
Int J Comput Vis (2018) 126:430–439
https://doi.org/10.1007/s11263-016-0957-7

Beyond Temporal Pooling: Recurrence and Temporal
Convolutions for Gesture Recognition in Video

Lionel Pigou1 · Aäron van den Oord1 · Sander Dieleman1 ·
Mieke Van Herreweghe2 · Joni Dambre1

Received: 11 February 2016 / Accepted: 20 September 2016 / Published online: 4 October 2016
© Springer Science+Business Media New York 2016

Abstract Recent studies have demonstrated the power of
recurrent neural networks for machine translation, image
captioning and speech recognition. For the task of captur-
ing temporal structure in video, however, there still remain
numerous open research questions.Current research suggests
using a simple temporal feature pooling strategy to take into
account the temporal aspect of video. We demonstrate that
this method is not sufficient for gesture recognition, where
temporal information is more discriminative compared to
general video classification tasks. We explore deep archi-
tectures for gesture recognition in video and propose a new
end-to-end trainable neural network architecture incorporat-
ing temporal convolutions and bidirectional recurrence. Our
main contributions are twofold; first, we show that recurrence
is crucial for this task; second, we show that adding temporal
convolutions leads to significant improvements. We evaluate

Communicated by Greg Mori.

A. van den Oord and S. Dieleman: Now at Google DeepMind.

B Lionel Pigou
lionel.pigou@ugent.be

Aäron van den Oord
aaron.vandenoord@ugent.be

Sander Dieleman
sander.dieleman@ugent.be

Mieke Van Herreweghe
mieke.vanherreweghe@ugent.be

Joni Dambre
joni.dambre@ugent.be

1 Data Science Lab, ELIS, Ghent University, Ghent, Belgium

2 Department of Linguistics, Ghent University, Ghent, Belgium

the different approaches on the Montalbano gesture recogni-
tion dataset, where we achieve state-of-the-art results.

Keywords Gesture recognition · Deep neural networks

1 Introduction

Gesture recognition is one of the core components in the
thriving research field of human–computer interaction. The
recognition of distinct hand and arm motions is becom-
ing increasingly important, as it enables smart interactions
with electronic devices. Furthermore, gesture identification
in video can be seen as a first step towards sign language
recognition,where even subtle differences inmotion can play
an important role. Some examples that complicate the iden-
tification of gestures are changes in background and lighting
due to the varying environment, variations in the perfor-
mance and speed of the gestures, different clothesworn by the
performers and different positioning relative to the camera.
Moreover, regular handmotion or out-of-vocabulary gestures
should not to be confused with one of the target gestures.

Convolutional neural networks (CNNs) (LeCun et al.
1998) are the de facto standard approach in computer vision.
CNNs have the ability to learn complex hierarchies with
increasing levels of abstraction while being end-to-end train-
able. Their success has had a huge impact on vision based
applications like image classification (Krizhevsky et al.
2012), object detection (Sermanet et al. 2013), human pose
estimation (Toshev and Szegedy 2014) and many more. A
video can be seen as an ordered collection of images. Classi-
fying a video frame by frame with a CNN is bound to ignore
motion characteristics, as there is no integration of temporal
information. Depending on the task at hand, aggregating the
spatial features produced by the CNN with temporal pool-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-016-0957-7&domain=pdf
http://orcid.org/0000-0002-3054-4960

Int J Comput Vis (2018) 126:430–439 431

ing can be a viable strategy (Karpathy et al. 2014; Ng et al.
2015). As we will show in this paper, however, this method
is of limited use for gesture recognition.

Apart from a collection of frames, a video can also
be seen as a time series. Some of the most successful
models for time series classification are recurrent neural net-
works (RNNs) with either standard cells or long short-term
memory (LSTM) cells (Hochreiter and Schmidhuber 1997).
Their ability to learn dynamic temporal dependencies has
allowed researchers to achieve breakthrough results in e.g.
speech recognition (Graves et al. 2013), machine translation
(Sutskever et al. 2014) and image captioning (Vinyals et al.
2015). Before feeding video to recurrent models, we need to
incorporate some form of spatial or spatiotemporal feature
extraction. This motivates the concept of combining CNNs
with RNNs. CNNs have unparalleled spatial (and spatiotem-
poral with added temporal convolutions) feature extraction
capabilities, while adding recurrence ensures the modeling
of feature evolution over time.

For general video classification datasets like UCF-101
(Soomro et al. 2012), Sports-1M (Karpathy et al. 2014) or
HMDB-51 (Kuehne et al. 2011), the temporal aspect is of less
importance compared to a gesture recognition dataset. For
example, the appearance of a violin almost certainly suggests
the target class is “playing violin”, as no other class involves a
violin. The model has no need to capture motion information
for this particular example. That being said, there are some
categories where modeling motion in some way or another
is always beneficial. In the case of gesture recognition, how-
ever, motion plays a more critical role. Many gestures are not
only defined by their spatial hand and/or arm placement, but
also by their motion pattern.

In this work, we explore a variety of end-to-end trainable
deep networks for video classification applied to frame-wise
gesture recognition with the Montalbano dataset that was
introduced in the ChaLearn LAP 2014 Challenge (Escalera
et al. 2014). We study two ways of capturing the temporal
structure of these videos. The first method involves temporal
convolutions to enable the learning of motion features. The
secondmethod introduces recurrence to our networks, which
allows the modeling of temporal dynamics, which plays an
essential role in gesture recognition.

2 Related Work

An extensive evaluation of CNNs on general video clas-
sification is provided by Karpathy et al. (2014) using the
Sports-1M dataset. They compare different frame fusion
methods to a baseline single-frame architecture and conclude
that their best fusion strategy only modestly improves the
accuracy of the baseline. Their work is extended by Ng et al.
(2015), who show that LSTMs achieve no improvements

over a temporal feature pooling scheme on the UCF-101
dataset for human action classification and only marginal
improvements on the Sports-1M dataset. For this reason,
the single-frame and the temporal pooling architectures are
important baseline models.

Anotherway to capturemotion is to convert a video stream
to a dense optical flow. This is a way to represent motion spa-
tially by estimating displacement vectors of each pixel. It is
a core component in the two-stream architecture described
by Simonyan and Zisserman (2014) and is used for human
pose estimation (Jain et al. 2014), for global video descriptor
learning (Ng et al. 2015) and for video captioning (Venu-
gopalan et al. 2015). A disadvantage of this technique is the
greater computational preprocessing complexity. However,
we show that our models implicitly learn to infer motion
features without the need for optical flow calculations.

Neverova et al. (2014) present an extended overview of
their winning solution for the ChaLearn LAP 2014 gesture
recognition challenge and achieve a state-of-the-art score on
the Montalbano dataset. They propose a multi-modal ‘Mod-
Drop’ network operating at three temporal scales and use an
ensemble method to merge the features at different scales.
They also developed a new training strategy, ModDrop, that
makes the network’s predictions robust to missing or cor-
rupted channels.

Most of the constituent parts in our architectures have been
used before in other work for different purposes. Learning
motion features with three-dimensional convolution lay-
ers has been studied by Ji et al. (2013) and Taylor et al.
(2010) to classify short clips of human actions on the KTH
dataset. Baccouche et al. (2011) proposed including a two-
step scheme to model the temporal evolution of learned
features with an LSTM. Finally, the combination of a CNN
with an RNN has been used for speech recognition (Hannun
et al. 2014), image captioning (Vinyals et al. 2015) and video
narration (Donahue et al. 2015).

3 Architectures

In this section, we briefly describe the different architectures
we investigate for gesture recognition in video. An overview
of the models is depicted in Fig. 1. Note that we pay close
attention to the comparability of the network structures. The
number of units in the fully connected layers and the num-
ber of cells in the recurrent models are optimized based on
validation results for each network individually. All other
hyper-parameters mentioned in this section and in Sect. 4.2
are optimized for the temporal pooling architecture. As a
result, improvements over our baseline models are caused
by architectural differences rather than better optimization,
other hyper-parameters or preprocessing.

123

432 Int J Comput Vis (2018) 126:430–439

CNN CNN CNN...

(a)

CNN CNN CNN...

Temp Pool

(b)

CNN CNN CNN...

...
...

(c)

Conv ...
Temp Conv

Conv ...
Temp Conv

MP ...
Temp MP

..
.

..
.

×L

(d)

Conv ...
Temp Conv

Conv ...
Temp Conv

MP ...

...
...

×L

..
.

(e)

Single-Frame
One to One

Temporal Pooling
Many to One

RNN
Many to Many

Temporal Convolutions
Many to One

Temporal Convolutions + RNN
Many to Many

Fig. 1 Overview. a Single-frame CNN architecture. b Temporal fea-
ture pooling network (max- or mean-pooling), spanning multiple video
frames. c Model with bidirectional recurrence. d Adding tempo-

ral convolutions and three-dimensional max-pooling (MP refers to
max-pooling). e Architecture with added temporal convolutions and
bidirectional recurrence

3.1 Baseline Models

3.1.1 Single-Frame

The single-frame architecture (Fig. 1a) worked well for
general video classification (Karpathy et al. 2014), but
is not a very fitting solution for our frame-wise ges-
ture recognition setting. Nevertheless, this will give us an
indication on how much static images contribute to the
recognition. It has 3 × 3 convolution kernels in every
layer. Two convolutional layers are stacked before per-
forming max-pooling on non-overlapping 2 × 2 spatial
regions. The shorthand notation of the full architecture
is as follows: C(16)–C(16)–P–C(32)–C(32)–P–C(64)–
C(64)–P–C(128)–C(128)–P–D(2048)–D(2048)–S,where
C(nc) denotes a convolutional layer with nc feature maps, P
a max-pooling layer, D(nd) a fully connected layer with nd
units and S a softmax classifier. We deploy leaky rectified
linear units (leaky ReLUs) in every layer. Their activa-
tion function is defined as a : x �→ max(αx, x), where
α = 0.3. Leaky ReLUs seemed to work better than conven-
tional ReLUs and showed promising results in other work
(Maas et al. 2013; Graham 2014; Dieleman et al. 2015; Xu
et al. 2015).

3.2 Temporal Feature Pooling

The second baseline model exploits a temporal feature pool-
ing strategy. As suggested byNg et al. (2015), we position the
temporal pooling layer right before the first fully connected
layer as illustrated in Fig. 1b. This layer performs either
mean-pooling or max-pooling across all video frames. The
structure of the CNN-component is identical to the single-
frame model. This network is able to collect all the spatial
features in a given time window. However, the order of the
temporal events is lost due to the nature of pooling across
frames.

3.3 Bidirectional Recurrent Models

The core idea of RNNs is to create internal memory to
learn the temporal dynamics in sequential data. An issue (in
our case) with conventional recurrent networks is that their
states are built up from previous time steps. A gesture, how-
ever, generally becomes recognizable only after a few time
steps, while the frame-wise nature of the problem requires
predictions from the very first frame. This is whywe use bidi-
rectional recurrence, which enables us to process sequences
in both temporal directions.

123

Int J Comput Vis (2018) 126:430–439 433

Describing the proposed model (Fig. 1c) formally, we
start with the CNN (identical to the single-frame model)
transforming an input frame xt to a more compact vector
representation vt :

vt = CNN(xt). (1)

A bidirectional RNN computes two hidden sequences: the
forward hidden sequence h(f) and the backward hidden
sequence h(b):

h(f)
t = H f

(
vt , h

(f)
t−1

)
and (2)

h(b)
t = Hb

(
vt , h

(b)
t+1

)
, (3)

whereH represents a recurrent layer and depends on the type
of memory cell. There are two different cell types in wide-
spread use: standard cells and LSTM cells (Hochreiter and
Schmidhuber 1997) [we use the modern LSTM cell struc-
ture with peephole connections (Gers et al. 2003)]. Both cell
types will be compared in this work.

Standard cells weight the input vector vt with trainable
parametersWvh and summateswith the previous hidden units
ht−1, weighted by Wvh , and a bias bh . Standard cells are
defined by

ht = a(Wvhvt + Whhht−1 + bh), (4)

whereWvh ,Whh and bh are trainable parameters and a is the
same leaky rectified linear nonlinearity as used in the CNN.

LSTMs cells are more complex, but their structure allows
them to hold memory for much longer, hence the name. This
enables them to capture long-range temporal dependencies.
The cells can be described as follows:

it = σ(Wvivt + Whiht−1 + wci � ct−1 + bi), (5)

ft = σ(Wv f vt + Whf ht−1 + wc f � ct−1 + b f), (6)

ot = σ(Wvovt + Whoht−1 + wco � ct−1 + bo), (7)

gt = tanh(Wvgvt + Whght−1 + bg), (8)

ct = ft � ct−1 + it � gt , (9)

ht = ot � tanh(ct), (10)

where� denotes the point-wisemultiplication of two vectors
and all parameters referred by W., w. or b. are trainable.

Finally, the output predictions yt are computed with a
softmax classifier which takes the sum of the forward and
backward hidden states as input:

yt = softmax
(
Wy(h

(f)
t + h(b)

t) + by
)

. (11)

3.4 Adding Temporal Convolutions

Our final set of architectures extends the CNN layers with
temporal convolutions (convolutions over time). This enables
the extraction of hierarchies of motion features and thus
the capturing of temporal information from the first layer,
instead of depending on higher layers to form spatiotemporal
features. Performing three-dimensional convolutions is one
approach to achieve this. However, this leads to a significant
increase in the number of parameters in every layer, making
this method more prone to overfitting. Therefore, we decide
to factorize this operation into two-dimensional spatial con-
volutions and one-dimensional temporal convolutions. This
leads to fewer parameters and optionally more nonlinearity if
one decides to activate both operations.We opt to not include
a bias or another nonlinearity in the spatial convolution step
to maintain the comparability between architectures.

First, we compute spatial feature maps st for every frame
xt . A pixel at position (i, j) of the k-th feature map is deter-
mined as follows:

s(k)
ti j =

N∑
n=1

(
W (kn)

spat ∗ x (n)
t

)
i j

, (12)

where N is the number of input channels and Wspat are
trainable parameters. Finally, we convolve across the time
dimension for every position (i, j), add the bias b(k) and
apply the activation function a:

v
(k)
ti j = a

(
b(k) +

M∑
m=1

(
W (km)

temp ∗ s(m)
i j

)
t

)
, (13)

where the variablesWtemp and b are trainable parameters and
M is the number of spatial feature maps.

Two different architectures are proposed using this new
layer. In the first model (Fig. 1d), we replace the con-
volutional layers of the single-frame CNN with the spa-
tiotemporal layer defined above. Furthermore, we apply
three-dimensional max-pooling to reduce spatial as well as
temporal dimensions while introducing slight translational
invariance in time. Note that this architecture implies a slid-
ing window approach for frame-wise classification, which is
computationally intensive. In the second model, illustrated
in Fig. 1e, the time dimensionality is retained throughout
the network. That means we only carry out spatial max-
pooling. To this end, we are able to stack a bidirectional RNN
with LSTM cells, responding to high-level temporal depen-
dencies. It also incidentally resolves the need for a sliding
window approach to implement frame-wise video classifica-
tion.

123

434 Int J Comput Vis (2018) 126:430–439

4 Experiments

4.1 Montalbano Gesture Recognition Dataset

The ChaLearn Looking At People (LAP) 2014 Challenge
(Escalera et al. 2014) consists of three tracks: human pose
recovery, human action/interaction recognition and gesture
recognition. The dataset accompanying the gesture recogni-
tion challenge, called the Montalbano dataset, will be used
throughout this work. The dataset is multi-modal, because
the gestures are captured with a Microsoft Kinect that has a
depth sensor. In all sequences, a single user is recorded in
front of the camera, performing natural communicative Ital-
ian gestures. Each data file contains an RGB-D (where “D”
stands for depth) image sequence and a skeletal pose stream
provided by the Microsoft Kinect API. The gesture vocab-
ulary contains 20 Italian cultural/anthropological signs. The
gestures are not segmented, whichmeans that sequences typ-
ically contain several gestures. Gesture performances appear
randomly within the sequence without a prearranged rest
pose. Moreover, several unannotated out-of-vocabulary ges-
tures are present.

It is the largest publicly available gesture dataset of its
kind. There are 1, 720, 800 labeled frames across 13, 858
video fragments of about 1 to 2 minutes sampled at 20Hz
with a resolution of 640 × 480. The gestures are performed
by 27 different individuals under diverse conditions; these
include varying clothes, positions, backgrounds and lighting.
The training set contains 11, 116 gestures and the test set
contains 2742. The class imbalance is negligible. The starting
and ending frames for each gesture are annotated as well as
the gesture class label.

To speed up the training, we crop part of the images con-
taining the user and rescale them to 64 by 64 pixels using the
skeleton information (other than that, we do not use any pose
data). However, we show in Sect. 4.4 that we even achieve
good results when we do not crop the images and leave out
depth information. Figure 2 illustrates the cropping of an
input image. The head and the hip positions are tracked by
the Microsoft Kinect API. We found these tracking points to
be consistent and stable. Based on these two points we crop
a square region of interest.

Lastly, we experiment with feeding the networks with
dense optical flow channels. These inputs are calculated with
the techniques used in Farnebäck (2003).

4.2 End-To-End Training

We train our models from scratch in an end-to-end fash-
ion, backpropagating through time (BTT) for our recurrent
architectures. The network parameters are optimized bymin-
imizing the cross-entropy loss function using mini-batch
gradient descent with the Adam update rule (Kingma and Ba

Fig. 2 Preprocessing. The blue and yellow circle indicate the head
and hip position respectively. This pose information is provided by the
Microsoft Kinect API. The red square stipulates the cropped region
(Color figure online)

2015). We found that Adam works great in practice, espe-
cially when experimenting with very different layer types in
the samemodel.All ourmodels are trained the samewaywith
early stopping, amini-batch size of 32, a learning rate of 10−3

and an exponential learning rate decay. Before training, we
initialize the weights with a random orthogonal initialization
method (Saxe et al. 2013).

4.2.1 Recurrent Networks

As described in Sect. 4.1, the video files in the Montalbano
dataset contain approximately 1–2 minutes of footage, con-
sisting of multiple gestures. Recurrent models are trained on
random fragments of 64 frames and produce 64 predictions,
one for every frame. To summarize, a data sample has 4 chan-
nels (RGB-D), 64 frames each, with a resolution of 64 by 64
pixels; or in shorthand notation: 4@64 × 64 × 64. We opti-
mized the number of cells for eachmodel based on validation
results. For LSTM cells, we only saw a small improvement
between 512 and 1024 units, so we settled at 512. For RNNs
with standard cells, we used 2048 units. The location of ges-
tures within the long sequences is not given. A gesture is
generally about 20–50 frames long. If a small fraction of a
gesture is located at the beginning or the end of the 64 consid-
ered frames, the model does not have enough information to
label these frames correctly. That is why we allow a buildup
in both forward and backward direction for evaluation; we
feed 64 frames into the RNN and keep the middle 32 for
evaluation.

4.2.2 Non-Recurrent Networks

The single-frame CNN is trained frame by frame and all
other non-recurrent networks are trained with the number
of frames optimized for their specific architecture. The best
number of frames to mean-pool across is 32, determined by
validation scores with tested values in [8, 16, 32, 64]. In the

123

Int J Comput Vis (2018) 126:430–439 435

Table 1 A comparison of the results for our different architectures on theMontalbano gesture recognition dataset (RGB-D cropped images, without
optical flow)

Architecture Jaccard index Precision (%) Recall (%) Error rate (%)*

Single-frame CNN (Fig. 1a) 0.465 67.86 57.57 20.68

Temp max-pooling (Fig. 1b) 0.748 85.03 82.92 8.66

Temp mean-pooling (Fig. 1b) 0.775 85.93 85.80 8.55

Temp Conv (Fig. 1d) 0.842 89.36 90.15 4.67

RNN, standard cells (Fig. 1c) 0.885 92.77 93.56 3.58

RNN, LSTM cells (Fig. 1c) 0.888 93.75 93.28 3.55

Temp Conv + RNN, standard (Fig. 1e) 0.900 93.76 94.47 2.82

Temp Conv + RNN, LSTM (Fig. 1e) 0.906 94.49 94.57 2.77

The Jaccard index indicates the mean overlap between the binary predictions and the binary ground truth across gesture categories. We also compute
precision and recall scores for each gesture class and report the mean score across classes
* The error rate is based on majority voted frame-wise predictions from isolated gesture fragments

case of max-pooling, we find that pooling over 16 frames
gives better outcomes. Also, pretraining the CNNs frame-
by-frame and fine-tuning with temporal max-pooling gave
slightly improved results. We observed no improvements,
however, using this technique with temporal mean-pooling.
The architecture with added temporal convolutions and
three-dimensional max-pooling showed optimal results by
considering 32 surrounding frames. The targets for all the
non-recurrent networks are the labels associatedwith the cen-
termost frame of the input video fragment. We evaluate these
models using a sliding window with single-frame steps.

4.2.3 Regularization and Data-Augmentation

We employed many different methods to regularize the deep
networks.Data augmentation has a significant impact on gen-
eralization. For all our trained models, we used the same
augmentation parameters: [−5, 5] pixel translations in ver-
tical direction and [−10, 10] horizontal, [−2, 2] rotation
degrees, [−2, 2] shearing degrees, [1

1.1 , 1.1] image scal-
ing factors and [1

1.2 , 1.2] temporal scaling factors. From
each of these intervals, we sample a random value for
each video fragment and apply the transformations online
using the CPU. Dropout with p = 0.5 is used on the
inputs of every fully connected layer. Furthermore, using
leaky ReLUs instead of conventional ReLUs and factoriz-
ing three-dimensional convolutions into spatial and temporal
convolutions also reduce overfitting.

4.3 Results

We follow the ChaLearn LAP 2014 Challenge score to mea-
sure the performance of our architectures. This way, we can
compare with previous work on theMontalbano dataset. The
competition score is based on the Jaccard index, which is
defined as follows:

Js,n = |As,n ∩ Bs,n|
|As,n ∪ Bs,n| . (14)

The binary ground truth for gesture category n in sequence
s is denoted as the binary vector As,n , whereas Bs,n denotes
the binary predictions. The Jaccard index Js,n can be seen
as the overlap rate between As,n and Bs,n . To compute the
final score, the mean Jaccard index among all categories and
sequences is computed:

Javg = 1

NS

S∑
s=1

N∑
n=1

Js,n, (15)

where N = 20 is the number of categories and S the number
of sequences in the test set.

An overview of the results for our different architectures
is shown in Table 1. The predictions of the single-frame base-
line achieve a Jaccard index below 0.5. This is to be expected
as no motion features are extracted. We observe a significant
improvement with temporal feature pooling (a Jaccard index
of 0.775 vs. 0.465). Furthermore, mean-pooling performs
better than max-pooling. Adding temporal convolutions and
three-dimensional max-pooling improves the Jaccard index
to 0.842.

The four last entries in Table 1 use recurrent networks.
Surprisingly, the RNNs are only acting on high-level spatial
features, yet are surpassing a CNN learning hierarchies of
motion features (a Jaccard index of 0.842 vs. 0.888). Finally,
combining the temporal convolution architecture with an
RNN improves the score even more (LSTM: 0.906, stan-
dard: 0.900). This deep network not only learns multi-level
spatiotemporal features, but is capable of modeling temporal
dynamics within them.

The difference in performance for the two types of cells
is very small and they can be considered equally capable for
this type of problem where temporal dependencies are not

123

436 Int J Comput Vis (2018) 126:430–439

Table 2 Montalbano gesture
recognition dataset results
compared to previous work

Model Crop Depth Optical flow Pose Jaccard index

Chang (2014) (MRF, KNN, PCA, HoG) Yes No No Yes 0.827

Monnier et al. (2014) (AdaBoost, HoG) Yes Yes No Yes 0.834

Neverova et al. (2014) (Multi-Scale DNN) Yes Yes No No 0.836

Neverova et al. (2014) (Multi-Scale DNN) Yes Yes No Yes 0.870

Temp Conv + LSTM No No No No 0.842

Yes No No No 0.876

Yes Yes No No 0.906

Yes Yes Yes No 0.895

Crop the cropping of specific areas in the video using the skeletal information, Depth the usage of
depth-maps, Optical flow the inclusion of optical flow channels, Pose the usage of the skeletal stream as
features. Note that even when we do not use depth images, we still achieve better results

Fig. 3 The output probabilities are shown for a sequence fragment in
the test set. The dashed line represents silences. The non-recurrent mod-
els make more mistakes and have difficulties making hard decisions to

where the gesture starts or ends and are unable to smooth out predictions
in time. Adding recurrence enables deep networks to learn the behavior
of the manual annotators with great accuracy

too long-ranged. However, our training phase is consider-
ably more stable and roughly twice as fast with LSTM cells.
Modelswith standard cells require tuning of hyperparameters
to even have a converging setup, while we never encounter a
diverged experiment with LSTM networks.

In Table 2, we compare our results with previous work.
Our best model outperforms the method of Neverova et al.
(2014) when we only consider RGB-D pixels as input
features (0.906 vs. 0.836). When we remove depth infor-
mation and perform no preprocessing other than rescaling
the images, we still achieve better results (0.842). The previ-
ous best performing score (0.870), where the skeletal stream
is used as input features, is outperformed by our model with-
out pose information (0.906) nor depth images (0.876). We
observe no improvement with the use of optical flow for this
task. This suggests that the models are able to capture motion
from theRGBdata (see further and Fig. 4) and that the optical
flow does not add useful information in our case.

To illustrate the differences in output predictions of the dif-
ferent architectures, we show them for a randomly selected
sequence in Fig. 3. We see that the single-frame CNN has
trouble classifying the gestures, while the temporal pool-
ing is significantly more accurate. However, the latter still
has difficulties with boundaries. Adding temporal convolu-
tions shows improved results, but the output contains more
jagged predictions. This seems to disappear by introducing
recurrence. The output of the bidirectional RNNmatches the
target labels strikingly well.

In Fig. 4, we show that adding temporal convolutions
enables neural networks to capture motion information.
When the user is standing still, the units of the feature map
are inactive, while the feature map from the network with-
out temporal convolutions has a lot of active units. When the
user is moving, the feature map shows strong activations at
the movement locations. This suggests that the model has
learned to extract motion features.

123

Int J Comput Vis (2018) 126:430–439 437

While standing still

RGB Input Spatial
Feature Map

Spatiotemporal
Feature Map

While moving

RGB Input Spatial
Feature Map

Spatiotemporal
Feature Map

Fig. 4 Motion Features. This figure illustrates the effect of integrating
temporal convolutions. The depicted spatial feature map is the most
active 4-layer-deep feature map, extracted from an architecture with-
out temporal convolutions. The spatiotemporal feature map is extracted

from a model with temporal convolutions. The strong activations in
the spatiotemporal feature maps while moving indicate learned motion
features

Fig. 5 The confusion matrix for the model with temporal convolutions
and LSTM cells, evaluated on the test set

4.4 Failure Cases

The confusion matrix in Fig. 5 visualizes the performance of
our best model (temporal convolutions + recurrence) for each
gesture. The diagonal values clearly all have high values,
which indicates a highly accurate classification. The most
occurring error is the prediction of a silence, while the target
is a particular gesture. This is due to the fact that the most
common class is a silence. This imbalance causes the model
to bet on a silence when the input is too confusing.

There are very few confusions between gestures. We
depict the most common confusions in Fig. 6. The gestures
“Vieni qui” (Eng: come here) and “Vattene”(Eng: begone)
both raise one arm and move their hand towards or away
from the user. When it is not clear in which direction the
hand moves, the models confuses both gestures. The “Frega
niente” and “Perfetto” gestures both start fromnear themouth

Fig. 6 Three examples to illustrate confusion between similar ges-
tures.aTop “Vieni qui”.Bottom “Vattene”.bTop “Frega niente”.Bottom
“Perfetto”. c Top “Buonissimo”. Bottom “Cosa ti farei”

and move away, while “Buonissimo” and “Cosa ti farei” stay
near the mouth for a while.

In Fig. 7, we show the video samples where the Jaccard
index is the lowest. There is one outlier sample (Fig. 7a)
where the recognition fails almost completely. The user is
in the corner of the screen and the gestures are sometimes

123

438 Int J Comput Vis (2018) 126:430–439

Fig. 7 The four lowest scoring test set video samples are depicted.
This is evaluated with the best performing model. a The user is almost
off camera. Jaccard index = 0.378. b The video sample consists of
noise gestures. Jaccard index = 0.652. c The user posture is not straight.
Jaccard index = 0.698. dThis background consistently gives low scores.
Jaccard index = 0.711

performed off screen. A second form of failure involves noise
(or out-of-vocabulary) gestures, e.g. there are two noise ges-
tures in the fragment in Fig. 3. These should be classified
silences, since theMontalbanodataset does not provide anno-
tations for them. However, as they are fairly seldom, they are
sometimes confused for a gesture. The video sample in Fig.
7b is packedwith noise gestures, which explains the poor per-
formance. Another difficulty is the posture of a user. Most
users keep their posture straight. This causes the neural net-
works to not be invariant of upper body movement as in Fig.
7c. Lastly, we observe that one particular background (Fig.
7d) consistently gives lower Jaccard index scores than others.
Although it is difficult to determine the cause, we assume the
reason for this is the poor lighting of the environment.

5 Conclusion and Future Work

We showed in this paper that adding bidirectional recurrence
and temporal convolutions improves frame-wise gesture
recognition in video significantly. We observed that RNNs
responding to high-level spatial features perform much bet-
ter than single-frame and temporal pooling architectures,
without the need to take into account the temporal aspect
in the lower layers of the network. However, adding tempo-
ral convolutions in all layers of the architecture has a notable
impact on the performance, as they are able to learn hier-
archies of motion features, unlike RNNs. Standard cells and
LSTMcells appear to be equally strong for this problem. Fur-

thermore, we observed that RNNs outperform non-recurrent
networks and are able to predict the beginning and ending
frames of gestures with great accuracy, whereas other mod-
els show uncertainty at these boundaries.

In the future, we would like to build upon this work for
research in the domain of sign language recognition. This is
even more challenging than gesture recognition. The vocab-
ulary is larger, the differences in finger positions and hand
movements are more subtle and signs are context depen-
dent, as they are part of a language. Sign language is not
related to written or spoken language, which complicates
annotation and translation. Moreover, signers communicate
simultaneously with facial, manual (both hands are separate
communication channels) and body expressions. This means
that sign language video cannot be translated the way speech
recognition can transcribe audio to written sentences.

Acknowledgements Wewould like to thank NVIDIA Corporation for
the donation of a GPU used for this research. The research leading to
these results has received funding from the Agency for Innovation by
Science and Technology in Flanders (IWT).

References

Baccouche,M.,Mamalet, F.,Wolf, C., Garcia, C.,&Baskurt, A. (2011).
Sequential deep learning for human action recognition. In A. Salah
& B. Lepri (Eds.), Human behavior understanding (pp. 29–39).
Berlin Heidelberg: Springer.

Chang, J. Y. (2014). Nonparametric gesture labeling from multi-modal
data. Computer vision-ECCV 2014 workshops (pp. 503–517).
Springer.

Dieleman, S., van den Oord, A., Korshunova, I., Burms, J., Degrave, J.,
Pigou, L., & Buteneers, P. (2015). Classifying plankton with deep
neural networks. http://benanne.github.io/2015/03/17/plankton.
html. Accessed 17 Mar 2015.

Donahue, J., AnneHendricks, L., Guadarrama, S., Rohrbach,M., Venu-
gopalan, S., Saenko, K., & Darrell, T. (2015). Long-term recurrent
convolutional networks for visual recognition and description. In:
Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pp. 2625–2634.

Escalera, S., Bar, X., Gonzlez, J., Bautista, M.A., Madadi, M., Reyes,
M., Ponce, V., Escalante, H.J., Shotton, J., & Guyon, I. (2014).
Chalearn looking at people challenge 2014: Dataset and results.
In: ECCV workshop.

Farnebäck, G. (2003). Two-frame motion estimation based on polyno-
mial expansion. In J. Bigun & T. Gustavsson (Eds.), Scandinavian
conference on image analysis (pp. 363–370). Berlin Heidelberg:
Springer.

Gers, F. A., Schraudolph, N. N., & Schmidhuber, J. (2003). Learn-
ing precise timing with lstm recurrent networks. The Journal of
Machine Learning Research, 3, 115–143.

Graham, B. (2014). Spatially-sparse convolutional neural networks.
arXiv:1409.6070 (preprint).

Graves, A., Mohamed, A.R., & Hinton, G. (2013). Speech recognition
with deep recurrent neural networks. In: Acoustics, speech and
signal processing (ICASSP), 2013 IEEE international conference
on, IEEE, pp. 6645–6649.

Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen,
E., Prenger, R., Satheesh, S., Sengupta, S., & Coates, A., et al.

123

http://benanne.github.io/2015/03/17/plankton.html
http://benanne.github.io/2015/03/17/plankton.html
http://arxiv.org/abs/1409.6070

Int J Comput Vis (2018) 126:430–439 439

(2014). Deepspeech: Scaling up end-to-end speech recognition.
arXiv:1412.5567 (preprint).

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory.
Neural Computation, 9(8), 1735–1780.

Jain, A., Tompson, J., LeCun, Y., & Bregler, C. (2014). MoDeep: A
deep learning framework using motion features for human pose
estimation. Computer Vision ACCV, 2014, 302–315.

Ji, S., Xu, W., Yang, M., & Yu, K. (2013). 3d convolutional neural net-
works for human action recognition. IEEETransactions onPattern
Analysis and Machine Intelligence, 35(1), 221–231.

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-
Fei, L. (2014). Large-scale video classification with convolutional
neural networks. In: Computer vision and pattern recognition
(CVPR), 2014 IEEE conference on, IEEE, pp. 1725–1732.

Kingma, D., & Ba, J. (2015). Adam: A method for stochastic optimiza-
tion. ICLR 2015.

Krizhevsky, A., Sutskever, I., & Hinton, GE, (2012). Imagenet
classification with deep convolutional neural networks. In F.
Pereira, C. J. C. Burges, L. Bottou & K. Q. Weinberger (Eds.),
Advances in neural information processing systems (pp. 1097–
1105). http://papers.nips.cc/paper/4824-imagenet-classification-
withdeep-convolutional-neural-networks.pdf.

Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., & Serre, T. (2011).
Hmdb: A large video database for human motion recognition. In:
Computer vision (ICCV), 2011 IEEE international conference on,
IEEE, pp. 2556–2563.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proceedings of
the IEEE, 86(11), 2278–2324.

Maas, A.L., Hannun, A.Y., & Ng, A.Y. (2013). Rectifier nonlinearities
improve neural network acoustic models. In: Proc. ICML, vol. 30.

Monnier, C., German, S., & Ost, A. (2014). A multi-scale boosted
detector for efficient and robust gesture recognition. In: Computer
vision-ECCV 2014 workshops (pp. 491–502). Springer

Neverova, N., Wolf, C., Taylor, G.W., & Nebout, F. (2014). ModDrop:
Adaptive multi-modal gesture recognition. arXiv:1501.00102
(preprint).

Ng, J.Y.H., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga,
R., & Toderici, G. (2015). Beyond short snippets: Deep networks
for video classification. In: Computer vision and pattern recogni-
tion (CVPR), 2015 IEEE conference on, IEEE, pp. 4694–4702.

Saxe, A.M., McClelland, J.L., & Ganguli, S. (2013). Exact solutions to
the nonlinear dynamics of learning in deep linear neural networks.
arXiv:1312.6120 (preprint).

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun,
Y. (2013). Overfeat: Integrated recognition, localization and detec-
tion using convolutional networks. arXiv:1312.6229 (preprint).

Simonyan, K., & Zisserman, A. (2014). Two-stream convolutional net-
works for action recognition in videos. In Z. Ghahramani, M.
Welling, C. Cortes, N. D. Lawrence & K. Q. Weinberger (Eds.),
Advances in neural information processing systems (pp. 568–
576). http://papers.nips.cc/paper/5353-two-stream-convolutional
networks-for-action-recognition-in-videos.pdf.

Soomro, K., Zamir, A.R.,& Shah,M. (2012). UCF101: A dataset of 101
human actions classes from videos in the wild. arXiv:1212.0402
(preprint).

Sutskever. I., Vinyals, O., & Le, Q.V. (2014). Sequence to sequence
learning with neural networks. In Z. Ghahramani, M. Welling, C.
Cortes, N. D. Lawrence & K. Q. Weinberger (Eds.), Advances in
neural information processing systems (pp. 3104–3112). http://
papers.nips.cc/paper/5346-sequence-to-sequence-learningwith-
neural-networks.pdf.

Taylor, G. W., Fergus, R., LeCun, Y., & Bregler, C. (2010). Convo-
lutional learning of spatio-temporal features. In K. Daniilidis, P.
Maragos, & N. Paragios (Eds.), Computer vision-ECCV 2010 (pp.
140–153). Berlin Heidelberg: Springer.

Toshev, A., & Szegedy, C. (2014). DeepPose: Human pose estimation
via deep neural networks. In: Computer vision and pattern recog-
nition (CVPR), 2014 IEEE conference on, IEEE, pp. 1653–1660.

Venugopalan, S., Rohrbach, M., Donahue, J., Mooney, R., Darrell,
T., & Saenko, K. (2015). Sequence to sequence–video to text.
arXiv:1505.00487 (preprint).

Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015). Show and tell:
A neural image caption generator. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 3156–
3164.

Xu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical evaluation
of rectified activations in convolutional network. In: ICML deep
learning workshop.

123

http://arxiv.org/abs/1412.5567
http://papers.nips.cc/paper/4824-imagenet-classification-withdeep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-withdeep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1501.00102
http://arxiv.org/abs/1312.6120
http://arxiv.org/abs/1312.6229
http://papers.nips.cc/paper/5353-two-stream-convolutionalnetworks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutionalnetworks-for-action-recognition-in-videos.pdf
http://arxiv.org/abs/1212.0402
http://papers.nips.cc/paper/5346-sequence-to-sequence-learningwith-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learningwith-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learningwith-neural-networks.pdf
http://arxiv.org/abs/1505.00487

	Beyond Temporal Pooling: Recurrence and Temporal Convolutions for Gesture Recognition in Video
	Abstract
	1 Introduction
	2 Related Work
	3 Architectures
	3.1 Baseline Models
	3.1.1 Single-Frame

	3.2 Temporal Feature Pooling
	3.3 Bidirectional Recurrent Models
	3.4 Adding Temporal Convolutions

	4 Experiments
	4.1 Montalbano Gesture Recognition Dataset
	4.2 End-To-End Training
	4.2.1 Recurrent Networks
	4.2.2 Non-Recurrent Networks
	4.2.3 Regularization and Data-Augmentation

	4.3 Results
	4.4 Failure Cases

	5 Conclusion and Future Work
	Acknowledgements
	References

