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Abstract We present a novel approach for learning a finite
mixture model on a Riemannian manifold in which Euclid-
ean metrics are not applicable and one needs to resort to
geodesic distances consistent with the manifold geometry.
For this purpose, we draw inspiration on a variant of the
expectation-maximization algorithm, that uses a minimum
message length criterion to automatically estimate the opti-
mal number of components from multivariate data lying on an
Euclidean space. In order to use this approach on Riemannian
manifolds, we propose a formulation in which each compo-
nent is defined on a different tangent space, thus avoiding
the problems associated with the loss of accuracy produced
when linearizing the manifold with a single tangent space.
Our approach can be applied to any type of manifold for
which it is possible to estimate its tangent space. Addition-
ally, we consider using shrinkage covariance estimation to
improve the robustness of the method, especially when deal-
ing with very sparsely distributed samples. We evaluate the
approach on a number of situations, going from data clus-
tering on manifolds to combining pose and kinematics of
articulated bodies for 3D human pose tracking. In all cases,
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we demonstrate remarkable improvement compared to sev-
eral chosen baselines.
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1 Introduction

The use of Riemannian manifolds and their statistics has
recently gained popularity in a wide range of applications
involving non-linear data modeling. For instance, they have
been used to model shape changes in the brain Davis et al.
(2007), diffusion tensor imaging Pennec et al. (2006), defor-
mations of anatomical parts Fletcher et al. (2004) and human
motion Brubaker et al. (2012), Sommer et al. (2010). In this
work we tackle the problem of approximating the probabil-
ity density function (PDF) of a potentially large dataset that
lies on a known Riemannian manifold. We address this by
creating a completely data-driven algorithm consistent with
the manifold, i.e., an algorithm that yields a PDF defined on
the manifold. This PDF can then be used as a prior in higher-
order models, by combining it with image evidence in hybrid
discriminative-generative models Simo-Serra et al. (2013),
or by exploiting it to constrain the search space in a tracking
framework Andriluka et al. (2010). We will show particular
applications of the proposed prior in the case of 3D human
pose estimation, demonstrating a remarkable improvement
compared to other widely used models.

A standard procedure to operate on a manifold is to use
the logarithmic map to project the data points onto the tan-
gent space of the mean point on the manifold Fletcher et al.
(2004), Huckemann et al. (2010), Sommer et al. (2010). After
this linearization, Euclidean statistics are computed and pro-
jected back to the manifold using the exponential map. This
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Fig. 1 Illustration of the proposed mixture model approach. Each mix-
ture component has its own tangent space, ensuring the consistency of
the model while minimizing accuracy loss

process is iteratively repeated until convergence of the com-
puted statistics. Unfortunately, while this approximation is
effective to model data with a reduced extent, it is prone to
fail when dealing with data that covers wide regions of the
manifold.

In the proposed finite mixture model, we overcome this
limitation by simultaneously considering multiple tangent
spaces, distributed along the whole manifold as seen in
Fig. 1. We draw inspiration on the unsupervised algorithm
from Figueiredo and Jain (2002), which given data lying in
an Euclidean space, automatically computes the number of
model components that minimizes a message length cost. By
representing each component as a distribution on the tangent
space at its corresponding mean on the manifold, we are then
able to generalize the algorithm to Riemannian manifolds and
at the same time mitigate the accuracy loss produced when
using a single tangent space. Furthermore, since our model is
semi-parametric, we can handle an arbitrarily large number
of samples. This is in contrast to existing non-parametric
approaches Pelletier (2005) whose complexity grows with
the training set size.

As an example of practical application of our mixture
model, we will consider the 3D human pose tracking prob-
lem, which has been traditionally addressed with kinematic
priors based on Gaussian diffusion Deutscher and Reid
(2005), Gall et al. (2010), Hauberg et al. (2012), Sigal et al.
(2012), Sminchisescu and Triggs (2003). This consists in
simply searching in a small area defined by a Gaussian dis-
tribution centered on the previous pose, i.e., xt = xt−1 + ε,
where xt would be the pose at time t and ε would be a
Gaussian perturbation with 0 mean and diagonal covariance.
However, this simple model does not constrain the pose to lie
on its underlying manifold, and does indeed explore a much
higher dimensional space than it should be strictly neces-
sary. We will show that using our model as a kinematic prior
we can effectively focus our solution on the actual manifold,
greatly outperforming standard Gaussian diffusion models.

A preliminary version of this work appeared in Simo-Serra
et al. (2014) with an application to introducing kinematic
priors later presented in Simo-Serra et al. (2015). We extend
this work by considering improvements for the covariance
estimation. In particular, we consider shrinkage estimators
that are shown to outperform empirical covariance estimation
when the samples are sparsely distributed on the manifold
(because the manifold has a very large dimensionality or
because the number of samples is small, or a combination
of both effects). This makes our approach both appropri-
ate to handle situations with either large or small amounts
of data, while our previous versions were mostly effective
when dealing with large datasets. We finally unify and extend
the evaluation in Simo-Serra et al. (2014; 2015) to consider
more manifolds and the improvements proposed in this paper.
Results will show that our manifold-based finite mixture
model can be used to exploit the known structure of the data,
outperforming approaches that do not. We provide the source
code1 of our approach.

2 Related Work

Manifolds have always been very important in computer
vision Sanin et al. (2012). The two more widely used
manifolds have been the one of symmetric semi-definite
matrices Harandi et al. (2012; 2014), Jayasumana et al.
(2013; 2015), Pennec (2009), Sivalingam et al. (2010), and
the Grassman manifolds Jain and Govindu (2013), Shi-
razi et al. (2012), Turaga et al. (2011). However, most of
these approaches focus on exploiting very specific mani-
folds and do not generalize to other manifolds. In contrast,
our approach is applicable to all Riemannian manifolds with
explicit exponential and logarithmic maps.

Recently, there has been an influx of theoretical results in
statistics on Riemannian manifolds Pennec (2006) that have
allowed for their widespread usage in modeling. For exam-
ple, there exists several PCA generalizations to non-linear
data such as the Principal Geodesic Analysis Fletcher et al.
(2004), Sommer et al. (2010) and the Geodesic PCA Huck-
emann et al. (2010). Yet, these methods only use one single
tangent space located at the geodesic mean, which can lead
them to have significant accuracy error when input data is
spread out widely on the manifold. Other algorithms based
on kernels Davis et al. (2007) and Markov Chain Monte
Carlo sampling Brubaker et al. (2012) have been specifi-
cally used in regression tasks on manifolds, but they have
not been applied to stochastic modeling problems. There
have been recent attempts at removing the tangent space
linearization Sommer (2015); Zhang and Fletcher (2013),

1 http://hi.cs.waseda.ac.jp/~esimo/code/gfmm/
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which, however, can not yet scale to the large amounts of
data we consider in this work.

Other approaches address classification models on Rie-
mannian manifolds Sanin et al. (2012), Tosato et al. (2010,
2013) and Tuzel et al. (2008). For binary cases, the classi-
fier is usually built in a “flattened” version of the manifold,
obtained via the tangent space Tuzel et al. (2008). Multiple
category classification problems have been tackled by replac-
ing the tangent space mapping with rolling maps Caseiro
et al. (2013), and by using extensions of the Kernel methods
to Riemannian manifolds Jayasumana et al. (2013; 2015).
In any event, these approaches have been exclusively used
for classification problems, which are out of the scope of the
current paper, focused on PDF modeling for use as priors.

With regards to density estimation on Riemannian mani-
folds, various non-parametric approaches Ozakin and Gray
(2009), Pelletier (2005) have been proven to be appropriate.
However, as their complexity is dependent on the number
of training samples, they scale poorly for large datasets. In
contrast, semi-parametric models such as the mixture model
we propose here can handle large amounts of data efficiently.
Dirichlet Processes have been used for fitting mixture models
Chang and Fisher (2013), and recently modified to handle the
case of the sphere manifold Straub et al. (2015), although,
compared to our approach, they have not been extended
to arbitrary Riemannian manifolds. Another widely studied
manifold is that of tensor fields Lenglet et al. (2006), for
which a non-parametric Kernel Density Estimation approach
was recently proposed Caseiro et al. (2012). In Muralidha-
ran and Fletcher (2012), individuals on the tangent bundle
are modeled and populations are compared with general-
ized statistical hypothesis tests, but no parametric model is
learned. The interesting approach in Archambeau and Ver-
leysen (2005) is similar to ours in spirit, as it proposes a
technique to perform Expectation Maximization (EM) on
manifolds. However, this work considers data-driven mani-
folds, resulting in a high computational overhead for large
training sets. In addition, it neither estimates the number of
clusters, nor makes use of the tangent space, which allows
our model to be defined “on the manifold”.

As for human pose, it has been traditionally modeled
as a tree of connected joints Ionescu et al. (2014), Moes-
lund and Granum (2001), Moeslund et al. (2006). There
have been many different ways of modeling this. One of
the most straightforward approaches is to make use of a
Gaussian Mixture Model (GMM) Sigal et al. (2004). Another
popular trend is to use Gaussian Processes (GP)-based
approaches, such as GP-Latent Variable Models Lawrence
(2005) and the constrained GP Varol et al. (2012). These
have been extended to consider dynamics in the Gaussian
process dynamic model (GPDM) Urtasun et al. (2006),
Wang et al. (2005), Yao et al. (2011), and also to consider
topological constraints Urtasun et al. (2007). Hierarchical

variants Lawrence and Moore (2007) (hGPLVM) have also
been used in tracking-by-detection Andriluka et al. (2010).
However, Gaussian Processes do not scale well to large
datasets due to their O(n3) complexity for prediction. Sparse
approximations do exist Quiñonero-candela et al. (2005), but
in general do not perform as well. In contrast, once our model
has been estimated it has O(1) complexity for sampling.

There have been other approaches for modeling human
pose such as learning Conditional Restricted Boltzmann
Machines (CRBM) Taylor et al. (2010). However, these
methods hold on a complex learning procedure that uses sev-
eral approximations, and make the training of good models
harder. Li et al. (2010) proposed the Globally Coordinated
Mixture of Factor Analyzers (GCMFA) model which is sim-
ilar to the GPLVM ones in the sense it is performing a strong
non-linear dimensionality reduction. Yet, as GPLVM, it does
not scale well to large datasets such as the ones we consider
in this work.

We would like to point out that none of the aforemen-
tioned approaches is consistent with the manifold of human
motion. Some of them use directly the 3D position of the
joints while others use angles. In the case of considering 3D
points the limb length may vary during the tracking, which
is neither realistic nor desirable. In the case of angle repre-
sentations, they have an inherent periodicity and thus are not
a vector space even though they are usually treated as such.
Two nearby angles may have very different values, e.g., 0 and
2π . In this case the distance using the angular value would
be 2π while the true geodesic distance is 0. Our model can
handle both these limitations. Another model that can handle
this is the Principal Geodesic Analysis (PGA) Fletcher et al.
(2004). However, this model uses a single tangent space and
does not model the Probability Density Function (PDF).

Table 1 summarizes the properties of the models we have
commented in terms of their complexity, ability to scale,
manifold consistence and if they provide or not a PDF. In
particular, our approach scales well, is consistent with the
manifold, has low complexity (i.e., it just considers a sin-
gle hyperparameter), and can be easily learned using an
Expectation-Maximization algorithm. It is worth noting here
that our model is also the fastest of them for sampling (it is
O(1)). For instance, our Matlab implementation yields over
100,000 samples per second. An example of our model can
be seen in Fig. 2.

3 Geodesic Finite Mixture Model

We next describe our approach, starting with some basic
notions on Riemannian geometry and statistics on manifolds.
We then integrate these ingredients in a mixture modeling
algorithm to build manifold-based generative models.
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Table 1 Comparison of several
commonly used human pose
models

Model Complexity Scales? Consistent? PDF?

Gaussian diff. Low Yes No Yes

GMM Sigal et al. (2004) Low Yes No Yes

PGA Fletcher et al. (2004) Low Yes Yes No

GPLVM Lawrence (2005) Low No No Yes

GPDM Wang et al. (2005) Medium No No Yes

hGPLVM Lawrence and Moore (2007) Medium No No Yes

CRBM Taylor et al. (2010) High Yes No Yes

GCMFA Li et al. (2010) High No No Yes

GFMM (Ours) Low Yes Yes Yes

Models are considered to scale if they can handle well large amounts of data (∼ 100K samples) and to be
consistent if they use geodesic distances instead of other metrics. The last column reflects whether or not a
model is actually modeling the probability density function (PDF) of the data
Favourable properties of the models are highlighted in bold
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Fig. 2 Example of our motion prior. Top for a particular pose, 100
motion samples of the predicted distribution are shown. For visualiza-
tion purposes the magnitude of the samples is multiplied by 3. Bottom
visualization of some of the joint samples with their associated log-
likelihood. The ground truth is shown with a black diamond

3.1 Manifolds, Geodesics and Tangent Spaces

Manifolds arise naturally in many real-world problems. One
of the most well-known is the manifold representing spatial
rotations. For example, when studying human motion, it is
a common practice to use the spatial rotations of the differ-
ent body parts to obtain a subject-agnostic representation of
the whole body pose. This is usually done with angle repre-
sentations that have an inherent periodicity and thus are not
a vector space. By considering the Riemannian manifold of
spatial rotations it is possible to use tangent spaces as a local
vector space representation, and use powerful statistical tools
based on Euclidean metrics. For an in depth description of

Riemannian manifolds we refer the reader to Boothby (2003)
and Carmo (1992).

A Riemannian manifold (M, g) is a differentiable man-
ifold M equipped with a metric g, that provides a smooth
inner product on the tangent space TpM at each point p on
the manifold. Consider a parametrized curve γ : [0, 1] →
M with velocity γ̇ (t) = ∂

∂t γ (t). A geodesic is a curve that
minimizes the distance between the two points p = γ (0)

and x = γ (1). More formally, a geodesic is a curve with null
acceleration along M , i.e., the covariant derivative D

∂t γ̇ (t) is
0 for all t ∈ [0, 1]. We will denote the length of the geodesic
or geodesic distance as

d(p, x) =
∫ 1

0

√
gγ (t) (γ̇ (t), γ̇ (t)) dt . (1)

We can now define the exponential map expp at p = γ (0)

and its inverse, the logarithmic map logp as

expp : TpM −→ M
v �−→ expp (v) = γ (1) = x

,

logp : M −→ TpM
x �−→ logp (x) = v

. (2)

The exponential map is locally diffeomorphic onto a
neighborhood of p. Let V (p) be the largest such neigh-
borhood, then logp(x) is defined for any point x ∈ V (p).
Geodesics γ(x,v)(t) = expx (tv) from t = 0 to infinity can
either be minimizing all the way or only up to a time t0 < ∞
and not any further. In this latter case, the point z = γ(x,v)(t0)
is called a cut point. The set of all cut points forms the cut
locus, and the corresponding vectors the tangential cut locus.
The maximal domain of V (p) will be the domain contain-
ing 0 and delimited by the tangential cut locus. The geodesic
distance can also be written using the logarithmic map as
d(p, x) = ‖ logp(x)‖ (see Fig. 3).
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Fig. 3 Representation of geodesics on the S2 manifold. The tangent
space ensures that ‖ logp(x)‖ is the true geodesic distance of −→px . How-

ever, ‖ logp(a) − logp(b)‖ is not the geodesic distance of
−→
ab

In general there is no closed-form of the expp and
logp maps for an arbitrary manifold. There are, though,
approximations for computing them in Riemannian mani-
folds Dedieu and Nowicki (2005), Sommer et al. (2014).
Additionally, efficient closed-form solutions exist for certain
manifolds Said et al. (2007). We will discuss some of these
manifolds and their associated expp and logp maps in the
next section.

3.2 Statistics on Tangent Spaces

While it is possible to define distributions on manifolds Pen-
nec (2006), we will focus on approximating Gaussian PDFs
of data on a manifold using the tangent space. For instance,
the mean of N points xi on a manifold can be calculated
as Karcher (1977):

μ = arg min
p

N∑
i=1

d (xi , p)2 . (3)

This is iteratively optimized using the expp and logp maps,

μ(t + 1) = expμ(t)

(
δ

N

N∑
i=1

logμ(t) (xi )

)
, (4)

until ‖μ(t + 1) − μ(t)‖ < ε for some threshold ε, with δ

being the step size parameter.
Knowing the mean value μ and the concentration matrix

Γ we can write the distribution that maximizes entropy on
the tangent space as a normal distribution centered on the
point μ ∈ M, corresponding to the origin (ν = 0) in the
tangent space:

Nμ(ν, Γ ) = a exp

(
− logμ(x)�Γ logμ(x)

2

)
, (5)

where the normalization constant a and covariance matrix Σ

are related to the concentration matrix by:

a−1 =
∫
M

exp

(
− logμ(x)�Γ logμ(x)

2

)
dM(x) , (6)

and

Σ = a
∫
M

logμ(x)� logμ(x)

exp

(
− logμ(x)�Γ logμ(x)

2

)
dM(x) . (7)

Note that this integral is over the manifold M and that not
all points of the tangent space TμM correspond to one sin-
gle point on the manifold, i.e., the tangential cut locus. In
particular, for the S2 sphere, the tangent space is defined
inside a circle and not the whole R2 plane. The circle and the
area outside of it forms the tangential cut locus, and for any
point on the tangential cut locus there exists more than one
minimizing geodesic to the origin. As a simplification, in our
formulation we will not consider the tangential cut locus, and
will directly approximate normal distributions on the tangent
space TμM at the mean μ with covariance matrix:

Σ = 1

N

N∑
i=1

logμ(xi ) logμ(xi )
� , (8)

and

a−1 =
√

(2π)D det(Σ) , (9)

By not taking into account the tangential cut locus we are
underestimating the true normalization parameter.

We next perform a simple analysis of the error incurred
by obviating the tangential cut locus for the S2 sphere, which
is at a distance π from the origin. We can compute the
exact normalization term by calculating the integral of the
2D Gaussian on the tangent space using Eq. (6). We consider
the scenario of a normal distribution centered at the origin
and with diagonal covariance matrix Σ = diag(σ, σ ). Using
polar coordinates we can write:

(
a∗)−1 =

∫ 2π

0

∫ π

0
exp

(−r2

2σ

)
r dr dθ

= 2πσ

(
1 − exp

(−π2

2σ

))
. (10)

If we do not take into account the tangential cut locus,
the normalization term of Eq. (9) becomes a = 2πσ . As
expected, we are underestimating the true constant by a fac-
tor of a∗/a = 1 − exp(−π2/(2σ)). To make an estimation
error over a 1 %, σ ≥ −π2

2 log(0.01)
≈ 1.072. Therefore, unless

the distribution has an extremely large covariance, for the S2

manifold, the estimation error will be less than 1 %. In the
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case of human articulations modeled with S2 joints, most of
them do not even have a movement range of 1.072 radians,
and their covariance is much smaller, making this error neg-
ligible. Furthermore, since we model the data as a mixture
of Gaussians, each of the components of the mixture will
have a much smaller covariance than the total covariance of
the data. Experimentally, we found no difference between
considering or not the tangential cut locus.

For an alternate approach to estimate a normal distribution
on a Riemannian manifold where the Taylor expansion of the
Riemannian metric is used, please refer to Pennec (2006).

3.3 Improving Covariance Estimations

We next discuss alternative approximations to estimate
covariance matrices. These new estimates will later be used
in the place of the empirical covariance matrix Σ . The stan-
dard approach to compute a covariance matrix S = [s jk],
defines its entries as:

s jk = 1

N

N∑
i=1

(xi j − μ j )(xik − μk)
� , (11)

with μ j and μk being the j-th and k-th element of the mean
of the N samples x with dimensionality D. Note that this is
what was used in Eq. (8).

This empirical covariance matrix is known to be a poor
estimation of the true covariance matrix when the num-
ber of samples is small compared to their dimensionality,
yielding samples which are very sparsely distributed. Sev-
eral approaches have been proposed for improving this
approximation Ledoit and Wolf (2011), Schäfer and Strim-
mer (2005). In this paper, we will focus on Ledoit-Wolf
(LW) Ledoit and Wolf (2004) and Oracle Approximating
Shrinkage (OAS) Chen et al. (2010) techniques, as besides
being accurate for small datasets, they are also efficient to
compute for large training sets. They both belong to the so-
called family of “shrinkage estimators”.

In linear shrinkage problems, the estimation of the covari-
ance matrix is formulated as a constrained MSE minimization
w.r.t. a true covariance Σ :

min
ρ

E
[‖Σ∗ − Σ‖F/D

]

s.t. Σ∗ = ρ
tr(S)

D
I + (1 − ρ)S , (12)

where ‖A‖F = √
tr(AA�) is the Frobenius norm, ρ is the

shrinking coefficient, and I is the identity matrix.
Ledoit-Wolf Ledoit and Wolf (2004) proposed using the

following shrinking coefficient:

ρLW = min

( ∑N
i=1 ‖xi x�

i − S‖F/D

N 2(tr(S2) − tr2(S)/D)
, 1

)
, (13)

which is proven to converge to the optimal solution when
N , D → ∞ and D/N → c, 0 < c < ∞.

On the other hand, Chen et al. (2010) propose to use the
Oracle Approximating Shrinkage (OAS):

ρO AS = min

(
(1 − 2/D)tr(S2) + tr2(S)

(N + 1 − 2/D)
(
tr(S2) − tr2(S)/D

) , 1

)
,

(14)

which is the limiting form of the optimal oracle estimator or
ideal value of ρ.

Both the LW and OAS shrinkage estimators have the desir-
able property that the estimated covariance Σ is in general
invertible, unlike the empiric covariance estimation. In the
experimental section we will show that they also provide a
better covariance estimation for a wide variety of problems.

Another interesting case is when input samples are subject
to noise, e.g. due to measurement uncertainty. In this situation
we can introduce a prior on the structure of the input data
and, for instance, parameterize every sample xi by a specific
Gaussian distribution with covariance Σxi :

xi = yi + N (0, Σ−1
xi

) , (15)

where yi is the mean value of xi .
For the sake of completion we will consider each sample

xi to be weighted by wi (we will use this in the following
subsection, for the EM computation). Without loss of gener-
ality we assume

∑N
i=1 wi = N . The mean of the N samples

can then be written as:

μ = E[x] = E [E[x |y]] = E[wy] = 1

N

N∑
i=1

wi yi . (16)

By using the law of total covariance we can then write the
biased weighted sample covariance as

Σ = cov(x) = E[cov(x |y)] + cov(E[x |y])
= E[cov

(
wN (x, Σ−1

x )
)
] + cov(wy)

= E[w2Σx ] + cov(wy)

= 1

N

N∑
i=1

wi

(
Σxi wi + (yi − μ)(yi − μ)�

)
. (17)

In the results section we will show how it is possible to treat
the sample noise Σxi as a hyperparameter when estimating
mixtures from few samples, and that it behaves as a regular-
ization parameter that helps to improve performance.

123



394 Int J Comput Vis (2017) 122:388–408

3.4 Unsupervised Finite Mixture Modeling

Recall that our ultimate goal is to fit a mixture model on
Riemannian manifolds. For this, we will draw inspiration
on Figueiredo and Jain (2002), a variant of the EM algo-
rithm Dempster et al. (1977) that uses the Minimum Message
Length criterion (MML) Wallace and Freeman (1987) to
estimate the number of clusters and their parameters in an
unsupervised manner.

Given an input dataset, this algorithm starts by randomly
initializing a large number of mixtures. During the Maxi-
mization (M) step, a MML criterion is used to annihilate
components that are not well supported by the data. In
addition, upon EM convergence, the least probable mixture
component is also forcibly annihilated and the algorithm con-
tinues until a minimum number of components is reached.
The approach in Figueiredo and Jain (2002) is designed to
work with data in an Euclidean space. To use it in Riemannian
manifolds, we modify the M-step as follows.

We define each mixture component with a mean μk and a
concentration matrix Γk = Σ−1

k as a normal distribution on
its own tangent space TμkM:

p(x |θk) ≈ Nμk

(
0, Σ−1

k

)
, (18)

with θk = (μk,Σ
−1
k ). Remember that the mean μk is defined

on the manifold M, while the concentration matrix Γk is
defined on the tangent space TμkM at the mean νk = 0.
Also note that the dimensionality of the space embedding
the manifold is larger than the actual dimension of the man-
ifold, which in turn is equal to the dimension of the tangent
space. That is, for an arbitrary embedding of the manifold,
dim(Embedding(M)) > dim(TpM) = dim(M) = D.
This dimensionality determines the total number of parame-
ters Dθ specifying each component, and, as we will explain
below, plays an important role during the component annihi-
lation process. For full covariance matrices it can be easily
found that Dθ = D + D(D + 1)/2.

We next describe how the EM algorithm is extended from
Euclidean to Riemmanian manifolds. For a full derivation
of the algorithm please see Appendix 1. Specifically, let us
assume that K components survived after iteration t − 1.
Then, in the E-step we compute the responsibility that each
component k takes for every sample xi :

w
(i)
k = αk(t − 1)p(xi |θk(t − 1))∑K

k=1 αk(t − 1)p(xi |θk(t − 1))
, (19)

for k = 1, . . . , K and i = 1, . . . , N , and where αk(t − 1)

are the relative weights of each component k.
In the M-step we update the weight αk , the mean μk and

covariance Σk for each of the components as follows:

Fig. 4 Representation of a conditioned distribution. In the left we show
a joint Gaussian distribution over two variables xA and xB . We then on
the right illustrate the resulting distribution p(xA|xB) for a particular
point xB = b. We can see that this is also a Gaussian distribution, albeit
one-dimensional

αk(t) = 1

N

N∑
i

w
(i)
k = wk

N
,

μk(t) = arg min
p

N∑
i=1

d

(
N

wk
w

(i)
k x (i), p

)2

,

Σk(t) = 1

wk

N∑
i=1

(
logμk (t)(x (i))

) (
logμk (t)(x (i))

)�
w

(i)
k ,

(20)

If we wish to augment the data with noise covariance asso-
ciated to each sample, it is as simple as adding the weighted
average of the noise covariance to Σk(t) as per Eq. (17).

After each M-step, we follow the same annihilation cri-
terion as in Figueiredo and Jain (2002), and eliminate those
components whose accumulated responsibility wk is below a
Dθ /2 threshold. A score for the remaining components based
on the Minimum Message Length is then computed. This EM
process is repeated until the convergence of the score or until
reaching a minimum number of components Kmin . If this
number is not reached, the component with the least respon-
sibility is eliminated (even if it is larger than Dθ /2) and the
EM process is repeated. Finally, the configuration with min-
imum score is retained (see Figueiredo and Jain (2002) for
details), yielding a resulting distribution with the form

p(x |θ) =
K∑

k=1

αk p(x |θk) . (21)

3.5 Conditional Distribution

It is possible to use the generative model just described in
prediction tasks by estimating the distribution of a subset of
variables given another subset of variables. Essentially, given
a joint distribution, the distribution of a subset of variables
conditioned on another subset of variables is computed as
illustrated in Fig. 4. To do this we need to split the dimensions
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of the manifold into two subsets, x = (xA, xB). Each of these
components can be expressed in terms of the mixture as:

θk = (μk,Σ
−1
k ) =

(
(μk,A, μk,B),

[
Σk,A Σk,AB

Σk,B A Σk,B

]−1
)

.

(22)

The conditional distribution of one subset given the other
(i.e., the regression function), can be written as:

p(xA|xB, θ) = p(xA, xB |θ)

p(xB |θB)

=
∑K

k=1 αk p(xB |θk,B)p(xA|xB, θk,A)∑K
k=1 αk p(xB |θk,B)

. (23)

Observe that this is a new mixture model:

p(xA|xB, θ) =
K∑

k=1

πk p(xA|xB, θk) , (24)

with weights:

πk = αk p(xB |θk,B)∑K
j=1 α j p(xB |θ j,B)

, (25)

In the case of the Euclidean space, p(xA|xB, θk,A) can be
written as:

p(xA|xB, θk,A) = N (μk,A|B, Σ−1
k,A|B) ,

μk,A|B = μk,A + Σk,ABΣ−1
k,B

(
xB − μk,B

)
,

Σk,A|B = Σk,A − Σk,ABΣ−1
k,BΣk,B A . (26)

In our case we assume that the tangent spaces are not being
moved and that they are centered on the mean. This allows
us to write the conditional probabilities as:

p(xA|xB, θk,A) = Nμk,A|B (νk,A|B, Σ−1
k,A|B) ,

νk,A|B = Σk,ABΣ−1
k,B logμk,B

(xB) ,

Σk,A|B = Σk,A − Σk,ABΣ−1
k,BΣk,B A , (27)

where logμk,B
is the subspace of the tangent space logμk

at
the subset of the mean μk,B for the mixture k. Note that the
tangent spaces are not being moved, i.e., they still remain
centered on μ, although we are only looking at a subspace
of the tangent space.

In the results section we will show how we can use this to
predict the kinematics of a person given her/his pose.

3.6 Implementation Considerations

While using the tangent spaces allows representing PDFs of
data on manifolds, this comes at a price of higher compu-
tational cost as the data must be repeatedly projected back
and forth from the tangent space to the manifold. There are,
though, several implementation considerations that can be
taken into account to improve the efficiency.

For instance, as mentioned in Figueiredo and Jain (2002),
we might consider using less expressive covariance matrices
(e.g. diagonal ones). However, when using tangent spaces,
there is not necessarily a global coordinate frame represen-
tation, as the orthonormal basis of the tangent space depends
on the logp map, and thus, depends on the point p at which
it is calculated. When running the EM algorithm, the tangent
spaces at step t+1 may have a completely different basis than
those at step t , and thus, the data likelihood can change drasti-
cally, making the optimization much more non-linear. Since
(in contrast to full covariance matrices) diagonal matrices
can not adapt to arbitrary rotations of the coordinate system,
their performance is in general quite poor. This limitation
can only be bypassed when there exist a global coordinate
frame that can be defined for all tangent spaces indepen-
dent of the point they are centered on, e.g., the Euclidean
spaces Rn .

Nevertheless, when working with a manifold which is the
Cartesian product of other manifolds such as SAB = SA ×
SB , it is possible to use a block-diagonal matrix of the form:

ΣSAB =
(

ΣSA 0
0 ΣSB

)
=

(
Γ −1
SA

0

0 Γ −1
SB

)
= Γ −1

SAB
, (28)

which by construction is a valid covariance matrix and avoids
the issue of dealing with arbitrary orthonormal basis. The null
row and column elements highly simplify the computational
cost. By using less expressive covariance matrices, the model
has fewer degrees of freedom and generally converges in
fewer iterations, besides requiring less training data.

Furthermore, while in the Euclidean case the mean of a set
of points can be computed in closed form, when working with
manifolds we need to do this iteratively. In our implementa-
tion this is required in the M-step, where the parameters θk

are estimated as a weighted combination of terms. By con-
sidering only a subset of samples S such that

∑
i∈S w

(i)
k > εs

for a certain threshold εs , it is possible to improve the com-
putational efficiency without sacrificing accuracy.

In order to improve the initialization, we consider using
the k-means algorithm in the embedding space as a coarse
initialization for the algorithm. This ensures a fair spread of
the initial clusters over the data in contrast to a random sam-
pling that may fail when the data is unevenly distributed. In
the results section we will show that manifolds with large
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dimension lead to fewer clusters being annihilated in the ini-
tial iteration and more stable convergence properties.

4 Manifolds

We will now describe several manifolds that we will use in
the experimental section. For each manifold we will briefly
discuss their structure and the expp and logp map implemen-
tations.

4.1 Quadratic Surfaces

In general, there is no closed-form of the expp and logp maps
for an arbitrary Riemannian manifold. There are, though,
approximations for computing them Dedieu and Nowicki
(2005), Sommer et al. (2014). In particular we will consider
implicitly defined surfaces.

Computing the expp map corresponds to solving an initial
value ordinary differential equation problem. Refer to Dedieu
and Nowicki (2005) for a neat numerical algorithm to obtain
solutions to the map.

The computation of the logp map is harder and is based
on a shooting algorithm. This relies on the expp map to itera-
tively refine an initial guess, and is a natural generalization of
error correction from the Euclidean space to manifolds. We
use the implementation proposed in Sommer et al. (2014).

4.2 S2 Manifold

There is an explicit mapping between the unit sphere S2

and its tangent space Tp S2 Said et al. (2007). Let x =
(x1, x2, x3)

�, y = (y1, y2, y3)
� be two unit spoke direc-

tions in S2 and v = (v1, v2)
� a point in Tp S2. The expp and

logp maps are in this case:

expp(v) = R−1
p

(
v1

sin ‖v‖
‖v‖ , v2

sin ‖v‖
‖v‖ , cos ‖v‖

)
,

logp(x) =
(

y1
θ

sin θ
, y2

θ

sin θ

)
, (29)

where Rp is the rotation of p to the north pole, ‖v‖ = (v2
1 +

v2
2)

1
2 , y = Rpx and θ = arccos(y3).

4.3 Human Pose Manifold

The human pose is commonly represented using a discrete
set of points in 3D space that correspond to different articula-
tions Ionescu et al. (2011), Simo-Serra et al. (2013; 2012). For
a specific individual, the distance between two consecutive
joints, e.g., elbow and hand, is fixed. It is therefore com-
mon to separate the specific characteristics of the individual

given by the distances between two consecutive joints, from
his/her pose, i.e., the relative rotation between two consecu-
tive joints Ionescu et al. (2014). We will therefore consider the
human pose as the set of relative rotations between all pairs
of consecutive joints which forms a tree structure Sommer
et al. (2010), Tournier et al. (2009). We will further represent
this relative motion as points on a sphere. That is, given a
specific joint, the next consecutive joint will lay on the S2

sphere centered on the previous one. The whole pose will
thus be represented as the Cartesian product of all the rela-
tive rotations between consecutive joints. We will write the
human pose manifold H as

H = S2 × S2 × · · · × S2 . (30)

In this case the expp and the logp maps for the human pose
manifold will consist of the Cartesian product of the expp
and logp maps for all consecutive joints, which is one less
than the total number of joints. Note that while there exist
other manifolds for 3D human pose, such as one defined by
using forward kinematics Hauberg et al. (2012), they do not
have closed form solutions for the expp and logp operators.

4.4 Joint Pose and Kinematic Manifold

We can obtain a joint human pose and kinematics manifold
with the tangent bundle of the human pose manifold, which
we equip with a Riemannian metric called the Sasaki met-
ric Sasaki (1958). The tangent bundle is defined as:

TM = {(x, v) | x ∈ M, v ∈ TxM} . (31)

Let (u, w) be a vector tangent to TM at a point (x, v).
Both u and w must be lifted from the tangent space TxM
to T(x,v)TM. The lift of the u component is called the hor-
izontal lift of u and denoted uh . Likewise, the lift of the w

component is called the vertical lift of w and denoted wv .
Geodesics along uh move x while parallelly translating u,
whereas geodesics along wv move v linearly while keeping
x fixed. Given two elements a = (x1, v1), b = (x2, v2) ∈
TM, the Sasaki metric ĝ(a, b) is given as

ĝ(xh
1 , xh

2 ) = g(x1, x2) ,

ĝ(xh
1 , vh

2 ) = ĝ(xh
2 , vh

1 ) = 0 ,

ĝ(vh
1 , vh

2 ) = g(v1, v2) , (32)

where g is the metric on M. Notice that there are no cross-
terms between x and v.

For two consecutive poses x1 and x2 acquired at a constant
framerate, we can compute the velocity v12 between x2 and
x1 directly on the tangent space through the logarithmic map
at x1 and thus define the joint pose and kinematic manifold
as:
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Fig. 5 Visualization of the velocity. Velocities correspond to points on
the tangent space at x1. Given a point x2 (corresponding to the pose
acquired right after x1), the velocity is the curve going from x1 to x2
which is equivalent to a straight line in the tangent space. The Euclidean
norm of v12 on the tangent space corresponds to the geodesic distance
from x1 to x2

TH = {
(x1, v12) = (

x1, logx1
(x2)

) | x1, x2 ∈ M}
, (33)

where ‖v12‖ is the geodesic distance between both points as
shown in Fig. 5.

We next define the exponential and logarithmic maps for
the elements (x, v) ∈ TH. For a local neighbourhood of
x , the elements v ∈ TxH form a vector space and thus the
operators can be simply defined as in the Euclidean case with

logv1
(v2) = v2 − v1 and expv1

(v2) = v2 + v1 . (34)

This ensures that the mean of the data on the tangent space
at the geodesic mean will be 0, i.e, the mean of {logp(xi )}xi

will be 0 if p is the geodesic mean.
We can also further extend this manifold by including

more poses acquired sequentially at a constant frame rate.
For example, given three consecutive poses x1, x2 and x3 it is
possible to map these points to a manifold in which one pose
is the reference and the other two poses are considered offsets
from that reference or tangent vectors. That is (x1, x2, x3) is
mapped to (logx2

(x1), x2, logx2
(x3)) where x2 would be the

local reference.

5 Results

In this section we will extensively evaluate our model on
both synthetic and real data. We consider a number of man-
ifolds and evaluation procedures to show the flexibility and
diversity of our model. The section is structured as follows:

1. Evaluation on the recovery of synthetic distributions on
quadratic surfaces.

2. In depth results on modeling synthetic distributions on
the S2 sphere.

3. Modeling human pose and kinematics on the large-scale
Human3.6M dataset Ionescu et al. (2014).

4. Tracking prior by extending the manifold with its tangent
bundle.

5.1 Recovering Distributions on Quadratic Surfaces

We first present experiments on two 2D manifolds defined
by

M =
{
(x, y, z) | cx2 + y2 + z2 = 1

}
. (35)

For the first example we generate 1800 points on the sphere
S2 (i.e. c = 1) using 6 clusters with parameters μi =
[cos(iπ/3), 0, sin(iπ)/3] and Σi = diag(0.2, 0.3) for i =
1, . . . , 6. The algorithm is initialized with 30 clusters. This
manifold has the closed-form solution for the expp and logp
operators given by Eq. (29), allowing the method to exe-
cute in under a minute. Fig. 6 shows how the final solution
retrieves the 6 clusters used to generate the data.

For the second example we generate 1500 points from
a mixture of 5 Gaussians on the manifold of Eq. (35) with
c = −2, as shown in Fig. 7a. The Gaussian parameters used
in this case are:

μ1 = [0.83,−1.09, 1.09] Σ1 = diag(0.20, 0.30)

μ2 = [0, 0, 1] Σ2 = diag(0.25, 0.10)

μ3 = [0.30,−0.77, 0.77] Σ3 = diag(0.20, 0.10)

μ4 = [0, 0, 1] Σ4 = diag(0.10, 0.25)

μ5 = [0,−0.89, 0.44] Σ5 = diag(0.25, 0.10)

It is worth to highlight two important details about this mix-
ture. First, the covariances depend on the local orthonormal
basis of the tangent plane, thus even if they are diagonal,
in practice they are not when projected back onto the mani-
fold, as shown in Fig. 7a. Second, clusters 2 and 4 share the
same mean. In this example, the algorithm is initialized with
15 clusters and uses the generic forms of the expp and logp
operators that rely on the derivative of the implicit manifold
equation as detailed in Dedieu and Nowicki (2005), Som-
mer et al. (2014). Additionally, the threshold εs described in
Sect. 3.6 is set to 0.999 to speed up the computations. In this
scenario the underlying distribution is recovered as shown in
Fig. 7.

In these synthetic experiments, we also analyze the effects
of the non-linearities of the expp and logp operators by
evaluating the method on a sphere (Eq. (35) with c =
1) using 6 clusters with mean and covariance parameters
μi = [cos(iπ/3), 0, sin(iπ)/3] and Σi = diag(σ, σ ) for
i = 1, . . . , 6, and for increasing values of σ . Several exam-
ples of input distributions with different covariances are
shown in Fig. 8a. The effect of the number of input samples
is seen by testing with N = {600, 1800, 6000}. The algo-
rithm parameters used are the same as in the aforementioned
sphere example.
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Fig. 6 Sphere example. a Input data on the manifold. It consists of
1800 points sampled from a mixture of 6 Gaussians. Note that they are
colored only for visualization purposes; our algorithm does not know
a priori these clusters. b Evolution of the cost function, based on the
minimum message length of all components of the mixture. Vertical
lines represent iterations in which a cluster is annihilated. The optimal
mixture (with 6 components) is highlighted with a green dot. c Evolu-

tion of the number of clusters. d The points projected onto the tangent
space of one specific cluster from the solution mixture. Each point is
colored by the value of Eq. (18). The cluster on the opposite side of the
point the tangent space is centered on is seen to be spread around the
cut locus, which is a circle of radius π . Best viewed in color (Color
figure online)
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Fig. 7 Quadratic surface example. a Section of the manifold with input data generated from 1500 points sampled from a mixture of 5 Gaussian
distributions. b, c refer to Fig. 6. All retrieved clusters are shown in (d–h). Best viewed in color (Color figure online)

The results are shown in Fig. 8b–d. With less spread Gaus-
sians and little overlap, having more data can be seen to be
beneficial. However, with more overlap and samples, gener-
ally the data gets partitioned into more clusters. These results
seem to indicate that the algorithm tends to implicitly favor
smaller Gaussians over larger ones, suggesting that there
shouldn’t be problems with approximating distributions. It
is also worth mentioning that these results are for clustering.
When estimating a probability density function, the number
of clusters is not particularly important as long as the under-
lying density is properly approximated.

Finally, in order to evaluate the benefit of using multiple
tangent spaces over a single one, we perform a comparison on
the sphere manifold, in two situations: the same 6 clusters as
in Fig. 8 with Σi = diag(0.2, 0.3), and when fully covering
the sphere with two additional clusters centered at (0, 1, 0)

and (0,−1, 0). We also compare against an approach that
uses von Mises–Fisher (vMF) distributions Banerjee et al.
(2005), which is specifically designed to cluster data on a
sphere, and two approaches based on Dirichlet Processes
(DP-GMM and DP-TGMM). DP-GMM uses split/merge
proposals with parallel sampling in order to estimate a mix-
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Fig. 8 Effect of cluster size and number of samples. Evaluation of the
proposed algorithm for increasing covariance sizes diag(σ, σ ) and three
amounts of samples points N on the sphere S2. For each combination
of these parameters we run 100 different experiments and we report

the average results. a Examples of the different input data distributions
we consider. b Mean number of solution clusters found. c, d Ratio of
estimated solutions with a number of clusters subject to different con-
straints. Best viewed in color (Color figure online)

Table 2 Recovering
distributions on the Sphere
manifold

6 Clusters 8 Clusters

Clusters Correct Clusters Correct

Ours 6.09 (0.32) 0.92 8.00 (0.00) 1.00

1-TM 7.05 (1.38) 0.46 15.25 (2.17) 0.00

vMF 16.59 (1.71) 0.00 19.86 (2.35) 0.00

DP-GMM Chang and Fisher (2013) 7.83 (1.27) 0.08 3.43 (3.26) 0.26

DP-TGMM Straub et al. (2015) 4.49 (1.98) 0.55 8.34 (1.02) 0.51

We show results on recovering an original distribution on the Sphere manifold with 6 and 8 clusters. Results
obtained from 100 different evaluations and 1000 samples per cluster. We compare our method with using a
single tangent space (1-TM), von Mises–Fisher distributions (vMF), and two variants of dirichlet process
mixture models (DP-GMM and DP-TGMM)

ture model. This was then extended to sphere manifolds to
use multiple tangent spaces (DP-TGMM). For the vMF dis-
tributions we use our own improved implementation based
on Figueiredo and Jain (2002) (see Appendix 2), while we
use the authors implementation of DP-GMM and DP-TGMM
from Straub et al. (2015). We use the default parameters for
all approaches except DP-GMM and DP-TGMM in which
we augment the number of allowed iterations to improve their
results.

The results are summarized in Table 2. In the 6-cluster
case our algorithm retrieves the correct number of clusters
in a 92 % of the experiments, while one single tangent plane
only provides a 46 % of success. Note that we evaluate the
performance of the methods based only on the number of
clusters, and not comparing the entire density probability. In
the following subsection we will show that the distributions
obtained with one single tangent plane are also much less
representative as those obtained with the proposed approach.
In the 8-cluster case our algorithm’s performance improves
and it always finds the correct clusters, while a single tan-
gent space always fails, with an average of 15 clusters found.
This is likely caused by the fact that the 8-clusters are evenly

distributed around the sphere causing a single tangent space
to suffer from extreme deformation. This amount of defor-
mation on the contrary helps our optimization process to
place mixtures, and thus tangent spaces around the sphere
exploring more of the solution space and finding the near
optimal solution. On the other hand, the 6-clusters do not
have such a large amount of deformation and our approach
is sometimes unable to properly locate the cluster means.
Using vMF distributions results in an oversegmentation of
the data in both experiments. This is due to the fact that
the vMF distributions use a single parameter κ for the con-
centration of the data, while our model allows for much
more expressive covariances in the form of matrices. The
Dirichlet process-based approaches show promising results,
especially the sphere-specific approach DP-TGMM, which is
able to find the correct distribution roughly half of the times.
However, in all cases this approach is outperformed by our
approach. These results clearly show the advantage of using
multiple tangent planes to better approximate manifold dis-
tributions. In the next subsection we will evaluate more into
detail our method on this manifold.
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5.2 Estimating Distributions on the S2 Sphere

In order to evaluate the different hyperparameters of our
model, we perform much more in depth analysis of cluster-
ing on the S2 sphere manifold. In particular, we focus on the
influence of the number of samples used to learn the distrib-
ution, the specific covariance estimation algorithm, k-means
initialization, and the sample noise. We consider a S2 sphere
with a synthetic distribution formed by 6 clusters as shown
in Fig. 6a. As a metric we will consider the log-likelihood
of 60,000 test samples, randomly generated from the distri-
bution (10,000 samples per cluster). That is, for each test
sample x we first compute l(x) = log(

∑
k αk p(x |Θk)), and

then we report the average log-likelihood for all samples.
The larger this value, the better the samples fit the estimated
distribution.

Additionally, unless otherwise specified, for the rest of
parameters we use the same values as in the previous sub-
section. For all experiments, we randomly sample from the
distributions 100 times to obtain different training sets and
report the mean and standard deviation of the results for all
100 learned models, each evaluated on the 60,000 test sam-
ples.

In our first experiment we simultaneously considered the
effect of the number of training samples, type of covariance
estimator and whether or not k-means is used for initializa-
tion. We report the results in Table 3. We can see that the
shrinkage-based estimators outperform the empirical-based
ones, especially when the number of training samples is small
compared to the dimensionality of the manifold. Also note
that our approach consistently outperforms methods rely-
ing on a single tangent space and the approach using von
Mises–Fisher distributions. Regarding the use of k-means
for initialization, we did not observe that much difference,
likely due by the low-dimensionality of the manifold. Finally,
no matter the approach used, performance degrades with
decreased amounts of training data.

We also looked into the effect of sample noise when clus-
tering. Even though the true sample noise is not known, there
are applications in which it may be possible to obtain it, such
as when clustering data obtained from sensors with known
properties. In particular we look at the extreme case of small
amounts of training data given the manifold dimensional-
ity. We summarize the results of this analysis in Table 4.
Note that all approaches in this case benefit from this added
sample noise until it becomes too large. The best result is
obtained with Ledoit-Wolf covariance shrinkage approach
and Σxi = 10−2 sample noise (the units of this noise could
be interpreted as an angle in radians).
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Table 4 Comparison of the effect of the sample noise, k-means initialization, and different covariance estimators

Sample noise Cov. Est. Empirical LW Ledoit and Wolf (2004) OAS Chen et al. (2010)

k-Means No Yes No Yes No Yes

0 Mean −1.4820 −1.4826 −1.1064 −1.1031 −1.1829 −1.1849

SD 0.3094 0.2795 0.1121 0.1095 0.1702 0.1434

10−3 Mean −1.3673 −1.4093 −1.0890 −1.0811 −1.1473 −1.1572

SD 0.2038 0.2529 0.1071 0.1050 0.1270 0.1423

10−2 Mean −1.0877 −1.0916 −1.0265 −1.0157 −1.0138 −1.0057

SD 0.0987 0.0979 0.0730 0.0609 0.0781 0.0772

10−1 Mean −1.2261 −1.2287 −1.2374 −1.2440 −1.2595 −1.2621

SD 0.0395 0.0399 0.0437 0.0440 0.0432 0.0437

Evaluation on a synthetic distribution on the S2 sphere with 60 training samples (10 per cluster) using the log-likelihood of 60,000 random test
samples. The best result is shown in bold

5.3 Human Pose Prior

To illustrate a practical utility of our approach, we used it
to model human pose on the Human3.6M Dataset Dataset
Ionescu et al. (2011; 2014) which has different subjects per-
forming a variety of activities. We consider a simplified
model of the human body with 15 joints, represented in a
24-dimensional pose manifold. The corresponding block-
diagonal covariance (as in Simo-Serra et al. 2014) has 46
non-zero elements, and the full covariance matrix has 576
non-zero elements.

We split the dataset by using all the 15 categories of
actions, each comprising two subcategories, for actors 5, 6,
7, 8, 9, and 11 for the training set, and use actor 1 as the
test set. We perform an in-depth analysis of our model using
this split, and finally show results on generalization using
other actors. The diversity of the actions makes the dataset
very challenging to learn. This gives us 465,325 frames for
training and 62,064 frames for testing. Since the frames are
highly correlated because motions are smooth, we perform a
random subsampling before training our model. To assess its
influence, we will consider four different subsampling levels.

We consider three baselines: standard Gaussian mixture
model directly on 3D joint positions, using a single tan-
gent space for clustering (1-TM), and clustering with von
Mises–Fisher distributions (vMF). We also compare five dif-
ferent variants of our model. The block-diagonal covariance
matrix approach of Simo-Serra et al. (2014), without covari-
ance shrinkage estimators and with them. Furthermore, we
observed that when not using block matrices, the empiri-
cal covariance estimation run into numerical issues, while
shrinkage estimators performed stable. Therefore, we also
report results for non-block-diagonal covariance matrices.
All these cases are summarized in Table 5.

Results show that, as expected, the non-manifold based
approach (GMM) fails. The one tangent plane model (1-TM)
performs poorly due to the non-linearities of the approx-

Table 5 Modeling 3D human pose

Model Subsampling

0.01 0.05 0.15 0.30

GMM −708.4 −708.4 −708.4 −708.4

1-TM −1.653 −2.647 −3.959 −3.975

vMF 3.413 3.414 3.412 3.416

Ours Block 4.995 4.570 3.130 1.388

LW block 5.285 5.581 3.614 1.560

OAS block 4.937 4.621 3.076 1.289

LW 7.272 8.039 5.225 2.765

OAS 7.250 8.411 7.276 4.624

Log-likelihood of test data for various models. Evaluating models
learned with different subsamplings of the training data. We consider
Gaussian mixture models (GMM), using a single tangent plane (1-TM),
von Mises–Fisher distributions (vMF), and five different variants of our
model (using block covariance matrices or not, and what type of covari-
ance estimation algorithm is used). The best result is highlighted in bold

imation, which gets worse with more training data. The
von Mises–Fisher performs consistently better. We see that
our models perform best, although with too much heav-
ily correlated training data (larger subsampling ratios) they
tend to suffer from overfitting and performance degrades.
In particular, the best performance is obtained using the
Oracle Approximating Shrinkage algorithm for covariance
estimation with 5 % of the training data. This model greatly
outperforms the previous work and confirms the importance
of more robust covariance estimation algorithms.

5.4 Tangent Bundle-Based Tracking Prior

We also evaluate the proposed algorithm in a tracking task, in
which, given several consecutive frames we seek to predict
the next one. We will consider three manifolds:
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Table 6 Log-likelihood of joint pose and kinematic models p(V)

Manifold Subsampling 0.05 0.15 0.30

Method #Mix Train Test #Mix Train Test #Mix Train Test

V1 Block 38 18.708 16.767 173 24.232 17.281 365 28.276 17.030

LW block 25 16.347 15.197 161 22.417 16.991 335 26.486 17.251

OAS block 40 18.701 16.773 177 24.382 17.502 370 28.318 16.935

LW – – – 9 24.036 20.087 22 28.267 21.711

OAS – – – 8 25.976 22.134 22 31.842 24.105

V2 Block 19 25.874 30.249 75 32.447 34.694 180 36.545 35.277

LW block 17 24.522 28.982 72 31.348 33.812 170 35.313 34.834

OAS block 17 25.184 29.587 78 32.669 34.807 167 36.078 35.133

V3 Block 13 17.825 27.294 43 26.575 34.819 98 31.383 37.489

LW block 11 16.013 25.106 37 24.759 33.004 84 29.565 36.478

OAS block 11 16.772 25.106 47 27.075 34.959 98 31.173 37.085

We evaluate on several different manifolds for various degrees of subsampling of the training data. For each case, we plot the number of estimated
mixture components (#Mix), and the log-likelihood values for the train and test sets. Testing is performed on subject 1 while training is performed
on the rest of the subjects

V1 = (
xt , logxt

(xt+1)
) = TH ,

V2 = (
logxt

(xt−1), xt , logxt
(xt+1)

)
,

V3 = (
logxt

(xt−2), logxt
(xt−1), xt , logxt

(xt+1)
)

, (36)

where xt is the pose at frame t .
For each manifold we will estimate a mixture that learns

p(V). Once this is learned it is then possible to pre-
dict the next pose by using the conditional distribution
p(logxt

(xt+1)|V∗) where V∗ is the manifold resulting from
removing logxt

(xt+1) from V . Recall that this marginal is
indeed another mixture model.

We first perform a quantitative evaluation by looking at the
log-likelihood of p(V) for the test and train sets. As we did
in the previous subsection, we subsample the training data to
gain in efficiency. This is possible with no performance loss,
due to the large degree of redundancy in the training data.
A subsampling percentage of 15 % corresponds to 69,799
training samples, roughly the same number as the test set.
The parameters are set to the same values as in the pose-
only case. Table 6 summarizes the results, in which for each
method and experimental setup, we display the number of
components of the estimated mixture and the log-likelihood
of the train and test sets. Note that the number of estimated
components increases with the amount of data. As the dimen-
sion of the manifold is increased, it is harder to learn the
models due to the additional degrees of freedom of each
covariance matrix. It is important to note that we are unable
to use full covariance matrices on the V2 and V3 manifolds
due to the large number of degrees of freedom (5184 and
9216 respectively), while it is possible to use them with 0.15
and 0.30 subsampling on the V1 manifold (2304 degrees of
freedom). Furthermore, it is only possible to estimate the

covariance of such large matrices with shrinkage covari-
ance estimators. Using a full covariance matrix provides a
large increase in performance over the block-diagonal when
applicable. Additionally, adding more temporal information
increases performance, although, more data is needed to learn
these models.

We next evaluate the model to predict future positions,
that is, the log-likelihood of p(logxt

(xt+1)|V∗), instead of the
global likelihood p(V). We compare against a GD approach
both trained on a global level (a single Gaussian is aver-
aged for all joints) and on a local level (a single Gaussian
is averaged for each joint independently).2 Recall that both
these approaches consists of simply defining the motion as
a Gaussian distribution centered on the previous frame, and
they operate directly on the Euclidean space, and not on the
manifold. We train several kinematic models with different
degrees of subsampling of the training data, and report the
results in Table 7. We can see that the local Gaussian diffusion
(LGD) model outperforms the standard Gaussian diffusion
(GD) model. Yet, our model outperforms both of them by a
considerable margin. These results largely agree with Table 6.

In order to assess the generalization capability of the algo-
rithm, we evaluate our approach with different subject splits
and summarize the results in Table 8. We use the leave-one-
out strategy: using all the subjects except one for training,
which is used for testing. We evaluate as many times as there
are subjects, changing the subject which is being left out for
testing each time. For fairness with the GD approaches that
only account for pose (and not velocity) information, we just

2 Since vMF-distributions are not directly applicable to predicting
velocities on the hypersphere we do not include them in this experi-
ment.
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Table 7 Evaluation of velocity estimation

Manifold Method Subsampling

0.05 0.15 0.30

– GD 5.450 5.425 5.431

– LGD 6.428 6.412 6.410

V1 Block 11.842 11.739 11.493

LW block 10.503 11.097 10.995

OAS block 11.713 11.829 11.363

LW – 12.115 12.937

OAS – 13.474 14.100

V2 Block 14.715 16.501 16.819

LW block 14.008 15.993 16.402

OAS block 14.398 16.644 16.725

V3 Block 14.024 16.570 17.341

LW block 13.445 16.053 17.050

OAS block 13.591 16.517 17.259

p(logxt
(xt+1)|V∗). Evaluation on different manifolds and subsampling

levels of the training data. We report the log-likelihood of the velocity
prediction of the testing set. Testing is done on subject 1 while train-
ing is done on the rest of the subjects. Gaussian diffusion (GD) and
local gaussian diffusion (LGD) are used as baselines. Both approaches
operate on the Euclidean space and not on the manifold

consider the V1 manifold. For all approaches a 0.15 subsam-
pling ratio is used. Regarding our approach, we use it both
with block diagonal matrices, as in Simo-Serra et al. (2015),
and with the improved version based on the Oracle approxi-
mating shrinkage (OAS). Observe that the latter yields a large
performance gain. On average, both alternatives outperform
the Gaussian Diffusion baselines, except for subject 7. In this
dataset in particular, the actors were given a lot of freedom
to perform the actions. It is likely that subject’s 7 motion
largely deviates from other subjects. It is also interesting to
note that subjects 1, 8, and 11 have better performance on
the test set rather than the train set. This is likely due to the
fact that there is correlation across subjects.

Finally, we show some qualitative examples in Fig. 9. For
this, we directly sample from the conditional distribution for
several frames. It is worth noting that we can obtain 100,000
samples in 0.85 seconds on a Intel Core i7 2.93GHz CPU
using a Matlab implementation.

6 Conclusions

We have presented a novel data-driven approach for mod-
eling the probability density function of data located on a
Riemannian manifold. By using a mixture of distributions,
each with its own tangent space, we are able to ensure the con-
sistency of the model while avoiding most of the linearization
error caused by a single tangent space. The approach has Ta
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Fig. 9 Qualitative examples. Several examples from the test set using
the 15 % subsampled model on theV1 manifold. We visualize the ground
truth and 100 samples from our model in 3D. For visualization purposes
the velocity is scaled by a factor 10× and the samples are scaled by 3×.

We also show the distribution of the samples on the tangent space for
some of the joints, scored by their log-likelihood with the ground truth
as a black diamond

been experimentally validated on various synthetic exam-
ples that highlight their ability to both correctly approximate
manifold distributions and discover the underlying data struc-
ture. Furthermore, the approach has been tested on a large
and complex dataset, where it is shown to outperform the
traditionally used Euclidean Gaussian Mixture Model, von
Mises–Fisher distributions and an approach using a single
tangent space.

As a particular example, we have deeply studied the use
of the model as a 3D pose tracking prior, and have shown
it greatly outperforms the standard Gaussian diffusion prior.
Additionally, by using shrinkage covariance estimation algo-
rithms we are able to gain both robustness to poor data, and
use more expressive covariance matrices.

Future works include exploiting the proposed algorithm
on different manifolds and datasets. We have presented
results using Gaussian distributions and have focused on
the S2 manifold. However, the algorithm presented here
should work with any distribution and on any manifold
for which the exponential and logarithmic map operators
are provided, as shown on a quadratic surface. For exam-
ple, it could be possible to initially estimate unknown
and non-parameterizable manifolds Brand (2003), and use
approximate operators Freifeld and Black (2012).

Acknowledgements We would like to thank the three anonymous
reviewers for their insights and comments that have significantly con-
tributed to improving this manuscript. This work was partly funded by
the Spanish MINECO project RobInstruct TIN2014-58178-R and by
the ERA-net CHISTERA project I-DRESS PCIN-2015-147.

Appendix 1: Derivation of Mixture Models on Rie-
mannian Manifolds

We follow the standard expectation-maximization approach
to maximize the log-likelihood of our model adapting it to

Riemannian manifolds. For simplicity, we will not consider
the Minimum Message Length criteria for model selection.
We start out by defining the log-likelihood of the model
λ(x, θ) and bounding it by Jensen’s equality:

λ(x, θ) =
N∑

i=1

log
K∑

k=1

αk p(x (i)|θk)

≥
N∑

i=1

K∑
k=1

w
(i)
k log

αk p(x (i)|θk)

w
(i)
k

= B(x, θ) . (37)

with w
(i)
k as auxiliary variables that represent membership

probabilities. We can maximize over the lower bound B(x, θ)

instead of the untractable full likelihood.

E-step

The E-step consists of maximizing the auxiliary terms w
(i)
k

which are the membership probabilities of the samples. This
is done by solving:

arg max
w

B(x, θ)

subject to
N∑

i=1

w
(i)
k = 1, k = 1, . . . , K

w
(i)
k ≥ 0, i = 1, . . . , N , k = 1, . . . , K .

(38)

This is straight forward to do by computing the derivative
and equating it to 0 to obtain the update rule for step t :

w
(i)
k (t) = αk(t − 1)p(xi |θk(t − 1))∑K

k=1 αk(t − 1)p(xi |θk(t − 1))
. (39)
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M-step

In this step, we have fixed w and are updating the other para-
meters θ = (μ,Σ) and α by solving:

arg max
θ,α

B(x, θ)

subject to
K∑

i=1

αk = 1

αk ≥ 0, k = 1, . . . , K .

(40)

We shall follow the same approach as in the E-step and
compute the partial derivatives to obtain the update rules.
In particular, both α and Σ are straight forward to compute,
and do not significantly deviate from the standard formula-
tion. Thus for α we obtain:

αk(t) = 1

N

N∑
i

w
(i)
k = wk

N
, (41)

and for Σ :

∂ B(x, θ)

∂Σk
= 1

2

N∑
i=1

w
(i)
k

(
logμk

(x (i)) logμk
(x (i))� − Σk

)
,

(42)

and thus,

Σk(t) =
∑N

i=1 w
(i)
k logμk

(x (i)) logμk
(x (i))�∑N

i=1 w
(i)
k

. (43)

For the mean μk we can follow the same approach, however,
due to the logarithmic map, it is slightly different to resolve.
We start out by computing the partial derivative:

∂ B(x, θ)

∂μk
=

N∑
i=1

w
(i)
k Σ−1

k logμk
(x (i))

∂ logμk
(x (i))

∂μk
. (44)

In general, there is no analytic solution to
∂ logμk

(x (i))

∂μk
.

However, under the assumption that
∂ logμk

(x (i))

∂μk
= c where

c �= 0 is a constant, and equating the partial derivative to 0,
we can obtain:

N∑
i=1

w
(i)
k logμk

(x (i)) = 0 . (45)

For simply connected and complete manifolds whose curva-
ture is non-positive (i.e., Hadamard manifolds) and bounded
from below, there exists one and only one Riemannian center

0

2

4

6

8

Fig. 10 Plot of the change Frobenius norm of
∂ logμk

(x (i))

∂μk
. We compute

the derivative numerically using a first order approximation as there is
no analytic form. We can see for points near the center there is small
change in the derivative and thus little error in the approximation we
make by considering the derivative to be constant. For visualization
purposes we only display points with a change of under 10 units

of mass which is characterized by E[logμ(x)] = 0 Darling
(1996). Note that a compact and simply connected manifold
with a non-positive and bounded from below curvature has
no cut locus. In this case, as Eq. (45) is the discrete expec-
tation of the weighted sum, we can establish the update rule
for the mean by:

μk(t) = arg min
p

N∑
i=1

d

(
N

wk
w

(i)
k x (i), p

)2

. (46)

Note that this does not hold for the case in which there is a cut
locus, in which case there may not be only one Riemannian
center of mass. However, in practice, this approach will gen-
erally converge to the center of mass. We will use Eq. (46)
in all cases.

Finally, we perform a numerical analysis of the error for

the S2 sphere by numerically computing
∂ logμk

(x (i))

∂μk
and visu-

alizing the results. In particular we visualize the change of
Frobenius norm of the Jacobian in Fig. 10. We can see that
points near the origin have very little change in the derivative.
Again, the use of multiple tangent planes favors configura-
tions in which the points are close to the center, and thus,
keeps the error produced by approximating the partial deriv-
ative to a constant within reasonable bounds.

Appendix 2: Clustering with Von Mises–Fisher Dis-
tributions

Given a random vector x on the unit hypersphere of dimen-
sion q − 1, the probability density function of a von
Mises–Fisher distribution with mean direction μ and con-
centration κ can be written as:
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fq(x |μ, κ) =cq(κ)eκμTx ,

cq(κ) = κq/2−1

(2π)q/2 Iq/2−1(κ)
, (47)

where ‖μ‖ = 1, and Iq/2−1 is the modified Bessel function
of first kind and order q/2 − 1. Note that the concentration
parameter κ is a single scalar that represents a uniform dis-
tribution on the sphere for κ = 0 and is unimodal for κ > 0.

The algorithm from Figueiredo and Jain (2002) can be
modified to use von Mises–Fisher distributions by adapting
the way the distributions are recalculated in the M-step. This
can be computed by:

rk =
N∑

i=1

w
(i)
k x (i) , (48)

μk(t) = rk

‖rk‖ , (49)

κk(t) =‖rk‖(q − ‖rk‖2)

1 − ‖rk‖2 . (50)

As there exists no analytic form of Iq/2(κk(t))/Iq/2−1(κk(t))
= rk , the computation of κk(t) is indeed an approxima-
tion Banerjee et al. (2005).
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