ∇j gi j (x))

⎤

⎥

⎦ (9)

where∇i gi j (x) = (xi − x j )/‖ xi − x j ‖ ∈ R
3 is the gradi-

ent vector of gi j with respect to the particle at xi , and where
∇j gi j (x) = −∇i gi j (x) ∈ R

3 is the gradient vector of gi j
with respect to the particle at x j . We also scale the displace-
ments of particles with a correction strength si j ∈ (0, 1]
to introduce an elastic behavior on their deformation. The
correction strength is directly related to the object material’s
stiffness, and is provided with the template as it represents a
characteristic of the object, similarly to Young’s modulus or
any othermechanical parameter. Consequently,we design for
the deformed pair of particles two weighted gradient-based
orthogonal projections j Ti ∈ R

3×3 and i T j ∈ R
3×3 to

solve their deformation constraint (6) using (9) as:

j Ti =
(

I3 − si j αi gi j (x) ∇i gi j (x)
x�
i

‖ xi ‖2
)

(10)

i T j =
(

I3 − si j α j gi j (x) ∇j gi j (x)
x�
j

‖ x j ‖2
)

(11)

Remark that the gradient vectors of the connected particles
have unit norm, which was therefore crossed out from the
denominators of the projections (10) and (11). If si j = 1,
then the projections are isometric and otherwise they are non-
isometric. The deformation constraint (6) is then solved in
one step when the pair of connected particles is projected
through mappings (10) and (11) at the same time:

x = TD i j x (12)

where TD i j = diag(I3 , . . . ,I3 , j Ti , I3 , . . . ,I3,
i T j , I3 , . . . ,I3 ) ∈ R

3n × 3n is an orthogonal projection
mapping of only one pair in a shape x. The deformation con-
straint set D i j , which first appeared in Eq. (2), can then be
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Fig. 2 Meshing for deformation constraints (left). Parallelizable isolated constraints in red, green, blue and purple colors (right) (Color figure
online)

defined explicitly, using TD i j as:

D i j = { x | x = TD i j x , x ∈ M } (13)

We note that if xi 	= x j then j Ti xi and i T j x j exist and
are unique points in R

3. Otherwise if xi = x j , then j Ti xi
and i T j x j still exist but this time they are set valued map-
pings in R

3. More explicitly they map to concentric sphere
sets and the center is the singular configuration. Remark that
Eq. (5) keeps a pair away from the singular configuration of
the deformation constraint.

Meshing We used Delaunay triangulation (Marton et al.
2009) to obtain the edges defining theA-constraints shown in
black in Fig. 2, left. The A-constraints preserve the topology
of the particles and control the in-plane shear deformation
of the model. We then complete the mesh by adding edges
across the triangles, to form the B-constraints shown in red
in Fig. 2, left. This was inspired by a procedure used for the
mass-spring model (Provot 1996). This procedure was using
a rectangular regular grid which we extended here to han-
dle a non-regular particle system. The B-constraints control
both out-of-plane bending and in-plane shear deformation
of the model. Intuitively, B-constraints capture effects such
as curvature, as they connect particles to their second-order
neighborhood. Without them the model would be prone to
fold, especially at its corners. Another important advantage
of the B-constraints is to make the particles less sensitive
to depth ambiguities which might occur due to noise on the
image points. This is because they have larger distance con-
nections than A-constraints.

Parallelization The constraints can be separated into groups
of parallelizable isolated constraints (i.e., constraints that do
not have common particles). Figure 2, right illustrates par-
allelizable constraints. Each color, except black, represents
a group of isolated constraints which can be solved in one
step in parallel. Groups are solved sequentially. For the larger
meshes one typically uses in practice, the constraints are par-
allelizable to a good extent.

4.3 Joint Reprojection and Deformation

Motivation The motivation behind using a joint constraint
mapping is that the reprojection constraints are position-
attractive whereas the deformation constraints are not. This
is because deformation is a relative configuration among
the particles, that may hold independently from the parti-
cles’ positions in space. Applying each type of constraint
independently on the particles makes convergence analysis
tremendously difficult, because of the non-attractive behav-
ior of the deformation constraints. Therefore, we combine a
deformation constraint for a pair of particles with the repro-
jection constraints of the same pair in order to obtain a
new position-attractive constraint on the pair, including both
reprojection and deformation constraints.

Mapping A joint constraint mapping Ti j : M → M
is made up of the successive projections of a deformation
constraint and then the reprojection constraints of a pair of
particles:

x k+1 = Ti j x k (14)

withTi j = TR i j TD i j ∈ R
3 n × 3 n . The joint constraint map-

ping Ti j does not fall into a singular configuration of the
deformation constraints if the initial shape is not singular.
Therefore it yields continuous, uniquely defined constraint
mappings. Subsequently, from Brouwer’s fixed-point theo-
rem (Brouwer 1910), this implies the existence of fixed points
of the joint constraint mappings.

We now give Proposition 1 on a property of a joint con-
straintmappingwhich is one of the premises of Proposition 3,
for the proof of convergence of Particle-SfT.

Proposition 1 A joint constraint mapping Ti j is asymptot-
ically regular on M and convergent. It also minimizes its
associated deformation constraintwhen applied successively
on a shape.

In order to prove Proposition 1, we need Lemma 1.

Lemma 1 If gi j (x k) → 0 , then d( x k, TD i j x k ) → 0.
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Proof Here d is the metric (1), the sum of distances between
the corresponding particles. We write the explicit expression
of the metric for the deformation mapping using projections
(10) and (11) as:

d( x k, TD i j x k ) = ‖ si j αi gi j (x k) ∇i gi j (x k) ‖
+‖ si j α j gi j (x k) ∇j gi j (x k) ‖ (15)

where si j , αi , α j ∈ R+. Remember that ∇j gi j (x k) =
−∇i gi j (x k) and subsequently their absolute values are
equal. We rewrite Eq. (15) by replacing ‖∇j gi j (x k)‖ with
‖∇i gi j (x k)‖ as:

d( x k, TD i j x k ) = si j | gi j (x k) | ‖ ∇i gi j (x k) ‖ (αi + α j )

(16)

where αi + α j = 1 by definition and ‖∇i gi j (x k) ‖ = 1 by
construction. We are then left with:

d( x k, TD i j x k ) = si j | gi j (x k) | (17)

We conclude from Eq. (17) that if gi j (x k) → 0 , then
d( x k, TD i j x k ) → 0, and vice versa. ��
Proof of Proposition 1 An asymptotically regular mapping
is convergent (Belluce and Kirk 1969). We prove the asymp-
totic regularity of the joint constraint mapping Ti j using
Lyapunov’s direct method. Let V : M → R be a Lya-
punov candidate function defined over the deformation error
as:

V( x k ) = 1

2
gi j (x k)

2 (18)

Here V is a positive semi-definite and radially unbounded
function:

V = 0 ⇐⇒ gi j (x k) = 0 (19)

V > 0 ⇐⇒ gi j (x k) 	= 0 (20)

V → ∞ ⇐⇒ | gi j (x k) | → ∞ (21)

Afterward if V̇ < 0 when V > 0 , and if V̇ = 0 when
V = 0 , then V → 0 (Lyapunov 1892). Subsequently
this implies that gi j (x k) → 0 and from Lemma 1 that
d( x k, TD i j x k ) → 0. Differentiating V with respect to
time yields:

V̇ = gi j (x k) ġi j (x k) (22)

where:

ġi j (x k) = ∇i gi j (x k)
� ẋi + ∇j gi j (x k)

� ẋ j (23)

Considering that time takes unit discrete steps, we estimate
ẋi and ẋ j from the displacement x k+1 − x k where x k+1 =
Ti j x k , as:

ẋi = − αi gi j (x k) Tri ∇i gi j (x k) (24)

ẋ j = − α j gi j (x k) Tr j ∇j gi j (x k) (25)

Substituting Eqs. (23), (24) and (25) into Eq. (22) yields:

V̇ = − λ gi j (x k)
2 � 0 (26)

with λ being:

λ = si j

(

αi ∇i gi j (x k)
� Tri ∇i gi j (x k)

+α j ∇j gi j (x k)
� Tr j ∇j gi j (x k)

)

(27)

We note that λ is positive because si j , αi , α j ∈ (0, 1]
and Tri , Tr j are orthogonal projections with two dis-
tinct eigenvalues {0, 1} which cancel only some coordinates
of the gradient vectors ∇i gi j (x k) and ∇j gi j (x k). We also
know that ‖∇i gi j (x) ‖ = 1 and ‖∇j gi j (x) ‖ = 1.
Subsequently this yields the following inequalities 0 <

∇i gi j (x k)
� Tri ∇i gi j (x k) < 1 and 0 < ∇j gi j (x k)

�
Tr j ∇j gi j (x k) < 1. Consequently, we have V̇ � 0 .

Here V̇ is uniformly continuous everywhere inM except
at the optical centerO of the camera. In Eq. (26), if gi j (x k) 	=
0 , then V̇ < 0, and if gi j (x k) = 0, then V̇ = 0 . It follows
that both V → 0 and V̇ → 0 , consequently gi j (x k) → 0
and therefore d( x k, TD i j x k ) → 0. From this result, we
make the following conclusion:

d( x k, TD i j x k ) > d( x k+1, TD i j x k+1 ) , ∀ k � 0

(28)

for x k, x k+1 ∈ R and x k+1 = Ti j x k . Then we note that:

d(TR i j x, TR i j y ) < d( x, y ) , ∀ x, y ∈ M
(29)

for x ∈ R and y /∈ R. Figure 3 illustrates this case on two
particles. We use Eq. (29) to write the following relation:

d( x k, TD i j x k ) > d(TR i j x k, TR i j TD i j x k ) (30)

which is true when x k 	= Ti j x k or gi j (x k) 	= 0. Remark
that:

TR i j TD i j x k = Ti j x k = x k+1 (31)

123



Int J Comput Vis (2017) 123:184–205 191

T r x = x

r

y

O

T r y

Fig. 3 Projection of two particles at x ∈ r and y /∈ r onto the sight-line
r which passes through the optical center O

and when x k ∈ R that:

TR i j x k = x k (32)

Therefore Eq. (30) can be rewritten as:

d( x k, TD i j x k ) > d( x k, x k+1 ) (33)

Since d( x k, TD i j x k ) → 0 for all x ∈ M, then

d( x k, x k+1 ) → 0 which implies d(T k
i j x, T k+1

i j x ) →
0. Furthermore, the fixed points of Ti j are globally attractive
since V is radially unbounded, and globally stable equilib-
rium points of V since both V = 0 and V̇ = 0 whenever
gi j (x k) = 0. ��

5 Algorithm

The algorithm in Fig. 4 finds a stable equilibrium shape for
problem (2). Line 01 initializes the shape, velocity, external
forces and the masses of the particles as well as the itera-
tion counter of the main loop. The initial shape must be a

valid shape (non-singular). In practice, any initial shape in
front of or behind the camera is a good starting point. Line
02 starts the main loop. Line 03 exerts the external forces, if
known, on the shape with weight β ∈ [0, 1]. In line 03, if
the masses of particles are approximated, then β also helps
smoothing out these effects. Line 04 predicts the future pose
using the damped velocities of the particles with the weight
vector κ ∈ (0, 1). Parameter κ = 1 − μ weights the
prediction using μ ∈ R

n the damping coefficient vector. μ

is made of μi ≈ 2
√
smin min (mi , 0.25 − ε) coefficients

where each critically damps a particle’s motion (Goldstein
1980). smin = min { si j | i j ∈ E } is the minimum of all the
elasticity parameters. If 0 < si j < 1 then the connected
pair behaves elastically, and if si j → 1 then the connected
pair behaves isometrically. Line 05 applies successively the
joint constraint mappings. Line 06 computes the new veloc-
ity. Line 07 updates the shape. Line 08 ends the algorithm
either when the root-mean-squared (RMS) value of the shape
velocity is lower than a very small positive threshold value
ε or when the maximum number of loop iteration maxiter
is reached. Finally, the shape might escape from one side to
the other due to the prediction step in line 04. Line 09 brings
the shape in front of the camera if required: if it is behind,
then it is reflected about the optical center to its correct sym-
metrical pose. In all our experiments, we set ε = 10−6 and
maxiter = 104.

6 Convergence Analysis

Proposition 1 showed that a joint constraint mapping is
asymptotically regular and therefore convergent, and has
globally attractive fixed-points. Furthermore, the fixed-

Procedure : Particle-SfT (P, C )
Inputs : Particle system P, constraints C
Output : Reconstructed shape x

01: x = shape(P) , v = 0 , f = forces(C), m = masses(P) , k = 0

02: do

03: v = v + β f /m

04: x̂ = x + κ v

05: for each ij in E do , x̂ = Tij x̂ , end

06: v = x̂ − x

07: x = x̂

08: until RMS(v ) � ε or k ++ � maxiter

09: if x is behind the camera then x = −x

Fig. 4 The particle-SfT algorithm
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points are globally stable equilibrium points of the associated
deformation constraint of a joint constraint mapping. Prob-
lem (2) is the sum of the deformation constraints associated
to these joint constraint mappings. We now propose a new
fixed-point theorem and then two more propositions to
develop the convergence proof of Particle-SfT. The new
fixed-point theorem, Theorem 1, shows that a family of
asymptotically regular mappings satisfying the same gen-
eralized contractiveness condition is convergent and has
fixed-points. Theorem 1 also gives the uniqueness condition
for the fixed-point solution. The solution may not always be
unique. Afterward, Proposition 2 is given. It states that a joint
constraint mapping satisfies the generalized contractiveness
condition proposed in Theorem 1. Finally, Proposition 3 is
given. It combines Propositions 1 and 2, and Theorem 1, and
proves the convergence of Particle-SfT as given in Fig. 4.

Theorem 1 Let (M, d) be a compact metric space and
{Zh }∞h=1 be a sequence of self-mappings of M. Let each
mapping Zh : M → M be asymptotically regular with a
fixed point xh and satisfy the following generalized contrac-
tiveness condition for all x, y ∈ M and h � 1:

γ ( d(x, y) + d(x, Zh x) + d(y, Zh y)

+ d(x, Zh y) + d(y, Zh x) ) � d(Zh x, Zh y) (34)

where 0 � γ < 1
2 . Suppose that the sequence {Zh }

converges pointwise to a mapping Q : M → M and that
x∗ is any cluster point of the sequence { xh } of fixed points of
{Zh }. Then x∗ is a fixed point of mapping Q . Furthermore, if
0 � γ < 1

3 , then x∗ is the unique fixed point of mapping
Q .

Proof Since x∗ is a cluster point of the sequence { xh }, there
is a subsequence { xhi } of { xh } which converges to x∗ as
hi → ∞. By contradiction, assume that Q x∗ 	= x∗. This
subsequently implies d( x∗, Q x∗ ) > 0. We then write the
following relation using the triangular inequality twice:

d( x∗, Q x∗ ) � d( x∗, Zhi xhi )

+ d(Zhi xhi , Zhi x
∗ ) + d(Zhi x

∗, Q x∗ ) (35)

and using Eq. (34) this leads to:

d(x∗, Q x∗) � d(x∗, Zhi xhi )

+ γ
(

d(xhi , x
∗) + d(xhi ,Zhi xhi ) + d(x∗,Zhi x

∗)
+ d(xhi ,Zhi x

∗) + d(x∗,Zhi xhi )
)

+ d(Zhi x
∗, Q x∗) (36)

Since xhi is a fixed-point of Zhi then Zhi xhi = xhi .
Therefore this implies d(x∗, Zhi xhi ) = d(x∗, xhi ) and

d(xhi , Zhi xhi ) = 0. Hence Eq. (36) becomes:

d( x∗, Q x∗ ) � d( x∗, xhi )

+ γ
(

d(xhi , x
∗) + 0 + d(x∗, Zhi x

∗)
+ d(xhi , Zhi x

∗) + d(x∗, xhi )
)

+ d(Zhi x
∗, Q x∗) (37)

Since xhi → x∗ and Zhi → Q as hi → ∞,
then d(x∗, xhi ) → 0 and d(Zhi x

∗, Q x∗) → 0 and
d(x∗, Zhi x

∗) → d( x∗, Q x∗) and d(xhi , Zhi x
∗) →

d( x∗, Q x∗ ). Hence Eq. (37) yields:

d(x∗, Q x∗) � 2 γ d(x∗, Q x∗) (38)

This is a contradiction since 0 � γ < 1
2 . It follows that

x∗ = Q x∗. To see that x∗ is unique, let there be another fixed
point, say y∗, with Q y∗ = y∗. By contradiction, assume that
y∗ 	= x∗ which implies d( x∗, y∗ ) > 0. We then write the
following relation using the given generalized contractive-
ness condition:

d( x∗, y∗ ) = d(Q x∗, Q y∗ ) � γ
(

d(x∗, y∗)
+ d(x∗, Q x∗) + d(y∗, Q y∗)
+ d(x∗, Q y∗) + d(y∗, Q x∗)

)

(39)

and this yields:

d( x∗, y∗ ) � 3 γ d( x∗, y∗ ) (40)

which is a contradiction for 0 � γ < 1
3 . It then follows

that y∗ = x∗ for 0 � γ < 1
3 . ��

We now give Proposition 2 on contractiveness of a joint
constraint mapping.

Proposition 2 A joint constraint mapping Ti j conforms to
the generalized contractiveness condition (34) proposed in
Theorem 1 with 0 � γ < 1

2 .

Proof We can write the following relations using the trian-
gular inequality:

d(Ti j x, Ti j y) � d(Ti j x, y) + d(y, Ti j y) + d(x, y)
(41a)

d(Ti j x, Ti j y) � d(Ti j x, x) + d(x, Ti j y) (41b)

Summing Eqs. (41a) and (41b), we obtain:

d(Ti j x, Ti j y) � 1

2

(

d(x, y) + d(x, Ti j x)

+ d(y, Ti j y) + d(x, Ti j y) + d(y, Ti j x)
)

(42)

123



Int J Comput Vis (2017) 123:184–205 193

Fig. 5 A configuration of pairs in the worst case. Grey pairs show the initial configuration on the sight-lines. Red pairs show the configuration
after the joint constraint mappings (Color figure online)

If x 	= y, then this becomes exactly the generalized contrac-

tiveness condition (34) with γ ∈ [0, 1
2 ):

d(Ti j x, Ti j y) � γ
(

d(x, y) + d(x, Ti j x)

+ d(y, Ti j y) + d(x, Ti j y) + d(y, Ti j x)
)

(43)

If x = y, then Eq. (43) turns to be:

0 � 4 γ d(x, Ti j x) (44)

which is still valid with γ ∈ [0, 1
2 ). We give an exam-

ple which illustrates the worst case scenario. The worst
case, γ → 1

2 , is observed when x 	= y, the line seg-
ments xi − x j and yi − y j intersect, both gi j (x) < 0 and
gi j (y) < 0 and the intersection angle ϕ � π − θ , where θ

is the angle between the sight-lines of a pair. Figure 5 illus-
trates a configuration of pairs in the worst case. In Fig. 5,
d(Ti j x, Ti j y) = a+b+ c+d + e+ f , d(x, y) = b+ e,
d(x, Ti j x) = c + d, d(y, Ti j y) = a + f , d(x, Ti j y) =
a+b+e+ f, d(y, Ti j x) = b+c+d+e. Hence the worst
case conforms to the generalized contractiveness condition
for all x, y ∈ M with γ ∈ [0, 1

2 ) :

a + b + c + d + e + f � γ

( 2 a + 3 b + 2 c + 2 d + 3 e + 2 f ) (45)

This concludes the proof. ��
We finally give Proposition 3, built upon Propositions 1

and 2 and Theorem 1.

Proposition 3 Particle-SfT is convergent.

Proof Let one cycle of joint constraint mappings in line 05
form a mapping C �

∏

i j∈E Ti j . Then {Ck }∞k=1 can be
considered as a sequence composed of sufficiently many
mappings which are obtained by cycling the sequence of
joint constraintmappings {Ti j }i j∈E . Thanks toPropositions 1

and 2, the sequence {Ck }∞k=1 conforms to Theorem 1, there-
fore it is convergent. We next write one main loop iteration
in the algorithm from lines 03 to 07 as a two-step update
method:

y
k

= x k + diag( κ )
(

x k − x k−1

) + diag( κ ) β a

(46a)

x k+1 = Ck y
k

(46b)

with the shape prediction matrix diag( κ ) =
diag( κ1 I3, . . . , κn I3 ) ∈ R

3n×3n and shape accelera-
tion vector a = f /m ∈ R

3n . We rewrite Eqs. (46a) and
(46b) as the equivalent two-step update:

x k+1 = Ck y
k

(47a)

y
k+1

= x k+1 + diag(κ)
(

x k+1 − x k

) + diag(κ) β a

(47b)

By substituting Eq. (47a) into Eq. (47b), we obtain:

x k+1 = Ck y
k

(48a)

y
k+1

= diag(1 + κ) Ck y
k

− diag(κ) x k

+ diag( κ ) β a (48b)

with diag( 1 + κ ) = diag( (1 + κ1)I3, . . . , (1 +
κn)I3 ) ∈ R

3n×3n .We rewriteEqs. (48a) and (48b) inmatrix
form as:
⎡

⎣

y
k+1

x k+1
β a

⎤

⎦

︸ ︷︷ ︸

z k+1

=
⎡

⎣

diag( 1 + κ ) Ck −diag( κ ) diag( κ )

Ck 0 0
0 0 I

⎤

⎦

⎡

⎣

y
k

x k
β a

⎤

⎦

︸ ︷︷ ︸

z k

(49)
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where z ∈ M × M × R
3n is an augmented state vector.

Equation (49) can be rewritten as:

⎡

⎣

y
k+1

x k+1
β a

⎤

⎦

︸ ︷︷ ︸

z k+1

=
⎡

⎣

diag( 1 + κ ) −diag( κ ) diag( κ )

I 0 0
0 0 I

⎤

⎦

︸ ︷︷ ︸

A

⎡

⎣

Ck 0 0
0 I 0
0 0 I

⎤

⎦

︸ ︷︷ ︸

B

⎡

⎣

y
k

x k
β a

⎤

⎦

︸ ︷︷ ︸

z k

(50)

The last expression can be rewritten by expanding the map-
ping B as:

z k+1 = A

⎛

⎝

∏

i j∈E
diag(Ti j , I, I )

⎞

⎠ z k (51)

where the identity matrix I ∈ R
3n×3n is by definition

asymptotically regular and satisfies the generalized contrac-
tiveness condition (34) with γ ∈ [0, 1

3 ). The linear mapping
A has eigenvalues κ , repeated 3 times, and 1, repeated 6n
times. If κ ∈ (0, 1), then A is also asymptotically regular,
satisfies the generalized contractiveness condition (34) with
γ ∈ [0, 1

3 ), and makes the algorithm take larger steps by
extrapolation. Consequently, the augmented state sequence
{ z k }∞k=1 conforms to Theorem 1, and is therefore conver-
gent. Since each x in z is obtained from a C mapping, then x
is a cluster fixed-point of the {Ti j }i j∈E mappings. ��

7 Experimental Results

We conduct three different types of experiments with
Particle-SfT. First, we reconstruct isometric surfaces and
compare the results with state-of-the-art methods. Second,
we reconstruct elastic surfaces and again compare the results
with state-of-the-art methods. Finally, we exploit the known
gravity vector to reconstruct the shape of an object which
is deformed by gravitational forces. In all experiments, we
compute the 3D error in terms of RMS between the recon-
structed shape x and the ground truth shape x∗:

RMS( x, x∗ ) =
√

√

√

√

1

n

n
∑

i=1

‖ xi − x∗
i ‖2 (52)

Synthetic data experiments are repeated four times and their
3D errors are averaged.

7.1 Isometric Surfaces

General points In order to reconstruct isometric shapes with
Particle-SfT, we have two sets of parameters to choose,
the A-constraint and B-constraint strengths. Since there
should be no stretching in the isometric case, we set all
the A-constraint strengths as sA = 1, and all the B-
constraint strengths used for bending as sB = 0.99. We
compare the results of Particle-SfT with (Brunet et al.
2014; Chhatkuli et al. 2014; Bartoli et al. 2015; Östlund
et al. 2012; Salzmann and Fua 2011). The compared SfT
methods can be grouped in two categories: four initializ-
ing methods Chhatkuli14 (Chhatkuli et al. 2014), Bar-
toli12i (Bartoli et al. 2015), Ostlund12 (Östlund et al.
2012), Salzmann11 (Salzmann and Fua 2011) and one refin-
ing method Brunet10 (Brunet et al. 2014). We recall that
Particle-SfT is a refining method, but we will see that in
practice it does not need an initial guess to estimate the shape,
as opposed toBrunet10which requires an initial guess close
to the optimal shape. We start Particle-SfT from the known
template shape in all experiments.We also remark that all the
state-of-the-art isometric SfT methods, except Salzmann11,
have at least two parameters to be tuned (e.g., the smoothness
weight).

Synthetic Data [developable surface] We simulate 8 dif-
ferent isometric deformations of a flat template. We then
generate synthetic images of size 640 × 480 pixels (see
Fig. 6) of these deformations using a pinhole camera
model with focal length 500 pixels and principal point at
(320, 240).

Noise and number of correspondences In order to test the
robustness to noise of the SfT methods, we first randomly
generate 100 point correspondences between the template
and the image, and inject different levels of Gaussian noise
to the positions of the image points with standard deviation
σ varying from 0 to 2.4 pixels with a step of 0.2 pixels.
We then run the SfT methods on these noisy data. The left-
most graph in Fig. 7 shows the 3D errors of the SfT methods
versus noise level. We see that Particle-SfT yields the most
accurate results with Brunet10 under different noise levels,
and outperforms the other methods.

Second, we randomly generate N point correspondences
varying from50 to 300 pointswith a step of 50 points between
the template and the image. We also inject Gaussian noise to
the positions of these image points with standard deviation
σ = 1 pixel. We then run the SfT methods on these data.
The right-most graph in Fig. 7 shows the 3D errors of the SfT
methods versus the number of point correspondences.We see
that Particle-SfT yields the most accurate results again with
Brunet10 under different numbers of correspondences, and
outperforms the other methods.
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Particle-SfT Brunet10 Chhatkuli14 Bartoli12i Ostlund12 Salzmann11

Fig. 6 Synthetic images of 8 isometric deformations and the 3D reconstructions seen from a different viewpoint. In this figure the reconstructions
are performed with 300 random point correspondences under a 1 pixel Gaussian noise. The colder a point’s color, the smaller its reconstruction
error

Real Data [paper sheet] We use the CVLab’s paper dataset
(Varol et al. 2012). This dataset consists of 191 images of
a paper sheet being deformed. The images are taken with
a fixed Kinect while the paper sheet is being moved and
deformed. Some 1,300 point features are detected per image.
The left-most graph in Fig. 8 compares the SfT methods in
terms of 3D error versus image number. Table 1 gives the
mean3Derror values and run times of the comparedmethods.
We observe fromFig. 8 and Table 1 that Particle-SfT outper-

forms the other methods in most of the frames, and yields the
lowest mean 3D error over the whole CVLab’s paper dataset.
Particle-SfT reconstructs shapes about 15 times faster than
the refining method Brunet10.

Convergence basin We compare Brunet10 with Particle-
SfT in terms of convergence basin using the CVLab’s paper
dataset. To do so, we generate initial guesses by perturbing
the known ground-truth shapes. Afterwards we let Brunet10
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Fig. 7 3D errors of isometric SfT methods on synthetic data versus Gaussian noise levels (left) and number of correspondences (right)
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Fig. 8 3Derrors of isometric SfTmethods on theCVLab’s paper dataset (left),mean 3Derrors of isometric refining SfTmethods versus perturbation
level on the ground-truth shapes of CVLab’s paper dataset used as initial guesses (right)

Table 1 Mean errors and run
times for CVLab’s paper dataset

Initializing methods Refining methods

Chhatkuli14 Bartoli12i Ostlund12 Salzmann11 Brunet10 Particle-SfT

Error (mm) 3.97 4.56 4.82 7.47 3.86 3.78

Time (s) 0.50 0.15 6.00 1.10 22.33 1.50

andParticle-SfT start from these guesses.A 1%perturbation
level corresponds to 1◦ degree of rotation about a random
axis, to a displacement along the same random axis with
length 1% of the distance from the center of gravity of the
ground-truth shape to the camera and to a Gaussian noise
with standard deviation 1 mm on the position coordinates.
We increase the perturbation level from 0% to 100% with a
step of 5 percentage points per shape. We repeat this experi-
ment three times over the whole CVLab’s paper dataset. The
right-most graph in Fig. 8 shows the mean 3D errors ver-
sus perturbation level. We observe that Brunet10misses the
solutions after 25% perturbation on the ground-truth shapes
whereas Particle-SfT still finds the expected solutions. The

mean standard deviation of the errors at convergence is com-
puted for Brunet10 as 215.44 mm and for Particle-SfT as
0.95 mm.

RealData [cushionwith non-planar template] Particle-SfT
also works with non-planar templates. We apply Particle-
SfT to a cushion dataset whose template is non-planar. This
dataset contains images of 4 different deformations of a
cushion, the cushion’s non-planar 3D template and the tem-
plate image. The deformations are quasi-isometric on the
surface of the cushion. The images are 3,456 × 2,304 pix-
els. The focal length of the camera is about 2,700 pixels.
Some 1,000 feature correspondences are detected between
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snoitcurtsnocerD3dnasegamitupnIetalpmeT

5.67mm 12.37mm 5.20mm 3.83mm

Fig. 9 Cushion dataset with non-planar template. The 3D reconstructions (black circles) of Particle-SfT are shown with the ground-truth shapes
(green dots). The 3D errors are also given below the reconstructions (Color figure online)

Table 2 3D errors in
millimeters for the cushion
dataset

Initializing methods Refining methods

Chhatkuli14 Bartoli12i Ostlund12 Salzmann11 Brunet10 Particle-SfT

Cushion #1 4.25 10.52 5.02 7.08 5.49 5.67

Cushion #2 10.48 17.21 9.76 12.99 17.32 12.37

Cushion #3 4.74 19.41 4.70 7.69 7.89 5.20

Cushion #4 6.07 13.16 12.46 8.36 4.61 3.83

Mean 6.39 15.08 7.99 9.03 8.83 6.76

the template image and an imageof a deformation by combin-
ing SIFT (Lowe 1999) and KAZE (Alcantarilla et al. 2012).
In Fig. 9, the first column shows the template image and its
non-planar 3D template, and the rest of the columns show the
input images, the 3D reconstructions (black circles) over the
ground-truth shapes (green dots) and the 3D errors obtained
by applying Particle-SfT directly with the non-planar 3D
template. The results for the compared SfT methods can be
found in Table 2. We observe in Table 2 that for the mean 3D
errors over the whole cushion dataset Particle-SfT yields
the second best result, after Chhatkuli14. Particle-SfT’s
result is very close to Chhatkuli14, less than half a mil-
limeter. BothChhatkuli14 and Bartoli12i need flattening of
the non-planar 3D template. Chhatkuli14 uses point corre-
spondences and requires the first-order differential structure
around these points.

Remark Brunet10 is initialized with Bartoli12i in all
our experiments. The results are similar in accuracy and
speed of convergence when Brunet10 is initialized with
Chhatkuli14. This was shown in the results of (Chhatkuli
et al. 2014). The Bartoli12i+Brunet10 method corre-
sponds to the ReD method and the Chhatkuli14+Brunet10
method corresponds to the ReJ method in (Chhatkuli et al.
2014).

7.2 Elastic Surfaces

General points In order to reconstruct elastic shapes with
Particle-SfT, we set the distance correction strengths as
0 < sA < 1 and 0 < sB < 1. All the A-constraint strengths
sA use the same value for a given material. Similarly all the
B-constraint strengths sB use the same value for a given
material but might be different to what A-constraints use.
In practice, the values of sA and sB were found on test data
and included as known parameters in the template. We need
to add boundary conditions into the deformation constraints
to resolve the unknown shape. In our case, these boundary
conditions are known points x∗

i of the ground-truth shape as
for the other elastic SfT methods (Haouchine et al. 2014;
Malti et al. 2013, 2015). Those known points are integrated
as deformation constraints by setting the position of the cor-
responding particles simply as xi = x∗

i in each iteration. We
compare the results of Particle-SfT with (Haouchine et al.
2014; Malti et al. 2013, 2015; Bartoli et al. 2015). The first
elastic SfT method, Haouchine14 (Haouchine et al. 2014),
is based on non-linear elasticity and the second elastic SfT
method,Malti13 (Malti et al. 2013), on linear elasticity. They
both minimize a non-convex energy function.Haouchine14
andMalti13 are refining elastic SfT methods. The third elas-
tic SfTmethod,Malti15 (Malti et al. 2015), is based on linear
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Fig. 10 Partially stretched elasticmaterial. Three frames (#1, #25, #50) from a continuous deformation sequence. From left to right the extensibility
ratios are 0, 33, 66%. This data can be downloaded from http://isit.u-clermont1.fr/~ab/Research

27.42mm 11.77mm 62.48mm 12.51mm 8.20mm
Bartoli12c Malti13 Malti15 Haouchine14 Particle-SfT

Fig. 11 Reconstructed shapes (black circles) using 20 boundary points (red dots) for the ground-truth shape (green dots) with extensibility ratio
66%. Each column shows the same reconstructed shape from two different viewpoints, and gives the 3D errors in millimeters (mm) (Color figure
online)

elasticity and minimizes a convex energy function. Malti15
is an initializing elastic SfT method. Malti15 uses repro-
jection boundary constraints and is designed to work with a
rigid frame (undeformed border points) around the shape.We
adapt Malti15 to work with the known 3D boundary points
of the ground-truth shape and with a non-rigid frame around
the shape. The fourth SfT method, Bartoli12c (Bartoli et al.
2015), is for conformal deformations and yields a set of ana-
lytic solutions up to scale which are later refined through
non-linear optimization. Bartoli12c does not need boundary
constraints, however its solutions need to be correctly scaled
with respect to the ground-truth shape for comparison pur-
poses. We choose the best solution from the solution set of
Bartoli12c.

All the state-of-the-art elastic SfT methods use the mater-
ial’s Young modulus and/or Poisson’s ratio. The parameters
of all the compared SfT methods are tuned by trial and error
to give the best results. The ground-truth shapes of real data
experiments are obtained using the PhotoScan software. Pho-
toScan reconstructs the 3D scene frommultiple images using
Structure-from-Motion.

Synthetic Data [partially stretched surface] We use Blender
to simulate a rubber like material. The template shape is a
rectangular flat surface and its size is 300 × 400 mm. We
partially stretch this surface from its longest side in a contin-
uousmanner up to 66%extensibility ratio as shown inFig. 10.

We sequentially pick 50 ground-truth shapes from this con-
tinuous deformation. We then generate synthetic images of
size 1,024×1,024 pixels of these ground-truth shapes using
a pinhole camera model with focal length 770 pixels and
principal point at (512, 512). In order to reconstruct the
shapes, we choose 20 boundary points where the pulling
forces are applied on the deformed ground-truth shapes.
Figure 11 shows the reconstructed shapes from the noisy
synthetic image with extensibility ratio 66% from Fig. 10.
We observe that Particle-SfT yields a better reconstructed
shape than the other methods. Malti13 and Haouchine14
give similar results, less accurate at the lower-right corner
of the shape compared to Particle-SfT. Bartoli12c gives
a worse result, since it can only handle conformal defor-
mations but not general elastic ones. Malti15 gives the
worst result, since it is a convex approximation with a lin-
ear elasticity model of a non-convex problem with nonlinear
behavior.

Noise and number of correspondences We test the robust-
ness of the shape reconstruction methods against three
varying parameters: extensibility ratio, noise level and num-
ber of correspondences. The extensibility ratio varies from
0% to 66% with a step of about 1.32%. The standard devia-
tion σ of Gaussian noise varies from 0 to 2 pixels with a step
of 0.2 pixels. Correspondences are selected randomly. The
number of correspondences varies from 50 to 300 points with
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Fig. 12 3D errors of elastic SfTmethods versus extensibility ratio, Gaussian noise level, and number of correspondences. The 3D error forMalti15
is off the graphs’ axis limits

Table 3 Mean error and run
time for the varying extensibility
ratio results of Fig. 12

Initializing methods Refining methods

Bartoli12c Malti15 Haouchine14 Malti13 Particle-SfT

Error (mm) 17.88 51.07 10.02 9.46 3.24

Time (s) 580.47 1.18 10.90 121.80 2.60

The run time for Bartoli12c was extremely high due to the built-in refinement of its multiple solutions
(Bartoli et al. 2015)

27.42mm 48.85mm 49.91mm 35.86mm 33.92mm
Bartoli12c Malti13 Malti15 Haouchine14 Particle-SfT

Fig. 13 Reconstructed shapes (black circles) with extensibility ratio
66% and the ground-truth shapes (green dots). The 20 boundary points
(red dots) are chosen on the lateral sides of the ground-truth shape

where no pulling forces are applied. Each column shows the same recon-
structed shape from two different viewpoints, and gives the 3D errors
in millimeters (mm) (Color figure online)

a step of 50 points. While one of the parameters is varied,
the other two are kept fixed. Fixed default values are 66%
extensibility ratio, 100 random correspondences and σ = 1
pixel. Figure 12 shows the 3D errors of the SfT methods ver-
sus extensibility ratio, Gaussian noise level and number of
correspondences. Table 3 lists the mean of 3D errors and run
times of the compared methods on the varying extensibility
ratio experiments whose results are shown in Fig. 12. We
observe from Fig. 12 and Table 3 that Particle-SfT yields
about 3 times more accurate results than the other methods
in almost all configurations except at very small extensibility

ratios. On less deformed surfaces all methods perform with
about the same order of accuracy.

Change of boundary locations We reconstruct the shape
which has extensibility ratio 66% seen in Fig. 10 from the
noisy synthetic image. We choose, this time, the 20 bound-
ary points on the lateral sides of the deformed ground-truth
shape where no pulling forces are applied. For all elastic
methods, exceptMalti15, the reconstructions are now worse
than the previous case where the boundary points are chosen
about the locations of the pulling forces. Figure 13 shows
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foot pocket extensible fabric

Fig. 14 Real elastic datasets. In each box, the left image shows the template image and the right image shows the input image used in SfT

Input 7.02mm 3.05mm 15.94mm 2.77mm 2.50mm
Bartoli12c Malti13 Malti15 Haouchine14 Particle-SfT

Fig. 15 SfT results for an underfoot surface reconstruction of foot size
41 wearing a sock for foot size 37. The first column shows the input
image. Redmarkers on the input image show the point correspondences
used in SfT. The last 5 columns show the reconstructed shapes (black

circles) on the ground-truth shapes (green dots) with front and side
views. The 3D reconstruction errors are also given for each method
(Color figure online)

the results of Bartoli12c, Malti13, Malti15, Haouchine14
and Particle-SfT for this new case. Since Bartoli12c does
not need boundary conditions, its result is the same as in
Fig. 11 and here becomes themost accurate solution when no
strong priors on boundary conditions are exploited. However
remark thatBartoli12c needs the correct scalewith respect to
the ground-truth shape and one should know how to choose
the best solution from its multiple solutions. We observe that
Particle-SfT yields once more a better reconstructed shape
than the other elastic methods. However the difference in
results is less significant because the new boundary locations
introduce ambiguities for all elastic methods.

Real Data [foot] Weuse a sock for foot size 37 as a template.
We then put this sock on a foot whose size is 41, and take its
image tobeused as input for SfT. InFig. 14, the left box shows
the template and the input images of this sock.Wematch 137
point correspondences between the template image and the
input image. We choose 37 of the 137 points as the known
boundary conditions from the border points of the ground-
truth shape. Figure 15 shows the reconstructed shapes of the
compared methods and lists the 3D errors. We observe that
all the refining methods perform better than the initializing
methods, and that the performances of refining methods are
similar in accuracy. However, Particle-SfT outperforms all
the other methods.

Real Data [pocket] We use a piece of elastic cloth, whose
size is 20×14 cm, to make a pocket for holding objects. The
cloth is fixed on a cork board with 5 pins, where it was laid
flat as in the template image shown in Fig. 14, middle. We
then insert a bottle of water and a magazine in the pocket.
The distances between the fixing pins before the objects were
put inside and after, are the same. The elastic deformation on
the pocket due to inserted objects is stronger at the borders
between the pins. The elastic deformation on the surface,
where the grid is drawn, is moderate. The pocket grid con-
tains 88 points. We use these 88 points as correspondences
for reconstruction. 25 boundary points obtained from the left,
bottom and right sides of the grid, are used as boundary
constraints. Figure 16 shows the reconstructed shapes for
the compared methods and lists the 3D errors. We observe
that again all the refining methods perform better than the
initializing methods, and their performances are similar in
accuracy. Once more, Particle-SfT outperforms the other
methods.

Real Data [extensible fabric] We draw a regular grid on a
piece of extensible fabric. The size of the grid is 15×20 cm.
We then pin this fabric from its upper and lower parts down
to a fixed cork board, and insert an object between the fabric
and the board to create extension and curvature, as shown
in Fig. 14, right. The grid extension is 33% along the verti-
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Input 20.26mm 13.74mm 19.08mm 13.68mm 9.65mm
Bartoli12c Malti13 Malti15 Haouchine14 Particle-SfT

Fig. 16 SfT results for the pocket data. The input image shows a pocket
filled by a bottle of water and a magazine. The last 5 columns show the
reconstructed shapes (black dots) on the ground-truth shapes (green

mesh) with front and bottom views. The 3D reconstruction errors are
also given for each method (Color figure online)

Input 31.19mm 4.90mm 11.84mm 2.07mm 4.62mm
Bartoli12c Malti13 Malti15 Haouchine14 Particle-SfT

Fig. 17 SfT results for a piece of fabric which has large lateral stretch-
ing and amild central pushing deformation. The left most column shows
the deformed fabric. The last 5 columns show the reconstructed shapes

(black dots) on the ground-truth shapes (green mesh) with front and
side views. The 3D reconstruction errors are also given for each method
(Color figure online)

cal axis between the upper and lower parts. This extension
causes shrinking of 20% of the grid along the lateral axis.
The grid contains 336 points. We use these 336 points as
correspondences for reconstruction. 42 of them are used as
boundary constraints. These 42 boundary points are located
on the upper and lower edges of the grid. Figure 17 shows
the reconstructed shapes of the compared methods and lists
the 3D errors. We observe that again all the refining methods
perform better than the initializing methods, and their per-
formances are similar in accuracy. This time, Particle-SfT
yields the second best result, after Haouchine14.

As a general conclusion, we observe from Figs. 15, 16
and 17, that the refiningmethodsMalti13,Haouchine14 and
Particle-SfT reconstruct shapes quite well. The extensibility
ratio results with synthetic data in Fig. 12 also confirm that
conclusion. In synthetic data results,we see thatParticle-SfT
outperforms the othermethods. In Figs. 15 and 16, in real data
results,Particle-SfT also outperforms the othermethods and
improves the results of other refining elastic methods of at
least 15%. Only in Fig. 17 Particle-SfT yields the second
best result, after Haouchine14.

Convergence basin We compare the refining methods
Malti13 and Haouchine14 with Particle-SfT in terms of
convergence basin using the simulated rubber like material
shown in Fig. 10 with extensibility ratio 66% and using the

real elastic datasets (foot, pocket, extensible fabric) shown
in Fig. 14. For real elastic datasets, we use the same cor-
respondences and boundary points as for the above elastic
SfT experiments. For the simulated rubber, we take its syn-
thetic image and randomly select 120 point correspondences
between the template and the image. We also add Gaussian
noise with σ = 1 pixel to the image points. We choose 20
of the 120 points as the boundary points located exactly at
the same places as shown in Fig. 11. We then generate ini-
tial guesses by perturbing the ground-truth shapes of the real
elastic datasets and the simulated rubber. Afterwards we let
Malti13, Haouchine14 and Particle-SfT start from these
guesses. A guess with 1% perturbation level is equal to the
ground-truth shape multiplied by a scale factor 1. It is multi-
plied by 10 for 10% perturbation level and so on.We increase
the perturbation level from 1% to 100% with a step of 10%.
Figure 18 shows the datasets used in the convergence basin
experiment and the mean 3D error of SfT methods versus
perturbation level on the ground-truth shapes used as initial
guesses. We observe that Haouchine14 and Particle-SfT
come back to the expected solutions, while Malti13 starts
diverging after 30% perturbation level.

We repeat this experiment for another deformed shaped.
This time, the rubber likematerial is pushed up frombelowby
a cube by about 200 mm with its corners kept fixed. We take
a synthetic image of this ground-truth shape and randomly
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Fig. 18 3D errors of SfT methods versus perturbation on the ground-truth shapes used as initial guesses
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Fig. 19 3D errors of SfT methods versus perturbation on the ground-truth shape used as an initial guess

select 200 point correspondences between the template and
the image. We also add Gaussian noise with σ = 1 pixel to
the image coordinates. We choose 35 of 200 points as the
boundary points which correspond to the fixed corners of the
rubber material and to the border contact points between the
pushing cube and the rubber material. We generate initial
guesses by perturbing this ground-truth shape. Afterwards
we let Malti13, Haouchine14 and Particle-SfT start from
these guesses. A guess with 1% perturbation level is equal to
the ground-truth shape multiplied by a scale factor 1.01. It is
multiplied by 1.02 for 2% perturbation level and so on. We
increase the perturbation level from 0 to 100% with a step of
1%. The graph in Fig. 19 shows the 3D errors versus pertur-
bation level for this inner pushing. We observe that Malti13
and Haouchine14 miss the solution after 10% perturbation
on the ground-truth shapewhereasParticle-SfT still finds the
expected solution. This is a special case whereHaouchine14

cannot refine the initial solution in any case, while Malti13
can only refine it for very small perturbations. The low error
observed at the beginning of the error graph in Fig. 19 for
Haouchine14 is because of the initial guess being equal to
the exact ground-truth shape without any perturbation.

7.3 Hidden Parts from Gravity

In gravity based experiments, we consider objects with tex-
tureless, hidden or occluded parts in the image. We assume
that these parts are deformed by the gravitational force. Our
objective is then to reconstruct the full shape of the object
from its partly textureless/hidden/occluded image and the
known gravity vector. We use a smartphone’s camera to take
the input image of the deformed object and the smartphone’s
accelerometer to measure the direction of the gravity vector.
We achieve the full shape reconstruction by setting the force
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Template Input image Output Ground-truth

Fig. 20 Particle-SfT recovers the hidden part using gravity as measured by a smartphone (Color figure online)

Input image without gravity with gravity Ground-truth image

Template image 83.43mm 11.73mm Ground-truth shape

Fig. 21 Particle-SfT recovers occluded part using gravity as measured by a smartphone. The second and third columns show the reconstruction
(black mesh) overlaid on the ground-truth shape (green mesh) without and with gravity respectively from two different viewpoints (Color figure
online)

Table 4 The template’s data structure in Particle-SfT

Data Shape+Texturemap Density Thickness Stretching sA Bending sB

How are the values
obtained?

Any rest shape with
texture via SfM
(PhotoScan software)

Known from
material’s properties

Measured from
the object

Isometric case: set sA = 1,
elastic case: tuned
0 < sA < 1

Tuned for both
isometric and
elastic cases
0 < sB < 1

vector in Particle-SfT to the gravity vector for all the tex-
tureless/hidden/occluded particles. The reconstruction errors
in the experiments below may be explained by the particle
model not modeling the deformed object perfectly and the
noise on the gravity vector measured by the accelerometer.
Particle-SfT is the first SfT method which allows one to use
gravity.

Gravity experiment 1 In this scenario, we have a piece of
cloth laid on a table with a visible part and a hidden part in
the image. The hidden part is deformed by the gravitational
force. The deformation correction strengths are chosen as
sA = 1 and sB = 0.2. Figure 20 shows this experimental sce-
nario. The cloth’s size is 30×30 cm. An 11 by 11 regular grid
is sketched onto the surface of the cloth. In the input image
we use the visible 77 grid points as point correspondences

between the template and input image. Figure 20 contains
respectively the template shape of the cloth, the input image,
the fully reconstructed shape and an image revealing the
whole cloth.We also reconstruct the ground-truth shape from
the right image shown in Fig. 20 and compare it to the shape
reconstructed from the input image. The 3D error between
the corresponding ‘hidden part’ of the ground-truth shape and
the reconstructed shape is found as 8 mm. This corresponds
to a 2.6% error with respect to the size of the cloth.

Gravity experiment 2 In this scenario, we have a piece of
cloth hanged on a laundry holder. The cloth has a visible
part and an occluded part in the image. The occluded part is
deformed by the gravitational force. The deformation correc-
tion strengths are chosen as sA = 1 and sB = 0.1. Figure 21
shows this experimental scenario. The cloth’s size is 40×20
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cm. We have 36 point correspondences between the tem-
plate and input image. Figure 21 in its first column shows the
input image and template, in the second and third columns
the reconstructed shape (blackmesh) overlaid on the ground-
truth shape (green mesh) without gravity and with gravity
from two different viewpoints, and in the last column an
image revealing the whole cloth and its reconstructed shape
which is used as ground-truth shape for comparison.We com-
pare the ground-truth shape with the shapes reconstructed
without and with gravity from the occluded input image. The
3D errors are listed below the reconstructions in Fig. 21. We
observe that Particle-SfT with gravity reconstructs the cor-
rect shape to a good extent but misses it without gravity.

8 Conclusions

WehaveproposedParticle-SfT, thefirst SfTalgorithmguided
by constraint projections and forces, and capable of reaching
a highly accurate solution without an initial guess. Because
Particle-SfT has low complexity and is generic in the types
of deformation constraints it uses, it may be used in place of
any other existing refinement algorithm. Our experimental
results show that Particle-SfT reaches the same accuracy that
the best performing isometric SfT method while consistently
outperforming existing non-isometric SfTmethods in almost
all cases. The core of Particle-SfT is to enforce constraint
subsets independently and optimally, allowing it to converge
faster. Particle-SfT is provably convergent.

Remark that the template of Particle-SfT includes more
information than previous SfT methods so that it can cope
well with both isometric and elastic deformations. We list
in Table 4 the template’s exact data structure and how each
field is obtained. The template’s shape and texturemap are
obtained from multiple images of the object at rest using
Structure-from-Motion. The density of the material of which
the object is made is known from the material’s properties.
The object’s surface thickness can be precisely measured
beforehand. Only the stretching and bending correction
strengths need tuning. We set sA = 1 for the isometric defor-
mations since there is no stretching, and therefore only sB
needs tuning.We tune both sA and sB for the elastic deforma-
tions. One of the perspectives of our future work is to be able
to compute these two correction strengths automatically from
the material’s mechanical parameters such as Young’s mod-
ulus and/or Poisson’s ratio since those parameters encode
the material’s elasticity behavior. Our second perspective is
to extend Particle-SfT to volumetric objects, and the third
one is to investigate Particle-SfT for objects made of mixed
materials, thus having inhomogeneous stiffness.
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