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Abstract We propose a deep learning approach to free-
hand sketch recognition that achieves state-of-the-art perfor-
mance, significantly surpassing that of humans. Our superior
performance is a result of modelling and exploiting the
unique characteristics of free-hand sketches, i.e., consist-
ing of an ordered set of strokes but lacking visual cues
such as colour and texture, being highly iconic and abstract,
and exhibiting extremely large appearance variations due
to different levels of abstraction and deformation. Specif-
ically, our deep neural network, termed Sketch-a-Net has
the following novel components: (i) we propose a network
architecture designed for sketch rather than natural photo
statistics. (ii)) Two novel data augmentation strategies are
developed which exploit the unique sketch-domain proper-
ties to modify and synthesise sketch training data at multiple
abstraction levels. Based on this idea we are able to both
significantly increase the volume and diversity of sketches
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for training, and address the challenge of varying levels of
sketching detail commonplace in free-hand sketches. (iii)
We explore different network ensemble fusion strategies,
including a re-purposed joint Bayesian scheme, to further
improve recognition performance. We show that state-of-
the-art deep networks specifically engineered for photos of
natural objects fail to perform well on sketch recognition,
regardless whether they are trained using photos or sketches.
Furthermore, through visualising the learned filters, we offer
useful insights in to where the superior performance of our
network comes from.

Keywords Sketch recognition - Convolutional neural
network - Data augmentation - Stroke ordering - Sketch
abstraction

1 Introduction

Sketches are very intuitive to humans and have long been
used as an effective communicative tool. With the prolif-
eration of touchscreens, sketching has become easy and
ubiquitous—we can sketch on phones, tablets and even
watches. Research on sketches has consequently flourished
in recent years, with a wide range of applications being
investigated, including sketch recognition (Eitz et al. 2012;
Schneider and Tuytelaars 2014; Yu et al. 2015), sketch-based
image retrieval (Eitz et al. 2011; Hu and Collomosse 2013),
sketch-based shape (Zou et al. 2015) or 3D model retrieval
(Wang et al. 2015), and forensic sketch analysis (Klare et al.
2011; Ouyang et al. 2014).

Recognising free-hand sketches (i.e., objects such as cars
drawn without any photo as reference) is an extremely chal-
lenging task (see Fig. 1). This is due to a number of reasons:
(i) sketches are highly iconic and abstract, e.g., human fig-
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Fig. 1 Recognising a free-hand sketch is not easy due to a number of challenges

ures can be depicted as stickmen, (ii) due to the free-hand
nature, the same object can be drawn in totally different styles
which results in varied levels of abstraction and deformation
of sketches, e.g., a human figure sketch can be either a stick-
man or a portrait with fine details depending on the drawer,
(iii) sketches lack visual cues, i.e., they consist of black and
white lines instead of coloured pixels. A recent large-scale
study on 20,000 free-hand sketches across 250 categories
of daily objects puts human sketch recognition accuracy at
73.1 % (Eitz et al. 2012), suggesting that the task is challeng-
ing even for humans.

Prior work on sketch recognition generally follows the
conventional image classification paradigm, that is, extract-
ing hand-crafted features from sketch images followed by
feeding them to a classifier. Most hand-crafted features tra-
ditionally used for photos (such as HOG, SIFT and shape
context) have been employed, which are often coupled with
Bag-of-Words to yield a final feature representations that can
then be classified. However, existing hand-crafted features
designed for photos do not account for the unique traits of
sketches. More specifically, they ignore two key unique char-
acteristics of sketches. First, a sketch is essentially an ordered
list of strokes; they are thus sequential in nature. In contrast
with photos that consist of pixels sampled all at once, a sketch
is the result of an online drawing process. It had long been
recognised in psychology (Johnson et al. 2009) that such
sequential ordering is a strong cue in human sketch recogni-
tion, a phenomenon that is also confirmed by recent studies
in the computer vision literature (Schneider and Tuytelaars
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2014). Second, free-hand sketches can be highly abstract and
iconic and, coupled with varying drawing skills among dif-
ferent people, intra-class structure and appearance variations
are often considerably larger than photos (see the examples of
face and bicycle sketches from the TU-Berlin Eitz et al. 2012
datasetin Fig. 1). Existing hand-crafted features such as HOG
and classifiers such as SVMs are suited neither for capturing
this large variation of abstraction and appearance variations,
nor exploiting the ordered stroke structure of a sketch.

In this paper, we propose a novel deep neural net-
work (DNN), Sketch-a-Net, for free-hand sketch recognition,
which exploits the unique characteristics of sketch includ-
ing multiple levels of abstraction and being sequential in
nature. DNNs, especially deep convolutional neural networks
(CNNs) have achieved tremendous successes recently in
replacing representation hand-crafting with representation
learning for a variety of vision problems (Krizhevsky et al.
2012; Simonyan and Zisserman 2015). However, existing
DNNs are primarily designed for photos; we demonstrate
experimentally that directly employing them for the sketch
modelling problem produces little improvement over hand-
crafted features, indicating special model architecture is
required for sketches. One of the reasons for the failure
of existing photo DNNs is that they typically require large
amount of training data to avoid overfitting given millions of
model parameters. However, the existing free-hand sketch
datasets, the largest TU-Berlin dataset included, are far
smaller than the photo datasets typically used for training
photo DNNS, e.g., ImageNet. To this end, we design our
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model with the following considerations: (i) we introduce a
novel CNN model with a number of architecture and learning
parameter choices specifically for addressing the iconic and
abstract nature of sketches. (ii) We develop a novel uniquely
sketch-oriented data augmentation strategy that programat-
ically deforms sketches both holistically and at local stroke
level to generate a much larger and richer dataset for train-
ing. (iii) To deal with the variability in abstraction, and further
enrich the training data, we also leverage another form of data
augmentation by exploiting the temporal ordering of training
strokes—and the tendency of people to sketch coarse detail
first. In particular, we generate training sketches at various
levels of abstraction by selectively removing detail strokes
from the sketch which correspond to later-drawn strokes. (iv)
A final network ensemble that works with various fusion
schemes is formulated to further improves performance in
practice.
Our contributions are summarised as follows:

— A representation learning model based on DNN is pre-
sented for sketch recognition in place of the conventional
hand-crafted feature based sketch representations.

— We exploit sequential ordering information in sketches to
capture multiple levels of abstraction naturally existing
in free-hand sketches.

— We propose a simple but powerful deformation model
that synthesises new sketches to generate richer training
data.

— We further apply ensemble fusion and pre-training strate-
gies to boost the recognition performance.

— We visualise what the model has learned to help gain
deeper insight into why the model works for sketchrecog-
nition.

To validate the effectiveness of our Sketch-a-Net, experi-
ments on the largest hand-free sketch benchmark, TU-Berlin
(Eitz et al. 2012) have been carried out. The results show that
our model significantly outperforms existing sketch recogni-
tion approaches and beats humans by a significant margin.

2 Related Work
2.1 Free-Hand Sketch Recognition

Early studies on sketch recognition worked with professional
CAD or artistic drawings as input (Lu et al. 2005; Jabal et al.
2009; Zitnick and Parikh 2013; Sousa and Fonseca 2009).
Free-hand sketch recognition had not attracted much atten-
tion until very recently when a large crowd-sourced dataset
was published in Eitz et al. (2012). Free-hand sketches are
drawn by non-artists using touch sensitive devices rather than
purpose-made equipments; they are thus often highly abstract

and exhibit large intra-class deformations. Most existing
works (Eitz et al. 2012; Schneider and Tuytelaars 2014; Li
et al. 2015) use SVM as the classifier and differ only in what
hand-crafted features borrowed from photos are used as rep-
resentation. Lietal. (2015) demonstrated that fusing different
local features using multiple kernel learning helps improve
the recognition performance. They also examined the per-
formance of many features individually and found that HOG
generally outperformed others. Yanik and Sezgin (2015) pro-
posed to use active learning to achieve a target recognition
accuracy while reducing the amount of manual annotation.
Recently, Schneider and Tuytelaars (2014) demonstrated that
Fisher vectors, an advanced feature encoding successfully
applied to image recognition, can be adapted to sketch recog-
nition and achieve near-human accuracy (68.9 vs. 73.1%
for humans on the TU-Berlin sketch dataset). Despite this
progress, little effort has been made for either designing or
learning representations specifically for sketches. Moreover,
the role of sequential ordering in sketch recognition has gen-
erally received little attention. While the optical character
recognition community has exploited stroke ordering with
some success (Yin et al. 2013), exploiting sequential infor-
mation is harder on sketches—handwriting characters have
relatively fixed structural ordering; while sketches exhibit a
much higher degree of intra-class variation in stroke order.

2.2 DNNs for Visual Recognition

Our Sketch-a-Net is a deep CNN. Artificial neural networks
(ANNps) are inspired by Hubel and Wiesel (1959), who pro-
posed a biological model of cat’s primary visual cortex, in
which they found and named two distinct types of cells:
simple cell and complex cell. These two types of cells cor-
respond to convolution and pooling operators respectively
in neural network models, and these two essential blocks
have been commonly used by almost every model in this
area since Neocognitron (Fukushima 1980) was introduced.
LeNet (Le Cun et al. 1990) employed backpropagation for
training multi-layer neural networks (later re-branded as deep
learning), and backpropagation and its varieties are now the
standard training methods for such architecture.

ANN models were not so popular before five years ago,
because (i) there are many hard-to-tune design choices e.g.,
activation functions, number of neurons, and number of lay-
ers, (ii) complicated NN models, esp. ones with many layers
are difficult to train because of the vanishing gradient prob-
lem, (iii) NN advantages rely on sufficiently large training
data and hence fast computers. These issues are progres-
sively being overcome: (a) ReLU’s efficacy has made it the
dominant choice of activation function. (b) Layer-wise pre-
training (e.g., RBM Hinton et al. 2006) can give a good
initialisation for later supervised fine-tuning. Hessian-free
optimization also partially alleviates the problem. (c) Most
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Fig. 2 Illustration of our overall framework

importantly, modern computers allow backpropagation to
work on deeper networks within reasonable time (Schmidhu-
ber 2015), particularly when equipped with—now relatively
affordable—GPUs. (d) Thanks to crowdsourcing, large-scale
labelled data are now available in many areas.

DNNSs have recently achieved impressive performance for
many recognition tasks across different disciplines. In partic-
ular, CNNs have dominated top benchmark results on visual
recognition challenges such as ILSVRC (Deng et al. 2009).
An important advantage of DNNs, particularly CNNs, com-
pared with conventional classifiers such as SVMs, lies with
the closely coupled nature of presentation learning and clas-
sification (i.e., from raw pixels to class labels in a single
network), which makes the learned feature representation
maximally discriminative. Very recently, it was shown that
even deeper networks with smaller filters (Simonyan and Zis-
serman 2015) are preferable for photo recognition. Despite
these advances, most existing image recognition DNNs are
optimised for photos, ultimately making them perform sub-
optimally on sketches. In this paper, we show that directly
applying successful photo-oriented DNNs to sketches leads
to little improvement over hand-crafted feature based meth-
ods. In contrast, by designing an architecture for sketches
(e.g., with larger rather than smaller filters) as well as data
augmentation for designed sketches (e.g., exploiting stroke
timing for varying training data abstraction), our Sketch-a-
Net achieves state-of-the-art recognition performance.

2.3 DNN:s for Sketch Modelling

Very few existing works exploit DNNs for sketch modelling.
One exception is the sketch-to-3D-shape retrieval work in
Wang et al. (2015). Designed for cross-domain (sketch to
photo) matching, it uses a variant of Siamese network where
the photo branch and sketch branch have the same archi-
tecture without any special treatment of the unique sketch
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images. In our work, a different recognition problem is
tackled resulting in a very different network architecture.
Importantly, the architecture and the model training strategy
are carefully designed to suit the characteristics of free-hand
sketch.

An early preliminary version of this work was published in
Yu et al. (2015). Compared to the earlier version of Sketch-
a-Net (SN1.0) in Yu et al. (2015), there are a number of
modifications in the current network (SN2.0). Specifically,
SN1.0 addressed the stroke ordering and sketch abstraction
issues by—at both training and testing time: (i) segmenting
the sketch in time, and processing the segments by different
input channels in the DNN, and (ii) processing the sketch at
multiple scales as different members of a network ensemble.
In contrast, in SN2.0 we move all these considerations to the
data augmentation stage. In particular, we use stroke timing
and geometry information to define a simple but powerful
data augmentation strategy that synthesises sketches at vary-
ing abstraction levels, and deforms them to achieve a much
richer training set. The result is a simplified smaller model
that is more broadly applicable to pixmaps at testing time. In
addition, the newly introduced data augmentation strategies
and simplifier network architecture (i.e., less model para-
meters) all help to alleviate the problem of over-fitting to
scarce sketch data. As a result, while SN1.0 just about beats
humans on the sketch recognition task using the TU-Berlin
benchmark (74.9 vs. 73.1 %), SN2.0 beats humans by a large
margin (77.95 vs. 73.1 %). Further comparison of these two
networks is discussed in Sect. 4.2.

3 Methodology

In this section we introduce the key features of our frame-
work. We first detail our basic CNN architecture and outline
the important considerations for Sketch-a-Net compared to
the conventional photo-oriented DNNs (Sect. 3.1). We next
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Table 1 The architecture of

Sketch-a-Net Indices Layers Types Filter sizes Filter numbers Stride Pad  Output sizes
0 Input - - - - 225 x 225
1 L1 Conv 15 x 15 64 3 0 71 x 71
2 ReLU - — - - 71 x 71
3 Maxpool 3x3 — 2 0 35 x 35
4 L2 Conv 5x5 128 1 0 31 x 31
5 ReLU - — - 31 x 31
6 Maxpool 3x3 - 2 0 15 x 15
7 L3 Conv 3x3 256 1 1 15 x 15
8 ReLU - - - - 15 x 15
9 L4 Conv 3x3 256 1 1 15 x 15
10 ReLU - - - - 15 x 15
11 L5 Conv 3x3 256 1 1 15 x 15
12 ReLU - — - - 15 x 15
13 Maxpool 3x3 — 2 0 7x17
14 L6 Conv (=FC) 7x7 512 1 0 1x1
15 ReLU - — - - Ix1
16 Dropout (0.50) - — - - 1 x1
17 L7 Conv (=FC) 1x1 512 1 0 1x1
18 ReLU - - - - 1x1
19 Dropout (0.50) - — - - 1x1
20 L8 Conv (=FC) 1x1 250 1 0 1x1

explain how our simple but powerful data augmentation
approach exploits stroke timing information to generate train-
ing sketches at various abstraction levels (Sect. 3.2). We
then further demonstrate how stroke-geometry can be used
to programatically generate more diverse sketches to further
enhance the richness of the training set (Sect. 3.3). Figure 2
illustrates our overall framework.

3.1 A CNN for Sketch Recognition

Sketch-a-Net is a deep CNN. Despite all efforts so far, it
remains an open question how to design CNN architecture for
a specific visual recognition task; but most recent recognition
networks (Chatfield et al. 2014; Simonyan and Zisserman
2015) now follow a design pattern of multiple convolutional
layers followed by fully connected layers, as popularised by
the work of Krizhevsky et al. (2012).

Our specific architecture is as follows: first we use five
convolutional layers, each with rectifier (ReLU) (LeCun et al.
1998) units, with the first, second and fifth layers followed
by max pooling (Maxpool). The filter size of the sixth con-
volutional layer (index 14 in Table 1) is 7 x 7, which is the
same as the output from previous pooling layer, thus it is
precisely a fully-connected layer. Then two more fully con-
nected layers are appended. Dropout regularisation (Hinton
et al. 2012) is applied on the first two fully connected layers.
The final layer has 250 output units corresponding to 250

categories (the number of unique classes in the TU-Berlin
sketch dataset), upon which we place a softmax loss. The
details of our CNN are summarised in Table 1. Note that for
simplicity of presentation, we do not explicitly distinguish
fully connected layers from their convolutional equivalents.

Most CNNs are proposed without explaining why para-
meters, such as filter size, stride, filter number, padding and
pooling size, are chosen. Although it is impossible to exhaus-
tively verify the effect of every free (hyper-)parameter, we
discuss some points that are consistent with classic designs,
as well as those that are specifically designed for sketches,
thus considerably different from the CNNs targeting pho-
tos, such as AlexNet (Krizhevsky et al. 2012) and DeCAF
(Donahue et al. 2015).

3.1.1 Commonalities Between Sketch-a-Net and
Photo-CNN

Filter Number in both our Sketch-a-Net and recent photo-
oriented CNNs (Krizhevsky et al. 2012; Simonyan and
Zisserman 2015), the number of filters increases with depth.
In our case the first layer is set to 64, and this is doubled after
every pooling layer (indices: 3 — 4, 6 — 7 and 13 — 14)
until 512.

Stride as with photo-oriented CNNss, the stride of convo-
lutional layers after the first is set to one. This keeps as much
information as possible.
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Padding zero-padding is used only in L3-5 (Indices 7, 9
and 11). This is to ensure that the output size is an integer
number, as in photo-oriented CNNs (Chatfield et al. 2014).

3.1.2 Unique Aspects in Our Sketch-a-Net Architecture

Larger first layer filters the size of filters in the first con-
volutional layer might be the most sensitive parameter, as
all subsequent processing depends on the first layer output.
While classic networks use large 11 x 11 filters (Krizhevsky
et al. 2012), the current trend of research (Zeiler and Fer-
gus 2014) is moving towards ever smaller filters: very recent
(Simonyan and Zisserman 2015) state-of-the-art networks
have attributed their success in large part to use of tiny 3 x 3
filters. In contrast, we find that larger filters are more appro-
priate for sketch modelling. This is because sketches lack
texture information, e.g., a small round-shaped patch can be
recognised as eye or button in a photo based on texture, but
this is infeasible for sketches. Larger filters thus help to cap-
ture more structured context rather than textured information.
To this end, we use a filter size of 15 x 15.

No local response normalisationlocal response normali-
sation (LRN) (Krizhevsky et al. 2012) implements a form
of lateral inhibition, which is found in real neurons. This is
used pervasively in contemporary CNN recognition architec-
tures (Krizhevsky et al. 2012; Chatfield et al. 2014; Simonyan
and Zisserman 2015). However, in practice LRN’s benefit
is due to providing “brightness normalisation”. This is not
necessary in sketches since brightness is not an issue in line-
drawings. Thus removing LRN layers makes learning faster
without sacrificing performance.

Larger pooling size many recent CNNs use 2 x 2 max
pooling with stride 2 (Simonyan and Zisserman 2015). It
efficiently reduces the size of the layer by 75 % while bringing
some spatial invariance. However, we use the modification:
3 x 3 pooling size with stride 2, thus generating overlapping
pooling areas (Krizhevsky et al. 2012). We found this brings
~1 % improvement without much additional computation.

3.2 Exploiting Stroke Order

Stroke ordering is key information associated with sketches
drawn on touchscreens compared to conventional photos
where all pixels are captured in parallel. Although this infor-
mation exists in main sketch datasets such as TU-Berlin,
existing work has generally ignored it. Clearly the specific
stroke ordering of each sketch within the same category is
different, but their sequences follow a general rule that the
main outline will be drawn first and then followed by details
(Eitz et al. 2012).

More specifically, a sketch is an ordered list of strokes,
some of which convey broad aspects of the sketch, and oth-
ers convey fine details. In general the broad-brush strokes are
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characterised by being drawn first, and by being longer—with
the detail oriented strokes being later and shorter (Eitz et al.
2012). Importantly, the order of drawing strokes also corre-
sponds to having different levels of abstraction: to draw a
sketch of the same object category, some people would stop
after some outline/coarse contours of the objects are drawn,
whilst some other people prefer less abstract/more elaborate
sketching style by adding more detailed/shorter strokes. We
exploit these characteristics of sketch stroke order to gen-
erate new sketches at multiple abstractions by progressively
removing detail from each training sketch.

Specifically, given a sketch consisting of a set of N ordered
strokes S = {s}lN indexed by i, the order of the stroke and
its length are used together to compute the probability of
removing the ith stroke as:

1

Pri = 7 -e“*”"/eﬂ*l", s.t. Z = Zea*o/eﬂ*l, ()
i

where o0; and /; are the sequence order and length of the ith
stroke, o and B are weights for these two factors, and Z
is a normalisation constant to ensure a discrete probability
distribution. Overall, the later and the shorter a stroke is, the
more likely it will be removed.

Figure 3 illustrates how stroke removal can be used to
increase abstraction by showing sketches with 10-60 % of
strokes progressively removed with this method, with com-
parison to a random stroke removal alternative. Clearly with
our stroke removal techniques, sketches become increas-
ingly abstract as only longer and earlier strokes are retained,
whereas the random scheme produces unrealistic looking
sketches. Our approach provides a simple yet powerful
way to exploit the unique properties of sketches to provide
data augmentation as well as modelling sketch abstraction.
An quantitative experiment that compares random stroke
removal and the proposed can be found in Sect. 4.2.

3.3 Sketch Deformation

The above stroke removal strategy is essentially a data
augmentation strategy to deal with the naturally present vari-
ations of abstraction levels in sketches as well as enrich the
scarce available sketch training data. Data augmentation is
critical for learning DNNs—existing successful photo CNNs
(Krizhevsky et al. 2012; Chatfield et al. 2014; Simonyan
and Zisserman 2015) obtain excellent performance in large
part due to data augmentation achieved by translating, rotat-
ing, and scaling input images. In this section, another data
augmentation strategy is introduced which exploits another
unique property of sketches compared to photos, that is,
stroke geometry information is available, at least at training
time. Specifically we present another simple but power-
ful data augmentation technique that exploits modelling of
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Fig. 3 Examples of ordered stroke removal for temporal modelling, with comparison to random stroke removal. From left to right, we show

sketches after removing 10-60 % of strokes at a 10 % interval

strokes to programatically generate a much richer array of
training data.

3.3.1 Rationale Behind Sketch Deformation

Part of the challenge of sketches is the intra-class diver-
sity: different people can draw exactly the same object in
so many different ways. This intra-class diversity is largely
due to variation in levels of deformation, curvature and length
in individual strokes. This inspired us to simulate sketches
drawn by different people by programatically modifying
stroke and object geometry to generate more diverse vari-
ants of each input sketch. In particular, we deform each input
sketch both locally and globally.

3.3.2 Local Deformation

Local deformation accounts for the stroke-level variations. In
particular, when conducting local deformation, we first need
to select pivot points. In vector graphic sketch data, such as
the scalable vector graphics used by the TU-Berlin dataset,
each sketch S is represented as a list of strokes S = {s}lN (i
is the ordered stroke index). Each stroke in turn is composed
of a set of segments: s = {b}’;i where each segment b; is a
cubic Bezier spline ‘

b(t) = (1 —1)°po + 3(1 — 1)%1p1 +3(1 — )e’py
+%p3, 0<r<1, )

and po and p3 are the endpoints of each Bezier curve. Choos-
ing the endpoints of each segment py and p3 as the pivot
points for i-th stroke (green squares in Fig. 4a), we jitter the
pivot points according to:

p:=p+e st e~N(Q, rl). 3)
where the standard deviation of the Gaussian noise is the ratio
between the linear distance between endpoints and actual
length of the stroke. This means that strokes with shorter
length and smaller curvature are probabilistically deformed
more, while long and curly strokes are deformed less. After
getting the new position of pivot points (blue points in Fig.
4a), we then employ the moving least squares (MLSs) algo-
rithm (Schaefer et al. 2000) to get new position of all points
along the stroke. In Fig. 4a, the red line indicates the dis-
torted stroke while the black is the original one. Figure 4b
show several example sketches with local deformation.

3.3.3 Global Deformation

In addition to locally deforming individual strokes, we also
globally deform the sketch as a whole. First we apply con-
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(a)

Fig. 4 Local sketch deformation. a How we do local deformation. The
green squares represent control points while the blue dots are the new
deformed positions of these points. b Several example sketches with

(b)

local deformation. The original stroke are shown in black while the
distorted ones are in red (Color figure online)

19

(b)

Fig. 5 Global sketch deformation. a How we do global deformation. b The effect of global deformation. The left column are the original ones

while the right are deformed sketches

vex hull algorithm to find the outline shape of the sketch
(red outline in Fig. 5a), and use the vertices of the convex
polygon whose x/y coordinate is the smallest/largest as the
pivot points. As with local deformation, we apply Eq. 3 to get
their new positions and use MLS to compute new position
of all points in the sketch. As shown in Fig. 5a, green points
indicate the pivot points for global deformation and blue ones
are pivot points after translation. Through comparing two red
convex polygons, we can see the effect of global deformation.
Figure 5b displays some sketches with global deformation.

In our experiment, we combine these two kinds of
deformation together, first applying local deformation and
followed by global deformation. Figure 6 shows the defor-
mation effect. Our experiments show that both deformation
strategies contribute to the final recognition performance (see
Sect.4).
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3.4 Ensemble Fusion

To further improve recognition performance in practice, we
explore different fusion methods, including a re-purposed
joint Bayesian (JB) solution. One common practice is to
concatenate the CNN learned representations in each net-
work and feed them to a downstream classifier (Donahue
et al. 2015), which we called “feature-level fusion”. Another
common fusion strategy is score-level fusion, which sim-
ply averages the softmax outputs of the ensemble. However,
these two fusion strategies treat each network equally and
thus cannot explicitly exploit inter-model correlations.

JB (Chen et al. 2012), initially designed for face ver-
ification, were designed to fully explore such inter-model
correlations. Here, we re-purpose JB for classification. Let
each x represent the 4 x 512 = 2048 D concatenated feature



Int J Comput Vis (2017) 122:411-425

snowman

snail

Fig. 6 Sketches with both local and global deformation. In each row, the first is the original sketch, and the following three are distorted sketches

vector from our network ensemble. Training: using this acti-
vation vector as a new representation for the data, we train
the JB model, thus learning a good metric that exploits intra-
ensemble correlation. Testing: given the activation vectors
of train and test data, we compare each test point to the full
train set using the likelihood test. With this metric to compare
test and train points, final classification is achieved with K-
nearest-neighbour (KNN) matching.! Note that in this way
each feature dimension from each network is fused together,
implicitly giving more weight to more important features, as
well as finding the optimal combination of different features
of different models.

We evaluate these three fusion strategies (feature-level
fusion, score-level fusion and JB fusion). Comparison results
and further discussion can be found later in Sect. 4.2.

4 Experiments
4.1 Dataset and Settings
4.1.1 Dataset

We evaluate our model on the TU-Berlin sketch dataset (Eitz
etal. 2012), which is the largest and now the most commonly

1 We set k = 30 in this work and the regularisation parameter of JB is
set to 1. For robustness at test time, we also take 10 crops and reflections
of each train and test image (Krizhevsky et al. 2012). This inflates the
KNN train and test pool by 10, and the crop-level matches are combined
to image predictions by majority voting.

used human sketch dataset. It contains 250 categories with 80
sketches per category. It was collected on Amazon Mechan-
ical Turk from 1350 participants. We rescaled all images to
256 x 256 pixels in order to make it comparable with previ-
ous work. Also following previous work we performed 3-fold
cross-validation within this dataset (2-folds for training and
1 for testing).

4.1.2 Data Augmentation

Data augmentation is critical for CNNs to reduce the risk of
overfitting. We first performed classical data augmentation
by replicating the sketches with a number of transformations.
Specifically, for each input sketch, we did horizontal reflec-
tion and systematic combinations of horizontal and vertical
shifts (up to 32 pixels). These conventional data augmenta-
tion strategies will increase the training data size by a factor
of 32 x 32 x 2-fold. Our stroke removal (see Sect. 3.2) and
sketch deformation strategies (see Sect. 3.3) produce a fur-
ther 13x more training data (each training sample, has 6
synthesised sketches with stroke removal + 6 sketches with
sketch deformation + the original sketch). Thus, when using
two thirds of the data for training, the total pool of training
instances is 13 x (20, 000-0.67) x (32-32-2), increasing the
training set size by a factor of 13 x 32 x 32 x 2 = 26, 624.

4.1.3 Pre-training

Apart from ‘dropout’ and data augmentation, another strat-
egy to avoid overfitting is via pre-training on a (larger)
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auxiliary dataset. The key challenge here is how to create
the auxiliary data source which are similar in nature to our
sketch data—photos are abundant but sketches are hard to
find. It is noted that, consisting of black and white lines,
to some degree, sketch is similar to object edges extracted
from photos. We therefore take the Sketch-a-Net architec-
ture, and pre-train it using the edge maps extracted from
the ImageNet-1K photos (Deng et al. 2009). All the edge
maps are extracted from bounding box areas by using the
edge detection method in Zitnick and Dollér (2014); there-
fore only images with bounding boxes provided are used.
This step gives our model a better initialisation compared
with being initialised randomly. Our experiments show that
pre-training helps to achieve better performance (Table 6).

4.1.4 Settings

We implemented our network using Caffe (Jia et al. 2014).
The initial learning rate is set to 0.001, and mini-batch to
135. During training, each sketch is randomly cropped to
a 225 x 225 sub-image. Both the novel data augmentation
methods described in Sects. 3.2 and 3.3, and traditional data
augmentation are applied. We train a four-network ensemble
and then use JB to fuse them. In particular, we extract the
output of the penultimate layer (fc7) from four networks and
concatenate them as the final feature representation. We then
employ JB and get the classification result (as described in
Sect. 3.4). More specifically, at testing time, we do multi-
view testing by cropping each sample 10 times (4 corner, 1
centre and flipped). Each of these crops is put through the
ensemble and classified by JB. The views are then fused by
majority vote. Overall, the final feature representation of each
testing sample is a 10 x (4 - 512D) matrix.

4.1.5 Competitors

We compared our Sketch-a-Net model with a variety of alter-
natives. They can be categorised into two groups. The first
group follows the conventional handcrafted features+ clas-
sifier pipeline. These included the HOG-SVM method (Eitz
et al. 2012), structured ensemble matching (Li et al. 2013),
multi-kernel SVM (Li et al. 2015), and the current state-
of-the-art Fisher vector spatial pooling (FV-SP) (Schneider
and Tuytelaars 2014). The second group used DNNs. These
included AlexNet (Krizhevsky et al. 2012) and LeNet (LeCun
etal. 1998). AlexNet is a large deep CNN designed for clas-
sifying ImageNet LSVRC-2010 (Deng et al. 2009) images. It
has five convolutional layers and three fully connected layers.
We used two versions of AlexNet: (i) AlexNet-SVM': follow-
ing common practice (Donahue et al. 2015), it was used as
a pre-trained feature extractor, by taking the second 4096D
fully-connected layer of the ImageNet-trained model as a fea-
ture vector for SVM classification. (ii) AlexNet-Sketch: we
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Table 2 Comparative results on sketch recognition

Models Accuracy (%)
HOG-SVM (Eitz et al. 2012) 56
Ensemble (Li et al. 2013) 61.5
MKL-SVM (Li et al. 2015) 65.8
FV-SP (Schneider and Tuytelaars 2014) 68.9
AlexNet-SVM (Krizhevsky et al. 2012) 67.1
AlexNet-Sketch (Krizhevsky et al. 2012) 68.6
LeNet (LeCun et al. 1998) 55.2
SN1.0 (Yu et al. 2015) 74.9
Our full model 77.95
Humans (Eitz et al. 2012) 73.1

re-trained AlexNet for the 250-category sketch classification
task, i.e., it was trained using the same data as our Sketch-a-
Net. Although LeNet is quite old, we note that it is specifically
designed for handwritten digits rather than photos. Thus it is
potentially more suited for sketches than the photo-oriented
AlexNet. Finally, the earlier version of Sketch-a-Net (Yuetal.
2015), denoted SN1.0, was also compared.

4.2 Results
4.2.1 Comparative Results

We first report the sketch recognition results of our full
Sketch-a-Net, compared to state-of-the-art alternatives as
well as humans in Table 2. The following observations can be
made: (i) Sketch-a-Net significantly outperforms all existing
methods purposefully designed for sketch (Eitz et al. 2012;
Lietal. 2013; Schneider and Tuytelaars 2014), as well as the
state-of-the-art photo-oriented CNN model (Krizhevsky et al.
2012) re-purposed for sketch, (ii) we show that an automated
sketch recognition model can surpass human performance on
sketch recognition (77.95 % by our Sketch-a-Net vs. 73.1 %
for humans by a clear margin based on the study in Eitz et al.
(2012)), (iii) Sketch-a-Net is superior to AlexNet, despite
being much smaller with only 14 % of the total number of
parameters of AlexNet. This verifies that new network design
is required for sketch images. In particular, it is noted that
either trained using the larger ImageNet data (67.1 %) or the
sketch data (68.6 %), AlexNet cannot beat the best hand-
crafted feature based approach (68.9 % of FV-SP), (iv) among
the DNN based models, the performance of LeNet (55.2 %) is
the weakest. Although designed for handwriting digit recog-
nition, a task similar to that of sketch recognition, the model
is much simpler and shallower. This suggests that a deeper
model is necessary to cope with the larger intra-class vari-
ations exhibited in sketches, (v) compared with the earlier
version of Sketch-a-Net (SN1.0), the improved SN2.0 model
is clearly superior thanks to the lower model complexity and
more richly augmented training data.
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Table 3 Evaluation on the contributions of individual components of Sketch-a-Net

Our full model (%) SN-NoJB (%) SN-SD (%)

SN-SR (%) SN-vanilla (%) AlexNet-Sketch (%)

77.95 77.06 75.52

74.57 72.20 68.60

Upon closer category-level examination, we found that
Sketch-a-Net tends to perform better at fine-grained object
categories. This indicates that Sketch-a-Net learned a more
discriminative feature representation capturing finer details
than conventional hand-crafted features, as well as humans.
For example, for ‘seagull’ and ‘pigeon’, both of which
belong to the coarse semantic category of ‘bird’. Sketch-
a-Net obtained an average accuracy of 40.4 % while human
only achieved 16.9 %. In particular, the category ‘seagull’, is
the worst performing category for human with an accuracy of
just 2.5 %, since it was mostly confused with other types of
birds. In contrast, Sketch-a-Net yielded 26.92 % for ‘seagull’
which is nearly 10 times better. Further insights on how this
performance improvement is achieved will be provided via
model visualisation later.

4.2.2 Contributions of Individual Components

Compared to conventional photo-oriented DNNs such as
AlexNet, our Sketch-a-Net has four distinct features: (i) the
network architecture (see Sect. 3.1), (ii) the stroke removal
utilising stroke ordering (see Sect. 3.2) to synthesise variable
levels of abstraction, (iii) the sketch deformation approach
to deal with large sketching appearance variations (see Sect.
3.3), and (iv) the JB fusion with a network ensemble (see
Sect. 3.4). In this section, we evaluate the contributions of
each new feature. Specifically, we examined five stripped-
down versions of our full model: single Sketch-a-Net with all
features but no JB/ensemble (SN-NoJB), Sketch-a-Net only
with stroke removal (SN-SR) which is how we exploit tempo-
ral information, Sketch-a-Net only with sketch deformation
(SN-SD) which accounts for varied levels of abstraction and
our basic Sketch-a-Net model (SN-vanilla). The results in
Table 3 show that all four strategies contribute to the final
strong performance of Sketch-a-Net. In particular, (i) the
improvement of SN-vanilla over AlexNet-Sketch shows that
our sketch-specific network architecture is effective, (ii) SN-
SD and SN-SR improved the performance of SN by 3 and
2 %, respectively, indicating that both stroke removal and
sketch deformation strategy worked, (iii) the best result is
achieved when all four strategies are combined.

4.2.3 Random Versus Ordered Removal
To quantitatively verify the value of our proposed stroke

removal technique, we also trained a network using aug-
mented sketches that had undergone random stroke removal.

Table 4 Evaluation of novel data augmentation strategies: global and
local deformations

Global +1local (%) Global (%) Local (%)
75.52 75.40 73.86
Table 5 Comparison results of

different stroke removal Ordered removal (%) 74.57
strategies Random removal (%) 73.85
Table 6 Contributions of pre-training

With Pre-training (%) 77.06
Without Pre-training (%) 76.06

The experimental results with comparison to the proposed
stroke removal technique can be found in Table 5. It is clear
to see that our proposed stroke removal strategy can better
simulate the original sketch at multiple abstraction levels,
resulting in higher performance.

4.2.4 Local Versus Global Deformation

In our sketch deformation approach, we apply deformation
at both local and global levels. To find out which part brings
about more improvement for our model, in this experiment,
we compared the contributions of different deformation
strategies. Specifically, we trained Sketch-a-Net with the data
processed only by local or global deformation, and then com-
pare their performance. From the results listed in Table 4, we
can see that both types of deformations help, but the global
deformation brings a larger improvement. This makes sense
since local deformation provides subtler stroke-level varia-
tions while global deformation modifies the whole instance.

4.2.5 Effects of Pre-training

Table 6 shows the contribution of pre-training. The results
show that our model benefits from the pre-training even
though the auxiliary data was from a different domain
(extracted edges from photo images).

4.2.6 Comparison of Different Fusion Strategies

Given an ensemble of Sketch-a-Net (four models in our
experiments) obtained by varying the mini-batch orders,
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Table 7 Comparison of different fusion strategies

Feature fusion (%) Score fusion (%) Joint Bayesian (%)

77.12 77.82 77.95

various fusion strategies can be adopted for the final clas-
sification task. Table 7 compares our JB fusion method with
the alternative feature-level and score-level fusion methods.
Note that all the models we use here were trained with our
stroke removal and sketch deformation data augmentation,
as well as the pre-training strategy. For feature-level fusion,
we treated each single network as a feature extractor, and
concatenated the 512D outputs of their penultimate layers
into a single feature. We then trained a linear SVM based on
this 4 x 512 = 2048D feature vector. For score-level fusion,
we averaged the 250D softmax probabilities of each network
in the ensemble to make a final prediction. For JB fusion, we
took the same 2048D concatenated feature vector used by
feature-level fusion, but performed KNN matching with JB
similarity metric, rather than SVM classification.

Although JB fusion can still achieve the best perfor-
mance among the three fusion strategies, it is interesting
to note that it does not outperform the other two simpler
baselines as much as reported in Yu et al. (2015). This is
because the single branch in our current model performs
much better than before. JB was initially designed for face
identification/verification, when it was used for model fusion:
combing multiple models (e.g., neural networks) together
(model fusion). However it has an implicit assumption that
each model should be reasonably different. This is usually
obtained by using different resolutions or face regions. How-
ever, in our current case, the trained neural networks are not
only individually better, but also closer to each other in terms
of both top layer (score-level fusion) and penultimate layer
(feature-level fusion), so there is very little room for JB to
improve.

4.2.7 Comparison of SN1.0 and SN2.0

This work is an extension of Yu et al. (2015). In broad terms,
SN2.0 proposed in this work differs with SN1.0 (Yu et al.
2015) in (i) how stroke ordering information is exploited,
and (ii) how data argumentation is achieved via local and
global stroke deformation. As aresult, SN2.0 can achieve bet-

ter overall recognition performance even without ensemble
fusion, which was previously verified to work well for SN1.0.
A detailed comparison between the two networks is offered in
Table 8. In particular, (i) we replaced the multi-channel multi-
scale model with current single-channel single-scale model,
making the whole architecture much simpler and faster for
training, (ii) correspondingly, the total number of parame-
ters has reduced from 42.5 million (8.5 million/network x
5 networks in SN1.0) to 8.5 million, and (iii) the number of
training data is also reduced a lot. Apart from traditional data
augmentation (i.e., rotation, translation, etc.), we replicated
the training data 30 times (6 channel x 5 scales) in SN1.0
while we now only replicate it 13 times (each sketch gener-
ates 13 inputs, including 1 original sketch, 6 new sketches
with stroke removal and 6 with sketch deformation). The
performance of SN2.0 (without JB fusion) is more than 2 %
higher than SN 1.0. This indicates the efficacy of our new data
augmentation strategies.

4.2.8 Qualitative Results

Figure 7 shows some qualitative results. Some examples
of surprisingly tough successes are shown in green. Mis-
takes made by the network (red) (intended category of the
sketches in black) are very reasonable. One would expect
humans would make similar mistakes. The clear challenge
level of their ambiguity demonstrates why reliable sketch-
based communication is hard even for humans.

4.2.9 What Has Been Learned by Sketch-a-Net

As illustrated in Fig. 8, the filters in the first layer of
Sketch-a-Net (Fig. 8left) learn something very similar to
the biologically plausible Gabor filters (Fig. 8right) (Gabor
1946). This is interesting because it is not obvious that
learning from sketches should produce such filters, as their
emergence is typically attributed to learning from the statis-
tics of natural images (Olshausen and Field 1996; Stollenga
et al. 2014).

To visualise a CNN by showing its filters is only mean-
ingful for the first convolutional layer, because it is directly
applied on pixels. It is hard to get intuition from observing
higher level filters as they are applied on features. So we use
the deconvolution method proposed by Zeiler and Fergus
(2014) to visualise the filters of higher-level convolutional

Table 8 Comparison of SN1.0

and SN2.0 Aspect

SN1.0 SN2.0 (without JB)

Architecture
Number of parameters (million)
Multiple of training data

Performance (%)

Multi-channel & Multi-scale Single-channel & Single-scale

42.5 8.5
30 13
74.9 77.06
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Fig. 8 Visualisation of the learned filters. Left randomly selected filters from the first layer in our model, right the real parts of some Gabor filters

layers. To do this, we searched for patches that maximise the
response of specific filters on the training set, and then uses
deconvolution to show which part of the patch contributed
most to the activation. Figure 9 shows the visualisation of
some selected filters ranging from layer conv2 to conv5, and
for each filter we used nine patches from different images for
visualisation. We can see that features of higher level convo-
lutional layers are more semantic: features of conv2 are just
texture and simple patterns; object parts like eye of animals
begin to emerge in conv3; and in conv4 and conv3, the filter
can capture more complex concepts like head and tent. The
scale of learned concepts also becomes larger as we goes
deeper, since the receptive field of the neurons has become
larger. In particular, it is noted that bird head like filters were
learned as early as conv2 and where progressively refined
as the network goes deeper. This partially explains why the
model performs particularly well on the fine-grained bird
recognition tasks compared to humans.

It is also interesting to see the CNN trained on sketches
behaves somehow different from the model trained with nat-
ural images, e.g., from AlexNet trained on ImageNet (Zeiler
and Fergus 2014). As sketches are more abstract and discard

many details, object across categories are more likely to share
mid-level representations, i.e., a single filter can be used by
multiple object classes. For example, in conv4, wheel-like
feature can shared both by donut and cameras; eye-like fea-
ture can both shared by animals and house, and in conv5,
clustered blobs can shared by grape and flower.

4.2.10 Running Cost

We trained our four-network ensemble for 180K iterations
each, with each instance undergoing random data augmenta-
tion during each iteration. This took roughly 20 hours using
a NVIDIA K40-GPU.

5 Conclusion

We have proposed a DNN based sketch recognition model,
which we call Sketch-a-Net, that beats human recognition
performance by 5% on a large scale sketch benchmark
dataset. Key to the superior performance of our method lies
with the specifically designed network model and several
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Fig. 9 Visualisation of the learned filters by deconvolution. Through
visualisation of the filters by deconvolution, we can see that filter of
higher-level layer are modeling more complex concepts. For example,
what neurons represented in conv?2 are basic building blocks to compose

novel training strategies that accounts for unique character-
istics found in sketches that were otherwise unaddressed in
prior art. The learned sketch feature representation could ben-
efit other sketch-related applications such as sketch-based
image retrieval and automatic sketch synthesis, which could
be interesting venues for future work.

@ Springer

other concepts like lines, circles and textures, layer conv3 learns more
mid-level concepts or object parts, like eye and wheel, and in conv4 and
conv5, neurons are representing complex concepts like head, roof, and
body
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