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Abstract Classifying traffic signs is an indispensable part
of Advanced Driver Assistant Systems. This strictly requires
that the traffic sign classification model accurately classifies
the images and consumes as few CPU cycles as possible to
immediately release the CPU for other tasks. In this paper, we
first propose a new ConvNet architecture. Then, we propose
a new method for creating an optimal ensemble of Con-
vNets with highest possible accuracy and lowest number of
ConvNets. Our experiments show that the ensemble of our
proposed ConvNets (the ensemble is also constructed using
our method) reduces the number of arithmetic operations 88
and 73 % compared with two state-of-art ensemble of Con-
vNets. In addition, our ensemble is 0.1 % more accurate than
one of the state-of-art ensembles and it is only 0.04 % less
accurate than the other state-of-art ensemble when tested on
the same dataset. Moreover, ensemble of our compact Con-
vNets reduces the number of the multiplications 95 and 88 %,
yet, the classification accuracy drops only 0.2 and 0.4 % com-
pared with these two ensembles. Besides, we also evaluate
the cross-dataset performance of our ConvNet and analyze
its transferability power in different layers. We show that
our network is easily scalable to new datasets with much
more number of traffic sign classes and it only needs to fine-
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tune the weights starting from the last convolution layer. We
also assess our ConvNet through different visualization tech-
niques. Besides, we propose a new method for finding the
minimum additive noise which causes the network to incor-
rectly classify the image by minimum difference compared
with the highest score in the loss vector.

Keywords Convolutional neural network - Traffic sign
classification - Ensemble construction - Visualizing
convolutional neural networks

1 Introduction

Advanced Driver Assistant System (ADAS) is a crucial
component in intelligent transportation systems and it is an
indispensable part of today’s smart cars. An ADAS performs
different functions. Among them is recognizing traffic signs
which helps the driver (human or autonomous) to conform
with the road rules and drive the car, safely.

There are two major goals in designing traffic signs. First,
they must be easily distinguishable from the rest of the objects
in the scene and, second, their meaning must be easily per-
ceivable and independent from spoken language. To this end,
traffic signs are designed with a simple geometrical shape
such as triangle, circle, rectangle or polygon. To be easily
detectable from the rest of objects, traffic signs are painted
using basic colors such as red, blue, yellow, black and white.
Finally, the meaning of traffic signs are mainly carried out by
pictographs in the center of traffic signs. It should be noted
that some signs heavily depend on text-based information.
However, we can still think of the texts in traffic signs as
pictographs.

Even though classification of traffic signs is an easy task
for a human, there are some challenges in developing an


http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-016-0955-9&domain=pdf
http://orcid.org/0000-0002-4881-9694

Int J Comput Vis (2017) 122:246-269

247

Human mtc crencc
Hlumination changes

Plctograph variation in dlﬂ'erent countries for the same sngn

Fig. 1 Some of the challenges in classification of traffic signs. The
signs have been collected in Germany and Belgium

algorithm for this purpose (Fig. 1). First, the image of traffic
signs might be captured from different perspectives. Second,
weather condition can dramatically affect the appearance of
traffic signs. An example is illustrated in Fig. 1 where the
“no stopping” sign is covered by snow. Third, traffic signs are
being impaired during time and some artifacts may appear on
the sign which might have a negative impact on the classifi-
cation score. Fourth, traffic signs might be partially occluded
by another signs or objects. Fifth, the pictograph area might
be manipulated by human which in some cases might change
the shape of the pictograph. The last and more important issue
shown in this figure is the pictograph differences of the same
traffic sign from one country to another. More specifically,
we observe that the “danger: bicycle crossing” sign posses a
few important differences between two countries.

As we mentioned earlier, traffic sign classification is one of
the tasks of an ADAS. Consequently, their classification must
be done in real-time and it must consume as few CPU cycles
as possible in order to release the CPU immediately. Last but
not the least, the classification model must be easily scalable
so the model can be adjusted to new classes in the future with
a few efforts. In sum, any model for classifying traffic signs
must be accurate, fast, scalable and fault-tolerant.

Traffic sign classification is a specific case of object
classification where the objects are more rigid and two
dimensional. Also, their discriminating part are well-defined.
Recently, Convolutional Neural Networks (ConvNets) sur-
passed human performance on classification of 1000 natural
objects (He et al. 2015). Moreover, there are other Con-
vNets such as Simonyan and Zisserman (2015) and Szegedy
et al. (2014a) with close performances compared to He et al.
(2015). However, the architecture of the ConvNets are sig-
nificantly different from each other. This suggests that the

same problem can be solved using ConvNets with different
architectures and various complexities. Part of the complex-
ity of ConvNets is determined using activation functions.
They play an important role in neural networks since they
apply non-linearities on the output of the neurons which
enable ConvNets to apply series of non-linear functions on
the input and transform the input into a space where classes
are linearly separable. As we discuss in Section 3, selecting
a highly computational activation function can dramatically
increase the number of required arithmetic operations of the
network which in sequel increases the response-time of a
ConvNet.

From one perspective, a ConvNet can be thought as a
black-box to extract a feature vector for a given input. Hence,
it is possible to use an already trained ConvNet for extract-
ing feature vectors of traffic signs and train a model for
classifying them. This procedure has been previously pro-
posed for generic object recognition problem (Sermanet et al.
2013; Donahue et al. 2014). However, there are two restric-
tive issues with this approach for classifying traffic signs.
First, the networks utilized in Sermanet et al. (2013) and
Donahue et al. (2014) are trained on 3D objects which are
mostly natural and deformable. For this reason, they need a
more complex configuration of layers to effectively model
these variations. Consequently, they are not computationally
efficient for requirements of an ADAS. In addition, it is not
guaranteed that the trained networks generalize well on the
traffic sign classification problem.

One of issues with ConvNets is that their behaviour is not
well understood. Specifically, it is fairly trivial to answer the
question “How might a small variation on an image affect
the output of a HOG/LBP/Gabor descriptor?”. Nevertheless,
answering this question is not trivial when we use ConvNets
to extract features. This is due to the fact ConvNets extract
features by applying series of non-linear operations on the
input. As we discuss in Sect. 2, there are different studies
to analyze behaviour of a ConvNet through visualization but
they are not enough to develop an applicable traffic sign clas-
sification model.

Contribution To our knowledge, this is the first reported
work which thoroughly studies different aspects of ConvNets
on classification of traffic signs. In particular, our contri-
bution has two folds. First, we investigate the previously
proposed ConvNets for classifying traffic signs and analyze
their computational complexity in Sect. 3. Then, we propose
a new ConvNet which reduces the number of the parame-
ters 27, 22 and 3 % compared with the networks proposed
in Ciresan et al. (2012), Sermanet and Lecun (2011) and Jin
et al. (2014), respectively. Next, we show how to analyze the
proposed architecture in practice and reduce the number of
parameters 52 % compared with our original ConvNet. This
means our compact ConvNet needs 65, 63 and 54 % fewer
parameters compared with Ciresan et al. (2012), Sermanet
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and Lecun (2011) and Jin et al. (2014), respectively. It is pre-
viously shown (Ciresan et al. 2012; Sermanet et al. 2013; Jin
et al. 2014) that an ensemble of ConvNets improves the clas-
sification accuracy. However, creating an ensemble is usually
done by computing the average score of many ConvNets that
is not computationally efficient because of redundancy of
ConvNets. We propose a new method for selecting an opti-
mal number of ConvNets with highest classification accuracy
in Sect. 3.1. Next, we accurately analyze the number of the
arithmetic operations required by previously proposed net-
works and illustrate that our network requires 88 and 73 %
fewer multiplications compared with Ciresan et al. (2012)
and Jin et al. (2014). Notwithstanding, it improves the clas-
sification accuracy 0.1 % compared with Ciresan et al. (2012)
and its accuracy is only 0.04 % less than Jin et al. (2014).

Second, we extensively analyze behaviour of the proposed
ConvNet in Sect. 4 by proposing a new method for calculat-
ing the degree of being fault-tolerant of the network. Our
proposed method answers the question “what is the mini-
mum degradation which causes the image to be misclassified
with the minimum difference between the winner neuron
and actual neuron?”. Then, we investigate “how generic is
our network?” by classifying traffic signs of another country
which posses appearance differences compared to the traf-
fic signs we have used for training our ConvNet. Next, we
answer the question “How scalable is our network?” by trans-
ferring the ConvNet to a new dataset with 40 % more traffic
sign classes. To be more specific, we investigate the trans-
ferability of the ConvNet by decreasingly freezing the layers
and fine-tuning the network on the new dataset. Finally, we
analyze behaviour of the network by answering the questions
“How does the network react when it only perceives a small
part of the image?”” and “In which locations in the image is
the network more sensitive to noise?*.

2 Related Work

In general, efforts for classifying traffic signs can be divided
into traditional classification and end-to-end learning meth-
ods. In the former approach, researchers have tried to design
hand-crafted features and train a classifier on top of these
features. In contrast, end-to-end learning approaches learn
the representation and classification automatically from data.
In this section, we first review the traditional classification
approaches and then we explain the previously proposed end-
to-end learning methods for classifying traffic signs.

Template Matching Early works considered a traffic sign as
arigid object and classified the query image by comparing it
with all templates stored in the database (Piccioli et al. 1996).
Later, Gao et al. (2006) matched shape features instead of
pixel intensity values. In this work, matching features is done
using Euclidean distance function. The problem with this
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matching function is that they consider every pixel/feature
equally important. To cope with this problem, Ruta et al.
(2010) learned a similarity measure for matching the query
sign with templates.

Hand-Crafted Features More accurate and robust results
were obtained by learning a classification model over a fea-
ture vector. Paclik et al. (2000) produce a binary image
depending on the color of the traffic sign. Then, moment
invariant features are extracted from the binary image and
fetched into a one-versus-all Laplacian kernel classifier. One
problem with this method is that the query image must
be binarized before fetching into the classifier. Maldonado-
Bascon et al. (2007) addressed this problem by transforming
the image into the HSI color space and calculating histogram
of Hue and Saturation components. Then, the histogram is
classified using a multi-class SVM. In another method, Mal-
donado Bascén et al. (2010) classified traffic signs using only
the pictograph of each sign. Although the pictograph is a
binary image, however, accurate segmentation of a pictogram
isnota trivial task since automatic thresholding methods such
as Otsu might fail taking into account the illumination varia-
tion and unexpected noise in real world applications. For this
reason, Maldonado Bascon et al. (2010) trained SVM where
the input is a 31 x 31 block of pixels in a gray-scale version
of pictograph. In a more complicated approach, Baré et al.
(2009) proposed an Error Correcting Output Code frame-
work for classification of 31 traffic signs and compared their
method with various approaches.

Before 2011, there was not a public and challenging
dataset of traffic signs. Timofte and Van Gool (2011), Larsson
and Felsberg (2011) and Stallkamp et al. (2012) introduced
three challenging datasets including annotations. These data-
bases are called Belgium Traffic Sing Classification (BTSC),
Swedish Traffic Sign and German Traffic Sign Recognition
Benchmark (GTSRB), respectively. In particular, the GTSRB
was used in a competition and, as we will discuss shortly,
the winner method classified 99.46 % of test images cor-
rectly (Stallkamp et al. 2012). Zaklouta et al. (2011) and
Zaklouta and Stanciulescu (2012, 2014) extracted Histogram
of Oriented Gradient (HOG) descriptors with three differ-
ent configurations for representing the image and trained a
Random Forest and a SVM for classifying traffic sings in
the GTSRB dataset. Similarly, Greenhalgh and Mirmehdi
(2012), Moiseev et al. (2013), Huang et al. (2013), Math-
ias et al. (2013) and Sun et al. (2014) utilized the HOG
descriptor. The main difference between these works lies in
the utilized classification model (e.g. SVM, Cascade SVM,
Extreme Learning Machine, Nearest Neighbour and LDA).
These works except (Huang et al. 2013) use the traditional
classification approach. In contrast, Huang et al. (2013) uti-
lize a two level classification. In the first level, the image is
classified into one of super-classes. Each super-class contains
several traffic signs with similar shape/color. Then, the per-
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spective of the input image is adjusted based on its super-class
and another classification model is applied on the adjusted
image. The main problem of this method is sensitivity of the
final classification to the adjustment procedure. Timofte et al.
(2011) proposed a framework for recognition and the traffic
signs in the BTSC dataset and achieved 97.04 % accuracy on
this dataset.

Sparse Coding Hsu and Huang (2001) coded each traffic
sign using the Matching Pursuit algorithm. During testing,
the input image is projected to different set of filter bases to
find the best match. Lu et al. (2012) proposed a graph embed-
ding approach for classifying traffic signs. They preserved
the sparse representation in the original space by using L »
norm. Liu et al. (2014) constructed the dictionary by apply-
ing k-means clustering on the training data. Then, each data
is coded using a novel coding input similar to Local Linear
Coding approach (Wang et al. 2010). Recently, we proposed
a method based on visual attributes and Bayesian network
(Aghdam et al. 2015). In this method, we describe each traf-
fic sign in terms of visual attributes. In order to detect visual
attributes, we divide the input image into several regions
and code each region using the Elastic Net Sparse Coding
method. Finally, attributes are detected using a Random For-
est classifier. The detected attributes are further refined using
a Bayesian network.

Other Fleyeh and Davami (2011) projected the image into
the principal component space and find the class of the image
by computing the Euclidean distance of the projected image
with the images in the database. Yuan et al. (2014) proposed a
novel feature extraction method to effectively combine color,
global spatial structure, global direction structure and local
shape information. Readers can refer to Mggelmose et al.
(2012) to study traditional approaches of traffic sign classi-
fication.

Discussion Template matching approaches are not robust
against perspective variations, ageing, noise and occlusion.
Hand-crafted features has a limited representation power and
they might not scale well if the number of classes increases.
In addition, they are not robust against irregular artifacts
caused by motion blurring and weather condition. This can be
observed by the results reported in the GTSRB competition
(Stallkamp et al. 2012) where the best performed solution
based on hand-crafted feature was only able to correctly
classify 97.88 % of test cases!. Later, Mathias et al. (2013)
improved the accuracy based on hand-crafted features up to
98.53 % on the GTSRB dataset. Notwithstanding, there are a
few problems with this method. Their raw feature vector is a
9000 dimensional vector constructed by applying five differ-
ent methods. This high dimensional vector is later projected
to a lower dimensional space. For this reason, their method
is time consuming when they are executed on a multi-core

! http://benchmark.ini.rub.de/.

CPU compared with our single ConvNet in Sect. 4. Note that
Table V in Mathias et al. (2013) have only reported the time
on classifiers and it has disregarded the time required for
computing feature vectors and projecting them into a lower
dimension space. Considering that the results in Table V have
been computed on the test set of the GTSRB dataset (12630
samples), only classification of a feature vector takes 48 ms.
On the other hand, it is not trivial to implement their method
on a GPU.

ConvNets ConvNets were first utilized by Sermanet and
Lecun (2011) and Ciresan et al. (2012) in the field of traf-
fic sign classification during the GTSRB competition where
the ConvNet of (Ciresan et al. 2012) surpassed human per-
formance and won the competition by correctly classifying
99.46 % of test images. Moreover, the ConvNet of (Sermanet
and Lecun 2011) ended up in the second place with a con-
siderable difference compared with the 3rd place which was
awarded for a method based on the traditional classification
approach. The classification accuracies of the runner-up and
the 3rd place were 98.97 and 97.88 %, respectively.

Both Sermanet and Lecun (2011) and Ciresan et al.
(2012) augment the data by applying some transformations
on the training dataset. The augmentation procedure is rela-
tively similar but the architectures of the two ConvNets are
different. Ciresan et al. (2012) constructs an ensemble of
25 ConvNets each consists of 1, 543, 443 parameters. Ser-
manet and Lecun (2011) creates a single network defined
by 1,437,791 parameters. Furthermore, while the winner
ConvNet uses the hyperbolic activation function, the runner-
up ConvNet utilizes the rectified sigmoid as the activation
function. It is a common practice in ConvNets to make a
prediction by calculating the average score of slightly trans-
formed versions of the query image. However, it is not clearly
mentioned in Sermanet and Lecun (2011) that how do they
make a prediction. In particular, it is not clear that the runner-
up ConvNet classifies solely the input image or it classifies
different versions of the input and fuses the scores to obtain
the final result.

Regardless, both methods suffer from the high num-
ber of arithmetic operations. To be more specific, they use
highly computational activation functions (we will discuss
about this in Sect. 3). To alleviate these problems, Jin et al.
(2014) proposed a new architecture including 1, 162, 284
parameters and utilizing the rectified linear unit (ReLU)
activations (Krizhevsky et al. 2012). In addition, there is a
Local Response Normalization layer after each activation
layer. They built an ensemble of 20 ConvNets and classi-
fied 99.65 % of test images correctly. Although the number
of parameters is reduced using this architecture compared
with the two networks, the ensemble is constructed using 20
ConvNets which is not still computationally efficient in real-
world applications. It is worth mentioning that a ReLU layer
and a Local Response Normalization layer together needs
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approximately the same number of arithmetic operations as
a single hyperbolic layer. As the result, the run-time effi-
ciency of the network proposed in Jin et al. (2014) might be
close to Ciresan et al. (2012).

Recently, Zeng et al. (2015) trained a ConvNet to extract
features of the image and replaced the classification layer
of their ConvNet with an Extreme Learning Machine (ELM)
and achieved 99.40 % accuracy on the GTSRB dataset. There
are two issues with their approach. First, the output of last
convolution layer is a 200 dimensional vector which is con-
nected to 12,000 neurons in the ELM layer. This layer is
solely defined by 200 x 12, 000412, 000 x 43 = 2, 916, 000
parameters which makes it impractical. Besides, it is not clear
why their ConvNet reduces the dimension of the feature vec-
tor from 250 x 16 = 4000 in Layer 7 to 200 in Layer 8 and
then map their lower dimensional vector to 12000 dimen-
sions in the ELM layer (Zeng et al. 2015, Table 1). One reason
might be to cope with calculation of the matrix inverse during
training of the ELM layer. Finally, since the input connec-
tions of the ELM layer is determined randomly, it is probable
that their ConvNet does not generalize well on other datasets.

Despite the impressive results obtained by the four Con-
vNets, their response under different circumstances are not
clear. In addition, they have only reported the classification
accuracy which is not a promising measure for accurately
evaluating the results. Understanding behaviour of Con-
vNets has been extensively studied through visualization
techniques. Girshick et al. (2014) keep the record of exci-
tations of a particular neuron in the layer before the first
fully-connected layer and show the images that highly acti-
vate this neuron. The mentioned procedure can be formulated
by maximizing the inner product of the activation values of
a layer and natural basis. However, Szegedy et al. (2014b)
argue that the natural basis is not better than a random basis
for inspecting the properties of activations.

We can consider kth layer of a ConvNet as a vector func-
tion ¢ (x) where x is the input image and it returns a feature
vector calculated at layer k. Another way to inspect behaviour
of alayer is to reconstruct the image x given the feature vec-
tor ¢k (x). Zeiler and Fergus (2014) achieve this goal using
Deconvolution Networks. This methods shows which object-
parts excite a particular neuron. Mahendran and Vedaldi
(2015) minimize the squared Euclidean error between the
actual feature vector and the feature vector of the estimated
image. Similarly, Dosovitskiy and Brox (2015) minimize the
squared Euclidean reconstruction error of the down-sampled
version of x. Both these methods show which parts/details
are ignored by different layers.

Contrary to the previous works, Simonyan et al. (2013)
maximize the L, regularized classification score of the recon-
structed image to visualize the class specific model. This
helps to find how a ConvNet see the world from the viewpoint
of different classes. Another effective way to assess behav-
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iour of each layer is to visualize the generated features of
the layers using t-SNE method (Van Der Maaten and Hinton
2008). This is important since it shows how discriminating
are different layers and how a layer transforms the output of
the previous layer.

Discussion The ConvNets for traffic sign classification can
be explained from three perspectives including scalability,
stability and run-time. From generalization point of view,
none of the four ConvNets have assessed the performance
on other datasets. It is crucial to study how the networks
perform when the signs slightly change from one country to
another. More importantly, the transferring power of the net-
work must be estimated by fine-tuning the same architecture
on a new dataset with various number of classes. By this way,
we are able to estimate the scalability of the networks. From
stability perspective, it is crucial to find out how tolerant is
the network against noise and occlusion. This might be done
through generating a few noisy images and fetch them to the
network. However, this approach does not find the minimum
noisy image which is misclassified by the network. Finally,
the run-time efficiency of the ConvNet must be examined.
This is due to the fact that the ConvNet has to consume as
few CPU cycles as possible to let other functions of ADAS
perform in real-time. In the next section, we will build a
ConvNet which possess all these factors and outperforms the
state-of-art ConvNets.

3 Proposed Network

The basic architecture of our network is inspired by Ciresan
et al. (2012) which is shown in Fig. 2. First, the size of the
receptive field in the first layer and the subsequent layers are
chosen properly. Also, we believe the complexity of the net-
work is enough for modelling a wide range of traffic signs. We
aim to reduce the number of the parameters and the number of
the arithmetic operations and increase the classification accu-
racy. To this end, we replace the hyperbolic non-linearities
with the Leaky ReLLU activation functions (Maas et al. 2013).
Beside the favourable properties of ReLU activations, they
are also computationally very efficient. The hyperbolic acti-
vation function is defined as ranh(x) = 2;;5:; = iiﬁ—:
Even with an efficient implementation of exponentiation e¢*,
it still requires many multiplications. Note that x is a floating
point number since it is the weighted sum of the input to the
neuron.

An efficient way to calculate ¢* is as follows: First, write
X = Xins + r, where x;,, is the nearest integer to x and
r € [-0.5...0.5] which gives e* = e*in x ¢". Second, mul-
tiply e by itself x;,, times. The multiplication can be done
quite efficiently. To further increase efficiency, various inte-
ger powers of e can be calculated and stored in a lookup




Int J Comput Vis (2017) 122:246-269

251

TIXN

C,(3.100‘7) C,(100,150,4)  C4(150,250,4) FC,(300) FC,(43)
TanH, TanH, TanH, TanH,
P,(3,2) P,(3,2) Py(3,2)

Fig. 2 The ConvNet proposed in Ciresan et al. (2012). Light blue,
green, yellow and dark blue shapes indicate convolution, activation,
pooling and fully-connected layers, respectively. C;(c, k, w) shows a
convolution layer with k filters of size w x w applied on the input with
¢ channels. P(m, n) indicates a MAX pooling layer with kernel size
m x m and stride n. Finally, F'C(x) depicts a fully connected layer with
x neurons (Color figure online)

table. Finally, ¢ can be estimated using the polynomial ¢” =
2 3 4 5 . . .

I+x+% +7% + 755 + i3 With estimation error +3¢73. Con-
sequently, calculating ranh(x) needs [x] 4 5 multiplications
and 5 divisions. We assuming that division and multiplication
need the same amount of CPU cycles. Therefore, tanh(x)
can be computed using [x] 4+ 10 multiplications. The sim-
plest scenario is when x € [—0.5...0.5]. Then, tanh(x)
can be calculated using 10 multiplications. Based on this,
the total number of multiplications of the network proposed
in Ciresan et al. (2012) is equal to 128, 321, 700. Since they
build an ensemble of 25 networks, thus, the total number of
the multiplications must be multiplied by 25 which is equal
to 3,208, 042, 500 multiplications for making a prediction
using an ensemble of 25 networks shown in Fig. 2. In con-
trary, a Leaky ReLU function needs only one multiplication
in the worst case and if the input of the activation function is
positive, it does not need any multiplication.

Furthermore, we also divide the two middle convolution-
pooling layers into two separate layers and add another layer
after the input layer. Finally, we end up with the architecture
shown in Fig. 3. Our network consists of a transformation
layer, three convolution-pooling layers and two fully con-
nected layers with a dropout layer (Hinton 2014) in between.
Finally, there is a Leaky ReLU layer after each convolution
layer and after the first fully-connected layer. The network
accepts a 48 x 48 RGB image and classify it into one of the
43 traffic sign classes in the GTSRB dataset. Note that we
have reduced the number of the parameters by dividing the
two middle convolution-pooling layers into two groups.

More specifically, the transformation layer applies an
element-wise linear transformation f.(x) = acx + b, on
cth channel of the input image where a. and b, are trainable
parameters and x is the input value. Note that each channel
has a unique transformation function. As we show in Sect.
4.5.2 these functions enhance the illumination of each chan-
nel separately. Next, the image is processed using 100 filters
of size 7 x 7. The notation C(c, k, w) indicates a convolu-
tion layer with k filters of size w x w applied on the input
with ¢ channels. Then, the output of the convolution is passed

through a Leaky ReLLU (Maas et al. 2013) layer and fetched
into the pooling layer where a MAX-pooling is applied on
the 3 x 3 window with stride 2.

In general, a C(c, k, w) layer contains ¢ X k X w X w
parameters. In fact, the second convolution layer accepts
a 100-channel input and applies 150 filters of size 4 x 4.
Using this configuration, the number of the parameters in the
second convolution layer would be 240, 000. The number
of the parameters in the second layer is halved by dividing
the input channels into two equal parts and fetch each part
into a layer including two separate C (50, 75, 4) convolution-
pooling units. Similarly, the third convolution-pooling layer
halves the number of the parameters using two C (75, 125, 4)
units instead of one C (150, 250, 4) unit. Our proposed archi-
tecture is collectively parametrized by 1, 123, 449 weights
and biases which is 27, 22 and 3 % reduction in the num-
ber of the parameters compared with the networks proposed
in Ciresan et al. (2012), Sermanet and Lecun (2011) and
Jin et al. (2014), respectively. Note that compared with Jin
et al. (2014) our proposed network needs much less arith-
metic operations since Jin et al. (2014) uses a Local Response
Normalization layer after each activation layer which needs a
few multiplications per element in the resulting feature map
from previous layer. This issue is deeply analyzed in Sect.
4.2.

We trained the proposed network on the GTSRB dataset
and applied some preliminary analysis. It is a common
practice to inspect extracted features of a ConvNet using a
visualization technique. As it is shown in Fig. 3, we visu-
alized the feature maps after the second and third pooling
layers as well as the activation layer before the last fully-
connected layer using the t-SNE method (Van Der Maaten
and Hinton 2008). We observe that the classes are separated
properly after the third pooling layer. This implies that the
classification layer might be able to accurately discriminate
the classes if we omit the first fully-connected layer. Accord-
ing to the t-SNE visualization, the first fully-connected layer
does not increase the discrimination of the classes, consider-
ably. Instead, it rearranges the classes in a lower-dimensional
space and it might mainly affect the interclass distribution of
the samples.

Consequently, it is possible to discard the first fully-
connected layer and the subsequent Leaky ReLU layer from
the network and connect the third pooling layer directly to the
dropout layer. The more compact network is shown in Fig. 4.
From optimization perspective, this decreases the number of
the parameters from 1, 123, 449 to 531, 999 which is 65, 63
and 54 % reduction compared with Ciresan et al. (2012), Ser-
manet and Lecun (2011) and Jin et al. (2014), respectively.

As we discuss in Sect. 4, a single ConvNet shown in Fig.
4 is more accurate than a single network in Fig. 3. How-
ever, this does not hold when we create an ensemble of
ConvNets. In fact, the fully-connected layer shown in Fig.
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Fig. 3 Our proposed network architecture along with visualization of
the first fully-connected layer as well as the last two pooling layers using
the t-SNE method. The color codes are similar to Fig. 2. In addition,
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each purple shape shows a linear transformation function. Each class
is shown with a unique color in the scatter plots (best viewed in color)
(Color figure online)
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Fig. 4 Compact version of the network illustrated in Fig. 3 after drop-
ping the first fully-connected layer and the subsequent Leaky ReLU
layer

3 adds more complexity to our model. Therefore, the diver-
sity of the ensemble increases which in turn improves the
classification performance.

3.1 Creating Ensemble

Previous studies (Ciresan et al. 2012; Jin et al. 2014; Ser-
manet et al. 2013) show that creating an ensemble of
ConvNets might increase the classification accuracy. These
works utilize the model averaging technique in which the
average loss of several ConvNets is computed. However,
there are two limitations with this approach. First, our exper-
iments revealed that, sometimes, the classification accuracy
of an ensemble is not improved substantially compared with
a single ConvNet in the ensemble. This is due to the fact that
these ConvNets might have ended up in the same local min-
imum during the training process. As the result, their losses
are very similar and their combination does not change the
posterior of the classes. The second problem is that there
are some cases where adding a new ConvNet to the ensem-
ble reduces the classification performance. One possibility
is that the belief about a class posteriors of the new Con-
vNet is greatly different from the belief of the ensemble.
Consequently, the new ConvNet changes the posterior of the
ensemble dramatically which in turn reduces the classifica-
tion performance.

To alleviate this problem, Ciresan etal. (2012) and Jin et al.
(2014) create ensembles consisting of many ConvNets. The
idea is that the number of the ConvNets which contradicts the
belief of the ensemble is less than the number of the ConvNets
which increase the classification performance. Therefore, the
overall performance of the ensemble increases as we add
more ConvNets.

While the idea is generally correct but it posses a serious
problem in practical applications. Concretely, an ensemble
with many ConvNets needs more time to classify the input
image. One solution to this problem is to formulate the
ensemble construction as a LASSO regression (Tibshirani
1994) problem. Formally, given the classification score vec-

tor L'i’ of ith ConvNet computed on jth image, our goal is to
find coefficients a; by minimizing the following error func-
tion:

M N ) N
EzzHyj_za,-.c;)_xzm M)
j=1 i=1 i=1

where M is the total number of the test images, N is the
number of the ConvNets in the ensemble and A is a user-
defined value to determine the amount of sparseness. It is
well-studied that L1 norm regularization produces a sparse
vector in which most of the coefficients a; are zero. Thus, the
ConvNets corresponding to these coefficients can be omit-
ted from the ensemble. The remaining ConvNets are linearly
combined according to their corresponding a; value. Deter-
mining the correct value for A is an empirical task and it might
need many trials. More specifically, small values for A retains
most of the ConvNets in the ensemble. Conversely, increas-
ing the value of A drops more ConvNets from the ensemble.

In this paper, we formulate the ensemble construction as
the optimal subset selection problem by solving the following
optimization problem:

iel

M
. 1 j
argming ;. ny MZ(S(yj—argmaxZLi]) —All]
j=1
(2)

where the arg max function returns the index of the maximum
value in the classification score vector E{ and y; is the actual
class. The first term calculates the classification accuracy of
the selected subset of ConvNets over the testing dataset and
the second term penalizes the classification accuracy based
on the cardinality of set /. In other words, we are looking
for a subset of N ConvNets where classification accuracy is
high and the number of the ConvNets is as few as possible.
In contrast to the LASSO formulation, selecting the value
of A is straightforward. For example, assume two subsets [
and I including 4 and 5 ConvNets, respectively. Moreover,
consider that the classification accuracy of I; is 0.9888 and
the classification accuracy of I is 0.9890. If we set A = 3¢~
and calculate the score using (2), their score will be equal to
0.9876 and 0.9875. Thus, despite its higher accuracy, the
subset 1> is not better than the subset /; because adding an
extra ConvNet to the ensemble improves the accuracy 0.02 %
which is discarded by the penalizing. However, if we choose
A = 2e*, the subset I, will have a higher score compared
with the subset /;. In sum, A shows what is the expected
minimum accuracy increase that a single ConvNet must cause
in the ensemble.

We utilize an evolutionary algorithm for finding the subset
1. Specifically, a population of 50 chromosomes are gener-

@ Springer



254

Int J Comput Vis (2017) 122:246-269

ated in which each chromosome is encoded using the N-bit
binary coding scheme. A gene with value 1 indicates the
selection of the corresponding ConvNet in the ensemble.
The fitness of each chromosome is computed by applying
(2) on the validation set. The offspring is selected using the
tournament selection operator with tournament size 3. The
crossover operators are single-point, two-point and uniform
in which one of them is randomly applied in each iteration.
The mutation operator flips the gene of a chromosome with
probability p = 0.05. Finally, we also apply the elitism
(with elite count = 1) to guarantee that the algorithm will
not forget the best answer. Also, this can contribute for faster
convergence by using the best individual so far during the
selection process in the next iteration which may generate
better answers during. As we show in the next section, using
this technique, we are able to construct an optimal ensemble
with higher accuracy and much fewer ConvNets compared
with the ensembles proposed in Ciresan et al. (2012) and Jin
et al. (2014).

4 Experiments

We apply our ConvNet on the German Traffic Sign Recog-
nition Benchmark (GTSRB) dataset (Stallkamp et al. 2012).
Each color image contains one traffic sign and they vary from
15 x 15 to 250 x 250 pixels. The training set consists of
39, 209 images and the test set contains 12, 630 images. We
use 10 % of the training set (after augmenting the in the next
section) for validation. We first crop the image within the
annotated bounding box resize (downsample or upsample)
all the images to 48 x 48 pixels. Finally, the mean image is
obtained over the whole dataset and it is subtracted from each
image since a previous study (Coates and Ng 2012) suggests
that subtracting the mean image increases the performance
of the network?.

Also, we analyze the scalability of our ConvNet by the
Belgium Traffic Sign Classification (BTSC) dataset (Timofte
and Van Gool 2011). We inspected the dataset to make it
consistent with the GTSRB. For instance, Class 32 in this
dataset contains both signs “speed limit 50” and “speed limit
70”. However, these are two distinct classes in the GTSRB
dataset. Therefore, we separated the overlapping classes in
the BTSC dataset according to the GTSRB dataset. Each
image in the BTSC dataset contains one traffic sign and it
totally consists of 4672 color images for training and 2550
color images for testing. Finally, we normalize the dataset
using the mean image obtained from the GTSRB dataset and
resize all the images to 48 x 48 pixels (Fig. 5).

2 The ConvNet architecture and its trained models are available at
https://github.com/pcnn/traffic-sign-recognition.
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Fig. 5 Sample images from the BTSC (left) and the GTSRB (right)
datasets

4.1 Data Augmentation

To reduce the effect of over-fitting, the original dataset is
augmented by applying 12 transformations on the images
as follows: 1) Translation We perturb the images in posi-
tions [2, 2], [2, —2], [—2, 2] and [—2, —2]. 2) Smoothing
The images are smoothed using 5 x 5 Gaussian filter and
median filters. 3) HSV The saturation of images are modi-
fied by transforming them into the HSV space and scaling
the saturation component by factors 0.9 and 1.1. Moreover,
the value component is scaled by factor 0.7. 4) PCA First,
the matrix of principal components P € R3*3 of the pixels
of the training dataset is computed. Then, pixels of the image
are projected into the PCA subspace to obtain the coefficient
vector b. Next, a3 x 1 vector v is randomly generated in range
[0, 0.5] and the image is reconstructed by back-projecting the
pixels into RGB color space using the new coefficient vector
b = b — Db ® v where © is an element-wise multiplica-
tion operator. 5) Other The dataset is further augmented by
applying histogram equalization transformation and sharp-
ening the images.

4.2 Evaluation and Comparison

Each function in the transformation layer is implemented
using a convolution layer with 1 x 1 kernel and a bias para-
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Table 1 Classification accuracy of the single network

Proposed (original)

Proposed (compact)

Trial Top 1 acc. (%) Top 2 acc. (%) Trial Top 1 acc. (%) Top 2 acc. (%)
1 98.87 99.62 1 99.11 99.63

2 98.98 99.64 2 99.06 99.64

3 98.85 99.62 3 98.88 99.62

4 98.98 99.58 4 98.97 99.61

5 98.99 99.63 5 99.08 99.66

6 99.06 99.75 6 98.94 99.68

7 98.99 99.66 7 98.87 99.60

8 99.05 99.70 8 98.98 99.65

9 98.88 99.57 9 98.92 99.61

10 98.77 99.60 10 99.05 99.63
Average 98.94 £+ 0.09 99.64 £ 0.05 Average 98.99 £ 0.08 99.63 £0.02
Human 98.84 NA Human 98.84 NA

Ciresan et al. (2012) 98.52 £0.15 NA Ciresan et al. (2012) 98.52 £0.15 NA

Jin et al. (2014) 98.96 £ 0.20 NA Jin et al. (2014) 98.96 £+ 0.20 NA

Left The proposed network and Right its compact version

meter. The network is trained using the mini-batch stochastic
gradient descent (batch size=50) with exponential weight
annealing using the L, regularized softmax loss function. We
fixed the learning rate to 0.02, momentum to 0.9, L, regular-
ization coefficient to le — 5, annealing parameter to 0.9998,
dropout ratio to 0.5, the negative slope of the Leaky ReL.U to
0.01 and the maximum number of iterations to 60000. The
network is trained 10 times and their classification accuracies
are calculated. The ConvNet is validated during the training
process using the validation set in order to decide when to
stop training. It is worth mentioning that Stallkamp et al.
(2012) has only reported the classification accuracy and it is
the only way to compare our results with Ciresan et al. (2012)
and Sermanet and Lecun (2011). Similarly, Jin et al. (2014)
evaluated their network using only the classification accu-
racy. In this paper, we report two different results based on
the accuracy of a single network and the accuracy obtained
by creating an ensemble using the algorithm mentioned in
Sect. 3.1. In addition, the results are further analyzed using
class specific precision and recall measures.

We trained our proposed network and its compact ver-
sion 10 times and evaluated using the test set provided in
the GTSRB dataset. Table 1 shows the results. The average
classification accuracy of the 10 trials is 98.94 and 98.99 %
for the original ConvNet and its compact version, respec-
tively, which are both above the average human performance
reported in Stallkamp et al. (2012). In addition, the standard
deviations of the classification accuracy is small which show
that the proposed architecture trains the networks with very
close accuracies. We argue that this stability is the result of
reduction in the number of the parameters and regularizing

the network using a dropout layer. Moreover, we observe
that the top-23 accuracies are very close in all trials and their
standard deviations are 0.05 and 0.02 for the original Con-
vNet and its compact version, respectively. In other words,
although the difference in the top-1 accuracies of the Trial
1 and the Trial 2 in the original network is 0.11 %, notwith-
standing, the same difference for top-2 accuracy is 0.02 %.
This implies that there are images that are classified correctly
in Trial 1 and they are misclassified in Trial 2 (or vice versa)
but they are always within the top 2 scores of both networks.
As a consequence, if we fuse the scores of the two networks
the classification accuracy might increase.

The same argument is applied on the compact network,
as well. Compared with the average accuracies of the sin-
gle ConvNets proposed in Ciresan et al. (2012) and Jin et al.
(2014), our proposed architecture and its compact version
are more stable since their standard deviations are less than
the standard deviations of these two ConvNets. In addition,
despite the fact that the compact network has 52 % fewer
parameters than the original network, the accuracy of the
compact network is more than the original network and the
two other networks. This confirms the claim illustrated by
t-SNE visualization in Fig. 3 that the fully-connected layer
in the original ConvNet does not increase the separability of
the traffic signs. But, the fact remains that the compact net-
work has less degree of freedom compared with the original
network. Taking into account the Bias-Variance decomposi-
tion of the original ConvNet and the compact ConvNet, we

3 The percent of the samples which are always within the top 2 classi-
fication scores.
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Table 2 Comparing the
classification performance of the

ensembles created by model
averaging and our proposed
method on the pools of original
and compact ConvNets with
three state-of-art ConvNets

Name No. of ConvNets Accuracy (%) Fi-score
Ens. of original ConvNets (our) 5 99.61 0.994
Ens. of original ConvNets (avg.) 10 99.56 0.993
Ens. of compact ConvNets (our) 2 99.23 0.989
Ens. of compact ConvNets (avg.) 10 99.16 0.987
Ciresan et al. (2012) 25 99.46 NA
Sermanet and Lecun (2011) 1 98.97 NA

Jin et al. (2014) 20 99.65 NA

Table 3 Comparing the

. . Name
run-time efficiency of the

No. of ConvNets No. of parameters No. of multiplications

ensembles created by model
averaging and our proposed
method on pools of original and
compact ConvNets with three
state-of-art ConvNets

Ens. of original ConvNets (our)
Ens. of original ConvNets (avg.)
Ens. of compact ConvNets (our)
Ens. of compact ConvNets (avg.)
Ciresan et al. (2012)

Sermanet and Lecun (2011)

Jin et al. (2014)

5 1,123, 449 382,699,560
10 1,123, 449 765,399,120
2 531,999 151,896,924
10 531,999 759,484,620
25 1,543,443 3,208,042,500

1 1,437,791 NA
20 1,162,284 1,445,265,400

Note that we have calculated the worst case in our network by considering that every LReLU unit will
perform one multiplications. In contrast, we have computed the minimum number of multiplications in
Ciresan et al. (2012) by assuming that the input of zanh function always falls in range [—0.5, 0.5]. Similarly,
in the case of Jin et al. (2014) we have considered fast but inaccurate implementation of pow(float, float)

claim that the compact ConvNet is more biased and its vari-
ance is slim compared with the original ConvNet. To prove
this, we created two different ensembles using the algorithm
mentioned in Sect. 3.1. More specifically, one ensemble was
created by selecting the optimal subset from a pool of 10 orig-
inal ConvNets and the second pool was created in the same
way but from a pool of 10 compact ConvNets. Furthermore,
two other ensembles were created by utilizing the model aver-
aging approach(Ciresan et al. 2012; Jin et al. 2014). in which
each ensemble contains 10 ConvNets. Tables 2 and 3 show
the results and compare them with three state-of-art Con-
vNets.

First, we observe that our proposed method for creat-
ing ensemble is more efficient than the model averaging
approach. To be more specific, the ensemble created using
our algorithm on the pool of original ConvNets needs 50 %
less multiplications* and its accuracy is 0.05 % higher com-

4 We calculated the number of the multiplications of a ConvNet tak-
ing into account the number of the multiplications for convolving
the filters of each layer with the N-channel input from the previous
layer, number of the multiplications required for computing the acti-
vations of each layer and the number of the multiplications imposed
by normalization layers. We showed in Sect. 3 that tanh function
utilized in Ciresan et al. (2012) can be efficiently computed using
10 multiplications. ReLU activation used in Jin et al. (2014) does
not need any multiplications and Leaky ReLU units in our ConvNet
compute the results using only 1 multiplication. Finally, consider-
ing that pow(float, float) function needs only 1 multiplication and
64 shift operations (http:/tinyurl.com/yehg932), the normalization
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pared with the ensemble created by averaging all the original
ConvNets in the pool (10 ConvNets). Taking into account
the fact that there are 12, 630 test images, thus, the ensemble
created by model averaging makes 6 more mistakes than our
ensemble. Note that the number of ConvNets in the ensem-
ble directly affects the number of the arithmetic operations
required for making predictions. This means that the model
averaging approach consume double CPU cycles compared
with our ensemble.

Moreover, our ensemble reduces the number of the mul-
tiplications 88 and 73 % compared with the ensembles
proposed in Ciresan et al. (2012) and Jin et al. (2014),
respectively. More importantly, the dramatic reduction in the
number of the multiplications causes only 5 more misclas-
sification (0.04 % less accuracy) compared with the results
obtained by the ensemble in Jin et al. (2014). We also observe
that the ensemble in Ciresan et al. (2012) makes 19 more
mistakes (0.15 % more misclassification) compared with our
ensemble.

Besides, the number of the multiplications of the network
proposed in Sermanet and Lecun (2011) is not accurately
computable since its architecture is not clearly mentioned.
However, the number of the parameters of this ConvNet is
more than our original and compact networks. In addition, it

Footnote 4 continued
layer in Jin et al. (2014) requires k x k + 3 multiplications per each
element in the feature map.
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Table 4 Benchmarking time-to-completion of our ConvNet along with the compact ConvNet and Jin et al. (2014) obtained by running the
forward-pass of each ConvNet 200 times and computing the average time for completing the forward-pass

Proposed ConvNet Proposed compact ConvNet Jin et al. (2014)
CPU 12.96 ms 12.47 ms 14.47 ms
GPU 1.06 ms 1.03 ms 1.45 ms

Ens. of proposed ConvNet

Ens. of proposed compact ConvNet

Jin et al. (2014) ensemble

CPU 5 x 12.96 = 64.8 ms
GPU 5 x 1.06 = 5.30 ms

2 x 12.47 = 24.94 ms
2 x 1.03 =2.06 ms

20 x 14.47 = 289.4 ms
20 x 1.45 =29.0ms

utilizes rectified sigmoid activation which needs 10 multipli-
cations per each element in the feature maps. In sum, we can
roughly conclude that the ConvNet in Sermanet and Lecun
(2011) needs more multiplications than our proposed Con-
vNet. However, we observe that an ensemble of two compact
ConvNets performs better than Sermanet and Lecun (2011)
and, yet, it needs less multiplications and parameters.

Finally, although the single compact ConvNet performs
better than single original ConvNet, nonetheless, the ensem-
ble of compact ConvNets does not perform better. In fact,
according to Table 2, an ensemble of two compact ConvNets
shows a better performance compared with the ensemble of
ten compact ConvNets. This is due to the fact that the com-
pact ConvNet is formulated with much fewer parameters and
it is more biased compared with the original ConvNet. Con-
sequently, their representation ability is more restricted. For
this reason, adding more ConvNets to the ensemble does not
increase the performance and it always vary around 99.20 %.
he original network is able to model more complex non-
linearities so it is less biased about the data and its variance
is more than the compact network. Hence, the ensemble of
the original networks posses more discriminative representa-
tion which increases its classification performance. In sum, if
run-time efficiency is more important than the accuracy, then,
ensemble of two compact ConvNets is a good choice. How-
ever, if we need more accuracy and the computational burden
imposed by more multiplications in the original network is
negligible, then, the ensemble of the original ConvNets can
be utilized.

It is worth mentioning that the time-to-completion (TTC)
of ConvNets does not solely depend on the number of mul-
tiplications. Number of accesses to memory also affects the
TTC of ConvNets. From the ConvNets illustrated in Table
3, a single ConvNet proposed in Jin et al. (2014) seems to
have a better TTC since it needs less multiplications com-
pared with our proposed ConvNet and its compact version.
However, (Jin et al. 2014, Table IX) shows that this Con-
vNets needs to pad the feature maps before each convolution
layer and there are three local response normalization layers
in this ConvNet. For this reason, it need more accesses to
memory which can negatively affect the TTC of this Con-

vNets. To compute the TTC of these ConvNets in practice,
we ran the ConvNets on both CPU (Inter Core i7-4960) and
GPU (GeForce GTX 980). The hard disk was not involved in
any other task and there were no running application or GPU
demanding processes. The status of the hardware was fixed
during the calculation of the TTC of ConvNets. Then, the
average TTC of the forward-pass of every ConvNet was cal-
culated by running each ConvNet 200 times. Table 4 shows
the results in the scale of milliseconds for one forward-pass.

The results show that the TTC of single ConvNet proposed
in Jin et al. (2014) is 12 and 37 % more than our proposed
ConvNet when it runs on CPU and GPU, respectively. This
is consistent with our earlier discussion that the TTC of Con-
vNets does not solely depend on arithmetic operations. But,
the number of memory accesses affects the TTC. Also, the
TTC of the ensemble of our original ConvNet is 78 and 81 %
faster than the ensemble proposed in Jin et al. (2014). Two
missing parts in Ciresan et al. (2012), Sermanet and Lecun
(2011) and Jin et al. (2014) are that the stability and the
generalization power of the ConvNets are not analyzed ade-
quately. In the next sections, we will evaluate our network
from different aspects.

4.3 Misclassified Images

We computed the class-specific precision and recall (Table
5). Besides, Fig. 6 illustrates the incorrectly classified traf-
fic signs. The blue and red numbers below each image show
the actual and predicted class labels, respectively. For pre-
sentation purposes, all images were scaled to a fixed size.
First, we observe that there are 4 cases where the images are
incorrectly classified as class 11 while the true label is 30. Par-
ticularly, 3 of these cases are low-resolution images with poor
illuminations. Moreover, class 30 is distinguishable from
class 11 using the fine differences in the pictograph. How-
ever, rescaling a poorly illuminated low resolution image to
48 x 48 pixels causes some artifacts on the image. In addi-
tion, two of these images are inappropriately localized and
their bounding boxes are inaccurately. As the result, the net-
work is not able to discriminate these two classes on these
images. In addition, by inspecting the rest of the misclassi-
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Table 5 Class specific precision and recall obtained by our network
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Class Precision Recall Sup Class Precision Recall Sup Class Precision Recall Sup
0 1.00 1.00 60 15 1.00 1.00 210 30 1.00 0.97 150
1 1.00 1.00 720 16 1.00 1.00 150 31 1.00 0.99 270
2 1.00 1.00 750 17 1.00 1.00 360 32 1.00 1.00 60
3 1.00 0.99 450 18 1.00 0.99 390 33 1.00 1.00 210
4 1.00 0.99 660 19 0.97 1.00 60 34 1.00 1.00 120
5 0.99 1.00 630 20 0.99 1.00 90 35 1.00 1.00 390
6 1.00 0.98 150 21 0.97 1.00 90 36 0.98 1.00 120
7 1.00 1.00 450 22 1.00 1.00 120 37 0.97 1.00 60
8 1.00 1.00 450 23 1.00 1.00 150 38 1.00 1.00 690
9 1.00 1.00 480 24 0.99 0.99 90 39 0.98 0.98 90
10 1.00 1.00 660 25 1.00 0.99 480 40 0.97 0.97 90
11 0.99 1.00 420 26 0.98 1.00 180 41 1.00 1.00 60
12 1.00 1.00 690 27 0.97 1.00 60 42 0.98 1.00 90
13 1.00 1.00 720 28 1.00 1.00 150

14 1.00 1.00 270 29 1.00 1.00 90

Images show corresponding class label of each traffic sign. The column support (sup) shows the number of the test images for each class
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Fig. 6 Incorrectly classified images. The blue and red numbers below each image show the actual and predicted class labels, respectively. The
traffic sign corresponding to each class label is illustrated in Table 5 (Color figure online)

fied images, we realize that the wrong classification is mainly
due to occlusion of pictograph or low-quality of the images.
Howeyver, there are a few cases where the main reason of
the misclassification is due to inaccurate localization of the
traffic sign in the detection stage (i.e. inaccurate bounding
box).

4.4 Cross-Dataset Analysis and Transfer Learning

So far, we trained our ConvNet on the GTSRB dataset and
achieved state-of-art results with much fewer arithmetic oper-
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ations and memory accesses which led to a considerably
faster approach for classification of traffic signs. In this sec-
tion, we inspect how transferable is our ConvNet across
different datasets. To this end, we first evaluate the cross-
dataset performance of our network. To be more specific, we
use our trained ConvNet to predict the class of the traffic
signs in the BTSC dataset. Among 73 classes in the BTSC
dataset (after separating the overlapping classes), there are
23 common classes with the GTSRB dataset. We applied our
ConvNet trained on the GTSRB dataset to classify these 23
classes inside both the training set and the festing set in the
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Table 6 Cross dataset evaluation of our trained ConvNet using the BTSC dataset

Class Precision Recall Sup Class Precision Recall Sup Class Precision Recall Sup
0 NA NA 0 15 0.91 0.86 167 30 NA NA 0

1 NA NA 0 16 1.00 0.78 45 31 NA NA 0

2 NA NA 0 17 1.00 0.93 404 32 NA NA 0

3 NA NA 0 18 0.99 0.93 125 33 NA NA 0

4 1.00 0.93 481 19 1.00 0.90 21 34 NA NA 0

5 NA NA 0 20 0.93 0.96 27 35 0.92 1.00 96
6 NA NA 0 21 0.92 0.92 13 36 1.00 0.83 18
7 NA NA 0 22 0.72 1.00 21 37 NA NA

8 NA NA 0 23 1.00 0.95 19 38 NA NA 0

9 0.94 0.94 141 24 0.66 1.00 21 39 NA NA 0
10 NA NA 0 25 0.90 1.00 47 40 0.99 0.87 125
11 0.88 091 67 26 0.75 0.86 7 41 NA NA 0
12 0.97 0.95 382 27 NA NA 0 42 NA NA 0
13 0.97 0.99 380 28 0.89 0.91 241

14 0.87 0.95 86 29 0.19 0.08 39

Overall accuracy: 92.12 %

Class specific precision and recall obtained by our network are shown. The column support (sup) shows the number of the test images for each
class. Classes with support equal to zero do not have any test cases in the BTSC dataset
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Fig. 7 Incorrectly classified images from the BTSC dataset. The blueand rednumbers below each image show the actual and predicted class labels,
respectively. The traffic sign corresponding to each class label is illustrated in Table 5 (Color figure online)

BTSC dataset. Table 6 shows the class specific precision and Comparing the class 29 in the BTSC dataset with its cor-
recall. responding class in the GTSRB (Table 5) shows that the

In terms of accuracy, the trained network has correctly  pictograph of this class in the GTSRB dataset has significant
classified 92.12% of samples. However, precisions and  differences with the pictograph of the same class in the BTSC
recalls reveal that the classification of class 29 is worse than ~ dataset. In general, the misclassified images are mainly due
a random guess. To find out the reason, we inspect the mis-  to pictograph differences, perspective variation, rotation and
classified images illustrated in Fig. 7. blurriness of the images. We inspected the GTSRB dataset
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Table 7 Layers which are

; . . ConvNet No. Trans. Convl Conv2 Conv3 FC1 Softmax
frozen and adjusted in each trial
. layer 1 layer 2 layer 3 layer 4 layer 5
to evaluate the generality of
each layer 1 Fixed Fixed Fixed Fixed Fixed Adjust
2 Fixed Fixed Fixed Fixed Adjust Adjust
3 Fixed Fixed Fixed Adjust Adjust Adjust
4 Fixed Fixed Adjust Adjust Adjust Adjust
5 Fixed Adjust Adjust Adjust Adjust Adjust

and found that perspective and rotation is more controlled
than the BTSC dataset. As the result, our trained ConvNet
has not properly captured the variations caused by different
perspectives and rotations on the traffic signs. In other words,
we argue that if we present adequate amount of data cover-
ing different combinations of perspective and rotation, our
ConvNet is able to accurately model the traffic signs in the
BTSC dataset.

To prove that, we try to find out how transferable is our
ConvNet. We follow the same procedure mentioned in Yosin-
ski et al. (2014) and evaluate the degree of transferability
of our ConvNet in different stages. Concretely, the origi-
nal ConvNet is trained on the GTSRB dataset. The Softmax
loss layer of this network consists of 43 neurons since there
are only 43 classes in the GTSRB dataset. We can think of
the transformation layer up to the L Re LU, layer as a func-
tion which extracts the features of the input image. Thus,
if this feature extraction algorithm perform accurately on
the GTSRB dataset, it should also be able to model the
traffic signs in the BTSC dataset. To evaluate the general-
ization power of the ConvNet trained only on the GTSRB
dataset, we replace the Softmax layer with a new Softmax
layer including 73 neurons to classify the traffic signs in the
BTSC dataset. Then, we freeze the weights of all the layers
except the Sofmax layer and run the training algorithm on
the BTSC dataset to learn the weights of the Softmax layer.
Finally, we evaluate the performance of the network using
the testing set in the BTSC dataset. This empirically com-
putes how transferable is our network on other traffic signs
datasets.

It is well-studied that the first layer of a ConvNet is more
general and the last layer is more class specific. This means
that the FC1 layer in our network (Fig. 3) is more specific
than the C3 layer. In other words, the FC1 layer is adjusted
to classify the 43 traffic signs in the GTSRB dataset. As the
result, it might not be able to capture every aspects in the
BTSC dataset. If this assumption is true, then we can adjust
the weights in the FC1 layer beside the Softmax layer so itcan
model the BTSC dataset more accurately. Then, by evaluating
the performance of the ConvNet on the testing set of the
BTSC dataset we can find out to what extend the C3 layer is
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able to adjust on the BTSC dataset. We increasingly add more
layers to be adjusted on the BTSC dataset and evaluate their
classification performance. At the end, we have 5 different
networks with the same configuration but different weight
adjustment procedures on the BTSC dataset. Table 7 shows
the weights which are fixed and adjusted in each network.
We repeated the training 4 times for each row in this table.
Fig. 8 shows the results.

First, we observe that when we only adjust the softmax
layer (layer 5) and freeze the previous layers, the accuracy
drops dramatically compared with the results in the GTSRB
dataset. In the one hand, layer 4 is adjusted such that the
traffic signs in the GTSRB dataset become linearly separa-
ble and they can be discriminated using the linear classifier
in the softmax layer. On the other hand, the number of the
traffic signs in the BTSC dataset is increased 70 % compared
with GTSRB dataset. Therefore, layer 4 is not able to lin-
early differentiate fine details of the traffic signs in the BTSC
dataset. This is observable from the t-SNE visualization of
the LRe LU, layer corresponding to n = 5 in Fig. 8. Con-
sequently, the classification performance drops because of
overlaps between the classes.

If the above argument is true, then, fine-tuning the layer 4
beside the layer 5 must increase the performance. Because,
by this way, we let the LReLU, layer to be adjusted on
the traffic signs included in the BTSC dataset. We see
in the figure that adjusting the layer 4 (n = 4) and the
layer 5 (n = 5) increases the classification accuracy from
97.65 to 98.44 %. Moreover, the t-SNE visualization cor-
responding to n = 4 reveals that the traffic signs classes
are more separable compared with the result from n = 5.
Thus, adjusting both LReLUs and Softmax layers make
the network more accurate for the reason we mentioned
above.

Recall from Fig. 3 that L ReLU4 was not mainly respon-
sible for increasing the separability of the classes. Instead,
we saw in Sect. 4.2 that this layer mainly increases the vari-
ance of the ConvNet and improves the performance of the
ensemble. In fact, we showed that traffic signs are chiefly
separated using the last convolution layer. To further inspect
this hypothesis, we fine-tuned the ConvNet on the BTSC
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Fig. 8 The result of fine-tuning the ConvNet on the BTSC dataset that the fine-tuning procedure 4 times for each n € {1, ..., 5}, separately.

is trained using GTSRB dataset. Horizontal axis shows the layer n at
which the network starts the weight adjustment. In other words, weights
of the layers before the layer n are fixed (frozen). The weights of layer n
and all layers after layer n are adjusted on the BTSC dataset. We repeated

dataset starting from layer 3 (i.e the last convolution layer).
Fig. 8 illustrate an increase up to 98.80 % in the classification
accuracy. This can be also seen on the t-SNE visualization
corresponding to the layer 3 where traffic signs of the BTSC
dataset become more separable when the ConvNet is fine-
tuned starting from the layer 3.

Interestingly, we observe a performance reduction when
the weights adjustment starts from layer 2 or layer 1. Specif-
ically, the mean classification accuracy drops from 98.80 %
in layer 3 to 98.67 % and 98.68 % in layers 2 and 1, respec-
tively. This is due to the fact that the first two layers are
more general and they do not significantly change from the
GTSRB to the BTSC dataset. In fact, these two layers are
trained to detect blobs and oriented edges. However, because
the number of data is very few in the BTSC dataset compared
with the number of the parameters in the ConvNet, hence, it
adversely modifies the general filters in the first two layers
which consequently affects the weight of the subsequent lay-
ers. As the result, the ConvNet overfits on data and does not

Red circles show the accuracy of each trial and blue squares illustrate
the mean accuracy. The t-SNE visualizations of the best network for
n=3,4,5 are also illustrated. The t-SNE visualization is computed on
the L ReL U, layer (Color figure online)

generalize well on the test set. For this reason, the accuracy
of the network drops when we fine-tune the network starting
from layer 1 or layer 2.

Finally, it should be noted that 98.80 accuracy is obtained
using only a single network. As we showed earlier, creating
an ensemble of these networks could improve the classifi-
cation performance. In sum, the results obtained from cross
dataset analysis and transferability evaluation reveals that our
network is able to model a wide range of traffic signs and in
the case of new datasets it only needs to be fine-tuned starting
from the last convolution layer.

4.5 Analyzing by Visualization

Visualizing ConvNets helps to understand them under differ-
ent circumstances. In this section, we propose a new method
for assessing the stability of the network and, then, conduct
various visualization techniques to analyze different aspects
of the proposed ConvNet.
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4.5.1 Stability of ConvNet

A ConvNet is a non-linear function that transforms a D-
dimensional vector into a K-dimensional vector in the layer
before the classification layer. Ideally, small changes in the
input should produce small changes in the output. In other
words, if image f € RM*V is correctly classified as c using
the ConvNet, then, the image g = f + r obtained by adding
a small degradation r € RM*N to f must also be classified
as c.

However, f is strongly degraded as |r|(norm of r)
increases. Therefore, at a certain point, the degraded image
g is not longer recognizable. We are interested in finding r
with minimum ||| that causes the g and f are classified dif-
ferently. Szegedy et al. (2014b) investigated this problem and
they proposed to minimize the following objective function
with respect to r:

minimize Alr|+ score(f +r,1)
st f4relo, )MV )

where / is the actual class label, A is the regularizing weight
and score(f + r, 1) returns the score of the degraded image
f +r given the actual class of image f. In our ConvNet, the
classification score vector is 43 dimensional since there are
only 43 classes in the GT SRB dataset. Denoting the classifi-
cation score vector by £ € [0, 1]43, L[k] returns the score of
the input image for class k. The image is classified correctly
if ¢ = argmax £ = [ where c is the index of the maximum
value in the score vector L. If max (L) = 0.9, the ConvNet is
90% confident that the input image belongs to class c. How-
ever, there might be an image where max (L) = 0.3. This
means that the image belongs to class ¢ with probability 0.3.
If we manually inspect the scores of other classes we might
realize that L[cy] = 0.2, L[c3] = 0.2, L[c4] = 0.2 and
L[cs] = 0.1 where ¢; depicts the ith maximum in the score
vector L.

Conversely, assume two images that are misclassified by
the ConvNet. In the first image, £[/] = 0.1 and L[c] = 0.9
meaning that the ConvNet believes the input image belongs to
class / and class ¢ with probabilities 0.1 and 0.9, respectively.
But, in the second image, the beliefs of the ConvNet are
L[] = 0.49 and L[c] = 0.51. Even tough in both cases the
images are misclassified, the degrees of misclassification are
different.

One problem with the objective function (3) is that it finds
r such that score(f + r,l) approaches to zero. In other
words, it finds r such that L[/] = € and L[c] = 1 — €.
Assume the current state of the optimization function is r;
where L[I] = 0.3 and L[c] = 0.7. In other words, the input
image f is misclassified using the current degradation r;.
Yet, the goal of the objective function (3) is to settle in a
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point where score(f + r;,I) = €. As the result, it might
change r; which results in a greater ||r;||. Consequently, the
degradation found by minimizing the objective function (3)
might not be optimal. To address this problem, we propose
the following objective function to find the degradation r:

minimize Y (L,1)+ ML 4)
| Bx< L[] argmax. L =1

yL,h = [max(ﬁ) — L[I] otherwise )
In this equation, A is the regularizing weight, 8 is a multiplier
to penalize those values of r that do not properly degrade the
image so it is not misclassified by the ConvNet and ||.||;
is the sparsity inducing term that forces r to be sparse. The
above objective function finds the value r such that degrading
the input image f using r causes the image to be classified
incorrectly and the difference between the highest score in
L and the true label of f is minimum. This guarantees that
f + r will be outside the decision boundary of actual class /
but it will be as close as possible to this decision boundary.

We minimize the objective function (4) using genetic algo-
rithms. To this end, we use real-value encoding scheme for
representing the population. The size of each chromosome
in the population is equal to the number of the elements in r.
Each chromosome, represents a solution for . We use four-
nament method with tour size 5 for selecting the offspring.
Then, a new offspring is generated using arithmetic, interme-
diate or uniform crossover operators. Finally, the offspring
is mutated by adding a small number in range [—10, 10] on
some of the genes in the population. Finally, we use elitism to
always keep the best solution in the population. We applied
the optimization procedure for one image from each traffic
sign classes. Fig. 9 shows the results.

Inspecting all the images in this figure, we realize that the
ConvNet can easily make mistakes even for noises which
are not perceivable by human eye. This conclusion is also
made by Szegedy et al. (2014b). This suggests that the func-
tion presenting by the ConvNet is highly non-linear where
small changes in the input may cause a significant change in
the output. When the output changes dramatically, it might
fall in a wrong class in the feature space. Hence, the image
is incorrectly classified. Note that, because of our proposed
objective function, the difference between the wrongly pre-
dicted class and the true class is positive but it is very close
the decision boundary of the two classes. We repeated the
above procedure on 15 different images and calculated the
mean Signal-to-Noise Ratio (SNR) of each class, separately.
Fig. 10 shows the results.

First, we observe that classes 4 and 30 have the lowest SNR
values. In other words, the images from these two classes
are more tolerant against noise. In addition, class 15 has the
highest SNR values which shows it is more prone to be mis-
classified with small changes. Finally, most of the classes are
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Fig. 9 Minimum additive noise which causes the traffic sign to be misclassified by the minimum different compared with the highest score (best

viewed in color and electronically) (Color figure online)
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Fig. 10 Plot of the SNRs of the noisy images found by optimizing (4).
The mean SNR and its variance are illustrated

tolerant against noise with approximately the same degree of
tolerance since they have close mean SNR values. One simple
solution to increase the tolerance of the ConvNet is to aug-
ment noisy images with various SNR values so the network
can learn how to handle small changes.

subt. mean transform

4.5.2 Effect of Linear Transformation

We manually inspected the database and realized that there
are images with poor illumination. In fact, the transforma-
tion layer enhances the illumination of the input image by
multiplying the each channel with different constant factors
and adding different intercepts to the result. Note that there
is a unique transformation function per each channel. This is
different from applying the same linear transformation func-
tion on all channels in which it does not have any effect on
the results of convolution filters in the next layer (unless the
transformation causes the intensity of the pixels exceed their
limits). In our ConvNet, applying a different transformation
function on each channel affects the output of the subse-
quent convolution layer. By this way, the transformation layer
learns the parameters of the linear transformation such that
it increases the classification accuracy. Fig. 11 illustrates the
output of the transformation and the first convolution layers.

Output of the first convolution layer

Fig. 11 Visualization of the transformation and the first convolution layers
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Fig. 12 Classification score of traffic signs averaged over 20 instances
per each traffic sign. The warmer color indicates a higher score and the

colder color shows a lower score. The corresponding window of ele-
ment (m, n) in the score matrix is shown for one instance. It should be

We observe that the input image suffers from a poor illumi-
nation. However, applying the linear transformation on the
image enhances the illumination of each channel differently
and, consequently, the subsequent layers represent the image
properly so it is classified correctly.

4.5.3 Visualizing Sensitivity

Assume we are given a pure image which is classified cor-
rectly by the ConvNet. We might be interested in localizing
those areas on the image where degrading one of these areas
by noise causes the image to be misclassified. This helps us
to identify the sensitive regions of each traffic sign. To this
end, we start from a window size equal to 20% of the image
size and slide this window on the image. At each location,
the region under the window is degraded by noise and the
classification score of the image is computed. By this way,
we obtain a score matrix H¢ where element H¢(m, n) is the
score of the image belonging to class ¢ when a small region
of the image starting from (m, n) is degraded by noise (i.e.
(m, n) is the top-left corner of the window not its center).
We computed the matrix HS,i € 1...20 for 20 different
instances of the same class and calculated the average matrix

i

HS = %(‘)H' as well as the average image. Fig. 12 illustrates
the heat map of H.

First, we observe that the ConvNet is mainly sensitive
to small portion of the pictographs in the traffic signs. For
example, in the speed limits signs related to speeds less than
100, it is clear that the ConvNet is mainly sensitive to some
part of the first digit. Conversely, the score is affected by
whole three digits in the “speed limit 100” sign. In addition,
the score of the “speed limit 120” sign mainly depends on
the second digit. These are all reasonable choices made by
the ConvNet since the best way to classify two-digit speed
limit signs is to compare their first digit. In addition, the
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noted that the (m, n) is the top-left corner of the window not its center
and the size of the window is 20 % of the image size in all the results
(best viewed in color and electronically) (Color figure online)

“speed limit 100” is differentiable from “speed limit 120”
sign through only the middle digit.

Furthermore, there are traffic signs such as the “give way”
and the “no entry” signs in which the ConvNet is sensitive in
almost every location on the image. In other words, the score
of the ConvNet is affected regardless of the position of the
degraded region when the size of the degradation window
is 20 % of the image. We increased the size of the window
to 40 % and repeated the above procedure. Since the results
are very close to the current experiment, we illustrated the
results in the supplementary material.

4.5.4 Visualizing the Minimum Perception

Classifying traffic signs at night is difficult because percep-
tion of the traffic signs is very limited. In particular, the
situation is much worse in interurban areas at which the
only lightening source is the headlights of the car. Unless
the car is very close to the signs, it is highly probable that
the traffic signs are partially perceived by the camera. In
other words, most part of the perceived image might be dark.
Hence, this question arises that “what is the minimum area to
be perceived by the camera to successfully classify the traffic
signs”.

To answer this question, we start from a window size
equal to 40% of the image size and slide this window on
the image. At each location, we keep the pixels under the
window untouched and zero out the rest of the pixels. Then,
the image is entered into the ConvNet and the classification
score is computed. By this way, we obtain a score matrix H
where element H (m, n) is the score of the traffic sign when
only a small region of the image starting from (m, n) is per-
ceived by the camera. As before, we computed the average
score matrix H using 20 instances for each traffic sign. Fig.
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Fig. 13 Classification score of traffic signs averaged over 20 instances
per each traffic sign. The warmer color indicates a higher score. The
corresponding window of element (2, n) in the score matrix is shown
for one instance. It should be noted that the (m, n) is the top-left corner

of the window not its center and the size of the window is 40 % of the
image size in all the results (best viewed in color and electronically)
(Color figure online)

42

Fig. 14 Receptive field of some neurons in the last pooling layer (best viewed in color) (Color figure online)

13 illustrates the heat map plot of H obtained by sliding a
window which its size is 40 % of the image size.

Based on this figure, we realize that in most of the traf-
fic signs, the pictograph is the region with highest response.
In particular, some parts of the pictograph has the greatest
importance to successfully identify the traffic signs. How-
ever, there are signs such as the “priority road” sign which are
not recognizable using 40 % of the image. It seems instead of
pictograph, the ConvNet learns to detect color blobs as well
as the shape information of the sign to recognize these traffic
signs. We also computed the results obtained by increasing
the window size to 60 %. Nonetheless, since the same analy-
sis applies on these results we do not show them in this section
to avoid redundancy of figures. But, these results are illus-
trated in the supplementary material.

4.5.5 Visualizing Activations

We can think of the value of the activation functions as the
amount of excitement of a neuron to the input image. Since
the output of the neuron is linearly combined using the neuron
in the next layer, then, as the level of excitement increases, it
also changes the output of the subsequent neurons in the next

layer. So, it is a common practice to inspect which images
significantly excite a particular neuron.

To this, we enter all the images in the test set of the GTSRB
dataset into the ConvNet and keep record of the activation
of neuron (k, m, n) in the last pooling layer where m and n
depict the coordinates of the neuron in channel k of the last
pooling result. According to Fig. 3, there are 250 channels
in the last pooling layer and each channel is a 3 x 3 matrix.
Then, the images are sorted in descending order according
to their value in position (k, m, n) of the last pooling layer
and the average of the first 100 images is computed. It should
be noted that each location (m, n) in the pooling layer has a
corresponding receptive field in the input image. To compute
the receptive field of each position we must back project the
results from the last pooling layer to the input layer. Figure 14
shows the receptive field of some neurons in the last pooling
layer.

We computed the average image of each neuron in the
last pooling layer as we mentioned above. This is shown in
Fig. 15 where each image im; depicts the receptive field of
the neuron (0, 0) from ith channel in the last pooling layer.
According to these figures, most of the neurons in the last
pooling layer are mainly activated by a specific traffic sign.
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Fig. 15 Average image computed over each of 250 channels using the 100 images with highest value in position (0, 0) of the last pooling layer.
The corresponding receptive field of this position is shown using a cyan rectangle (Color figure online)

There are also some neurons which are highly activated by
more than one traffic signs. To be more specific, these neurons
are mainly sensitive to 2—4 traffic signs. By entering an image
of a traffic sign to the ConvNet, some of these neurons are
highly activated while other neurons are deactivated (they
are usually close to zero or negative). The pattern of highly
activated neurons are different for each traffic sign and this is
the reason that the classes become linearly separable in the
last pooling layer.

5 Discussion

In this paper, we proposed an efficient and accurate Con-
volutional Neural Network (ConvNet) for classifying traffic
signs and proposed new methods for creating an ensemble
and analyzing the stability of the network. Specifically, we
reviewed two main approaches including traditional classi-
fication and end-to-end learning methods for solving this
problem. We also discussed that the best performed method
based on the traditional classification approach correctly
classifies 98.53 % of test cases on the challenging German
Traffic Sign Recognition Benchmark (GTSRB) dataset but
it does not generalize well on other datasets. However, the
best method based on an ensemble of ConvNets correctly
classifies 99.65 % of test cases on the same dataset. Then,
we explained four ConvNet based approaches for classifying
traffic signs and mentioned their problems. In particular, we
discussed that these networks are not computationally effi-
cient to be implemented on an ADAS. In addition, behaviour
of the networks on various circumstances are not properly
analyzed.

We argued that any ConvNet for classifying traffic signs
must be computationally feasible, accurate and scalable to be
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utilized in real applications. With these three goals in mind,
we proposed a new ConvNet with high accuracy which is
computationally very efficient, as well. Then, we analyzed
our network using the t-SNE visualization technique and
showed that we can omit the fully-connected layer. By this
way, we also created a compact version of our original pro-
posed ConvNet. To be more specific, our original network is
defined using 1, 123, 449 parameters and it reduces the num-
ber of the parameters 27, 22 and 3 % compared with three
proposed ConvNets in Ciresan et al. (2012), Sermanet and
Lecun (2011) and Jin et al. (2014), respectively. Moreover,
our compact ConvNet requires 531, 999 parameters which
is 65, 63 and 54 % reduction compared with the same three
ConvNets.

It is previously shown that an ensemble of ConvNets can
increase the classification performance. Yet, it dramatically
increases the number of the arithmetic operations. In par-
ticular, the two accurate ConvNets in Ciresan et al. (2012)
and Jin et al. (2014) create ensembles of 25 and 20 ConvNet
in which these ensembles collectively need 3, 208, 042, 500
and 1, 445, 265, 400 multiplications to compute the classi-
fication score, respectively. The huge number of arithmetic
operations are the result of redundancy in the ensembles,
high number of parameters and choice of activation func-
tions. We already solved the two latter i