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Abstract As a convex relaxation of the rank minimiza-
tion model, the nuclear norm minimization (NNM) problem
has been attracting significant research interest in recent
years. The standard NNM regularizes each singular value
equally, composing an easily calculated convex norm. How-
ever, this restricts its capability and flexibility in dealing
with many practical problems, where the singular values
have clear physical meanings and should be treated differ-
ently. In this paper we study the weighted nuclear norm
minimization (WNNM) problem, which adaptively assigns
weights on different singular values. As the key step of solv-
ing general WNNMmodels, the theoretical properties of the
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weighted nuclear normproximal (WNNP)operator are inves-
tigated.Albeit nonconvex,we prove thatWNNP is equivalent
to a standard quadratic programming problem with linear
constrains, which facilitates solving the original problem
with off-the-shelf convex optimization solvers. In particu-
lar, when the weights are sorted in a non-descending order,
its optimal solution can be easily obtained in closed-form.
With WNNP, the solving strategies for multiple extensions
of WNNM, including robust PCA and matrix completion,
can be readily constructed under the alternating direction
method of multipliers paradigm. Furthermore, inspired by
the reweighted sparse coding scheme, we present an auto-
matic weight setting method, which greatly facilitates the
practical implementation of WNNM. The proposed WNNM
methods achieve state-of-the-art performance in typical low
level vision tasks, including image denoising, background
subtraction and image inpainting.

Keywords Low rank analysis ·Nuclear normminimization ·
Low level vision

1 Introduction

Low rank matrix approximation (LRMA), which aims to
recover the underlying low rank matrix from its degraded
observation, has a wide range of applications in computer
vision and machine learning. For instance, human facial
images can be modeled as reflections of a Lambertian object
and approximated by a low dimensional linear subspace;
this low rank nature leads to a proper reconstruction of a
face model from occluded/corrupted face images (De La
Torre and Black 2003; Liu et al. 2010; Zheng et al. 2012).
In recommendation system, the LRMA approach achieves
outstanding performance on the celebrated Netflix compe-
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tition, whose low-rank insight is based on the fact that
the customers′ choices are mostly affected by only a few
common factors (Ruslan and Srebro 2010). In background
subtraction, the video clip captured by a surveillance cam-
era is generally taken under a static scenario in background
and with relatively small moving objects in foreground over
a period, naturally resulting in its low-rank property; this
inspires various effective techniques on background model-
ing and foreground object detection in recent years (Wright
et al. 2009; Mu et al. 2011). In image processing, it has
also been shown that the matrix formed by nonlocal simi-
lar patches in a natural image is of low rank; such a prior
knowledge benefits the image restoration tasks (Wang et al.
2012). Owing to the rapid development of convex and non-
convex optimization techniques in past decades, there are a
flurry of studies in LRMA, and many important models and
algorithms have been reported (Srebro et al. 2003; Buchanan
and Fitzgibbon 2005; Ke and Kanade 2005; Eriksson and
Van Den Hengel 2010; Fazel et al. 2001; Wright et al. 2009;
Candès and Recht 2009; Cai et al. 2010; Candès et al. 2011;
Lin et al. 2011).

The current development of LRMA can be catego-
rized into two categories: the low rank matrix factorization
(LRMF) approaches and the rank minimization approaches.
Given a matrix Y ∈ �m×n , LRMF aims to factorize it into
two smaller ones, A ∈ �m×k and B ∈ �n×k , such that their
product ABT can reconstruct Y under certain fidelity loss
functions. Here k < min(m, n) ensures the low-rank prop-
erty of the reconstructed matrix ABT . A variety of LRMF
methods have been proposed, including the classical singu-
lar value decomposition (SVD) under �2-norm loss, robust
LRMF methods under �1-norm loss, and many probabilistic
methods (Srebro et al. 2003; Buchanan and Fitzgibbon 2005;
Ke and Kanade 2005; Mnih and Salakhutdinov 2007; Kwak
2008; Eriksson and Van Den Hengel 2010).

Rank minimization methods represent another main
branch along this line of research. These methods recon-
struct the data matrix through imposing an additional rank
constraint upon the estimated matrix. Since direct rank min-
imization is NP hard and is difficult to solve, the problem
is generally relaxed by substitutively minimizing the nuclear
norm of the estimated matrix, which is a convex relaxation
of minimizing the matrix rank (Fazel 2002). This method-
ology is called as nuclear norm minimization (NNM). The
nuclear norm of a matrix X, denoted by ‖X‖∗, is defined
as the sum of its singular values, i.e., ‖X‖∗ = ∑

i σi (X),
where σi (X) denotes the i-th singular value of X. The NNM
approach has been attracting significant attention due to its
rapid development in both theory and implementation. On
one hand, (Candès et al. 2011) proved that from the noisy
input, its intrinsic low-rank reconstruction can be exactly
achieved with a high probability through solving an NNM
problem. On the other hand, (Cai et al. 2010) proved that the

nuclear norm proximal (NNP) problem

X̂ = proxλ‖�‖∗(Y) = argminX ‖Y − X‖2F + λ‖X‖∗ (1)

can be easily solved in closed-form by imposing a soft-
thresholding operation on the singular values of the observa-
tion matrix:

X̂ = US λ
2
(Σ)VT , (2)

where Y = UΣVT is the SVD of Y and S λ
2
(Σ) is the soft-

thresholding function on diagonal matrix Σ with parameter
λ
2 . For each diagonal element Σ i i in Σ , there is

S λ
2
(Σ)i i = max

(

Σ i i − λ

2
, 0

)

. (3)

By utilizing NNP as the key proximal technique (Moreau
1965), many NNM-based models have been proposed in
recent years (Lin et al. 2009; Ji and Ye 2009; Cai et al. 2010;
Lin et al. 2011).

Albeit its success as aforementioned, NNM still has cer-
tain limitations. In traditional NNM, all singular values are
treated equally and shrunk with the same threshold λ

2 as
defined in (3). This, however, ignores the prior knowledge
we often have on singular values of a practical data matrix.
More specifically, larger singular values of an input data
matrix quantify the information of its underlying principal
directions. For example, the large singular values of a matrix
of image similar patches deliver the major edge and texture
information. This implies that to recover an image from its
corrupted one, we should shrink less the larger singular val-
ues while shrink more the smaller ones. Clearly, traditional
NNM model, as well as its corresponding soft-thresholding
solvers, are not flexible enough to handle such issues.

To improve the flexibility of NNM, we propose the
weighted nuclear norm and study its minimization strategy
in this work. The weighted nuclear norm of a matrix X is
defined as

‖X‖w,∗ = ∑
i wiσi (X), (4)

where w = [w1, . . . , wn]T and wi ≥ 0 is a non-negative
weight assigned to σi (X). The weight vector will enhance
the representation capability of the original nuclear norm.
Rational weights specified based on the prior knowledge and
understanding of the problem will benefit the correspond-
ing weighted nuclear norm minimization (WNNM) model
for achieving a better estimation of the latent data from the
corrupted input. The difficulty of solving a WNNM model,
however, lies in that it is non-convex in general cases, and
the sub-gradient method (Cai et al. 2010) used for achiev-
ing the closed-form solution of an NNP problem is no longer
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applicable. In this paper, we investigate in detail how to prop-
erly and efficiently solve such non-convexWNNM problem.

As the NNP operator to the NNM problem, the following
weighted nulcear norm proximal (WNNP)1 operator deter-
mines the general solving regime of the WNNM problem:

X̂ = prox‖�‖w,∗(Y) = argminX ‖Y − X‖2F + ‖X‖w,∗. (5)

We prove that theWNNP problem can be equivalently trans-
formed to a quadratic programming (QP) problem with
linear constraints. This allows us to easily reach the global
optimum of the original problem by using off-the-shelf con-
vex optimization solvers. We further show that when the
weights are non-descending, the global optimum of WNNP
can be easily achieved in closed-form, i.e., by a so-called
weighted soft-thresholding operator. Such an efficient solver
makes it possible to utilize weighted nuclear norm in more
complex applications. Particularly, we propose the WNNM-
based robust principle component analysis (WNNM-RPCA)
model and WNNM-based matrix completion (WNNM-MC)
model, and solve these models by virtue of the WNNP
solver. Furthermore, inspired by the previous developments
of reweighted sparse coding, we present a rational scheme to
automatically set the weights for the given data.

To validate the effectiveness of the proposed WNNM
models, we test them on several typical low level vision
tasks. Specifically, we first test the performance of the pro-
posed WNNP model on image denoising. By utilizing the
nonlocal self-similarity prior of images (Buades et al. 2008),
theWNNPmodel achieves superior performance to state-of-
the-art denoising algorithms.Weperform theWNNM-RPCA
model on the background subtraction application. Both the
quantitative results and visual examples demonstrate the
superiority of the proposed model beyond previous low-rank
learningmethods.We further applyWNNM-MCto the image
inpainting task, and it also shows competitive results with
state-of-the-art methods.

The contribution of this paper is three-fold. First, we prove
that the non-convex WNNP problem can be equivalently
transformed into a QP problem with liner constraints. This
results in that the global optimum of the non-convex WNNP
problem can be readily achieved by off-the-shelf convex opti-
mization solvers. Furthermore, for non-descendingly ordered
weights, we can get the optimal solution in closed-form by
the weighted soft-thresholding operator, which greatly eases
the computation for the problem. Second, we extend WNNP
toWNNM-RPCA andWNNM-MCmodels to handle sparse
noise/outlier and missing data, respectively. Attributed to the

1 A general proximal operator is defined on a convex problem to guar-
antee an accurate projection. Although the problem here is nonconvex,
we can strictly prove that it is equivalent to a convex quadratic pro-
graming problem in Sect. 3. We thus also call it a proximal operator
throughout the paper for convenience.

proposedWNNP, bothWNNM-RPCA andWNNM-MC can
be solved without introducing extra computation burden of
traditional RPCA/MC algorithms. Third, we adapt the pro-
posed WNNM models to different computer vision tasks.
In image denoising, the WNNP model outperforms state-of-
the-art methods in both PSNR index and visual perception. In
background subtraction and image inpainting, the proposed
WNNM-RPCA and WNNM-MC models also achieve bet-
ter performance than traditional algorithms, especially, the
low-rank learning methods designed for these tasks.

The rest of this paper is organized as follows. Section 2
briefly introduces some related work. Section 3 analyzes
the optimization of the WNNM models, including the basic
WNNP operator and more complex WNNM-RPCA and
WNNM-MC ones. Section 4 applies the WNNM model to
image denoising and compares the proposed algorithm with
state-of-the-art denoising algorithms. Sections 5 and 6 apply
theWNNM-RPCA andWNNM-MC to background subtrac-
tion and image inpainting, respectively. Section 7 discusses
the proposed WNNM models and other singular value reg-
ularization methods from the viewpoint of weight setting.
Section 8 concludes the paper.

2 Related Work

The main goal of LRMA is to recover the underlying low
rank matrix from its degraded/corrupted observation. As the
data frommanypractical problems possess intrinsic low-rank
structure, the research onLRMAhas achieved a great success
in various applications of computer vision. Here we provide
a brief review for the current advancement on this topic. A
more comprehensive review can be found in a recent survey
paper (Zhou et al. 2014).

The LRMA approach mainly includes two categories: the
LRMF methods and the rank minimization methods. Given
an input data matrix Y ∈ �m×n , LRMF intends to find out
the output X as a product of two smaller matrices X = ABT ,
where A ∈ �m×k , B ∈ �n×k, k < m, n. The most classical
LRMF method is the well known SVD technique, which is
capable of attaining theoptimal rank-k approximationofY by
a truncation operator on its singular value matrix in terms of
F-norm fidelity loss. To handle outliers/heavy noises mixed
in data, multiple advanced robust LRMF methods have been
proposed. (De La Torre and Black 2003) initiated a robust
principal component analysis (RPCA) framework by utiliz-
ing the Geman-McClure function instead of the conventional
�2-norm loss function. Beyond this non-convex loss function,
a more commonly used one for robust LRMF is the �1-norm.
In the seminal work of (Ke and Kanade 2005), Ke and Kan-
nde designed an alternative convex programming algorithm
to solve this �1 norm factorization model. More strategies
have also been attempted for solving thismodel, e.g., PCAL1

123



186 Int J Comput Vis (2017) 121:183–208

(Kwak 2008) and L1-Wiberg (Eriksson and Van Den Hen-
gel 2010). Furthermore, to deal with the LRMF problem in
the presence of missing entries, a series of matrix comple-
tion techniques have been proposed to estimate the low-rank
matrix from only partial observations. The related investi-
gations range from studies on optimization algorithms (Jain
et et al. 2013) to new regularization strategies for highly ill-
posed matrix completion tasks (Srebro et al. 2004). Besides
these deterministic LRMF methods, there have been sev-
eral probabilistic extensions of matrix factorizations. These
probabilistic methods are capable of adapting different kinds
of noises, such as dense noise with Gaussian distribution
(Tipping and Bishop 1999; Mnih and Salakhutdinov 2007),
sparse noise distribution (Wang and Yeung 2013; Babacan
et al. 2012; Ding et al. 2011) and more complex mixture-of-
Gaussian noise (Meng and Torre 2013).

The main idea of the rank minimization methods is to
estimate the low-rank reconstruction by minimizing the rank
of its relaxations upon it. Since directly minimizing the
matrix rank corresponds to anNP-hard problem (Fazel 2002),
the relaxation methods are more commonly utilized. The
most popular choice is to replace the rank function with
its tightest convex relaxation, the nuclear norm, leading to
NNM-based methods. The superiority of these methods is
two-fold. Firstly, the exact recovery property of some low
rank recoverymodels havebeen theoretically proved (Candès
and Recht 2009; Candès et al. 2011). Secondly, in imple-
mentation, the typical NNP problem along this line can be
easily solved in closed-form by soft-thresholding the singu-
lar values of the input matrix (Cai et al. 2010). The recent
advancement of NNM in applications such as RPCA andMC
(Lin et al. 2009; Ji and Ye 2009; Cai et al. 2010; Lin et al.
2011) has been successfully utilized inmany computer vision
tasks (Ji et al. 2010; Liu et al. 2010; Zhang et al. 2012b;
Liu et al. 2012; Peng et al. 2012).

As a convex surrogate of the rank function, the nuclear
norm corresponds to the �1-norm on the singular values.
While convexity simplifies the computation, some previous
works have shown that nonconvex models may have bet-
ter performance in applications such as compressive sensing
(Chartrand 2007; Candès et al. 2008). Recently, researchers
have attempted to substitute nuclear norm by certain non-
convex ameliorations to make it more adaptable to real
scenarios. For instance, (Nie et al. 2012) and (Mohan and
Fazel 2012) used the Schatten-p norm, which is defined as
the �p norm of the singular values (

∑
i σ

p
i )1/p, to regular-

ize the rank of the reconstructed matrix. When p = 0, the
Schatten-0 norm degenerates to the matrix rank, and when
p = 1, the Schatten-1 norm complies with the standard
nuclear norm. (Chartrand 2012) defined a generalized Huber
penalty function to regularize the singular values of matrix.
(Zhang et al. 2012a) proposed a truncated nuclear norm reg-
ularization method which only regularizes the last k singular

values of matrix. Similar strategy was utilized in (Oh et al.
2013) to deal with different low level vision problems. How-
ever, these low-rank regularization terms are all designed for
a specific category of penalty functions for LRMA, while
they are not flexible enough to adapt various real cases.
Recently, (Dong et al. 2014) utilized nonconvex logdet (X)

as a surrogate of the rank function and achieved state-of-the-
art performance on compressive sensing. (Lu et al. 2014a, b)
studied the generalized nonconvex nonsmooth rank mini-
mization problem and validated that if the penalty function is
monotonic and lower bounded, a generalized singular value
soft-thresholding operation is able to get the optimal solu-
tion. Their optimization framework can be utilized to a wide
range of regularization penalty functions.

The WNNM problem has been formally proposed and
analyzed in (Gu et al. 2014), where Gu et al presented some
preliminary theoretical results on this problem and eval-
uated its effectiveness in image denoising. In this paper,
we thoroughly polish the theory and provide the general
solving scheme for this problem. The automatic weight set-
ting scheme is also rationally designed by referring to the
reweighting technique in sparse coding (Candès et al. 2008).
We also substantiate our theoretical analysis by conducting
extensive experiments in image denoising, background sub-
traction and image inpainting.

3 Weighted Nuclear Norm Minimization for Low
Rank Modeling

In this section, we first introduce the general solving
scheme for the WNNP problem (5), and then introduce its
WNNM-RPCA andWNNM-MC extensions. Note that these
WNNM models are more difficult to optimize than con-
ventional NNM ones due to the non-convexity of the
involved weighted nuclear norm. Furthermore, the sub-
gradient method proposed in (Cai et al. 2010) to solve NNP
is not applicable to WNNP. We thus construct new solving
regime for this problem. Obviously, NNM is a special case
of WNNM when all the weights wi are set the same. Our
solution thus covers that of the traditional NNP.

3.1 Weighted Nuclear Norm Proximal for WNNM

In (Gu et al. 2014), a lemma is presented to analyze the
WNNP problem. This Lemma is actually a special case of the
following Lemma 1, i.e., the classical von Neumanns trace
inequality (Mirsky 1975; Rhea 2011):

Lemma 1 (von Neumanns trace inequality (Mirsky 1975;
Rhea 2011)) For any m × n matrices A and B, tr

(
ATB

)

≤ ∑
i σi (A)σi (B), where σ1(A) ≥ σ2(A) ≥ · · · ≥ 0 and

σ1(B) ≥ σ2(B) ≥ · · · ≥ 0 are the descending singular
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values of A and B, respectively. The case of equality occurs
if and only if it is possible to find unitaries U and V that
simultaneously singular value decompose A and B in the
sense that

A = UΣ AVT , and B = UΣ BVT ,

where Σ A and Σ B denote the ordered eigenvalue matrices
with singular value σ(A) and σ(B) along the diagonal with
the same order, respectively.

Based on the result of Lemma 1, we can deduce the fol-
lowing important theorem.

Theorem 1 Given Y ∈ �m×n, without loss of generality, we
assume that m ≥ n, and let Y = UΣVT be the SVD of Y,

where Σ =
(
diag(σ1, σ2, ..., σn)

0

)

∈ �m×n. The global

optimum of the WNNP problem in (5) can be expressed as

X̂ = UD̂VT , where D =
(
diag(d1, d2, ..., dn)

0

)

is a diag-

onal non-negative matrix and (d1, d1, ..., dn) is the solution
to the following convex optimization problem:

min
d1,d2,...,dn

∑n

i=1
(σi − di )

2 + wi di ,

s.t. d1 ≥ d2 ≥ ... ≥ dn ≥ 0.
(6)

The proof of Theorem 1 can be found in the Appendix 9.1.
Theorem 1 shows that the WNNP problem can be trans-
formed into a new optimization problem (6). It is interesting
that (6) is a quadratic optimization problem with linear con-
straints, and its global optimum can be easily calculated by
off-the-shelf convex optimization solvers. This means that
for the non-convex WNNP problem, we can always get its
global solution through (6). In the following corollary, we
further show that the global solution of (6) can be achieved in
closed-formwhen theweights are sorted in a non-descending
order.

Corollary 1 If σ1 ≥ · · · ≥ σn ≥ 0 and the weights satisfy
0 ≤ w1 ≤ · · · ≤ wn, then the global optimum of (6) is
d̂i = max

(
σ − wi

2 , 0
)
.

The proof of Corollary 1 is given in Appendix 9.2. The
conclusion in Corollary 1 is very useful. The singular values
of a matrix are sorted in a non-ascending order, and the larger
singular values usually correspond to the subspaces of more
important components of the data matrix. We thus always
expect to shrink less the larger singular values to keep the
major and faithful information of the underneath data. In this
sense, Corollary 1 guarantees that we have a closed-form
optimal solution for the WNNP problem by the weighted
singular value soft-thresholding operation:

proxλ‖�‖w,∗(Y) = USw
2
(Σ)VT,

where Y = UΣVT is the SVD of Y , and Sw
2
(Σ) is the

generalized soft-thresholding operator with weight vector w

Sw
2
(Σ)i i = max

(
Σ i i − wi

2
, 0

)
.

Note that when all the weightswi are set the same, the above
WNNP solver exactly degenerates to the NNP solver for the
traditional NNM problem.

A recent work by (Lu et al. 2014b) has proved a simi-
lar conclusion to our Corollary 1. As Lu et al. analyzed the
generalized singular value regularization model with differ-
ent penalty functions for the singular values, the condition
in their paper is the monotonicity property of the proximal
operator which is determined by the penalty function. While
our work attains the WNNP solver in general weighting
cases rather than only in the case of nonascendingly ordered
weights. Interested readersmay refer to the proof of our paper
and (Lu et al. 2014b) for details.

3.2 WNNM for Robust PCA

In last section,we analyzed the optimal solution to theWNNP
operator for the WNNM problem. Based on our definition of
WNNP in (5), prox‖�‖w,∗(Y) is the low rank approximation to
the observationmatrixY under the F-normdata fidelity term.
However, in real applications, the observation data may be
corrupted by outliers or sparse noise with large magnitude.
In such cases, the large magnitude noise, even with small
amount, tends to greatly affect the F-norm data fidelity and
lead to a biased low rank estimation. The recently proposed
NNM-based RPCA (NNM-RPCA) method (Candès et al.
2011) alleviates this problem by optimizing the following
problem:

minE,X ‖E‖1 + ‖X‖∗, s.t. Y = X + E. (7)

Using the �1-norm tomodel the errorE, model (7) guarantees
a more robust matrix approximation in the presence of out-
liers/sparse noise. In particular, (Candès et al. 2011) proved
that if the low rank matrix X and the sparse component E

Algorithm 1WNNM-RPCA
Input: Observation data Y , weight vector w
1: Initialize μ0 > 0, ρ > 1, θ > 0, k = 0, X0 = Y , L0 = 0;
2: do
3: Ek+1=argminE ‖E‖1+ μk

2 ‖Y+μ−1
k Lk−Xk−E‖2F ;

4: Xk+1=argminX ‖X‖w,∗+ μk
2 ‖Y+μ−1

k Lk−Ek+1−X‖2F ;
5: Lk+1 = Lk + μk(Y − Xk+1 − Ek+1);
6: Update μk+1 = ρ ∗ μk ;
7: k = k + 1;
8: while ‖Y − Xk+1 − Ek+1‖F/‖Y‖F > θ

Output: Matrix X = Xk+1 and E = Ek+1;
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satisfy certain conditions, the NNM-RPCA model (7) can
exactly recover X with a probability close to 1.

In this section, we propose to use the weighted nuclear
norm to reformulate (7), leading to the following WNNM-
based RPCA (WNNM-RPCA) model:

min
E,X

‖E‖1 + ‖X‖w,∗, s.t. Y = X + E. (8)

As in NNM-RPCA, we also employ the alternating direction
method of multipliers (ADMM) to solve the WNNM-RPCA
problem. Its augmented Lagrange function is

Γ (X,E,L, μ)

= ‖E‖1 + ‖X‖w,∗ + 〈L,Y − X − E〉 + μ

2
‖Y−X−E‖2F ,

(9)

where L is the Lagrange multiplier and μ is a positive scaler.
The optimization procedure is described in Algorithm 1.
Note that the convergence of this ADMM algorithm is more
difficult to analyze than the convex NNM-RPCA model
due to the non-convexity of the WNNM-RPCA model. We
give the following weak convergence result to facilitate the
construction of a rational termination condition for Algo-
rithm 1.

Theorem 2 If the weights are sorted in a non-descending
order, the sequences {Ek} and {Xk} generated by Algorithm 1
satisfy:

(1) lim
k→∞ ‖Xk+1 − Xk‖F = 0,

(2) lim
k→∞ ‖Ek+1 − Ek‖F = 0.

(3) lim
k→∞ ‖Y − Ek+1 − Xk+1‖F = 0.

The proof of Theorem 2 can be found in Appendix 9.3.
Please note that the proof ofTheorem2 relies on the unbound-
edness of the parameter μk . In most of previous ADMM
based methods, an upper bound ofμk is needed to ensure the
optimal solution for convex objective functions (Lin et al.
2015). However, since our WNNM-RPCA model is non-
convex for general weight conditions, we use an unbounded
μk to guarantee the convergence of Algorithm 1. If μk

increases too fast, the iteration may stop quickly and we
might not get a good solution. Thus in both Algorithm 1
and the following Algorithm 2, a small ρ is adopted to pre-
vent μk increase too fast. Please refer to the experiments in
Sects. 5 and 6 for more details.

3.3 WNNM for Matrix Completion

In Sect. 3.2, we introduced the WNNM-RPCA model and
provided the ADMM algorithm to solve it. In this section,

Algorithm 2WNNM-MC
Input: Observation data Y , indicator matrix Ω , weight vector w,
1: Initialize μ0 > 0, ρ > 1, θ > 0, k = 0, k = 0, X0 = Y , L0 = 0;
2: do
3: Ek+1=argminE‖Y+μ−1

k Lk−Xk−E‖2F
s.t.‖PΩ(E)‖2F=0;

4: Xk+1=argminX ‖X‖w,∗+ μk
2 ‖Y+μ−1

k Lk−Ek−X‖2F ;
5: Lk+1 = Lk + μk(Y − Xk+1 − Ek+1);
6: Update μk+1 = ρ ∗ μk ;
7: k = k + 1;
8: while ‖Y − Xk+1 − Ek+1‖F/‖Y‖F > θ

Output: X = Xk+1;

we further use WNNM to deal with the matrix completion
problem, and propose the following WNNM-based matrix
completion (WNNM-MC) model:

minX ‖X‖w,∗ s.t. PΩ(X) = PΩ(Y), (10)

where Ω is a binary support indicator matrix of the same
size as Y , and zeros in Ω indicate the missing entries in
the observation matrix. PΩ(Y) = Ω 
 Y is the element-
wisematrix multiplication (Hardamard product) between the
support matrix Ω and the variable Y . The constraint implies
that the estimated matrix X agrees with Y in the observed
entries.

By introducing a variable E, we reformulate (10) as

minX ‖X‖w,∗, s.t. X + E = Y, PΩ(E) = 0. (11)

The ADMM algorithm for solving WNNM-MC can then
be constructed in Algorithm 2. For non-descending weights,
both the subproblems in steps 3 and 4 of Algorithm 2 have
closed-form optimal solutions. However, as the weighted
nuclear norm is not convex, it is difficult to accurately analyze
the convergence of the algorithm. Like in Theorem 2, in the
following Theorem 3, we also present a weak convergence
result.

Theorem 3 If the weights are sorted in a non-descending
order, the sequence {Xk} generated by Algorithm 2 satisfies

(1) lim
k→∞ ‖Xk+1 − Xk‖F = 0,

(2) lim
k→∞ ‖Y − Ek+1 − Xk+1‖F = 0.

The proof of Theorem 3 is similar to the proof of Theo-
rem 2, and thus we omit it here.

3.4 The Setting of Weighting Vector

In previous sections, we proposed to utilize the WNNM
model to solve different problems. By introducing the weight
vector, the WNNM model improves the flexibility of the
original NNM model. However, the weight vector itself also
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brings more parameters in the model. Appropriate setting of
the weights plays a crucial role in the success of the proposed
WNNM model.

In (Candès et al. 2008), an effective reweighted mech-
anism is proposed to enhance the sparsity of sparse coding
solutions by adaptively tuning weights through the following
formula:

w�+1
i = C

|x�
i | + ε

, (12)

where x�
i is the i-th sparse coding coefficient in the �-th iter-

ation andw�+1
i is its corresponding regularization parameter

in the (�+1)-th iteration, ε is a small positive number to avoid
dividing by zero and C is a compromising constant. Such a
reweighted procedure has proved to be capable of getting a
good resemble of the �0 norm and the model achieves supe-
rior performance in compressive sensing.

Inspired by the success of reweighted sparse coding, we
can adopt a similar reweighted strategy inWNNMby replac-
ing x�

i in (12) with the singular value σi (X�) in the �th

iteration. Because (12) is monotonically decreasing with
the singular values, the non-descending order of weights
with respect to singular values will be kept throughout the
reweighting process.Very interestingly, the following remark
indicates that we can directly get the closed-form solution of
WNNP operator with such a reweighting strategy.

Remark 1 Let Y = UΣVT be the SVD of Y , where

Σ =
(
diag(σ1(Y), σ2(Y), ..., σn(Y))

0,

)

, and σi (Y) denotes

the i-th singular value of Y . If the regularization parame-
ter C is positive and the positive value ε is small enough

to make the inequality ε < min
(√

C, C
σ1(Y)

)
hold, by

using the reweighting formula w�
i = C

σi (X�)+ε
with ini-

tial estimation X0 = Y , the reweighted WNNP problem
{minX ‖Y − X‖2F + ‖X‖w,∗} has the closed-form solution:
X∗ = UΣ̃VT , where

Σ̃ =
(
diag(σ1(X∗), σ2(X∗), ..., σn(X∗))

0,

)

,

and

σi (X∗) =
{

0 if c2 < 0
c1+√

c2
2 if c2 ≥ 0

(13)

where

c1 = σi (Y) − ε, c2 = (σi (Y) + ε)2 − 4C.

The proof of Remark 1 can be found in Appendix 9.4.
Remark 1 shows that although a reweighting strategy

w�
i = C

σi (X�)+ε
is used, we do not need to iteratively perform

the thresholding and weight calculation operations. Based
on the relationship between the singular value of observation
matrixX and the regularization parameterC , the convergence
of the sigular value of estimated matrix after the reweight-
ing process can be directly obtained. In each iteration of
both the WNNM-RPCA and WNNM-MC algorithms, such
a reweighting strategy is performed on the WNNP subprob-
lem (step 4 in Algorithms 1 and 2) to adjust weights based on
current Xk . Thanks to Remark 1, utilizing reweighting strat-
egy in step 4 of Algorithm 1 and Algorithm 2 will increase
little the computation burden.We are able to use an operation
to directly shrank the original singular value σi (Y) to 0 or
c1+√

c2
2 , just like the soft-thresholding operation in the NNM

method.
In implementation, we initialize X0 as the observation

Y . The above weight setting strategy greatly facilitates the
WNNM calculations. Note that there remains one parameter
C in the WNNM implementation. In all of our experiments,
we set it by experience for certain tasks. Please see the fol-
lowing sections for details.

4 Image Denoising by WNNM

In this section, we validate the proposed WNNM model in
application of image denoising. Image denoising is one of the
fundamental problems in low level vision, and is an ideal test
bed to investigate and evaluate the statistical imagemodeling
techniques and optimization methods. Image denoising aims
to reconstruct the original image x from its noisy observation
y = x+n, where n is generally assumed to be additive white
Gaussian noise (AWGN) with zero mean and variance σ 2

n .
The seminal work of nonlocal means (Buades et al. 2005;

Buades et al. 2008) triggers the study of nonlocal self-
similarity (NSS) based methods for image denoising. NSS
refers to the fact that there are many repeated local patterns
across a natural image, and those nonlocal similar patches
to a given patch offer helpful remedy for its better recon-
struction. The NSS-based image denoising algorithms such
as BM3D (Dabov et al. 2007), LSSC (Mairal et al. 2009),
NCSR (Dong et al. 2011) and SAIST (Dong et al. 2013) have
achieved state-of-the-art denoising results. In this section, we
utilize the NSS prior to develop the followingWNNM-based
denoising algorithm.

4.1 Denoising Algorithm

For a local patch y j in image y, we can search for its nonlocal
similar patches across a relatively large area around it by
methods such as block matching (Dabov et al. 2007). By
stacking those nonlocal similar patches into amatrix, denoted
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Algorithm 3 Image Denoising by WNNM
Input: Noisy image y
1: Initialize x̂(0) = y, y(0) = y
2: for k=1:K do
3: Iterative regularization y(k) = x̂(k−1) + δ(y − ŷ(k−1)

)

4: for each patch y j in y
(k) do

5: Find similar patch group Y j
6: Apply the WNNP operator to Y j to estimate X j
7: end for
8: Aggregate X j to form the clean image x̂(k)

9: end for
Output: Denoised image x̂(K )

by Y j , we have Y j = X j + N j , where X j and N j are the
original clean patch matrix and the corresponding corruption
matrix, respectively. Intuitively, X j should be a low rank
matrix, and the LRMA methods can be used to estimate X j

from Y j . By aggregating all the estimated patches Y j , the
whole image can be reconstructed. Indeed, the NNMmethod
has been adopted in (Ji et al. 2010) for video denoising, and
we apply the proposedWNNPoperator to eachY j to estimate
X j for image denoising. By using the noise variance σ 2

n to
normalize the F-norm data fidelity term ‖Y j − X j‖2F , we
have the following energy function:

X̂ j = argminX j
1
σ 2
n
‖Y j − X j‖2F + ‖X j‖w,∗. (14)

Throughout our experiments, we set the parameterC as
√
2n

by experience, where n is the number of similar patches.
By applying the above procedures to each patch and aggre-

gating all patches together, the image x can be reconstructed.
In practice, we can run several iterations of this recon-
struction process across all image patches to enhance the
denoising outputs. The whole denoising algorithm is sum-
marized in Algorithm 3.

4.2 Experimental Setting

We compare the proposed WNNM-based image denoising
algorithm with several state-of-the-art denoising methods,
including BM3D2 (Dabov et al. 2007), EPLL3 (Zoran and
Weiss 2011), LSSC4 (Mairal et al. 2009), NCSR5 (Dong
et al. 2011) and SAIST6 (Dong et al. 2013). The baseline
NNM algorithm is also compared. All the competing meth-
ods exploit the image nonlocal redundancies.

There are several other parameters (δ, the iteration number
K and the patch size) in the proposed algorithm. For all noise

2 http://www.cs.tut.fi/foi/GCF-BM3D/BM3D.zip
3 http://people.csail.mit.edu/danielzoran/noiseestimation.zip
4 http://lear.inrialpes.fr/people/mairal/software.php
5 http://www4.comp.polyu.edu.hk/~cslzhang/code/NCSR.rar
6 http://www.csee.wvu.edu/xinl/demo/saist.html

Fig. 1 The 20 test images used in image denoising experiments

levels, the iterative regularization parameter δ is fixed to 0.1.
The iteration number K and the patch size are set based on
noise level. For higher noise level, we choose bigger patches
and run more times the iteration. By experience, we set patch
sizes to 6 × 6, 7 × 7, 8 × 8 and 9 × 9 for σn ≤ 20,
20 < σn ≤ 40, 40 < σn ≤ 60 and 60 < σn , respectively.
The iteration times K is set to 8, 12, 14, and 14, and the
number of selected non-local similar patches is to 70, 90,
120 and 140,respectively, on these noise levels.

For NNM, we use the same parameters as WNNM except
for the uniform weight

√
nσn . The source codes of the

comparison methods are obtained directly from the origi-
nal authors, and we use the default parameters. Our code
can be downloaded from http://www4.comp.polyu.edu.hk/
cslzhang/code/WNNM_code.zip.

4.3 Experimental Results on 20 Test Images

We evaluate the competing methods on 20 widely used test
images, whose thumbnails are shown in Fig. 1. The first 12
images are of size 256 × 256, and the other 8 images are of
size 512× 512. AWGN with zero mean and variance σ 2

n are
added to those test images to generate the noisy observations.
We present the denoising results on four noise levels, ranging
from low noise level σn = 10, to medium noise levels σn =
30 and 50, and to strong noise level σn = 100. The PSNR
results under these noise levels for all competing denoising
methods are shown in Table 1. For a more comprehensive
comparison, we also list the average denoising results on
more noise levels by all competing methods in Tabel 2.

FromTables 1 and 2, we can see that the proposedWNNM
method achieves the highest PSNR in almost all cases. It
achieves 1.3dB–2dB improvement over the NNMmethod on
average and outperforms the benchmark BM3D method by
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Table 1 Denoising results (PSNR, dB) by competing methods on the 20 test images

σn=10 σn=30

NNM BM3D EPLL LSSC NCSR SAIST WNNM NNM BM3D EPLL LSSC NCSR SAIST WNNM

C.Man 32.87 34.18 34.02 34.24 34.18 34.30 34.44 27.43 28.64 28.36 28.63 28.59 28.36 28.80

House 35.97 36.71 35.75 36.95 36.80 36.66 36.95 30.99 32.09 31.23 32.41 32.07 32.30 32.52

Peppers 33.77 34.68 34.54 34.80 34.68 34.82 34.95 28.11 29.28 29.16 29.25 29.10 29.24 29.49

Montage 36.09 37.35 36.49 37.26 37.17 37.46 37.84 29.28 31.38 30.17 31.10 30.92 31.06 31.65

Leaves 33.55 34.04 33.29 34.52 34.53 34.92 35.20 26.81 27.81 27.18 27.65 28.14 28.29 28.60

StarFish 32.62 33.30 33.29 33.74 33.65 33.72 33.99 26.62 27.65 27.52 27.70 27.78 27.92 28.08

Monarch 33.54 34.12 34.27 34.44 34.51 34.76 35.03 27.44 28.36 28.35 28.20 28.46 28.65 28.92

Airplane 32.19 33.33 33.39 33.51 33.40 33.43 33.64 26.53 27.56 27.67 27.53 27.53 27.66 27.83

Paint 33.13 34.00 34.01 34.35 34.15 34.28 34.50 27.02 28.29 28.33 28.29 28.10 28.44 28.58

J.Bean 37.52 37.91 37.63 38.69 38.31 38.37 38.93 31.03 31.97 31.56 32.39 32.13 32.14 32.46

Fence 32.62 33.50 32.89 33.60 33.65 33.76 33.93 27.19 28.19 27.23 28.16 28.23 28.26 28.56

Parrot 32.54 33.57 33.58 33.62 33.56 33.66 33.81 27.26 28.12 28.07 27.99 28.07 28.12 28.33

Lena 35.19 35.93 35.58 35.83 35.85 35.90 36.03 30.15 31.26 30.79 31.18 31.06 31.27 31.43

Barbara 34.40 34.98 33.61 34.98 35.00 35.24 35.51 28.59 29.81 27.57 29.60 29.62 30.14 30.31

Boat 33.05 33.92 33.66 34.01 33.91 33.91 34.09 27.82 29.12 28.89 29.06 28.94 28.98 29.24

Hill 32.89 33.62 33.48 33.66 33.69 33.65 33.79 28.11 29.16 28.90 29.09 28.97 29.06 29.25

F.print 31.38 32.46 32.12 32.57 32.68 32.69 32.82 25.84 26.83 26.19 26.68 26.92 26.95 26.99

Man 32.99 33.98 33.97 34.10 34.05 34.12 34.23 27.87 28.86 28.83 28.87 28.78 28.81 29.00

Couple 32.97 34.04 33.85 34.01 34.00 33.96 34.14 27.36 28.87 28.62 28.77 8.57 28.72 28.98

Straw 29.84 30.89 30.74 31.25 31.35 31.49 31.62 23.52 24.84 24.64 24.99 25.00 25.23 25.27

AVE. 33.462 34.326 34.008 34.507 34.456 34.555 34.772 27.753 28.905 28.463 28.877 28.849 28.980 29.214

σn=50 σn=100

NNM BM3D EPLL LSSC NCSR SAIST WNNM NNM BM3D EPLL LSSC NCSR SAIST WNNM

C-Man 24.88 26.12 26.02 26.35 26.14 26.15 26.42 21.49 23.07 22.86 23.15 22.93 23.09 23.36

House 27.84 29.69 28.76 29.99 29.62 30.17 30.32 23.65 25.87 25.19 25.71 25.56 26.53 26.68

Peppers 25.29 26.68 26.63 26.79 26.82 26.73 26.91 21.24 23.39 23.08 23.20 22.84 23.32 23.46

Montage 26.04 27.9 27.17 28.10 27.84 28.0 28.27 21.70 23.89 23.42 23.77 23.74 23.98 24.16

Leaves 23.36 24.68 24.38 24.81 25.04 25.25 25.47 18.73 20.91 20.25 20.58 20.86 21.40 21.57

Starfish 23.83 25.04 25.04 25.12 25.07 25.29 25.44 20.58 22.10 21.92 21.77 21.91 22.10 22.22

Mornar. 24.46 25.82 25.78 25.88 25.73 26.10 26.32 20.22 22.52 22.23 22.24 22.11 22.61 22.95

Plane 23.97 25.10 25.24 25.25 24.93 25.34 25.43 20.73 22.11 22.02 21.69 21.83 22.27 22.55

Paint 24.19 25.67 25.77 25.59 25.37 25.77 25.98 21.02 22.51 22.50 22.14 22.11 22.42 22.74

J.Bean 27.96 29.26 28.75 29.42 29.29 29.32 29.62 23.79 25.80 25.17 25.64 25.66 25.82 26.04

Fence 24.59 25.92 24.58 25.87 25.78 26.00 26.43 21.23 22.92 21.11 22.71 22.23 22.98 23.37

Parrot 24.87 25.90 25.84 25.82 25.71 25.95 26.09 21.38 22.96 22.71 22.79 22.53 23.04 23.19

Lena 27.74 29.05 28.42 28.95 28.90 29.01 29.24 24.41 25.95 25.30 25.96 25.71 25.93 26.20

Barbara 25.75 27.23 24.82 27.03 26.99 27.51 27.79 22.14 23.62 22.14 23.54 23.20 24.07 24.37

Boat 25.39 26.78 26.65 26.77 26.66 26.63 26.97 22.48 23.97 23.71 23.87 23.68 23.80 24.10

Hill 25.94 27.19 26.96 27.14 26.99 27.04 27.34 23.32 24.58 24.43 24.47 24.36 24.29 24.75

F.print 23.37 24.53 23.59 24.26 24.48 24.52 24.67 20.01 21.61 19.85 21.30 21.39 21.62 21.81

Man 25.66 26.81 26.72 26.72 26.67 26.68 26.94 22.88 24.22 24.07 23.98 24.02 24.01 24.36

Couple 24.84 26.46 26.24 26.35 26.19 26.30 26.65 22.07 23.51 23.32 23.27 23.15 23.21 23.55

Straw 20.99 22.29 21.93 22.51 22.30 22.65 22.74 18.33 19.43 18.84 19.43 19.10 19.42 19.67

AVE. 25.048 26.406 25.965 26.436 26.326 26.521 26.752 21.570 23.247 22.706 23.061 22.996 23.296 23.555

The best results are highlighted in bold
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Table 2 The average PSNR
(dB) values by competing
methods on the 20 test images

σn=10 σn=20 σn=30 σn=40 σn=50 σn=75 σn=100

NNM 33.462 30.040 27.753 26.422 25.048 22.204 21.570

BM3D 34.326 30.840 28.905 27.360 26.406 24.560 23.247

EPLL 34.008 30.470 28.463 27.060 25.965 24.020 22.706

LSSC 34.507 30.950 28.877 27.500 26.436 24.450 23.061

NCSR 34.456 30.890 28.849 27.390 26.326 24.340 22.996

SAIST 34.555 30.970 28.980 27.590 26.521 24.620 23.296

WNNM 34.772 31.200 29.214 27.780 26.752 24.860 23.555

The best results are highlighted in bold

Fig. 2 Denoising results on image Boats by competing methods (noise level σn = 50). The demarcated area is enlarged in the right bottom corner
for better visualization. The figure is better seen by zooming on a computer screen

0.3dB–0.45dB consistently on all the four noise levels. Such
an improvement is notable since few methods can surpass
BM3Dmore than 0.3dB on average (Levin et al. 2012; Levin
and Nadler 2011).

In Figs. 2 and 3, we compare the visual quality of the
denoised images by the competing algorithms. More visual
comparison results can be found in the supplementary file.
Fig. 2 demonstrates that the proposed WNNM reconstructs
more image details from the noisy observation. Compared
with WNNM, the LSSC, NCSR and SAIST methods over-
smooth more textures in the sands area of image Boats, and
the BM3D and EPLLmethods generate more artifacts. More
interestingly, as can be seen in the demarcated window, the
proposed WNNM is capable of well reconstructing the tiny
masts of the boat, while the masts are almost unrecognizable
in the reconstructed images by other methods. Fig. 3 shows

an example with strong noise. It is easy to see that WNNM
generates less artifacts and preserves better the image edge
structures compared with other competing methods. In sum-
mary, WNNM shows strong denoising capability, producing
more pleasant denoising outputs in visualization and higher
PSNR indices in quantity.

4.4 Experimental Results on Real Noisy Images

We also evaluate different denoising algorithms on two real
images, including a gray level SAR image7 and a color
image8, as shown in Figs. 4 and 5, respectively. Since the

7 The SAR image was downloaded at http://aess.cs.unh.edu/
radar%20se%20Lecture%2018%20B.html.
8 The color image was used in previous work (Portilla 2004).

123

http://aess.cs.unh.edu/radar%20se%20Lecture%2018%20B.html
http://aess.cs.unh.edu/radar%20se%20Lecture%2018%20B.html


Int J Comput Vis (2017) 121:183–208 193

Fig. 3 Denoising results on image Monarch by competing methods (noise level σn = 100). The demarcated area is enlarged in the left bottom
corner for better visualization. The figure is better seen by zooming on a computer screen

noise level is unknown for real noisy images, some noise
estimation method is needed to estimate the noise level in the
image. We adopted the classical method in (Donoho 1995)
to estimate the noise level, and the estimated noise level was
used for all the competing methods. Figs. 4 and 5 compare
the denoising results by the competing methods on the two
images. One can see that the proposedWNNMmethod keeps
well the local structures in the images and generates the least
visual artifacts among the competing methods.

5 WNNM-RPCA for Background Subtraction

SVD/PCA aims to capture the principal (affine) subspace
along which the data variance can be maximally captured. It
has been widely used in the area of data modeling, compres-
sion, and visualization. In the conventional PCA model, the
error is measured under the �2-norm fidelity, which is opti-
mal to suppress additive Gaussian noise. However, there are
occasions that outliers or sparse noise are corrupted in data,
which may disable SVD/PCA in estimating the ground truth
subspace. To address this problem, multiple RPCA mod-
els have been proposed to robustify PCA, and have been
attempted in different applications such as structure from
motion, ranking and collaborative filtering, face reconstruc-
tion and background subtraction (Zhou et al. 2014).

Recently, (Candès et al. 2011) proposed the NNM-RPCA
model which not only can be efficiently solved by ADMM,

but also can guarantee the exact reconstruction of the
original data under certain conditions. In this paper, we pro-
pose WNNM-RPCA to further enhance the flexibility of
NNM-RPCA. In the following, we first design synthetic
simulations to comprehensively compare the performance
between WNNM-RPCA and NNM-RPCA, and then show
the superiority of the proposed method in background sub-
traction by comparing with more typical low-rank learning
methods designed for this task.

5.1 Experimental Results on Synthetic Data

To quantitatively evaluate the performance of the proposed
WNNM-RPCA model, we generate synthetic low rank
matrix recovering simulations for testing. The ground truth
low rank data matrix X ∈ �m×m is obtained by the multi-
plication of two low rank matrices: X = ABT , where A and
B are both of size m × r . Here r = pr × m constrains the
upper bound of Rank(X). In all experiments, each element of
A and B is generated from a Gaussian distribution N (0, 1).
The ground truth matrix X is corrupted by sparse noise E
which has pe × m2 non-zero entries. The non-zero entries
in E are located in random positions and the value of each
non-zero element is generated from a uniform distribution
between [−5, 5]. We set m = 400, and let both pr and pe
vary from 0.01 to 0.5 with step length 0.01. For each para-
meter setting {pr , pe}, we generate the synthetic low-rank
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Fig. 4 Denoising results on a real SAR image by all competing methods
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Fig. 5 Denoising results on a real color image by all competing methods

123



196 Int J Comput Vis (2017) 121:183–208

Table 3 Relative error of low rank matrix recovery results by NNM-RPCA and WNNM-RPCA, with pe fixed as 0.05, and pr varying from 0.05
to 0.45 with step length 0.05

Rank(X) 20 40 60 80 100 120 140 160 180

NNM-RPCA 2.41e−8 3.91e−8 5.32e−8 7.91e−8 2.90e−4 1.72e−2 6.49e−2 0.13 0.21

WNNM-RPCA 1.79e−8 3.49e−8 5.83e−8 6.53e−8 9.28e−8 1.30e−7 1.68e−7 2.02e−7 2.43e−7

Table 4 Relative error of low rank matrix recovery results by NNM-RPCA and WNNM-RPCA, with pe fixed as 0.1, and pr varying from 0.05 to
0.45 with step length 0.05

Rank(X) 20 40 60 80 100 120 140 160 180

NNM-RPCA 2.26e−8 4.58e−8 7.44e−8 2.50e−4 2.31e−2 6.16e−2 9.96e−2 0.15 0.22

WNNM-RPCA 2.34e−8 3.71e−8 6.03e−8 8.87e−8 1.37e−7 1.82e−7 2.24e−7 4.80e−3 2.41e−2

Table 5 Relative error of low rank matrix recovery results by NNM-RPCA and WNNM-RPCA, with pe fixed as 0.2, and pr varying from 0.05 to
0.45 with step length 0.05

Rank(X) 20 40 60 80 100 120 140 160 180

NNM-RPCA 4.22e−8 6.84e−8 8.89e−3 5.80e−2 9.29e−2 0.12 0.14 0.18 0.24

WNNM-RPCA 3.68e−8 6.09e−8 1.18e−7 1.72e−7 3.76e−4 2.94e−2 5.42E−2 6.82e−2 7.53e−2

matrix 10 times and the final results are measured by the
average of these 10 runs.

For the NNM-RPCA model, there is an important para-
meter λ. We set it as 1/

√
m following the suggested setting

of (Candès et al. 2011). For our WNNM-RPCA model, the
parameter C is empirically set as the square root of matrix
size, i.e., C = √

m × m = m, in all experiments. The para-
meters in ADMM for both methods are set as ρ = 1.05.
Typical experimental results are listed in Tables 3, 4, and 5
for easy comparison.

It is easy to see that when the rank of matrix is low or
the number of corrupted entries is small, both NNM-RPCA
and WNNM-RPCA models are able to deliver accurate esti-

mation of the ground truth matrix. However, with the rank
of matrix or the number of corrupted entries getting larger,
NNM-RPCA fails to deliver an accurate estimation of the
ground truth matrix. Yet the error of the results by WNNM-
RPCA is much smaller than NNM-RPCA in these cases.
In Fig. 6, we show the log-scale relative error map of the
recoveredmatrices byNNM-RPCAandWNNM-RPCAwith
different settings of {pr , pe}. It is clear that the success area
of WNNM-RPCA is much larger than NNM-RPCA, which
means that WNNM-RPCA has much better low-rank matrix
reconstruction capability in the presence of outliers/sparse
noise.
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Fig. 6 The log-scale relative error log
‖X̂−X‖2F

‖X‖2F
of NNM-RPCA and WNNM-RPCA with different rank and outlier rate settings {pr , pe}
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5.2 Experimental Results on Background Subtraction

As an important application in video surveillance, back-
ground sbutraction refers to the problem of separating the
moving objects in foreground and the stable scene in back-
ground. The matrix Y obtained by stacking the video frames
as columns corresponds to a low-rank matrix with station-
ary background corrupted by the sparse moving objects
in the foreground. Thus, RPCA model is appropriate to
deal with this problem. We compare WNNM-RPCA with
NNM-RPCA and several representative low-rank learning
models, including the classic iteratively reweighted least
squares (IRLS) based RPCAmodel9 (De La Torre and Black
2003), and the �2-norm and �1-norm based matrix factoriza-
tion models: singular value decomposition (SVD), Bayesian
robust matrix factorization (BRMF)10 (Wang and Yeung
2013) and RegL1ALM11 (Zheng et al. 2012). The results
of a recently proposed Mixture of Gaussian (MoG) model12

(Meng and Torre 2013; Zhao et al. 2014) are also included.
These comparison methods range over state-of-the-art �2
norm, �1 norm and probabilistic subspace learning meth-
ods, including both categories of rank minimization and
LRMF based approaches. We downloaded the codes of these
algorithms from the corresponding authors’ websites and
keep their initialization and stopping criteria unchanged. The
code of the proposed WNNM-RPCA model can be down-
loaded at http://www4.comp.polyu.edu.hk/cslzhang/code/
WNNM_RPCA_code.zip.

Four benchmark video sequences provided by Li et al.
(2004) were adopted in our experiments, including two out-
door scenes (Fountain and Watersurface) and two indoor
scenes (Curtain and Airport). In each sequence, 20 frames
of ground truth foreground regions were provided by Li et
al. for quantitative comparison. For all the comparison meth-
ods, parameters are fixed on the four sequences. We follow
the experimental setting in Zhao et al. (2014) and constrain
the maximum rank to 6 for all the factorization based meth-
ods. The regularization parameter λ for the �1-norm sparse
term in the NNM-RPCAmodel is set to 1

2
√
max(m,n)

, since we
empirically found that it can perform better than the recom-
mended parameter 1√

max(m,n)
in the original paper (Candès

et al. 2011) in this series of experiments. For the proposed
WNNM-RPCA model, we set C = √

2max(m3, n3) in all
experiments.

To quantitatively compare the performance of compet-
ing methods, we use S(A, B) = A∩B

A∪B to measure the
similarity between the estimated foreground regions and

9 http://www.cs.cmu.edu/ftorre/codedata.html
10 http://winsty.net/brmf.html
11 http://sites.google.com/site/yinqiangzheng/
12 http://www.cs.cmu.edu/~deyum/Publications.htm

Table 6 Quantitative performance (S) comparison of background sub-
traction results obtained by different methods

Method Watersurface Fountain Airport Curtain

SVD 0.0995 0.2840 0.4022 0.1615

IRLS 0.4917 0.4894 0.4128 0.3524

BRMF 0.5786 0.5840 0.4694 0.5998

RegL1ALM 0.1346 0.4248 0.4420 0.2983

MoG 0.2782 0.4342 0.4921 0.3332

NNM-RPCA 0.7703 0.5859 0.3782 0.3191

WNNM-RPCA 0.7884 0.6043 0.5144 0.7863

The best results are highlighted in bold

the ground truth ones. To generate the binary foreground
map, we applied the Markov random field (MRF) model
to label the absolute value of the estimated sparse error.
The MRF labeling problem was solved by the multi-label
optimization tool box (Boykov et al. 2001). The quantita-
tive results of S by different methods are shown in Table 6.
One can see that on all the four utilized sequences, the
proposed WNNM-RPCA model outperforms all other com-
peting methods.

The visual results of representative frames in the Water-
surface and Curtain sequences are shown in Figs. 7 and 8.
The visual result of the other two sequences can be found in
the supplementary file. From these figures, we can see that
WNNM-RPCA method is able to deliver clear background
estimation even under prominently embedded foreground
moving objects. This on the other hand facilitates a more
accurate foreground estimation. Comparatively, in the results
estimated by the other methods, there are some ghost shad-
ows in the background, leading to relatively less complete
foreground detection results.

6 WNNM-MC for Image Inpainting

Matrix completion refers to the problem of recovering a
matrix from only partial observation of its entries. It is a well
known ill-posed problem which needs prior of the ground
truth matrix as supplementary information for reconstruc-
tion. Fortunately, in many practical instance, the matrix to
be recovered has a low-rank structure. Such a prior knowl-
edge has been utilized in many low-rank matrix completion
(LRMC) methods, such as ranking and collaborative filter-
ing (Ruslan and Srebro 2010) and image inpainting (Zhang
et al. 2012a). Matrix completion can be solved by both the
matrix factorization or the rankminimization approaches. As
the exact recovery property of the NNM-based methods has
been proved by (Candès and Recht 2009), this methodology
has received great research interest, and many algorithms
have been proposed to solve the NNM-MC problem (Cai
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Observations and Ground Truths

Frame 1523 Frame 1597 Frame 1621

Estimated backgrounds and foregrounds

SVD

IRLS

BRMF

RegL1ALM

MoG-
RPCA

NNM-
RPCA

WNNM-
RPCA

Fig. 7 Performance comparison in visualization of competing meth-
ods on the Watersurface sequence. First row the original frames
and annotated ground truth foregrounds. Second row to the last

row estimated backgrounds and foregrounds by SVD, IRLS,
BRMF, RegL1ALM, MoGRPCA, NNM-RPCA and WNNM-RPCA,
respectively

et al. 2010; Lin et al. 2011). In the following, we provide
experimental results on synthetic data and image inpainting
to show the superiority of the proposed WNNM-MC model
to the traditional NNM-MC technology.

6.1 Experimental Results on Synthetic Data

We first compare NNM-MC with WNNM-MC using syn-
thetic low-rank matrices. Similar to our experimental setting
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Observations and Ground Truths

Frame 2847 Frame 3801 Frame 3893

Estimated backgrounds and foregrounds

SVD

IRLS

BRMF

RegL1ALM

MoG-
RPCA

NNM-
RPCA

WNNM-
RPCA

Fig. 8 Performance comparison in visualization of competing meth-
ods on theCurtain sequence.First row the original frames and annotated
ground truth foregrounds. Second row to the last row estimated

backgrounds and foregrounds by SVD, IRLS, BRMF, RegL1ALM,
MoGRPCA, NNM-RPCA and WNNM-RPCA, respectively

in the RPCA problem, we generate the ground truth low-
rank matrix by a multiplication between two matrices A and
B of size m × r . Here r = pr × m constrains the upper
bound of Rank(X). All of their elements are generated from
the Gaussian distributionN (0, 1). In the observed matrix Y ,
pe × m2 entries in the ground truth matrix X are missing.

We set m = 400, and let pr and pe vary from 0.01 to 0.5
with step length 0.01. For each parameter setting of {pr , pe},
10 groups of synthetic data are generated for testing and the
performance of each method is assessed by the average of
the 10 runs on these groups.
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Table 7 Relative error of low rank matrix recovery results by NNM-MC and WNNM-MC, with pe fixed as 0.1, and pr varying from 0.05 to 0.45
with step length 0.05

Rank(X) 20 40 60 80 100 120 140 160 180

NNM-MC 5.51e−8 7.25e−8 9.51e−8 1.12e−7 1.43e−7 1.76e−7 2.10e−7 2.58e−7 9.97e−5

WNNM-MC 4.40e−8 7.72e−8 9.44e−8 1.18e−7 1.41e−7 1.77e−7 2.09e−7 2.53e−7 3.25e−7

Table 8 TRelative error of low rank matrix recovery results by NNM-MC andWNNM-MC, with pe fixed as 0.2, and pr varying from 0.05 to 0.45
with step length 0.05

Rank(X) 20 40 60 80 100 120 140 160 180

NNM-MC 7.33e−8 1.03e−7 1.22e−7 1.65e−7 2.01e−7 2.76e−7 1.91e−2 8.52e−2 0.14

WNNM-MC 6.35e−8 9.21e−8 1.30e−7 1.60e−7 1.94e−7 2.48e−7 3.32e−7 4.66e−7 7.21e−7

Table 9 Relative error of low rank matrix recovery results by NNM-MC and WNNM-MC, with pe fixed as 0.3, and pr varying from 0.05 to 0.45
with step length 0.05

Rank(X) 20 40 60 80 100 120 140 160 180

NNM-MC 9.20e−8 1.21e−7 1.61e−7 2.06e−7 0.53e−5 8.94e−2 0.18 0.25 0.30

WNNM-MC 9.31e−8 1.21e−7 1.60e−7 2.13e−7 2.81e−7 4.00e−7 6.15e−7 1.71e−2 0.22

In all the experiments we fix parameters λ = 1/
√
m and

C = m in NNM-MC and WNNM-MC, respectively. The
parameter ρ in the ALM algorithm is set to 1.05 for both
methods. Typical experimental results are listed in Tables 7,
8, and 9.

It can be easily observed that when the rank of latent
ground truth matrix X is relatively low, both NNM-RPCA
and WNNM-RPCA can successfully recover it with high
accuracy. The advantage of WNNM-MC over NNM-MC is
reflected when dealing with more challenging cases. Table 8
shows that when 20 % of entries in the matrix are missing,
NNM-MC will not have good recovery accuracy once the
rank is higher than 120,whileWNNM-MCcan still have very
high accuracy. Similar observations can be made in Table 9.

The log-scale relative error map with different settings of
{pr , pe} are shown in Fig. 9. From this figure, it is clear to
see that WNNM-MC has a much larger success area than
NNM-MC.

6.2 Experimental Results on Image Inpainting

We then test the proposed WNNM-MC model on image
inpainting. In some previous works, the whole image is
assumed to be a low rank matrix and matrix completion is
directly performed on the image to get the inpainting result.
However, a natural image is only approximately low rank,
and the small singular values in the long tail distribution
include many details. Simply using the low rank prior on the
whole image may fail to recover the missing pixels or lose
too much detailed information in the image. As in the image

denoising experiments, we utilize the NSS prior and perform
WNNM-MC on each group of non-local similar patches for
this task. We initialize the inpainting by the field of experts
(FOE) (Roth and Black 2009) method to search the non-local
patches, and then for each patch group we performWNNM-
MC to get an updated low-rank reconstruction. After the first
round estimation of the missing values in all patch groups,
all reconstructed patches are aggregated to get the recov-
ered image. We then perform a new stage of similar patch
searching based on the first round estimation, and iteratively
implement the similar process to converge to a final inpaint-
ing output.

The first 12 test images13 with size 256×256 in Fig. 1
are used to evaluate WNNM-MC. Random masks with 25,
50 and 75% missing pixels and a text mask are used to
test the inpainting performance, respectively. We compare
WNNM-MC with NNM-MC and several representative and
state-of-the-art inpaintingmethods, including theTVmethod
(Chan and Shen 2005), FOE method14 (Roth and Black
2009), variational nonlocal example-based (VNL) method15

(Arias et al. 2011) and the beta process dictionary learn-
ing (BPDL) method16 (Zhou et al. 2009). The setting of
the TV inpainting method follows the implementation of
(Dahl et al. 2010)17 and the codes for other comparison

13 The color versions of images #3, #5, #6, #7, #9, #11 are used in this
MC experiment.
14 http://www.gris.informatik.tu-darmstadt.de/sroth/research/foe
15 http://gpi.upf.edu/static/vnli/interp/interp.html
16 http://people.ee.duke.edu/mz1/Softwares
17 http://www.imm.dtu.dk/pcha/mxTV/,
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Fig. 9 The log-scale relative error log
‖X̂−X‖2F

‖X‖2F
of NNM-MC and WNNM-MC with different rank and outlier rate settings {pr , pe}

methods are provided by the original authors. The source
code of the proposed WNNM-MC model can be down-
loaded at http://www4.comp.polyu.edu.hk/~cslzhang/code/
WNNM_MC_code.zip.

The PSNR results by different methods are shown in
Table 10. It is easy to see that WNNM-MC achieves much
better results than the other methods. Visual examples on a
random mask and a text mask are shown in Figs. 10 and 11,
respectively. More visual examples can be found in the sup-
plementary file. From the enlarged demarcated windows,
we can see that inpainting methods based on image local
prior (e.g., TV, FOE and BPDL) are able to recover the
image smooth areas, while they have difficulties in extracting
the details in edge and texture areas. The VNL, NNM and
WNNMmethods utilized the rational NSS prior, and thus the
results are more visually plausible. However, in some chal-
lenging cases when the percentage of missing entries is high,
it can be observed that VNL and NNMmore or less generate

artifacts across the recovered image. As a comparison, the
proposed WNNM-MC model has much better visual quality
of the inpainting results.

7 Discussions

To improve the flexibility of the original nuclear norm, we
proposed the weighted nuclear norm and studied its mini-
mization strategy in this work. Based on the observed data
and the specific application, different weight setting strate-
gies can be utilized to achieve better performance. Inspired by
(Candès et al. 2008), in this work we utilized the reweighting
strategy w�

i = C
|σi (X�)|+ε

to approximate the �0 norm on the
singular values of the data matrix. Other than this setting,
there also exist other weight setting strategies for certain
types of data and applications. For instance, the truncated
nuclear norm regularization (TNNR) (Zhang et al. 2012a)

Table 10 Inpainting results (PSNR, dB) by different methods

Random mask with 25 % missing entries Random mask with 50 % missing entries

TV FOE VNL BPDL NNM WNNM TV FOE VNL BPDL NNM WNNM

C.Man 32.20 30.23 26.98 33.39 34.12 35.21 27.41 27.42 25.71 28.59 29.42 30.58

House 39.37 41.90 33.69 42.03 42.90 44.59 34.25 36.84 32.35 37.63 37.45 38.83

Peppers 37.44 38.46 31.00 39.66 39.65 41.53 32.16 34.51 28.80 34.80 34.02 35.85

Montage 32.28 28.00 28.45 35.86 37.48 39.63 26.47 24.53 26.41 29.68 29.91 31.02

Leaves 32.10 30.52 27.57 36.77 36.27 38.95 26.07 27.22 25.32 30.35 29.87 32.32

StarFish 34.20 35.34 27.44 36.94 36.79 38.93 29.05 31.18 26.13 31.84 31.36 33.03

Monarch 34.27 32.92 28.55 36.74 36.51 38.14 28.84 29.16 26.84 31.17 31.02 32.75

Airplane 30.80 30.34 26.05 33.19 32.94 33.76 26.61 28.11 24.62 29.00 28.72 29.30

Paint 34.75 35.87 28.87 37.27 36.84 38.79 29.29 31.45 27.22 32.62 31.52 33.02

J.Bean 41.56 44.57 34.97 45.15 44.49 48.04 35.61 38.88 32.46 40.07 37.47 40.93

Fence 30.24 31.96 28.98 35.85 36.55 37.91 25.06 29.97 27.43 31.47 31.77 32.85

Parrot 32.88 30.69 27.50 33.37 33.93 35.09 27.77 28.24 25.80 28.73 29.20 30.52

AVE. 34.340 34.234 29.170 37.185 37.372 39.215 29.049 30.625 27.425 32.162 31.812 33.416
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Table 10 continued

Random mask with 75 % missing entries Text mask

TV FOE VNL BPDL NNM WNNM TV FOE VNL BPDL NNM WNNM

C-Man 23.65 23.35 23.65 24.17 23.55 25.69 28.49 27.27 26.75 26.24 29.74 31.68

House 29.59 31.63 31.07 31.61 28.62 34.12 34.75 37.41 34.46 32.01 37.69 39.60

Peppers 27.16 28.86 26.72 28.97 27.22 30.04 33.90 34.82 31.72 29.57 34.55 37.04

Montage 22.47 21.92 23.62 24.89 23.35 25.65 27.20 26.06 27.54 25.62 29.77 31.47

Leaves 20.15 20.69 22.30 23.11 22.08 25.01 25.48 24.21 26.39 23.07 27.32 30.69

Starfish 24.44 26.43 24.36 26.57 25.45 27.11 29.39 30.97 27.53 27.24 31.66 33.44

Mornar. 23.97 24.10 24.77 26.08 24.84 27.45 28.35 27.51 27.56 26.10 29.89 32.85

Plane 23.16 24.20 22.03 24.87 24.05 25.47 28.70 28.79 25.95 26.61 29.66 30.57

Paint 24.05 25.81 24.73 26.71 25.02 26.93 29.54 30.50 28.47 31.86 31.32 32.96

J.Bean 29.95 32.89 29.48 32.46 28.00 33.40 34.50 37.12 32.59 32.62 35.71 38.91

Fence 21.03 23.56 25.49 26.12 25.65 28.38 25.44 27.55 29.55 27.01 32.44 34.62

Parrot 22.85 23.33 23.54 24.53 24.02 25.61 28.07 27.54 26.58 25.83 29.54 30.61

AVE. 24.372 25.564 25.146 26.674 25.155 27.905 29.484 29.979 28.757 27.814 31.606 33.702

The best results are highlighted in bold

Fig. 10 Inpainting results on image Starfish by different methods (Random mask with 75% missing values)

and the partial sum minimization (PSM) (Oh et al. 2013)
were proposed to regularize only the smallest N − r singu-
lar values. Actually, they can be viewed as a special case of
WNNM, where weight vector [w1···r = 0, wr+1···N = λ]
is used to approximate the rank function of matrix. The
Schatten-p norm minimization (SPNM) methods (Nie et al.
2012,Mohan and Fazel 2012) can also be understood as spe-
cial cases of WNNM since the �p norm proximal problem
can be solved by the iteratively thresholding method (She

2012). The same strategy as in our work can be used to set
weights for each singular values.

In Tables 11, 12 and 13,we compare the proposedWNNM
with the TNNR and SPNM methods on image denosing,
background subtraction and image inpainting, respectively.
The results obtained by the NNM method are also shown in
the tables as baseline comparison. The experimental settings
on the three applications are exactly the same as the exper-
iments in Sects. 4, 5 and 6. For the TNNR method, there
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Fig. 11 Inpainting results on image Monarch by different methods (Text mask)

Table 11 The average PSNR
(dB) values of denoising results
by competing methods on the 20
test images

σn=10 σn=20 σn=30 σn=40 σn=50 σn=75 σn=100

NNM 33.462 30.040 27.753 26.422 25.048 22.204 21.570

TNNM 34.125 30.558 28.627 27.250 26.256 24.284 23.109

SPNM 34.739 31.048 29.075 27.488 26.582 24.757 23.174

WNNM 34.772 31.200 29.214 27.780 26.752 24.860 23.555

The best results are highlighted in bold

Table 12 The average PSNR
(dB) values of inpainting results
by competing methods on the 12
test images

25 % missing entries 50 % missing entries 75 % missing entries Text mask

NNM 37.372 31.812 25.155 31.606

TNNM 37.789 32.378 27.201 32.738

SPNM 39.203 33.196 27.800 33.668

WNNM 39.215 33.416 27.905 33.702

The best results are highlighted in bold

Table 13 Quantitative performance (S) comparison of background sub-
traction results obtained by different methods

Method Watersurface Fountain Airport Curtain

NNM-RPCA 0.7703 0.5859 0.3782 0.3191

TNNM-RPCA 0.7772 0.5926 0.3829 0.3310

SPNM-RPCA 0.7906 0.6033 0.3714 0.3233

WNNM-RPCA 0.7884 0.6043 0.5144 0.7863

The best results are highlighted in bold

are two parameters r and λ, which represent the truncation
position and the regularization parameter for the remaining

N − r singular values. For the SPNM model, we need to set
the p value for the �p norm and the regularization parameter
γ . We tried our best to adjust these parameters for the two
models for different applications. The remaining parameters
are the same as the WNNM model on each task.

From the tables,we canfind that regularizingmoreflexibly
the singular values is beneficial for low rankmodels. Besides,
WNNM outperforms TNNR and SPNM in the testing appli-
cations, which substitutes the superiority of the proposed
method along this line of research. Nonetheless, it is worth to
note that there may exist other weighting mechanisms which
might achieve better performance on certain computer vision
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tasks. Actually, since we have proved in Theorem 1 that the
WNNP problem is equivalent to an element wise proximal
problem with order constrains, a wide range of weighting
and reweighting strategies can be used to regularize the sin-
gular values of a datamatrix.One important researchproblem
of our future work is thus to investigate more sophisticated
weight setting mechanisms for different types of data and
applications.

8 Conclusion

We studied the weighted nuclear norm minimization prob-
lem (WNNM) in this paper. We first presented the solving
strategy for the weighted nuclear norm proximal (WNNP)
operator under �2-norm fidelity loss to facilitate the solv-
ing of different WNNM paradigms. We then extended the
WNNM model to robust PCA (RPCA) and matrix comple-
tion (MC) tasks and constructed efficient algorithms to solve
thembased on the derivedWNNPoperator. Inspired byprevi-
ous results on reweighted sparse coding, we further designed
a rational scheme for automatic weight setting, which offers
closed form solutions of the WNNP operator and ease the
utilization of WNNM in different applications.

We validated the effectiveness of the proposed WNNM
models on multiple low level vision tasks. For baseline
WNNM, we applied it to image denoising, and achieved
state-of-the-art performance in both quantitative PSNRmea-
sures and visual qualities. For WNNM-RPCA, we applied
it to background subtraction, and validated its superiority
among up-to-date low-rank learning methods. For WNNM-
MC, we applied it to image inpainting, and demonstrate its
superior performance among state-of-the-art inpainting tech-
nologies.

Acknowledgements This work is supported by the Hong Kong RGC
GRF grant (PolyU 5313/13E).

9 Appendix

In this appendix, we provide the proof details of the theoret-
ical results in the main text.

9.1 Proof of Theorem 1

Proof For anyX,Y ∈ �m×n(m > n) , denote by ŪDV̄
T
and

UΣVT the singular value decomposition of matrix X and Y ,

respectively, where Σ =
(
diag(σ1, σ2, ..., σn)

0

)

∈ �m×n ,

and D =
(
diag(d1, d2, ..., dn)

0

)

are the diagonal singular

value matrices. Based on the property of Frobenius norm, the
following derivations hold:

‖Y − X‖2F + ‖X‖w,∗

= Tr
(
YTY

)
− 2Tr

(
YTX

)
+ Tr

(
XTX

)
+

n∑

i

wi di

=
n∑

i

σ 2
i − 2Tr

(
YTX

)
+

n∑

i

d2i +
n∑

i

wi di .

Based on the von Neumann trace inequality in Lemma 1, we
know that Tr

(
YTX

)
achieves its upper bound

∑n
i σi di if

U = Ū and V = V̄ . Then, we have

min
X

‖Y − X‖2F + ‖X‖w,∗

⇔ min
D

n∑

i

σ 2
i − 2

n∑

i

σi di +
n∑

i

d2i +
n∑

i

wi di

s.t.d1 ≥ d2 ≥ ... ≥ dn ≥ 0

⇔ min
D

∑

i

(di − σi )
2 + wi di

s.t. d1 ≥ d2 ≥ ... ≥ dn ≥ 0.

From the above derivation, we can see that the optimal solu-
tion of the WNNP problem in (5) is

X∗ = UDVT ,

where D is the optimum of the constrained quadratic opti-
mization problem in (6).

End of proof. ��

9.2 Proof of Corollary 1

Proof Without considering the constraint, the optimization
problem (6) degenerates to the following unconstrained for-
mula:

min
di≥0

(di − σi )
2 + wi di

⇔ min
di≥0

(
di − (σi − wi

2
)
)2

.

It is not difficult to derive its global optimum as:

d̄i = max
(
σi − wi

2
, 0

)
, i = 1, 2, ..., n. (15)

Since we have σ1 ≥ σ2 ≥ ... ≥ σn and the weight vector
has a non-descending order w1 ≤ w2 ≤ ... ≤ wn , it is easy
to see that d̄1 ≥ d̄2 ≥ ... ≥ d̄n . Thus, d̄i=1,2,...,n satisfy the
constraint of (6), and the solution in (15) is then the globally
optimal solution of the original constrained problem in (6).

End of proof. ��
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9.3 Proof of Theorem 2

Proof Denote by UkΛkVT
k the SVD of the matrix {Y +

μ−1
k Lk − Ek+1} in the (k + 1)-th iteration, where Λk =

{diag(σ 1
k , σ 2

k , ..., σ n
k )} is the diagonal singular value matrix.

Based on the conclusion of Corollary 1, we have

Xk+1 = UkΣkVT
k , (16)

where Σk = Sw/μk (Λk) is the singular value matrix after
weighted shrinkage. Based on the Lagrangemultiplier updat-
ing method in step 5 of Algorithm 1, we have

‖Lk+1‖F = ‖Lk + μk(Y − Xk+1 − Ek+1)‖F
= μk‖μ−1

k Lk + Y − Xk+1 − Ek+1‖F
= μk‖UkΛkVT

k − UkΣkVT
k ‖F

= μk‖Λk − Σk‖F
= μk‖Λk − Sw/μk (Λk)‖F

≤ μk

√
√
√
√

∑

i

(
wi

μk

)2

=
√∑

i

w2
i .

(17)

Thus, {Lk} is bounded.
To analyze the boundedness of Γ (Xk+1,Ek+1,Lk, μk),

first we can see the following inequality holds because in step
3 and step 4 we have achieved the globally optimal solutions
of the X and E subproblems:

Γ (Xk+1,Ek+1,Lk, μk) ≤ Γ (Xk,Ek,Lk, μk).

Then, based on the way we update L:

Lk+1 = Lk + μk(Y − Xk+1 − Ek+1),

there is

Γ (Xk, Ek, Lk, μk)

= Γ (Xk, Ek, Lk−1, μk−1)

+μk − μk−1

2
‖Y − Xk − Ek‖2F

+〈Lk − Lk−1,Y − Xk − Ek〉
= Γ (Xk, Ek, Lk−1, μk−1)

+μk − μk−1

2

∥
∥
∥μ−1

k−1 (Lk − Lk−1)

∥
∥
∥
2

F

+
〈
Lk − Lk−1, μ

−1
k−1 (Lk − Lk−1)

〉

= Γ (Xk, Ek, Lk−1, μk−1)

+μk + μk−1

2μ2
k−1

‖Lk − Lk−1‖2F .

Denote by � the upper bound of ‖Lk − Lk−1‖2F for all
{k = 1, . . . ,∞}. We have

Γ (Xk+1,Ek+1,Lk, μk) ≤Γ (X1,E1,L0, μ0)

+ Θ

∞∑

k=1

μk + μk−1

2μ2
k−1

.

Since the penalty parameter {μk} satisfies∑∞
k=1 μ−2

k μk+1 <

+∞, we have

∞∑

k=1

μk + μk−1

2μ2
k−1

≤
∞∑

k=1

μ−2
k−1μk < +∞.

Thus, we know that Γ (Xk+1,Ek+1,Lk, μk) is also upper
bounded.

The boundedness of {Xk} and {Ek} can be easily deduced
as follows:

‖Ek‖1 + ‖Xk‖w,∗

= Γ (Xk,Ek,Lk−1, μk−1) + μk−1

2
(

1

μ2
k−1

‖Lk−1‖2F

− ‖Y − Xk − Ek + 1

μk−1
Lk−1‖2F )

= Γ (Xk,Ek,Lk−1, μk−1) − 1

2μk−1
(‖Lk‖2F − ‖Lk−1‖2F ).

Thus, {Xk}, {Ek} and {Lk} generated by the proposed algo-
rithm are all bounded. There exists at least one accumulation
point for {Xk,Ek,Lk}. Specifically, we have

lim
k→∞ ‖Y − Xk+1 − Ek+1‖F = lim

k→∞
1

μk
‖Lk+1 − Lk‖F = 0,

and the accumulation point is a feasible solution to the objec-
tive function.

We then prove that the change of the variables in adjacent
iterations tends to be zero. For the E subproblem in step 3,
we have

lim
k→∞ ‖Ek+1 − Ek‖F

= lim
k→∞ ‖S 1

μk

(
Y + μ−1

k Lk − Xk

)
−

(
Y + μ−1

k Lk − Xk

)

− 2μ−1
k Lk − μ−1

k−1Lk−1‖F
≤ lim

k→∞
mn

μk
+ ‖2μ−1

k Lk + μ−1
k−1Lk−1‖F = 0,

in which S 1
μk

(·) is the soft-thresholding operation with para-
meter 1

μk
, and m and n are the size of matrix Y .

To prove limk→∞ ‖Xk+1 − Xk‖F = 0, we recall the
updating strategy in Algorithm 1 which makes the follow-
ing inequalities hold:
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Xk = Uk−1Sw/μk−1(Λk−1)VT
k−1,

Xk+1 = Y + μ−1
k Lk − Ek+1 − μ−1

k Lk+1,

where Uk−1Λk−1VT
k−1 is the SVD of the matrix {Y +

μ−1
k−1Lk−1 − Ek} in the k-th iteration. We then have

lim
k→∞ ‖Xk+1 − Xk‖F

= lim
k→∞ ‖(Y + μ−1

k Lk − Ek+1 − μ−1
k Lk+1) − Xk‖F

= lim
k→∞ ‖(Y + μ−1

k Lk − Ek+1 − μ−1
k Lk+1) − Xk

+ (Ek + μ−1
k−1Lk−1) − (Ek + μ−1

k−1Lk−1)‖F
≤ lim

k→∞ ‖Y + μ−1
k−1Lk−1 − Ek − Xk‖F + ‖Ek

− Ek+1 + μ−1
k Lk − μ−1

k Lk+1 − μ−1
k−1Lk−1‖F

≤ lim
k→∞ ‖Λk−1 − Sw/μk−1(Λk−1)‖F + ‖Ek − Ek+1‖F
+ ‖μ−1

k Lk − μ−1
k Lk+1 − μ−1

k−1Lk−1‖F
= 0.

End of proof. ��

9.4 Proof of Remark 1

Proof Based on the conclusion of Theorem 1, the WNNM
problem can be equivalently transformed to a constrained
singular value optimization problem. Furthermore, when uti-
lizing the reweighting strategyw�+1

i = C
σ�
i (X)+ε

, the singular

values of X are consistently sorted in a non-ascending order.
The weight vector thus follows the non-descending order. It
is then easy to deduce that the sorted orders of the sequences
{σi (Y), σi (X�), w

�
i ; i = 1, 2, · · · , n} keep unchanged dur-

ing the iteration. Thus, the optimization for each singular
value σi (X) can be analyzed independently. For the purpose
of simplicity, in the following development we omit the sub-
script i and denote by y a singular value of matrix Y , and
denote by x andw the corresponding singular value ofX and
its weight.

For the weighting strategy w� = C
x�−1+ε

, we have

x� = max

(

y − C

x�−1 + ε
, 0

)

.

Since we initialize x0 as the singular value of matrix X0 =
Y , and each x� is a result of soft-thresholding operation on
positive value y = σi (Y), {x�} is a non-negative sequence.
The convergence value lim�→∞ x� for different conditions
are analyzed as follows.

(1) c2 < 0
From the definition of c1 and c2, we have (y + ε)2 − 4C

< 0. In such case, the quadratic system x2 + (ε − y)x +
C − yε = 0 does not have a real solution and function
f (x) = x2+(ε−y)x+C−yε gets its positiveminimum

valueC− yε− (y−ε)2

4 at x = y−ε
2 . ∀x̃ ≥ 0, the following

inequalities hold

f (x̃) ≥ f

(
y − ε

2

)

x̃2 + (ε − y)x̃ ≥ − (y − ε)2

4

x̃ − C − yε − (y−ε)2

4

x̃ + ε
≥ y − C

x̃ + ε
.

The sequence x�+1 = max
(
y − C

x�+ε
, 0

)
with initial-

ization x0 = y is a monotonically decreasing sequence
for any x� ≥ 0. We have x� < y, and

x� −
(

y − C

x� + ε

)

>
C − yε − (y−ε)2

4

y + ε
.

If x� ≤ C−yε
y , we have y − C

x�+ε
≤ 0

and x�+1 = max
(
y − C

x�+ε
, 0

)
= 0. If x� >

C−yε
y ,

∃N ∈ N makes x�+N < x� − N · C−yε− (y−ε)2

4
y+ε

less than
C−yε

y . The sequence {x�}will shrink to 0 monotonically.
(2) c2 ≥ 0

In such case, we can know that y > 0, because if y = 0,
we will have c2 = (y + ε)2 − 4C = ε2 − 4C < 0. For
positive C and sufficiently small value ε, we can know
that c1 is also non-negative:

c2 = (y + ε)2 − 4C ≥ 0

(y + ε)2 ≥ 4C

y − ε ≥ 2(
√
C − ε)

c1 = y − ε ≥ 0.

Having c2 ≥ 0, c1 ≥ 0, we have

x̄2 = y − ε + √
(y − ε)2 − 4(C − εy)

2
> 0.

For any x > x̄2 > 0, the following inequalities hold:

f (x) = x2 + (ε − y)x + C − yε > 0
[

x −
(

y − C

x + ε

)]

(x + ε) > 0

x > y − C

x + ε
.
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Furthermore, we have

x > y − C

x + ε
> y − C

x̄2 + ε
= x̄2.

Thus, for x0 = y > x̄2, we always have x� > x�+1 >

x̄2, the sequence is monotonically decreasing and has
lower bound x̄2. The sequence will converge to x̄2, as
we prove below.
We propose a proof by contradiction. If x� converges to
x̂ �= x̄2, then we have x̂ > x̄2 and f (x̂) > 0. By the
definition of convergence, we can obtain that ∀ε > 0,
∃N ∈ N s.t. ∀� ≥ N , the following inequality must be
satisfied

|x� − x̂ | < ε. (18)

We can also have the following inequalies

f (xN ) ≥ f (x̂)
[

xN −
(

y − C

xN + ε

)]

(xN + ε) ≥ f (x̂)

[

xN −
(

y − C

xN + ε

)]

(y + ε) ≥ f (x̂)

xN −
(

y − C

xN + ε

)

≥ f (x̂)

y + ε

xN − xN+1 >
f (x̂)

y + ε

If we take ε = f (x̂)
2(y+ε)

, then xN − xN+1 > 2ε, and we
can thus obtain

|xN+1 − x̂ |
= |xN+1 − xN + xN − x̂ |
≥

∣
∣
∣|xN+1 − xN | − |xN − x̂ |

∣
∣
∣

≤ |2ε − ε| = ε

This is however a contradiction to (18), and thus x� con-
verges to x̄2.

End of proof. ��
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