
Int J Comput Vis (2017) 121:253–280
DOI 10.1007/s11263-016-0929-y

Large-Scale Gaussian Process Inference with Generalized
Histogram Intersection Kernels for Visual Recognition Tasks

Erik Rodner1,2 · Alexander Freytag1,2 · Paul Bodesheim3 · Björn Fröhlich4 ·
Joachim Denzler1,2

Received: 10 November 2014 / Accepted: 4 July 2016 / Published online: 27 July 2016
© Springer Science+Business Media New York 2016

Abstract Wepresent newmethods for fastGaussianprocess
(GP) inference in large-scale scenarios including exactmulti-
class classification with label regression, hyperparameter
optimization, and uncertainty prediction. In contrast to pre-
vious approaches, we use a full Gaussian process model
without sparse approximation techniques. Our methods are
based on exploiting generalized histogram intersection ker-
nels and their fast kernel multiplications. We empirically
validate the suitability of our techniques in a wide range
of scenarios with tens of thousands of examples. Whereas
plain GP models are intractable due to both memory con-
sumption and computation time in these settings, our results
show that exact inference can indeed be done efficiently.
In consequence, we enable every important piece of the
Gaussian process framework—learning, inference, hyper-
parameter optimization, variance estimation, and online
learning—to be used in realistic scenarios with more than
a handful of data.
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1 Introduction

Over the last years, visual image categorization has been
dominated by a few classification concepts. Support Vector
Machines represented the state-of-the-art for the last decade,
e.g., the famous solvers LibLinear by Fan et al. (2008) as well
as LibSVM of Chang and Lin (2011). More recently, they
were replaced by Convolutional Neural Networks trained
with deep learning techniques (Krizhevsky et al. 2012).
Today, deep networks are established as excellent black-box
toolswhich lead to impressive results in image categorization
challenges (Russakovsky et al. 2015). However, these mod-
els only provide what they were designed and trained for:
estimated class labels for previously unseen data. Are class
labels and plain predictions the only thing we are interested
in?

Nonparametric Bayesian methods based on Gaussian
process models have the advantage of providing a complete
probabilistic framework for inference. In consequence, they
allow for estimating the variance of a prediction or finding
suitable hyperparameters with marginal likelihood optimiza-
tion as shown by Kapoor et al. (2010). Unfortunately, their
application to large-scale learning scenarios is limited since
required computation times and memory consumption scale
cubically and quadratically with the number of collected
examples, respectively. On the other hand, current research
is shifting more and more towards large-scale learning sce-
narios due to the huge number of available image data. Thus,
there exists an increasing gap between the benefits of the GP
framework and their applicability to current visual recogni-
tion scenarios.

Contributions of this Article In this paper, we show how
to overcome the scaling issues of the GP framework even
in the presence of a large number of learning examples.
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Our insights are based on inherent properties of histogram
intersection kernels (HIK) which serve as similarity mea-
sure between histogram features. Histograms arise from a
large number of popular image representations, e.g., SIFT,
HOG, or visual Bag-of-words (BOW). Also more recent rep-
resentations based on CNN activations are non-negative after
being passed through rectified linear units. Thus, kernel func-
tions particularly tailored to histogram characteristics are
well applicable to a wide range of computer vision scenarios.

Exploiting HIK for efficient GP models has been inspired
by several previous works also exploiting HIK properties to
speed up kernel SVM learning and prediction (Maji et al.
2008; Wu 2010; Wang et al. 2012). Our first contribution is
to transfer their insights to Bayesian methods, which allows
for fast multiplications of the kernel matrix K with an arbi-
trary vector v. Thereby, solving the GP inference equations
is efficiently possible using iterative solvers.

We then go beyond pure classification aspects and provide
efficient techniques for marginal likelihood optimization,
variance prediction, and online learning. In particular, we
demonstrate that hyperparameter optimization with the com-
plete GP marginal likelihood can be performed with reduced
computational costs by exploiting an upper bound for the log-
determinant of the kernel matrix. We prove that our bound,
which is amodification of the one provided by Bai andGolub
(1997), indeed specifies an upper limit and show how to
calculate it efficiently. For predictive variance estimation,
we present several approximation methods with different
asymptotic times and accuracies. The memory and runtime
requirements of our methods are sub-quadratic allowing for
scalability.

The main contributions of this article can thus be summa-
rized as follows:

(1) We show how to perform learning and inference in a
Bayesian manner with Gaussian processes and HIK for
a large number of training examples.

(2) We introduce a technique for optimizing hyperparame-
ters based on efficient evaluation of the GP marginal
likelihood.

(3) Wedemonstrate how to estimate and approximate theGP
predictive variance and show the implications for active
learning.

(4) We derive efficient update routines for online learning,
which are a pre-requisite for active learning.

In addition to theoretical derivations, we also empirically
validate our techniques for image categorization, incremen-
tal learning, and active learning tasks in several experiments.
For categorization, we use GP regression with binary labels
in a one-vs-all manner similar to Kernel-SVM. Since our
experiments are centered on visual object recognition, the
application of HIK as a similarity measure is well suited due

to the commonly used histogram representations of images.
We further use parameterized versions of the kernel that
are more flexible, e.g., by appropriate non-linear scaling or
individual weighting of histogram elements. Our methods
for hyperparameter optimization are useful to handle this
increased flexibility and circumvent the necessity of tech-
niques like cross-validation.

The article is based on previous conference publications.
In detail, we presented the efficient GP multi-class classifi-
cation with regression and hyperparameter optimization at
ECCV (Rodner et al. 2012). Furthermore, we published the
predictive variance approximation techniques and the incre-
mental learning aspects at ACCV (Freytag et al. 2012b).
In this article, we go beyond these individual publications
and present all aspects in a coherent view. In addition, we
extended them with detailed mathematical proofs, an error
analysis of the quantization method, adaptive quantization
as well as multiple additional experimental results and com-
parisons. An application of our approach towards semantic
segmentation was demonstrated in an ICPR paper (Freytag
et al. 2012a).

Structure of this Article We start by reviewing relevant lit-
erature for this article in Sect. 2. The Gaussian process
framework for regression, classification, and hyperparame-
ter optimization is reviewed in Sect. 3. In Sect. 4, we define
the histogram intersection kernel as well as its parameter-
ized versions and review how efficient kernel multiplications
can be done. Furthermore, we present how a quantization
approach leads to further improvements regarding computa-
tional speed.

Based on these foundations, we describe how to efficiently
learn and test a GP model for multi-class classification with
Gaussian noise models using HIK in Sect. 5. Fast hyper-
parameter optimization and speeding up predictive variance
estimations are discussed in Sects. 6 and 7, respectively. How
our methods can be extended to incremental learning as well
as applied for active learning is presented in Sect. 8.

Our findings are complemented by extensive experiments
on publicly available computer vision datasets. In Sect. 9,
we experimentally prove the suitability of our approach for
the tasks of large-scale classification and incremental learn-
ing. Efficient hyperparameter optimization with Gaussian
processes is evaluated in Sect. 10. We further analyze our
variance approximation techniques as well as their applica-
tion for active learning in Sect. 11.A summary of our findings
concludes the article.

2 Related Work

In the following, we review related work for different
aspects of this article: learning with histogram intersection
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kernels (Sect. 2.1), parameterized kernels (Sect. 2.2), cur-
rent approaches for fast GP classification and regression
(Sect. 2.3), and the applicationof theGP framework for visual
recognition tasks (Sect. 2.4).

2.1 Fast Learning and Classification with HIK

For almost two decades, kernel methods have been pop-
ular tools for handling non-linear relations present in real
world problems. The idea of kernels is to directly compute
scalar products between transformed feature vectors with-
out the necessity of actually computing the transformation.
While model complexity and resulting accuracy can be dra-
matically improved via kernelization of linear algorithms,
resulting benefits come at the cost of potentially increased
memory consumption and computation time. To overcome
these drawbacks, Vedaldi and Zisserman (2010) presented
how to approximate the histogram intersection kernel with
explicit feature transformations. These transformations can
then be directly used in combinationwith linear classifiers. In
contrast, Maji et al. exploited the properties of HIK directly
for efficiently calculating SVM decisions (Maji et al. 2008,
2013).Whenm denotes the number of support vectors and D
the number of feature dimensions, their technique scales only
with O (log(m)D) time compared to O (mD) for standard
SVM inference. Going one step further, Wu (2010, 2012)
presented fast SVM training by using the HIK properties to
reformulate the SVM dual problem. Similar techniques have
been applied later byWang et al. (2012) for large-scale image
similarity calculation. In the present article, we go beyond
these works by showing that the special properties of the
HIK can be exploited for GP classification with regression,
hyperparameter optimization, and variance estimation.

2.2 Generalized HIK and Hyperparameter
Optimization

Barla et al. (2003) applied the HIK for image classifica-
tion and proved it to be a Mercer kernel for images having
the same size. Since that time, a lot of improvements on
this kernel have been proposed, e.g.,HIK with polynomial
transformations (Boughorbel et al. 2005) or the weighted
multi-level extension known as pyramidmatch kernel (PMK)
byGrauman andDarrell (2007).We showhow to further gen-
eralize the HIK with order-preserving and positive-valued
feature transformations and weights for each dimension.
Therefore, our work is similar to the one of Ablavsky and
Sclaroff (2011), where a cross-validation procedure is pro-
posed to estimate multiple weights of histogram kernels. In
contrast, our hyperparameter optimization is theoretically
sound and directly optimizes the data likelihood. We com-
pare our results to the ones achievedbyAblavsky andSclaroff

(2011) and show the resulting benefits of optimizing gener-
alized histogram intersection kernels in Sect. 10.

Our approach for hyperparameter optimization should not
be confused with the recent work on Bayesian optimization
presented by Snoek et al. (2012). In fact, both approaches
are orthogonal. Here, we present how to efficiently compute
the marginal log-likelihood of a GP model. Thereby, it can
be combined with the optimization method of Snoek et al.
(2012) using GP regression for predicting suitable sample
points of hyperparameters.

2.3 Fast GP Classification and Regression

Similar to Kernel-SVM, GP classifiers require computation
time and memory cubic and quadratic in the number of
training examples, respectively. Thus, their direct applica-
tion to large-scale problems is limited. A growing number
of publications tackle this problem by introducing sparse
approximations. At the core of these approximations is the
assumption of conditional independence between sets of cer-
tain examples. These examples could be a selection from the
training set or canbe learnedduring training (QuiñoneroCan-
dela and Rasmussen 2005). Although these techniques lead
to impressive results, the necessary independence assump-
tions neglect information provided in training and test data.
The only work we are aware of tackling full GP inference is
the greedy block technique of Bo and Sminchisescu (2012),
which circumvents storing the full kernel matrix in mem-
ory. However, kernel values have to be calculated explicitly,
which is not necessary in our case. In Sect. 9, we empiri-
cally show that their method can be improved by orders of
magnitude in computation time.

A complementary approach has been presented by Urta-
sun and Darrell (2008) who apply local learning to tackle the
long training time and high memory demands of standard
GP regression. In particular, they learn models from the k
nearest neighbors selected by evaluating kernel distances. In
contrast, our approach is sublinear during testing and does
not involve an additional training step for each test example.

2.4 Applications of the GP Framework: Active Learning
and Beyond

In active learning scenarios, we have been given a set of
unlabeled examples, an expert who is willing to annotate a
few of these examples, and a classifier which shall be trained.
Thus, we search for the instances within the given set which
are as informative as possible after being labeled and added
to the model.

Active learning with the Gaussian process framework has
been introduced by Kapoor et al. (2010). The authors present
three different selection strategies based on the predictive
mean, variance, and a combination of both. Thus, our tech-
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niques presented in this article allow for using their ideas
in large-scale scenarios with a large number of unlabeled
examples and an increasing size of the training set. Note that
this also holds for our recently introduced active learning
methods that involve the computation of expected changes in
model parameters for GP regression to develop a new active
learning criterion (Freytag et al. 2013) as well as a general-
ization based onmeasuring the differences in expectedmodel
outputs (Freytag et al. 2014a; Käding et al. 2015).

Besides active learning, GPs serve as easy-to-use prob-
abilistic model in a range of other applications. Three
exemplary scenarios are their application for detector adap-
tation (Vázquez et al. 2014), for super-resolution tasks (He
and Siu 2011), or for human pose inference (Urtasun and
Darrell 2008).

3 GP Regression and Hyperparameter
Optimization

In this section, we briefly introduce the Gaussian process
framework for regression and classification to ensure the-
oretical basics important for understanding this article. An
experienced reader may directly jump to Sect. 4 for a review
on exploiting HIKs for efficient inference in general or
directly to Sect. 5 for a description of efficient GP inference
using HIKs.

3.1 Gaussian Process (Label) Regression

Let Ω be the space of all possible input data, e.g.,D-
dimensional feature vectors, which are often L1-normalized
in case of histogram representations. Furthermore, let Y
be the space of possible targets. For now, let us focus on
binary classification with Y = {−1, 1}. Multi-class scenar-
ios are discussed in Sect. 3.3. Given N training examples
xi ∈ X ⊂ Ω and corresponding binary labels yi ∈ {−1, 1},
we would like to predict the label y∗ of an unseen example
x∗ ∈ Ω .

The relationship between inputs and outputs can be mod-
eled by a latent function f and an additional noise process
y = f (x) + ε. Well known frequentist approaches such as
SVM would now seek for a single function f which opti-
mizes some criterion such as the regularized risk (Vapnik
1998). In contrast, a Bayesian approach assumes that f is a
sample of a stochastic process F and inference requires mar-
ginalization over all possible realizations. A specific choice
of a stochastic process is a Gaussian process GP . We can
thus express our assumptions as a GP prior with zero-mean
and covariance (kernel) function κ (·, ·), i.e., f ∼ GP(0, κ).
Furthermore, we assume that labels yi are conditionally inde-
pendent from xi given f (xi ).

We follow Kapoor et al. (2010) and solve a given binary
classification problem as a regression problem where labels
yi are treated as real-valued function values instead of dis-
crete labels. This is very much related to Kernel-SVM but
with an L2-loss instead of a Hinge loss. Since it can be inter-
preted as kernelized least-squares regression, this technique
is also known as label regression. In practical applications, it
has proved to be useful for classification and it outperforms
approximate inference techniques like Laplace approxima-
tion with more sophisticated noise models in most cases
(Kapoor et al. 2010; Rodner et al. 2010; Kemmler et al.
2010).

For the noise process ε in label regression, a simple addi-
tive Gaussian noise model with variance σ 2

n is used:

p(yi | fi ) = N (yi | fi , σ
2
n ). (1)

An advantage of the Gaussian noise model is that the
GP assumptions lead to analytic solutions of the involved
marginalizations. In consequence, they allow for directly pre-
dicting the expectation μ∗ as well as the variance σ 2∗ of the
posterior distribution for the label y∗ of a new example x∗
(Rasmussen and Williams 2006):

μ∗ = kT∗ (K + σ 2
n · I)−1 y = kT∗α, (2)

σ 2∗ = k∗∗ − kT∗ (K + σ 2
n · I)−1k∗ + σ 2

n . (3)

Here, the vector k∗ contains the kernel values (k∗)i =
κ(xi , x∗) corresponding to the test example x∗, K is the
kernel matrix of the training data with (K )i j = κ(xi , x j ),
k∗∗ = κ(x∗, x∗) is the prior variance of x∗, and y is the
vector containing all training labels. Although noted before,
let us again emphasize that when we write “GP classifica-
tion” in this article, we always refer to the label regression
technique in Eq. (2) as presented by Kapoor et al. (2010).
Thereby, we are able to estimate the predictive variance for
classification settings which is one important benefit of the
Bayesian framework. Another benefit arises when dealing
with parameterized kernel functions, which is reviewed in
the next section.

3.2 Hyperparameter Optimization

Kernel functions often depend on hyperparameters η, which
have an important impact on the resulting classification
model. In contrast to SVM techniques, the GP framework
allows for finding their optimal values by marginal likeli-
hood maximization instead of expensive cross-validation.
As shown by Rasmussen and Williams (2006) the nega-
tive marginal log-likelihood for GP regression models can
be expressed as:
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− log p( y | X, η) =1

2
yT

(
K̃η

)−1
y

+ 1

2
log det

(
K̃η

)
+ N

2
log 2π. (4)

We introduced the short-hand K̃η = (
Kη + σ 2

n · I) as the
parameterized kernel matrix having the noise variance σ 2

n
added to the main diagonal. It should be mentioned here
that for continuous hyperparameters and differentiable ker-
nel functions, it is even possible to use the derivative of the
negative marginal log-likelihood for the optimization (Ras-
mussen and Williams 2006).

3.3 Multi-class Classification

As common for SVM classifiers, GP multi-class classifica-
tion can be done by utilizing the one-vs-all technique as
shown by Kapoor et al. (2010). For each class m, a binary
classifier with label regression (Nickisch and Rasmussen
2008) is trained which uses all images ofm as positive exam-
ples and all remaining examples as negatives. Classification
is then done by returning the class with largest predictive
mean estimate of the corresponding binary classifier.

We can also perform model selection for the one-vs-
all approach by jointly optimizing hyperparameters of all
involved binary problems (Kapoor et al. 2010). Thereby, the
objective function turns out to be the sum of all binary nega-
tive marginal log-likelihoods as given in Eq. (4). In addition,
the predictive variance as shown in Eq. (3) is independent of
the actual class labels and has therefore to be calculated only
once for an arbitrary number of classes.

We can thus summarize that GP models can be seen as
useful probabilistic counterparts to SVM classifiers with
a range of interesting properties. Thus, efficient inference
tools for GP models should be available to computer vision
researchers for their “classification tool-boxes”, which is one
aim of the current article. To tackle this goal, we present in
the next section how to exploit fast kernel multiplication for
speeding up computation times by orders of magnitude and
significantly reduce memory demands.

4 Efficient Kernel Multiplications with Histogram
Intersection Kernels

Kernel methods are one of the fundamental tools used to
handle the complexity of visual recognition and allow for
expressing non-linear relationswith otherwise linearmodels.
A possible kernel function often used to compare histogram
feature vectors x, x′ ∈ R

D is the histogram intersection
kernel:

κHIK(x, x′) =
D∑

d=1

min(x (d) , x′ (d)). (5)

As shown by Maji et al. (2008) and Wu (2010), this kernel
offers two important properties:

(1) for any test input x∗, the computation of the inner product
kT∗α between kernel vector k∗ and weight vector α of a
trained representer model [e.g.,GP regression in Eq. (2)]
scales only sub-linear with the number of known exam-
ples, and

(2) for an arbitrary vector v, the matrix-vector product Kv

between the kernel matrix K and v scales only sub-
quadratic.

While the first property allows for efficient inference with
representer models, the second property enables reduced
computation times for learning [as also noted in (Bottou et al.
2007, Sect. 9.4)]. We refer to these properties as fast kernel
multiplications. In consequence, we refer to kernels fulfilling
these properties as fast multiplication kernels. Note that these
kernels should be not confused with multiplicative kernels as
introduced by Yuan et al. (2008).

In the following, we review the work of Maji et al. (2008)
and Wu (2010). Since the authors presented how fast HIK
multiplications can be exploited for fast SVM learning and
classification, we put their work into a Gaussian process
perspective. In addition, we derive a worst-case bound for
quantization errors of the techniques presented by Maji et al.
(2008). The section closes by presenting generalizations of
currently known histogram intersection kernels important for
adaptations such as automated feature scaling or feature rel-
evance determination.

4.1 Fast Kernel Multiplications

As we have seen in Eq. (2), the predictive mean is a weighted
sum of kernel values. This property is shared by all repre-
senter models such as SVM and GP. The HIK allows for
decomposing this sum into two parts (Maji et al. 2008):

kT∗α =
N∑
i=1

α (i)
D∑

d=1

min (xi (d) , x∗ (d))

=
D∑

d=1

( ∑
{i : xi(d)<x∗(d)}

α (i) xi (d) + . . .

. . . x∗ (d)
∑

{ j : x j(d)≥x∗(d)}
α ( j)

)
. (6)

From Eq. (6) we make the important observation, that for
each dimension the predictive mean of Gaussian process
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Fig. 1 Piecewise linearity of the regression function when using
Gaussian process regression for classification (discrete y) together with
the histogram intersection kernel: 2-dimensional input vectors x are
used but due to the normalization ‖x‖1 = 1, we only display the pre-
dictive mean (blue graph) and confidence areas (shaded area) derived
from the predictive variance with respect to the first dimension of the
input vectors. Training points are shown as blue crosses and the noise
variance is set to 0.1

regression with HIK is piecewise linear. This property is also
visualized in Fig. 1 for a simple toy example.

We can now significantly reduce the computational costs
using the following trick. Let us assume given permutations
πd which rearrange the training examples such that they are
sorted in an ascending order in each dimension d. Then, we
can rewrite Eq. (6) as

kT∗α =
D∑

d=1

( rd∑
i=1

α
(
π−1
d (i)

)
x

π−1
d (i) (d)

︸ ︷︷ ︸
·= A(d,rd )

+ . . .

. . . x∗ (d)

N∑
i=rd+1

α
(
π−1
d (i)

)

︸ ︷︷ ︸
·= B(d,rd )

)
(7)

=
D∑

d=1

(A (d, rd) + x∗ (d) B (d, rd)) , (8)

with rd being the number of examples that are smaller than
x∗ in dimension d. We can precompute the two terms of the
linear function during learning and store the values in look-
up tables A and B as displayed in Eq. (8). Calculating the
scores for test examples can be done by accessing only few
elements of A and B, in particular one element of both A
and B for each dimension.

Given the vector α, the resulting computation time for
building A and B is dominated by sorting, which requires
O (ND log N ) operations. In terms of memory usage, we
only have to storeO (ND) elements in contrast to the kernel
matrix of sizeO (

N 2
)
. This is especially important for large

dataset sizes, for which the kernel matrix would not fit into
memory. For calculating the score of a new example, we need
O (D log N ) operations to find the correct position rd in each
dimension and compute the linear function in Eq. (8) using
look-up tables A and B.

Similar considerations hold for multiplications of an arbi-
trary vector v ∈ R

N with the kernel matrix K , which can
be done inO (ND) based on already sorted features in each
dimension:

(Kv)i =
N∑
j=1

v ( j) · κ(xi , x j )

=
N∑
j=1

v ( j)
D∑

d=1

min(xi (d) , x j (d)). (9)

From this equation, we observe that we can further exploit
sparsity of feature vectors since corresponding terms of zero-
valued dimensions vanish.

As we will show in the next sections, the efficient com-
putation of products Kv will be an essential part in our
overall framework. In detail, we will require it for learning
in Sect. 5.1 and for optimizing hyperparameters as shown
in Sect. 6. Furthermore, computations of products kT∗α will
allow for efficient classification as shown in Sect. 5.2.

4.2 Quantization of the Feature Space

The previously shown techniques for computing scores kT∗α

already result in valuable savings of required computation
times. Nonetheless, they still depend on the number of avail-
able training examples. If feature values in dimension d are
bounded by x∗ (d) ∈ [ld , ud ], the evaluation can be further
speeded up by quantizing the feature space (Maji et al. 2008)
leading to an approximate inference method.

For L1-normalized histogram features, all elements are
obviously bounded by the interval [0, 1]. Using a quan-
tization for each dimension with q bins, only q different
prototypical outputs p(k) (1 ≤ k ≤ q) are possible in each
summand of Eq. (7). With already computed tables A and
B, we can proceed with building a final look-up table T of
dimension D × q:

T (d, k) = A (d, rd) + p(k) · B (d, rd) , (10)

with rd being the number of examples that are smaller than
p(k) in dimension d. Since permutationsπd are already com-
puted, this step requires only O (Dmax (q, N )) operations.

As a result, the time spent for evaluating the score of a
new test example decreases to O (D) if the quantizer works
in O (1). Consequently, for a given number of dimensions,
the score of a new test example can be computed in constant
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time independent of N . It should be noted that in the case
of quantization, GP regression can be restated as piecewise
Bayesian linear regression.

Adaptive Quantization In contrast to previous works, we use
an adaptive quantization for every single dimension of the
input feature vectors. The necessity of our adaptive quanti-
zation becomes apparent when we replace BOW features
by CNN activations. For the latter, the common activa-
tion strength typically varies heavily between dimensions.
Furthermore, L1-normalized activations come without theo-
retical motivation. Thus, neither are all values guaranteed to
be smaller than one as for histogram entries, nor is a quantiza-
tion equal for all dimensions suitable. We therefore compute
the maximum value ud in each feature dimension for the
training set. For each dimension, we then use [0, ud ] to define
the bounds for a uniform quantization.

Quantization Error Analysis The quantization trick reduces
the runtime during testing significantly. However, the ques-
tion remains how much the approximation affects the classi-
fication scores. Therefore, we study the error induced by this
trick when computing the predictive mean, an analysis that
has not been performed in previous works. The proofs of the
results are given in Appendix. The results are not restricted to
Gaussian process regression and also hold for support vector
machines, because of the decisionmadewith a weighted sum
of kernel values.

Theorem 1 (Worst-case error analysis) If a quantization
with a maximum quantization error of εq is used as well as
L1-normalized features, the error of the quantized predictive
mean μ̃∗ can be bounded as follows:

|μ∗ − μ̃∗| ≤ D · εq

2
· ‖α‖1. (11)

Proof See Appendix. 
�
The L1-term of the weights α does not depend on the

quantization, because the quantization trick is only applied
when a new test input is given and the position in the sorted
list has to be determined in constant time. However, the term
can be further bounded for SVM models by using ‖α‖1 ≤
C · N :

|μ∗ − μ̃∗| ≤ D · εq

2
· C · N , (12)

where C is the trade-off parameter used in the soft-margin
version (Schölkopf and Smola 2001). For GP regression, we
can use the bounds derived by Rodner (2011, p. 64), which
lead to:

|μ∗ − μ̃∗| ≤ D · εq

2
· N

σ 2
n

. (13)

Conclusions of Theorem 1 What do we learn from the previ-
ous analysis? First, we observe that the upper bound of the
error depends linearly on the dimension and the number of
training examples. Furthermore, also the strength of regular-
ization (for SVM determined by C and for GP regression by
the noise variance σ 2

n ) influences the error induced by the
quantization. For a strong regularization (low C or high σ 2

n ),
the error decreases.

4.3 Very General Histogram Intersection Kernels

In the previous sections, we restricted our analysis to the
standard HIK as introduced in Eq. (5). To increase the kernel
functions flexibility, Boughorbel et al. (2005) have shown
that theHIK equippedwith any positive valued function g (·):

κGHIK
(
x, x′) =

D∑
d=1

min
(
g (x (d)) , g

(
x′ (d)

))
(14)

still remains a positive definite kernel. The obvious question
is whether efficient calculations as shown previously also
hold for the generalized versions of HIK?

In fact, if g (·) is an automorphism, the relative order of the
training elements stays valid after evaluating g (·). Therefore,
the proposed techniques can also be applied to these gener-
alized variants of the HIK which we denote with GHIK in
the remainder of the article. Note that we can even use the
same quantization by storing the original feature values. Two
common examples are the polynomial feature transform:

g|·|,η (x (d)) = |x (d)|η , η ∈ R+, (15)

and the exponential transformation:

gexp,η (x (d)) = exp(η |x (d)|) − 1

exp(η) − 1
, η ∈ R+. (16)

In the remaining sections, we refer to them asHIK-POLYand
HIK-EXP. Interestingly, Eq. (14) even holds if we consider
functions gd specifically parameterized for each dimension.
Thereby, we can individually weight each feature dimension:

gard,η (x (d)) = η (d) · x (d) , η ∈ R
D∗ . (17)

In Sect. 6, we present how to optimize hyperparameters η of
generalized HIKs even for large-scale training data.

5 Efficient GP Multi-Class Classification with
GHIK

In this section, we demonstrate that learning and testing a
GP model can be performed efficiently when using GHIKs.
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Fig. 2 Main outline of our approach for GP classification and hyperparameter optimization using fast multiplications with the kernel matrix.
Details are given in Sects. 5 and 6

Most of our algorithms are also applicable for general fast
multiplication kernels, but since GHIK is the only practical
family of kernels known to fit to this class, we focus on the
GHIK in our presentation of the algorithms. This theoretical
investigation is complemented by experimental results given
in Sect. 9 and following, where we tackle several applica-
tions such as classification of real-world large-scale datasets,
model regularization, and feature relevance determination.

As shown in Eq. (2), inference with a GP model requires
two steps: (1) solving the linear equation system K̃η · α = y
and (2) calculating the scalar product kT∗α. Step (1) has to be
done only once for each class of a given training set X and is
known as learning. In contrast to that, the second step is used
to test the learned model in order to infer labels for new test
data. For transferring the techniques of Maji et al. (2008) to
GP inference, we need to handle both steps. Let us start with
step 1.

5.1 Step 1: Efficient Learning

For the training phase in step 1, we notice that storing the full
kernel matrix is impossible for large-scale datasets. Further-
more, applying a Cholesky decomposition with a runtime of
O (

N 3
)
is far from being practical. However, the HIK explic-

itly allows for multiplications with the kernel matrix in linear
time O (ND). Therefore, an iterative linear solver can be
used to tackle the learning step and only needs to perform
several cheap multiplications with the kernel matrix.

Wu (2010) used a coordinate descent method to solve
the quadratic program related to SVM learning. In con-
trast, our experiments show that a linear conjugate gradients
(CG) method converges faster for GP problems. Note that
in absence of round-off errors, we obtain the exact solution
after N iterations [see also (Hestenes and Stiefel 1952)]. In
practice, we can even stop the iteration significantly earlier,
e.g.,when the maximum norm of the residual drops below a
specified threshold.

Let us analyze the resulting asymptotic cost to compare
against the GP baseline. To this end, letM denote the number
of classes and let T1 be the number of iterations the CG

method performs, which depends on the condition number of
the kernel matrix (Nocedal andWright 2006). Among others,
the condition of the kernel matrix itself depends on N and
can be corrected by adapting the regularization parameter σ 2

n .
Since the binary label vectors differ for each class, we need
to compute M weight vectors α(1), . . . ,α(M). As previously
noted, solving the resulting linear equation system using an
iterative linear solver is possible in linear time, which leads
to the first termO (DNT1M). A second termO (DN log N )

arises from the effort for sorting all N examples in every
dimension.

In summary, we require O (ND(T1M + log N )) opera-
tions for learning. Note that in practice, we often observe
sparse features which leads to a significant reduction of the
necessary computation times for this step. We also see that
the runtime performance of our method is linear in the num-
ber of classes M allowing for scalability towards large-scale
scenarios with hundreds or even thousands of classes.

5.2 Step 2: Efficient Testing

After estimating the coefficients α, the test step only involves
evaluating inner products kT∗α, which can be done in loga-
rithmic time. Note that we can further reduce the asymptotic
cost to constant time by applying the quantization idea of
Maji et al. (2008) as reviewed in Sect. 4.

In summary of this section, we visualized the interplay of
all steps of our approach in Fig. 2 including hyperparameter
optimization as explained in the next section. An overview
of asymptotic computation times and memory demand for
our approach is finally given in Table 1.

6 Large-Scale Hyperparameter Optimization

While the previous section dealt with efficient large-scale
classification, we are now interested in optimally adapting
our system to a specific task. Here, we realize adaptations
by optimizing involved hyperparameters. Due to our proba-
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Table 1 Overview of
asymptotic runtimes for
learning, testing, and
optimization of hyperparameters
for baseline GP compared to our
approach

Step Asymptotic computation time

GP baseline GP + (G)HIK GP + (G) HIK + Quant.

Learning O (
N3 + MN2

) O (DN (log N + T1M)) O (DN (log N + T1M))

Hyperp. opt. O (
T2

(
N3 + MN2

)) O (T2NMDT1) O (T2NMDT1)

Testing O (MDN) O (MD log N) O (MD)

Memory O (
N2

) O (DN) O (Dmax (q, N))

The parameter D denotes the number of dimensions, M the number of classes, and T1 and T2 the number of
iterations used for the linear solver and the optimizer, respectively. We highlight the number of training
examples N with bold font

bilistic model, this optimization can be done by minimizing
the negative GP log-likelihood as given in Eq. (4).

Exact optimization of the negative GP log-likelihood is
very time consuming and intractable for large-scale datasets.
We show how to solve this drawback by optimizing a proxy
function instead which can be evaluated efficiently. A theo-
retical analysis reveals that our proxy function is indeed an
upper bound of the exact negative GP log-likelihood and thus
results in similar optima.

6.1 An Upper Bound of the Log-Determinant

As we reviewed in Eq. (4), computing the negative log-
likelihood mainly requires the evaluation of two terms:
a quadratic data term yTK−1

η y and a complexity term
log det

(
Kη

)
. Since the data term involves solving the same

linear system as required for learning, we can compute it effi-
ciently using the techniques presented previously. In contrast
to that, the complexity term requires the determinant of the
kernel matrix, which is a costly algebraic operation evenwith
fast HIK multiplications (Yuster 2008). Due to this reason,
we develop an upper bound of the log determinant which
will ultimately lead to the upper bound of the negative log-
likelihood.

The derived bound is based on the results of Bai andGolub
(1997), which turns out to be efficiently computable with
HIKs. Let us therefore assume that for a given positive def-
inite matrix M ∈ R

N×N , all eigenvalues λi can be bounded
by 0 < λi ≤ β. Then, an upper bound of the log-determinant
is given by:

log det(M) ≤ [
logβ, log t

] [
β t
β2 t2

]−1 [
μ1

μ2

]
(18)

·= ub(β, μ1, μ2) (19)

with t̄ = βμ1 − μ2

βn − μ1
, (20)

whereμ1 = tr (M) is the trace of thematrix andμ2 = ‖M‖2F
is the Frobenius norm (Bai and Golub 1997).

While Bai and Golub (1997) proved the correctness of
that bound, its tightness is what finally matters in practi-
cal applications. From this point of view, it is interesting to
note that the bound is tight for regularized rank-1 matrices
M = uuT + τ I . This fact arises as a direct generalization
of the result from Bai and Golub (1997) on Pei matrices.
Fortunately, kernel matrices computed on common datasets
are often of low rank as observed by Williams and Seeger
(2000). Thus, we can expect that the bound can indeed offer
sufficient accuracy in many scenarios. We give an empirical
proof for this statement in Sect. 10.1.

How to Efficiently Evaluate the Upper Bound Function To
calculate the bound given in Eq. (19) for the regularized ker-
nel matrix K̃η, we need its largest eigenvalue λmax, its trace
μ1, and its squared Frobenius norm μ2. We first compute
the largest eigenvalue λmax with the Arnoldi iteration, which
only requires matrix vector products. In our experiments, the
algorithm needed approximately T3 ∼ 10 steps until conver-
gence with high accuracy for various settings.

The trace of the regularized kernel matrix can be decom-
posed into two terms:

tr(K̃η) =
N∑
i=1

(
κ(xi , xi ) + σ 2

n

)

= σ 2
n · N +

N∑
i=1

D∑
d=1

min(xi (d) , xi (d)). (21)

The first part arises from the noisemodel, whereas the sum of
self-similarities constitutes the second part. For the specific
choice of HIK, the latter one is equal to the sum of all feature
values:

tr(K̃η) = σ 2
n · N +

N∑
i=1

D∑
d=1

xi (d) . (22)

If we use L1-normalized histograms with ‖xi‖1 = 1, this
further simplifies to tr(K̃η) = (σ 2

n +1) ·N . Note that similar
derivations hold for GHIKs. As we can see, incorporating
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prior knowledge about kernels and features helps for speed-
ing up the computations.

However, the squaredFrobenius normof K̃ η is not directly
available. Nonetheless, we can approximate it as shown next.
To this end, let M again denote the number of classes of the
classification task and let λi be the i th largest eigenvalue of
the regularized kernel matrix such that λ1 ≥ · · · ≥ λN are
sorted in decreasing order. Then, an intuitive approximation
is μ2 = ∑N

i=1 λ2i ≥ ∑M
i=1 λ2i = μ̃2. The motivation for this

approximation is as follows: if we have M classes with very
compact clusters and large distances between each other, the
kernel matrix should obey a simple block structure of rank
M leading to M non-zero eigenvalues and hence μ2 ≈ μ̃2.

Due to the fact that our approximation of μ2 is a lower
bound of ‖K̃η‖2F , the necessary computations in Eq. (19) are
still well-defined. We verify in the next section that we still
have a proper upper bound of the log-determinant. The final
upper bound is:

log det(K̃η) ≤ ub

(
λmax, tr

(
K̃η

)
,

M∑
i=1

λ2i

)
. (23)

With our experimental results in Sects. 9.3, 10.1, and 10.4,we
show how to successfully utilize the resulting upper bound
of the negative GP log-likelihood for hyperparameter opti-
mization.

6.2 Proof of the Upper Bound in Case of Frobenius
Norm Approximation

So far, we have proposed to use a lower bound for the
Frobenius norm of K̃η based on the sum of the M largest
eigenvalues to avoid expensive computations of the orig-
inal negative log-likelihood. In the following, we prove
that we are able to obtain a valid upper bound of the log-
determinant with the bound of Bai and Golub (1997) even
when using a lower bound of the Frobenius norm. Our proofs
are completely algebraic and do not require knowledge of
the Gaussian quadrature techniques used in Bai and Golub
(1997). First of all, we show the validity of the modified
upper bound for β = 1. The proofs of the results are given
in Appendix.

Lemma 1 (Monotonicity for β = 1) Let μ̃2 with 0 < μ̃2 ≤
μ2 be a lower bound of the squared Frobenius norm of a
regular positive definite matrix M, e.g., μ̃2 = ∑M

i=1 λ2i with
M < N. Then the following holds for every positive definite
matrix M with μ1 = tr(M) and β = 1 being the largest
eigenvalue of M:

ub(1, μ1, μ̃2) ≥ ub(1, μ1, μ2). (24)

The next lemma shows that scaling the matrix M with
γ > 0 leads to an additive constant in the bound, which
is independent of μ1 and μ2. This constant is equivalent to
the one occurring in log det (γ M) = log det (M)+ N log γ ,
therefore, the quality of the bound is invariant with respect
to γ . Note that the squared Frobenius norm scales with γ 2

and t̄ with γ (see Eq. 20).

Lemma 2 (Multiplicative scaling) For all suitable parame-
ters β,μ1, and μ2 of a positive definite matrix and every
positive factor γ > 0, the following holds:

ub(γβ, γμ1, γ
2μ2) = ub(β, μ1, μ2) + N · log γ. (25)

The last step is to combine both lemmas, which leads
directly to the validity of the bound of Bai and Golub for our
Frobenius norm approximation:

Theorem 2 (Upper bound with μ̃2) Let M ∈ R
N×N be a

positive definite matrix with trace μ1, squared Frobenius
norm μ2, and upper bound β for the eigenvalues (e.g., the
largest eigenvalue). If μ̃2 is a lower bound of μ2, the follow-
ing holds:

log det(M) ≤ ub(β, μ1, μ2) ≤ ub(β, μ1, μ̃2). (26)

With this theorem on hand, we are able to efficiently optimize
hyperparameters even in large-scale scenarios as validated in
the experimental sections.

6.3 Optimization Technique

The actual optimization is carried outwith amethod that does
not require any gradient information, because calculating the
gradient of the log-likelihood or the gradient of our upper
bound is still a costly operation. A popular technique for this
task is the downhill-simplex method, which is also known
as Nelder–Mead method (Nelder and Mead 1965). Note that
any other black-box optimization method could be applied
as well. In experimental evaluations, however, we stick to the
downhill-simplex technique.

7 Estimating the GP Predictive Variance

Up to now, we only considered fast computations of the pre-
dictive mean derived from GP regression. However, in many
scenarios such as active learning or novelty detection it is
important to get an estimate for the uncertainty of the predic-
tion as well. The uncertainty is mostly measured in terms of
class entropy. For Gaussian distributions, it is directly related
to the variance. Due to this reason, we develop methods to
efficiently compute the GP predictive variance also in large-
scale scenarios.
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As presented inEq. (3), the predictive varianceσ 2∗ depends
on three terms. From these three terms, the a-priori variance
is formed by the first term and the third term, i.e., by k∗∗ =
κ(x∗, x∗) known as self-similarity and the noise variance
σ 2
n . Thus, there are no previously known training examples

considered so far. In contrast, the second term reduces this a-
priori variance based on the similarities between test example
x∗ and training examples X .

To efficiently computeσ 2∗ , we start in Sect. 7.1 by applying
the techniques for fast classification introduced in Sect. 5.2.
However, since the second term is a quadratic form instead
of a linear form in k∗, these computations are not highly effi-
cient. Therefore, we further show how to approximate the
second term in an efficient manner using fast kernel evalua-
tions (Sects. 7.2 and 7.3).

7.1 PUP: Precise Uncertainty Prediction

Naively computing the predictive variance for a single test
example x∗ involves three steps:

(1) explicitly computing the kernel vector k∗,
(2) solving α∗ = K̃

−1
k∗ specific for x∗, and

(3) computing the inner product of k∗ and α∗.

For step 1, we requireO (ND) operations to explicitly eval-
uate the kernel function for all examples and dimensions.
After that, we can apply an iterative linear solver in step 2
to compute α∗. As noted previously, this requiresO (NDT1)
operations. Finally, we can compute the product of k∗ and α∗
inO (N ) operations to obtain the desired data term. Since no
approximation is involved, we refer to this method as Precise
Uncertainty Prediction (PUP).

In total, we need O (NDT1) operations to compute the
exact predictive variance for an unseen example during test-
ing. However, since T1 is implicitly related to N , the resulting
runtime might be too slow for large-scale applications. In
addition, the exact values of classification uncertainties are
not even required in certain scenarios. Active learning is one
example, where only the relative order of uncertainty val-
ues is important. For these scenarios, we develop efficient
approximations as shown in the following.

7.2 FAPU: Fine Approximation of the Predictive
Uncertainty

To obtain efficient approximations of the predictive vari-
ance, we start by considering fundamental properties of the
involved computations. Since the regularized kernel matrix
K̃ is symmetric and positive definite, the same holds for its
inverse. Therefore, we can use upper and lower bounds for

quadratic forms to obtain suitable approximations for σ 2∗ (see
Appendix for details ).

To this end, let M ∈ R
N×N be a positive definite matrix.

Then, linear algebra provides us with the following lower
bound on the quadratic form of M for any vector x ∈ R

N :

xTMx ≥
N∑

i=N−k+1

λi x̃ (i)2

+ λN−k

⎛
⎝||x||2 −

N∑
j=N−k+1

x̃ ( j)2

⎞
⎠ ,

(27)

where x̃ ( j) is the projection of x onto the j th eigenvector of
M. With the parameter k, we can influence the tightness of
the bound which is exact for the extreme case of k = N . As
before, each variable λ j denotes the j th largest eigenvalue of
M.

We can now apply the lower bound of Eq. (27) to the data
term of the predictive variance given in Eq. (3) by instantiat-

ing M = K̃
−1

:

σ 2∗ ≤ k∗∗ −
( N∑
j=N−k+1

λ j k̃∗ ( j)2
)

− λN−k

(
||k∗||2 −

N∑
j=N−k+1

k̃∗ ( j)2
)

+ σ 2
n .

(28)

While this result looks promising, we spent major efforts in
previous sections to circumvent explicit computations of the
inverse kernel matrix. In consequence, we can not access cor-
responding eigenvalues or eigenvectors directly. Fortunately,
linear algebra provides us with relations between eigenval-
ues and eigenvectors of a matrix M and its inverse. In fact,
for any symmetric and positive definite matrix M, eigenval-
ues λ of M are in relationship with eigenvalues ξ of M−1 via
λ j = 1

ξN− j+1
. Furthermore, the eigenvector ofM correspond-

ing to λi is the same as the eigenvector of M−1 belonging
to ξN−i+1. Consequently, we obtain ν (i) = k̃∗ (N − i + 1)
for the projection of k∗ onto the i th eigenvector of K̃ .

Using both relations, we can reformulate the previous
bound in terms of eigenvectors and eigenvalues of the implic-
itly accessible kernel matrix K̃ :

σ 2∗ ≤ k∗∗ −
( k∑
i=1

1

ξi
ν (i)2

)

− 1

ξk+1

(
||k∗||2 −

k∑
i=1

ν (i)2
)

+ σ 2
n .

(29)
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Since we can adjust k for the desired precision, we call
this technique a fine approximation of the predictive uncer-
tainty (FAPU).

As noted previously, eigenvalues and eigenvectors can be
computed using the Arnoldi iteration. For k + 1 eigenval-
ues and k eigenvectors, this requires O (NkT3) operations.
Again, the number of iterations T3 until convergence was
almost constant about 10 in our experiments. For the explicit
computation of the kernel vector k∗, we still have to spend
O (ND) operations. Squared projections k̃∗ (i)2 of k∗ onto
eigenvectors can then be computed in O (N ). Similar con-
siderations hold for the norm ||k∗||2.

In summary,weneedO (ND + NkT3)operations to com-
pute the fine approximation of σ 2∗ as given in Eq. (29).
Although we thereby reduce the quadratic scaling, we still
depend linearly on N . Nonetheless, using the histogram inter-
section kernel, we can even develop a coarser approximation
leading to a further speed-up as shown next.

7.3 CAPU: Coarse Approximation of the Predictive
Uncertainty

The extreme case of the previous approximation is obtained
with k = 0:

σ 2∗ ≤ k∗∗ − 1

ξ1
||k∗||2 + σ 2

n . (30)

Thus, even for the most extreme approximation using FAPU,
we still require a computation time linear in N to compute
k∗ and its squared norm. However, for the specific choice
of HIK as the kernel function, we note that ||k∗||2 can be
expressed as follows:

||k∗||2 = kT∗ k∗ =
N∑
i=1

( D∑
d=1

min (x∗ (d) , xi (d))
)2

. (31)

Wewill now exploit the properties of the HIK to approximate
||k∗||2 by a lower bound. Thereby, we will still obtain a valid
upper bound approximation for the predictive variance as
given in Eq. (30).

One important aspect for the approximation arises from
properties of sparse features. When features have only a few
non-zero entries, the majority of mixed termss

min (x∗ (d1) , xi (d1)) · min (x∗ (d2) , xi (d2))

between different dimensions in Eq. (31) will vanish. For a
sparsity ratio of 0.1, these are already 99% of all terms! In
these scenarios, neglecting the mixed terms is well justifiable
and we obtain an expression that looks like a Parzen density
estimation with squared kernel values:

||k∗||2 ≥
N∑
i=1

D∑
d=1

(min (x∗ (d) , xi (d)))2

=
N∑
i=1

D∑
d=1

min
(
x∗ (d)2 , xi (d)2

)
. (32)

On a closer look, we notice that Eq. (32) is similar to Eq. (6)
but with squared features and α ≡ 1. Therefore, we can
apply the same techniques as described in Sect. 4.1 with
squared feature values. Furthermore, we can even use the
same permutations of the learning data. The only additional
overhead comes from computing a newmatrix Aσ 2∗ ∈ R

D×N

storing the cumulative sums of squared feature values similar
to A of Sect. 4.1.

In consequence, we can compute the squared kernel vec-
tor within O (D log N ) operations for an unseen example
x∗. Note that we can now even apply the quantization idea
described in Sect. 4.2. Thereby, the computation time is ulti-
mately reduced to O (D) operations and only requires the
additional computation of a look-up table Tσ 2∗ similar to T
of Sect. 4.2. We refer to this fastest uncertainty approxima-
tion with q-CAPU.

We visualized all approximations in Fig. 3 for the 2D
scenario already used in Fig. 1. As we can nicely see, the
approximation error of FAPU is inversely related to the num-
ber of eigenvectors used. Furthermore, the approximation
converges from a piecewise quadratic function (FAPU) to
a piecewise linear function (CAPU). While the precision is
thereby reduced,we simultaneously reduce the required eval-
uation time as well.

A final overview of all the presented approaches for
predictive variance computations as well as their result-
ing runtimes and decision functions is given in Table 2. In
summary, we are able to efficiently compute the predictive
variance with adjustable precision as well as adjustable time
to spend. Note that the predictive variance is the same for
all known classes (Rasmussen andWilliams 2006), thus, our
computation times are efficient even for an extremely large
number of different classes. In Sect. 11,we compare our tech-
niques in termsof runtimes needed in large-scale experiments
and study their usability for the task of active learning.

8 Incremental and Active Learning

Large-scale learning is not only important for training based
on a large chunk of data in batch mode, but also when the
dataset is growing incrementally. We therefore show that
incremental learning can be realized within our framework
with just a few minor modifications. Furthermore, we also
show how standard active learning methods can be directly
used with our efficient estimates of the GP predictive mean
and variance.
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Fig. 3 Approximating the predictive variance σ 2∗ using our techniques
which exploit properties of the HIK. Approximations are obtained with
FAPU (left) for different numbers of k [see Eq. (29)] or using the
the coarse approximation (right) without and with quantization of test

inputs [see Eq. (30)]. The setup is identical to Fig. 1 where no approx-
imation was applied. a FAPU (k = 4). b FAPU (k = 1). c CAPU.
d q-CAPU (q = 10)

Table 2 Overview of the
presented approaches to
compute the predictive variance
σ 2∗

Method Asymptotic runtime Resulting score Approximation

GP-standard O (
N2 + ND

)
Eq. (3) None (exact)

PUP (Sect. 7.1) O (DNT1) Eq. (3) None (exact)

FAPU (Sect. 7.2) O (T3kDN) Eq. (29) Rank k approx. of K̃

CAPU (Sect. 7.3) O (Dlog N) Eq. (30) Rank 1 approx. of K̃ , sparse feature
assumption

q-CAPU (Sect. 7.3) O (D) Eq. (30) Rank 1 approx. of K̃ , sparse feature
assumption, quantized test inputs

For details see the derivations in the corresponding sections. The parameters D and T1 are defined as in
Table 1, The number of eigenvectors used in the approximation is denoted with k. Variable T3 is the number
of iterations needed by the Arnoldi technique. We highlight the number of training examples N with bold
font

8.1 Fast Incremental Learning

The usual blueprint for object recognition systems is to train a
classifier on a given set of labeled data and to apply the result-
ing model on unseen examples. Although current research
led to impressive results even on highly challenging datasets
with this strategy (Lazebnik et al. 2006; Vedaldi et al. 2009;
Kapoor et al. 2010), it suffers from two main drawbacks.
First of all, there is no possibility to exploit labeled examples
that are available after the training process. In consequence,
we often neglect potentially useful information. Besides, this
strategy will fail in situations where existing categories vary
over time (e.g., cell phone designs) or new categories become
available (e.g.,Apple’s iPod in 2001).

We can naively resolve these drawbacks by trivial training
from scratch as soon as new data is accessible. However, we
would thereby suffer fromhuge computational costs. For rep-
resenter models such as Kernel-SVM or GP, every retraining
would require O (

N 3
)
since no information about the previ-

ously trainedmodel is used. In contrast to that, incremental or
online learning methods explicitly rely on previously trained
models to efficiently adapt them over time. In the following,
we show how to extend our GP/HIKfor incremental learn-
ing.

As presented in the previous sections, training of
GP/HIKmodelsmainly consists of three stages: (1) sort train-
ing examples in every dimension, (2) compute the weight

vector α using an iterative linear solver, and (3) compute the
matrices A and B as well as the look-up table T if required.
For new training examples, we can exploit the previous cal-
culations in every stage to significantly speed-up the process
of retraining:

(1) We can build on the given sorting of each dimension
and find the correct position for a novel example in
each dimension, which takesO (log N ) time for a single
dimension and O (D log N ) in total.

(2) Using the previously calculated α as an initialization for
the iterative linear solver, we can significantly speed-up
the process until convergence since the variations of α

are smooth and small, especially for large training sizes.
(3) For updating the arrays A and B as well as the look-up

table T , we only need to correct entries that are affected
by new examples.

In addition to updates of the classification model, we could
also adapt hyperparameters and optimize them on the fly.
This would allow for adapting our model to new situations,
e.g.,when other feature dimensions become important to dis-
tinguish between categories. To speed up the optimization,
we can easily use previous values of the hyperparameters
as initial values for the optimization method, which is also
known as warm-start.
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In summary, we significantly benefit from previous calcu-
lations in every training step. We further validate this aspect
in our experiments in Sect. 9.9.

8.2 Active Learning with Gaussian Processes

Amain advantage of Gaussian processes is the possibility for
giving feedback about how certain the classification result is.
Aside from this apparent use of the predictive variance, it was
successfully applied as a query strategy in active learning
by Kapoor et al. (2010). The goal of active learning is to
improve a classification model by selecting a few but highly
informative examples for manual annotation. In this section,
we briefly review the main ideas of Gaussian process based
active learning.

For active learning, one typically has a small set X =
{x1, . . . , xN } consisting of labeled data and a large set XU =
{x′

1, . . . , x
′
N ′ } of unlabeled examples. To obtain a classifierA

trained withmost informative examples, one exploits a query
function Q that scores each unlabeled example. An oracle
(e.g., a human expert) is then asked for the ground-truth label
of the example x∗ with best score. Consequently, an active
learning scenario can be seen as a quadruple (A,Q, X, XU).

One further distinguishes query strategies in two groups
(Ebert et al. 2012). Exploitative methods utilize examples of
X including their labels and rely on scores derived from out-
puts of the involved classifier. In contrast to that, explorative
methods neglect the label information and query new exam-
ples only based on the distribution of the current examples.
For the choice of Gaussian processes, Kapoor et al. (2010)
introduced three possible query strategies which directly
build on the trained model. Selecting examples based on
smallest absolute predictive mean:

Qμ∗
(
x′) = − ∣∣μ∗

(
x′)∣∣ , x∗ = argmin

x′∈XU

∣∣μ∗
(
x′)∣∣ (33)

is an exploitative method and selects examples close to the
current decision boundary. Complementary, selecting exam-
ples with large predictive variance:

Qσ 2∗
(
x′) = σ 2∗

(
x′) , x∗ = argmax

x′∈XU

σ 2∗
(
x′) (34)

is explorative and prefers examples with highest classifi-
cation uncertainty regarding the known training examples.
Finally, Kapoor et al. (2010) propose to select examples with
small uncertainty1:

1 Note that in the remainder of the article, the term uncertainty refers
to classification uncertainty, and not to the query strategy introduced by
Kapoor et al. (2010).

Qunc
(
x′) = −

∣∣μ∗
(
x′)∣∣

√
σ 2∗ (x′)

, x∗ = argmin
x′∈XU

∣∣μ∗
(
x′)∣∣

√
σ 2∗ (x′)

. (35)

as a combination of Qμ∗ and Qσ 2∗ . The motivation here is
to obtain a query function similar to the minimum margin
approach suitable for SVMs (Tong and Koller 2001) but with
the additional consideration of the classification uncertainty.
We apply our techniques for efficient GP inference to these
query strategies in Sect. 11.3 enabling active learning with a
large pool of unlabeled examples.

9 Experimental Analysis: Large-Scale
Classification

Our experimental evaluation is divided in three parts, thereby
following the structure of the previous theoretical sections.
In the current section, we analyze our techniques for efficient
classification in large-scale scenarios. The suitability of our
optimization approach is evaluated in Sect. 10 and experi-
ments with our variance computation techniques are finally
presented in Sect. 11.

9.1 Main Experimental Datasets

The majority of evaluations in the following three sections is
done on two datasets which we shortly introduce here.

ImageNet for Multi-Class Classification To evaluate com-
putational scalability of our introduced techniques, the Ima-
geNetdataset as used for the ILSVRC’10 competition (Berg
et al. 2010) serves as a perfect benchmark. We use in total
150,000 images from 1000 different categories from this
dataset. Learned models are evaluated on 50,000 examples
from the ILSVRC’10 validation dataset. As commonly done
for ImageNet experiments, the flat-1-error is used as a mea-
sure of accuracy indicating the ratio of correctly classified
examples among all test data.

ImageNet for Binary Classification Training of multi-class
GP models with 1000 categories and hundreds of thousands
of training examples is extremely time consuming even with
our efficient GP/HIK techniques. Therefore, we also derive
binary classification tasks from this dataset to allow for fur-
ther analyses that have taken less time. Binary tasks are
derived in a one-vs-all manner, i.e.,we use all images of a
single class as positive examples and  examples from each
of the other 999 categories as negative examples. Thereby,
we obtain 200 tasks from the first 200 categories. Models
are evaluated on the validation set using average AUC as a
measure of accuracy.
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Table 3 Large-scale learning and classification for 200 binary ImageNet tasks: computation times are given as median values of measurements for
each task (learning) and each test example (classification)

Method 10, 090 examples ( = 10) 50, 050 examples ( = 50)

AUC learning time classif. time AUC learning time classif. time

GP with HIK (cholesky) 0.836 >3.5h 1.1 s —∗ —∗ —∗

GP with HIK (ours) 0.836 64s 44μs 0.856 321s 44μs

* Not possible due to excessive memory demand

15Scenes for Detailed Analyses We also use the 15Scenes
dataset as a small-scale benchmark (Lazebnik et al. 2006),
where all 15 classes are used for multi-class classification.
Following the suggestion ofQuattoni andTorralba (2009), all
images are scaled to a size of 256× 256 pixels to get results
which are not biased on different characteristic image sizes
for specific categories. Accuracy of learned models is mea-
sured with the averaged class-wise recognition rate (ARR).

9.2 Experimental Setup

Generalized histogram intersection kernels are designed
to compare histogram-like image representations. There-
fore, we represent images using either BOW features or
non-negative activations of convolutional neural networks
(CNNs). BOW features are computed using the available
toolkit2 provided with the ILSVRC’10 challenge (Berg
et al. 2010). We use the provided visual codebook with
1, 000 elements to allow for easy reproducibility. CNN acti-
vations are obtained from the AlexNet CNN learned on
ImageNet (Donahue et al. 2013) and extracted using theCaffe
toolbox.

For optimization of hyperparameters, we use the Nelder–
Mead technique (Nelder and Mead 1965) as mentioned in
Sect. 6.3.

9.3 Large-Scale Experiments with ImageNet

The first question we are particularly interested in is whether
our provided techniques allow for applying GP models to
large-scale data. Therefore, we investigate two scenarios on
the ImageNetdataset: binary classification and multi-class
classification.

Binary Classification Scenarios Let us start with evaluating
computational benefits arising from GP/HIKin compari-
son with the GP baseline implementation using a Cholesky
decomposition and explicit kernel evaluations. Here, we only
create binary classification scenarios to obtain at least some
results for the baseline approach in affordable time. Images

2 http://www.image-net.org/challenges/LSVRC/2011/
ILSVRC2011_devkit-2.0.tar.gz.

are represented using provided BOW features with 1, 000
dimensions. Results are shown in Table 3 for  = 10 and
 = 50 resulting in 10, 090 and 50, 050 training examples,
respectively. Computation times are measured on a single-
core Intel 2.6GHz machine and our method makes use of a
quantization with 100 bins to speed up classification.

As can be seen in Table 3, we are able to learn GP classi-
fierswithin a fewminuteswithout loss in accuracy. In contrast
to that, the baseline GP implementation is not applicable to
more than some thousands of examples—due to computa-
tion time and memory demand. In particular, standard GP
regression for  = 50 exceeded our memory capacities by
resulting in a 19 GB kernel matrix.

In summary, we observe that our approach for training
and classification is significantly faster than the baseline
GP (speed-up factor: 196) and has only a linear memory
requirement. Due to both aspects, it allows for learning on
large-scale datasets that are otherwise intractable for exact
GP inference.

Multi-class Classification Scenarios For a multi-class clas-
sification experiment on ImageNet, we compare against
SVM solvers publicly available. Specifically, we choose the
popularLibSVMpackage asKernel-SVMsolverwith default
parameter settings. Since κHIK is not directly supported by
LibSVM, we follow provided suggestions and apply an RBF
kernel instead. Furthermore, we compare against LibLin-
ear as standard solver for linear SVM models in large-scale
image classification scenarios (Deng et al. 2010). We apply
an adaptive quantization with q = 100 bins for each dimen-
sion as introduced in Sect. 4.2. As before, we use provided
BOW features with 1, 000 dimensions. For different num-
bers of training examples, we average over ten random splits.
Results in terms of Flat-1 error rates are shown in Fig. 4.

We observe that GP/HIKcan successfully be used in large
multi-class classification scenarios with 1000 categories. For
a small number of training examples N , GP/HIKeven outper-
formsLibLinear but is slightly inferior for increasing training
sets. In addition, LibSVM leads to significantly larger errors.
We believe that this results from fixed default settings for
regularization parameters used in our experiment.
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Fig. 4 Flat-1 error for multi-class classification using all 1000 cate-
gories of ImageNet and provided BOW features

In summary, we observe that GP/HIK is a useful alter-
native to established SVM solvers in large multi-class
scenarios.

9.4 Detailed Analysis Using the 15Scenes Dataset

The previous experiments confirmed the applicability of our
GP/HIK to large-scale data. Nonetheless, a simple BOW
image representation can not compete with state-of-the-art
today. Thus, previous results only serve as proof-of-concept.
We are now interested in investigating whether GP/HIK is
also useful to work on recent image representations extracted
from CNN activations. We chose the 15Scenesdataset to
guarantee that all training data fit into our available mem-
ory even with the largest applied image representation of
D = 64, 896 feature dimensions (relu3).

GP/HIKon CNN Activations For different numbers of train-
ing examples, we trained GP/HIKmodels on top of different
CNN activations. We used layers relu3 to relu7 due to
their non-negativity. Results are shown in Fig. 5.

First of all, we note that GP/HIK is indeed applicable as
model on top of CNN activations. Besides, we find that high-
level activations of layers relu6 and relu7 give the best
performance for this task. Interestingly, earlier experiments
in (Freytag et al. 2014b) showed that humans only obtain an
accuracy level of 85.67% on this dataset. Thus, the accuracy
of 87.98% with relu7 and the largest train size is indeed
remarkable.

GP/HIKversus SVM Baselines As in the previous section,
we also compare against linear and kernelized SVM as base-
lines. Based on the previous results, we use relu7 features
as representations. For consistency, we also add results for
BOW representations and an overview is given in Table 4.
As can be seen, we again outperform the SVM baselines
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Fig. 5 Performance of GP/HIKon 15Sceneswith CNN features
extracted from different relu layers and a varying number of
training examples per class

when the same features are used. The recognition rate of
a linear SVM is even lower when an L1-normalization of
the features is applied, a pre-processing technique which we
use for our GP methods. Another not so surprising fact is
the superiority of CNN compared to BOW or SPMK (BOW
with spatial pyramid matching) features. The only technique
currently outperforming our method is an AlexNet carefully
fine-tuned on 15Scenes . However, thismethod often requires
a grad-student tweaking hyperparameters for a day.

In summary, we find that our techniques can serve as pow-
erful, probabilistic classification technique on top of recent
image representations.

9.5 Evaluation of Linear Solvers with Fast HIK
Multiplications

In the following, we compare the performance of conjugate
gradients with fast HIK matrix multiplications as presented
in Sect. 4 against two coordinate descent approaches: (1) the
coordinate descent method of Wu (2010) applied to GP and
(2) the greedy block coordinate descent (GBCD) approach
of Bo and Sminchisescu (2012). The first one was originally
presented for fast SVM learning with HIK and directly oper-
ates on the look-up table T (Sect. 4). GBCD calculates parts
of the kernel matrix on the fly to solve sub-problems. For our
experiments, the size of the sub-problems is set to 10 and the
number of components for greedy selection is 20. We also
tested other values like a sub-problem size of 60 and 500
number of components as suggested by (Bo and Sminchis-
escu 2012), but did not achieve a significant speed-up. Note
that our approach and (Wu 2010) exploit fast HIK matrix
multiplications, while (Bo and Sminchisescu 2012) can be
applied for every kernel function.

We use again the ImageNetdataset with binary tasks and
solve the linear system K̃η · α = y with all three methods.
Since we only care about the speed of convergence, we use
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Table 4 Evaluation of
GP/HIKon the 15Scenesdataset
with standard BOW features
(upper part) and CNN features
(lower part)

Method Features ARR

Linear SVM (Fan et al. 2008) BOW 68.4%

SVM/HIK (Quattoni and Torralba 2009) BOW 64.1%

SVM/HIK (Quattoni and Torralba 2009) GIST 73.0%

SVM/HIK (Quattoni and Torralba 2009) SPMK 73.4%

GP/HIK(Ours) BOW 70.8%

Linear SVM (Sun and Ponce 2013) learned patches 86.00%

Linear SVM (Fan et al. 2008) AlexNet-relu7 85.87%

GP/HIK(Ours) AlexNet-relu7 87.95%

AlexNet CNN with fine-tuning – 90.92%
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Fig. 6 Evaluation of the runtime and convergence of linear solvers: (1)
our conjugate gradients method, (2) the coordinate descent method of
Wu (2010), and (3) greedy block coordinate descent of Bo and Smin-
chisescu (2012)

a rather small-scale setup with  = 1. Figure 6 shows the
residual of the linear system with respect to the computation
time needed. Termination is done when the maximum norm
of the residual drops below 10−6. Computation times are
measured on a single-core Intel 2.6GHz machine.

As can be seen in Fig. 6, there are orders of magnitude
between all three methods. Conjugate gradients reaches a
solution in 3.7 seconds, which is superior to the coordinate
descentmethodofWu (2010) applied toGP (32s until conver-
gence). GBCD is slow (convergence after 16 minutes) due to
the long time needed for explicit calculation of kernel values
for features of dimension D = 1, 000. It should be noted that
solving the linear system of GP regression needs more time
than solving an SVM optimization problem as presented by
Wu (2010). This is due to the additional sparsity constraints
of SVM. Furthermore, runtime results presented by Bo and
Sminchisescu (2012) lookedmore promising, which is likely
due to the low dimensionality of chosen features (D ≤ 37)
in the paper. In summary, we find that the CG method nicely
fits to our techniques for fast matrix-vector multiplications
using HIKs.
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Fig. 7 Evaluation of model regularization by early stopping. Desired
accuracies for the iterative linear solver to stop the computation are dis-
played on the x axis, whereas the y axis shows the resulting recognition
rate as a measure of generalization abilities. The standard HIK serves
as kernel function

9.6 Early Stopping of the Linear Solver

Early stopping refers to performing optimization not until
convergence but only up to the point when the residual is
lower than apredefined threshold. For large-scaleSVMs,Per-
ronnin et al. (2012) figured out that regularization by early
stopping leads to suitable generalization abilities with the
additional benefit of computation time saved. Since the iter-
ative linear solver in our proposed methods allows for early
stopping as well, we evaluate in the following whether their
findings also hold here.

For an experimental evaluation, we conduct experiments
on the 15Scenesdatabase (Lazebnik et al. 2006) using our
GP/HIKand BOW features. We stopped the process of train-
ing at different levels of accuracy reached by the iterative
linear solver, i.e., if the residual dropped below predefined
values. Experimental results are shown in Fig. 7.

First of all, we notice a rapid convergence of the result-
ing classification accuracy even if we stop the linear solver
with an extremely high residual. In fact, an early stopping
might even lead to better generalization performance. We
therefore conclude that early stopping the calculation of
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Fig. 8 Comparison of our approach with the FITC method of
QuiñoneroCandela andRasmussen (2005) on the 15Scenesdatasetwith
relu7 features. For FITC, different relative sizes of the inducing set
are used

weights α is advisable. In our experiments, the number of
iterations needed until reaching the stopping criterion grew
exponentially with the desired accuracy. This fact addition-
ally highlights the benefit of early stopping.

In summary, we find that early stopping of the iterative lin-
ear solver leads to well regularized models and significantly
saves computation times.

9.7 Comparison with GP Sparsity Methods

An important family of methods for large-scale Gaussian
process inference covers sparse approximation techniques.
Among them, the Fully Independent Training Conditional
Approximation (FITC) is presumably themost powerful rep-
resentative (Quiñonero Candela and Rasmussen 2005). It is
therefore interesting to compare our efficient techniques for
exact inference against FITC as a representative for sparse
GP approximations. Similar to previous experiments, we use
the 15Scenesdataset and relu7 features. Results for other
CNN layers lead to comparable conclusions. Again, we aver-
age over ten random splits. For FITC, we evaluate different
sizes of the inducing set. The accuracies depending on the
number of training examples per category are visualized in
Fig. 8. Furthermore, we compare required computation times
for training and inference in Fig. 9.

With respect to classification accuracy (Fig. 8), we out-
perform FITC especially for small inducing sets with a large
margin. We can thus conclude that our techniques allow for
exact GP inference and circumvent the necessity of sparse
approximations. Regarding time for inference, we observe
in Fig. 9 that the our quantization approach leads to con-
stant computation time. In contrast, FITC’s computation time
increases with the number of known examples. For training,
however, we notice that FITC results in faster learning times.
Although this does not hold asymptotically (see Table 1), the
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Fig. 9 Comparison of our approach with FITC with respect to (top)
time needed during inference for each test example and (bottom) total
time needed for training. See Fig. 8 for an analysis of the resulting
accuracies

investigated setting has too few examples and too large fea-
ture dimensions to fully unveil the gain in computation time.
In direct comparison, we thus conclude that our techniques is
especially beneficial for learning from large datasets without
requiring sparse approximations.

9.8 Evaluation of the Quantization

We already applied the quantization idea in Sect. 9.3 to
evaluate GP models trained with hundreds of thousands of
examples within milliseconds. For simplicity, we set the
number of bins per dimension to q = 100 and obtained iden-
tical accuracies as the baseline GP. Let us now evaluate the
resulting classification accuracy as well as required compu-
tation times for training and inference with varying numbers
of quantization bins per dimension.

Our experiments in this section are performed on
15Sceneswith L1-normalized relu7 features. For ten ran-
dom splits, each setting is evaluated to allow for statistically
significant but comparable results. Computation times are
measured on an Intel Core i7-3930K CPU desktop com-
puter with 3.20 GHz and without any parallelization. All
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Fig. 10 Effect of different quantization levels on classification accu-
racy (top), required computation times during training (middle), and
for inference (bottom). Results are obtained on the 15Scenesdataset
and averaged over ten random splits. a Accuracy (note the small range
of the y axis). b Training time. c Classification time

computation times include overhead arising from convert-
ing features from Matlab data structures to C++pendants in
Mex-interfaces. Results are shown in Fig. 10.

As we can nicely observe in Fig. 10a, quantizing feature
values does not negatively affect the classification accuracy.
In fact, for all evaluated settings, classification results are
comparable to those achieved with exact inference. It should
be noted that this effect is also due to the adaptive quanti-
zation. For a uniform quantization equal in all dimensions,
accuracy drops significantly for small number of bins (not
shown here).

From Fig. 10b, we further observe that the training time
grows over the exact baseline the more bins are required,
since larger LUTs need to be computed and stored. Finally,
classification times are shown in Fig. 10c. We observe clear
speed-ups compared to the exact baseline.

In summary, we find that quantization of features saves
valuable time during classification at the cost of an affordable
overhead. Already with 100 bins per dimension, classifica-
tion results are on-par with the exact baseline.

9.9 Comparing Incremental and Batch Learning

In Sect. 8.1, we analyzed how to efficiently handle new data
without the necessity of retraining the classifier from scratch.
To evaluate the resulting benefit, we show results of experi-
ments conducted on the 15ScenesdatasetwithBOWfeatures.
In 100 runs, we randomly pick 10 examples per class as
an initialization. During each run, we incrementally add 1
example per class over 50 iterations resulting at most 900
examples used for training the model. Every iteration con-
sists of training the classifier as well as optimizing kernel
hyperparameters to perform parameter optimization on the
fly. Performances are evaluated on a disjoint test set consist-
ing of 50 examples per class and the results are visualized in
Fig. 11.

From the plot in Fig. 11a, we make the well-known obser-
vation that using more examples is beneficial for training
better models. In addition, we notice that the models learned
in an incremental manner lead to almost identical results
as those from models trained from scratch. However, when
taking the computation times given in the plot of Fig. 11b
into account, we obtain a clear advantage of our incremental
learning approach compared to simple retraining. This speed-
up increases with the number of examples and is therefore
especially useful for large-scale scenarios.

Note that the major update time is spent for finding opti-
mal hyperparameters during updates. Thus, we could obtain
further speed-ups by running optimization steps only after a
batch of new data with several examples has been recorded.
Since hyperparameters only vary slowly, this would be well
justifiable in practice.

Summarizing, we are able to efficiently update our model
when new data is available even with an involved parameter
optimization, which allows for using Gaussian processes for
large-scale scenarios in lifelong or active learning.

10 Experimental Analysis: Hyperparameter
Optimization

In this section, we are interested in evaluating our approach
for efficient hyperparameter optimization as presented in
Sect. 6. The results of this section can be summarized as
follows:

(1) Optimizing the exact log-likelihood and our upper
bound approximation lead to similar optima in practice
(Sect. 10.1).
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Fig. 11 Comparison of incremental learning and learning from scratch: a classification results achieved by both methods (the graphs are identical),
b corresponding times for retraining the classifier when new data is accessible

(2) Generalized histogram intersection kernels improve the
classification performance significantly compared to
standard HIK (Sect. 10.2 and Sect. 10.3).

(3) Feature relevance determination can be done by opti-
mizing the marginal likelihood of a weighted HIK
(Sect. 10.4).

(4) Early stopping is also applicable when hyperparameters
are optimized (Sect. 10.5).

10.1 Verifying the Bound of the Negative Marginal
Log-Likelihood

Before we evaluate potential benefits which arise from opti-
mizing hyperparameters, we are first of all interested in the
tightness of our introduced bounds for the negative GP mar-
ginal log-likelihood presented in Sect. 6. We therefore train
GP models on the 15Scenesdataset with BOW features as
image representations and different values of η for HIK-
POLY. Then, we evaluate our upper bound approximation
as well as the exact value for the negative log-likelihood
− log p( y | X, η). Furthermore, we evaluate trained models
on hold-out test data and report average recognition rates
to investigate the relation between likelihood and accuracy.
Results are shown in Fig. 12.

First of all, we notice that the exact log-likelihood is
closely connected to the resulting accuracy. Thus, the log-
likelihood is a useful criterion for adapting hyperparameters
of models to training data. Furthermore, it can be seen that
our bound closely matches the true negative marginal log-
likelihood in this setup. In consequence, the minima of both
curves only differ slightly and our optimization technique can
be successfully applied. For higher values of η, our bound
converges to the exact value because the influence of the log-
determinant term compared to the data term of the marginal
log-likelihooddecreases.Consequently, possible approxima-
tion errors become less important and the data term can be
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Fig. 12 Comparison between our upper bound of the negative mar-
ginal log-likelihood, the real negative marginal log-likelihood (left y
axis), and resulting ARR on the test set (right y axis). Different hyper-
parameter values for HIK-POLY are shown on the x axis

computed without any approximation even for large-scale
datasets. We observed a similar behavior for other datasets
and settings.

In summary, we find that our upper bound approximation
is well suited for optimization of hyperparameters.

10.2 Different Generalized HIK for Binary
Classification

Since we found that our upper bound tightly matches the
exact log-likelihood, we are now interested in the resulting
benefits of optimizing generalized variants of the HIK. We
again start with evaluations on binary classification tasks
similar to Sect. 9.3. The experimental setup is kept identi-
cal but with activated optimization of hyperparameters for
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Table 5 Benefit of
hyperparameter estimation for
200 binary ImageNet tasks:
Computation times are given as
median values of measurements
for each task (learning) and each
test example (classification)

Method 10,090 examples ( = 10) 50,050 examples ( = 50)

AUC Learning time Classif. time AUC Learning time Classif. time

GP/HIK 0.836 64 s 44μs 0.856 321 s 44μs

GP/HIK-POLY 0.865 435 s 44μs 0.883 2815 s 44mus

GP/HIK-EXP 0.889 579 s 44μs 0.893 2578 s 44μs

Optimization was done for the hyperparameters of κHIK-POLY and κHIK-EXP, respectively

Table 6 Evaluation of hyperparameter optimization for κHIK-POLY and
κHIK-EXP: classification accuracy is obtained on the 15Scenesdataset
with standard BOW features (upper part) and CNN features (lower part)

Method Features ARR

GP/HIK BOW 70.8%

GP/HIK-POLY BOW 72.9%

GP/HIK-EXP BOW 74.0%

GP/HIK AlexNet-relu7 87.95%

GP/HIK-POLY AlexNet-relu7 87.07%

GP/HIK-EXP AlexNet-relu7 87.87%

Compare also against Table 4

κHIK-POLY and κHIK-EXP. Experimental results are shown in
Table 5.

As we can see, our optimization technique based on the
upper bound approximation is able to handle datasets with
tens of thousands of training examples. Thereby, we obtain
accuracy gains statistically significant with p < 10−7 mea-
sured by a paired t test.

In summary, we find that our optimization technique leads
to valuable accuracy gains in binary classification settings.

10.3 Different Generalized HIK for Multi-class
Classification

For an analysis of hyperparameters in multi-class classifi-
cation scenarios, we build on the previous evaluations of
Sect. 9.4 and use the 15Scenesdataset with BOW and CNN
features. In contrast to the previous evaluation, we now opti-
mize hyperparameters of HIK-POLY and HIK-EXPwith our
GP marginal likelihood optimization technique. Thus, this
analysis complements the previous results shown in Table 4.
Results are given in Table 6.

For the BOW features, we observe that optimizing hyper-
parameters of GP/HIK-EXP results in the highest accuracy.
In fact, it is even comparable to the result of the spatial
pyramid matching kernel (SPMK) by Quattoni and Torralba
(2009) as shown in Table 4. This highlights the power of
generalized HIK and our hyperparameter optimization.

When applying CNN features (lower part of Table 6),
results show a huge increase of performance in general
leading to state-of-the-art results. It should be noted that

in contrast to results by Sun and Ponce (2013), we do not
perform patch discovery or fine-tuning to obtain features
especially suited for the dataset, but still improve on their
results listed in Table 4. Interestingly, the generalized HIK
does not further increase classification accuracy—it even
reduces the performance slightly. We have not yet a convinc-
ing explanation for this phenomenon, which requires further
research.

In summary, we find that our GP marginal likelihood
optimization method is technically suited to optimize hyper-
parameters in multi-class classification scenarios. Useful
adaptations and other kernel parameterizations for recent
CNN features remain an open question.

10.4 Feature Relevance Estimation

We have already seen that Gaussian processes allow for
hyperparameter optimization by marginal likelihood esti-
mation. In this experiment, we show the suitability of GP
equipped with optimized weighted HIK for efficient feature
relevance determination leading to superior results compared
to those of SVM-based estimations.

Since there is no exact gradient information during the
optimization available, the Nelder–Mead method converges
poorly for huge numbers of parameters to be optimized.
Consequently, computing feature relevance for features with
thousands of dimensions, as in our previous experiments, is
almost impossible right now.

Nevertheless, as a proof of concept we follow the same
synthetic experimental setup as Ablavsky and Sclaroff
(2011): for different numbers of training examples, we
randomly sample eight-dimensional feature vectors with rel-
evant information only available in the first two dimensions.
The performance is estimated with 500 tests. For the spe-
cific random distributions, we refer the reader to the work
of Ablavsky and Sclaroff (2011) and references therein. The
results of our experiments can be seen in Fig. 13.

The information included in each dimension is well
reflected by the estimated relative weights ηi , which can be
observed from the plot in Fig. 13a. Furthermore, the plot
in Fig. 13b shows the recognition accuracy for standard and
weighted HIKwith respect to the training size. The improve-
ment is highly significant with p < 10−7 using the paired
t test. In comparison with Ablavsky and Sclaroff (2011),
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Fig. 13 Relevance determination with very generalized histogram
intersection kernels and GP hyperparameter optimization. The first
two features contain most of the discriminative information: a feature

weights estimated with 5 examples per class, b performance compared
to non-weighted histogram intersection kernels. Results are averaged
over 500 runs

our approach additionally leads to more consistent weights
and higher accuracies. The experimental results emphasize
the benefits of a probabilistic framework for hyperparameter
optimization.

In addition, regularization terms could be added to the
objective, such as terms based on the minimum description
length principle. However, this is beyond the scope of this
paper.

10.5 Early Stopping of the Linear Solver

In Sect. 9.6, we investigated the effect of early stopping for
GP/HIK .However,we did not optimize hyperparameters and
applied the plain κHIK instead. Let us therefore investigate
whether the same findings hold if optimization is addition-
ally activated. We therefore repeat the same experiments as
in Sect. 9.6 but optimize parameters of HIK-POLY using
our marginal likelihood optimization technique. Results are
shown in Fig. 14.

As for the plain κHIK, we again notice a rapid conver-
gence of the resulting classification accuracy. In contrast, to
the results without hyperparameter optimization there is no
benefit of early stopping in terms of accuracy. In addition,
it should be noted that the optimal hyperparameter value
remained unchanged for all settings of the stopping criterion
throughout our experiments.

We conclude that early stopping is well applicable for
hyperparameter optimization using our upper bound for
the negative log-likelihood, since it leads to a significant
speed-up due to a decrease in iterations of the linear solver.
However, an increase in accuracy with early stopping cannot
be expected.
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Fig. 14 Evaluation of model regularization by early stopping. Desired
accuracies for the iterative linear solver to stop the computation are
displayed on the x axis. The y axis shows the resulting recognition
rate as a measure of generalization abilities. In contrast to the previous
evaluation in Sect. 9.6, we now optimize the hyperparameter η of the
HIK-POLY

11 Experimental Analysis: Uncertainty Prediction

The third part of our experimental analysis deals with the
uncertainty approximation introduced in Sect. 7. We can
summarize the results of this section as follows:

(1) The predictive variance of Gaussian processes can be
approximated efficiently even in large-scale scenarios
with a speed-up of up to 45, 000× (Sect. 11.1).

(2) Our upper bound approximations closely follow the
exact variance scores (Sect. 11.2).

(3) Approximation of the predictive variance leads to active
learning results comparable to the ones achieved with
the exact predictive variance (Sect. 11.1).

123



Int J Comput Vis (2017) 121:253–280 275

Table 7 Runtimes needed for the computation of the predictive vari-
ance using the presented techniques from Sect. 7 in comparison to the
baseline GP on two image categorization datasets (see Sect. 11.1)

Method Number of training examples

1, 500 10, 090 50, 050

GP, plain formulation 60.36 ms 1.54 s —∗

PUP (Sect. 7.1) 2.11 s 22.92 s >1 min

FAPU (Sect. 7.2), k = 8 13.73 ms 105.63 ms 1.47 s

FAPU (Sect. 7.2), k = 2 13.35 ms 105.37 ms 1.15 s

CAPU (Sect. 7.3) 5.92 ms 62.07 ms 266.97 ms

q-CAPU (Sect. 7.3) 13.32μs 33.89μs 33.89μs

* Not possible due to excessive memory demand

11.1 Fast Computation of the Predictive Variance

We start this section by evaluating the efficiency of our
proposed techniques for computing the predictive variance
in terms of computation times needed. As in the previous
sections, we conduct experiments on the 15Scenesdataset
(Lazebnik et al. 2006) as well as on the large-scale Ima-
geNet dataset. For the 15Scenesdataset, we randomly pick
100 examples of each class for training resulting in 1500
training examples in total. Training on the large-scale Ima-
geNet dataset with binary tasks is carried out using  = 10
or  = 50 randomly chosen examples per negative class and
100 examples for the positive class, which results in 10, 090
and 50, 050 training examples in total. Computation times
are averaged over all remaining examples. Experiments in
this section are conducted on a 3.4 GHz CPU without any
parallelization.

Experimental results are shown in Table 7. Especially
for large-scale datasets, we obtain a significant speed-
up compared to the direct computation of the variance
(GP-standard). For rapid uncertainty prediction, the CAPU
method turns out to behighly suitablewith computation times
in the order of microseconds. It should be noted that the PUP
method is relatively slow due to the involved computations
of the iterative linear solver. Although we have already seen
the efficiency of a linear conjugate gradient method for this
problem, it still needed some hundreds of iterations until con-
vergence, especially for large training sets. Therefore, we
argue to use the precise method only in cases where time is
not the limiting factor, but the GP baseline can not be com-
puted explicitly due to the huge memory demand.

11.2 Investigating the Tightness of Variance
Approximations

In a second experiment, we investigate the deviation between
exact variance scores and our introduced approximations.
As argued before, two outcomes can be acceptable which

depends on the application scenario: (1) either the approxi-
mations should be close to the exact scores (e.g., for security
applications with fixed thresholds), or (2) only the correct
relative order is of interest (e.g., active learning). We analyze
our techniques regarding both aspects in the following.

As previously, we use the 15Scenesdataset for evalua-
tion. Images are represented using L1-normalized relu7
features. For training, we select three categories with 50 ran-
domly chosen examples of each category. All remaining data
serves for model evaluation. Thereby, we obtain a small set
of examples from known categories and a significantly larger
pool of unknown categories. The noise level for model regu-
larization is fixed toσ 2

n = 0.1. For FAPU,we spend T3 = 100
iterations for theArnoldi technique to estimate even 16 eigen-
vectors reliably The quantization for q-CAPU is done with
q = 100 bins per dimension and dimension-adaptive.

To analyze the deviation of scores, we sort variance scores
of the exact PUP technique increasing order. Predictions
of the remaining techniques are re-arranged accordingly.
Results are shown in the left part of Fig. 15. For visualization,
only every 5th sample is plotted.

The relative order of scores is additionally analyzed by
normalizing scores of each method individually into [0, 1].
Again, scores of PUP are ordered decreasingly and scores
of remaining methods are plotted accordingly. Results are
shown in the right part of Fig. 15.

First of all, we clearly observe the upper bound rela-
tionship among our introduced techniques. Regarding exact
scores, it can be seen that PUP is closedmatched by the FAPU
approximation. Hence, FAPU should be used when approx-
imation errors are undesirable. Besides, we observe that
q-CAPU and CAPU lead to identical results although their
scores differ strongly from the exact counterparts. Nonethe-
less, the relative order is comparable (right figure). Hence,
CAPU is a reasonable choice if only the relative order of
variance estimates is required.

11.3 Application for Active Learning

In a final experiment, we are interested in applying our
GP/HIK to active learning scenarios. Therefore, we apply the
three query strategies by Kapoor et al. (2010) as reviewed in
Sect. 8.2.We evaluate our methods on the difficult real-world
ImageNet dataset. For each experiment, we randomly pick a
single positive class as well as four, nine, or nineteen classes
providing negative examples. Starting with two randomly
chosen examples per class, we query new examples using
the proposed methods. Each task is repeated with 100 ran-
dom initializations. Final results are achieved by averaging
over 100 different tasks. For variance estimation, we apply
our FAPU technique with k = 2 eigenvectors for the approx-
imation. Experimental results are given in Fig. 16.
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Fig. 15 Tightness of GP/HIKvariance approximations on the
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Fig. 16 Active learning results on 100 binary classification tasks derived from the ImageNet dataset. Best viewed in color. a 4 negative classes. b
9 negative classes. c 19 negative classes

We first notice that concerningQσ 2∗ , we again obtain inter-
esting results, since it is inferior to random sampling for a
small number of negative classes but slightly superior for
larger number of classes. Query strategies Qμ∗ and Qunc

tend to pick similar examples even on this challenging dataset
resulting in almost identical performances, which is due to
the strong influence of the mean term in Qunc.

As a concluding remark we state that for active learning,
a suitable combination of mean and variance is beneficial
to obtain satisfying learning rates, and our techniques are

appropriate for computing query scores even for thousands
of possible queries in large-scale learning scenarios.

12 Conclusions

In this article, we presented solutions for efficient Gaussian
process inference in large-scale scenarios. Our techniques
cover all aspects of inference, i.e., exact multi-class classi-
fication with label regression, hyperparameter optimization,
and uncertainty prediction. A key aspect of all techniques
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is to exploit generalized histogram intersection kernels,
which have proved to be highly suitable for measuring sim-
ilarities between histogram-like representations. Thereby,
our derived methods yield significant asymptotic as well
as practical speed-ups (several orders of magnitude) while
requesting only a linear amount of memory. We empirically
validated our techniques for a wide range of application
scenarios and provided detailed analyses of all involved
aspects. Experimental results disprove common belief that
full non-parametric Bayesian methods are too expensive for
large-scale data.

We believe that the presented techniques can be applied
to a wide range of other uses of a GP model (Bonilla et al.
2008; Pillonetto et al. 2010; Bo and Sminchisescu 2010),
where the inversion of the kernel matrix or computing its
log-determinant is the main bottleneck. Finally, the joint
possibility for efficient and exact classification, uncertainty
prediction, hyperparameter adaptation, and online learning
ultimately allows for life-long learning applications with
never-ending data streams.

Our developed source code is publicly available at https://
github.com/cvjena/gp-hik-core and licensed under LGPL.
Since we provide C++ implementation as well as Matlab
interfaces, we hope that other computer vision researchers
can use our techniques as additional classification tool
besides LibSVM or LibLinear.

Acknowledgements This research was partially supported by grant
DE 735/10-1 of the German Research Foundation (DFG).

Quantization Error Analysis

Proof of Theorem 1 The quantization trick approximates a
new example x∗ with a quantized version x̃∗. In the follow-
ing, we assume D quantizations with q bins are given for
each dimension. For each input value x (d) ∈ [ld , ud ], we
can compute a quantized value z̃. The maximum quantiza-
tion error εq is then defined as follows:

εq = max
x(d)∈[l,u] max

1≤d≤D
|x (d) − z̃|. (36)

Our goal is to analyze the difference between the exact
predictive mean μ∗ and the one computed with the quanti-
zation trick μ̃∗:

|μ∗ − μ̃∗| = |kT∗α − k̃
T
∗α|

= |(k∗ − k̃∗)Tα| ≤
N∑
i=1

|�k (i) ||α (i) | (37)

where we have defined�k (i) = κ(xi , x∗)−κ(xi , x̃∗) as an
abbreviation. Let us analyze this term in more detail using
the relation min(a, b) = 1

2 · (a + b − |a − b|):

|�k (i) | = |κ(xi , x∗) − κ(xi , x̃∗)|

=
∣∣∣∣∣

D∑
d=1

min(xi (d) , x∗ (d)) − min(xi (d) , x̃∗ (d))

∣∣∣∣∣

= 1

2

∣∣∣∣∣
D∑

d=1

xi (d) + x∗ (d) − |xi (d) − x∗ (d) | . . .

. . . − xi (d) − x̃∗ (d) + |xi (d) − x̃∗ (d) ||

= 1

2

∣∣∣∣∣
D∑

d=1

x∗ (d) − x̃∗ (d) − |xi (d) − x∗ (d) |+ . . .

. . . |xi (d) − x̃∗ (d) || . (38)

We can now exploit the fact that x∗ is normalized to sum up
to a constant value, e.g., 1. Furthermore, we assume that this
also holds for x̃∗. This assumption is reasonable for a high
dimension D and a quantization errorwith zeromean. Putting
both aspects together, we obtain the following equality:

|�k (i) | = 1

2

∣∣∣∣∣
D∑

d=1

|xi (d) − x̃∗ (d) | − |xi (d) − x∗ (d) |
∣∣∣∣∣

= 1

2
|‖xi − x̃∗‖1 − ‖xi − x∗‖1| (39)

Due to the symmetry in the inequality with respect to x∗
and x̃∗, we can assume without loss of generality that ‖xi −
x̃∗‖1 ≥ ‖xi − x∗‖1. This allows us to apply the triangle
inequality and we finally obtain:

|�k (i) | = 1

2
(‖xi − x̃∗‖1 − ‖xi − x∗‖1)

≤ 1

2
(‖xi − x∗‖1 + ‖x∗ − x̃∗‖1 − ‖xi − x∗‖1)

= 1

2
‖x∗ − x̃∗‖1. (40)

This directly leads to |�k (i) | ≤ D·εq
2 . Combined with

Eq. (37), this proofs the final result of the Theorem.
The bound can be also improved by considering the sum

of quantization errors in each dimension, but we skipped this
fact for brevity and ease of notation. 
�

Proof of the Bound

Proof of Lemma 1 First note that due to the conditions of
the lemma, the following holds: 1 ≤ μ2 < μ1 ≤ N and
t̄ > 0. Furthermore, the bound is only valid for β �= t̄ ,
because otherwise the 2 × 2 matrix within the bound would
be singular.

123

https://github.com/cvjena/gp-hik-core
https://github.com/cvjena/gp-hik-core


278 Int J Comput Vis (2017) 121:253–280

We now start by deriving the coefficients for μ1 and μ2.
The first part of Eq. (19) can be written as:

[
logβ, log t̄

] [
β t
β2 t2

]−1

= [
logβ, log t̄

] (
1

β t̄2 − t̄β2

[
t̄2 −t̄

−β2 β

])

= 1

β t̄2 − t̄β2

[
t̄2 logβ − β2 log t̄, β log t̄ − t̄ logβ

]

= 1

t̄ − β

[
logβ

β
t̄ − log t̄

t̄
β,

log t̄

t̄
− logβ

β

]
. (41)

Therefore, we get the following short form of Eq. (19) with
β = 1:

ub(1, μ1, μ2) = log t̄

t̄
(
t̄ − 1

) (μ2 − μ1)

definition of t̄ = log

(
μ1 − μ2

N − μ1

)
·

(
μ1 − μ2

N − μ1

(
μ1 − μ2

N − μ1
− 1

))−1

(μ2 − μ1)

simplify = log

(
μ1 − μ2

N − μ1

)
·

(N − μ1)
2(μ2 − μ1)

(μ1 − μ2)(μ1 − μ2 − N + μ1)

cancel μ1 − μ2 = log

(
μ1 − μ2

N − μ1

)
(N − μ1)

2

N − 2μ1 + μ2
. (42)

Let μ̃2 with 0 < μ̃2 ≤ μ2 be a lower bound of the squared
Frobenius norm. If we replace μ2 with μ̃2 in Eq. (42), we
notice that the log-term increases and the denominator of the
second part decreases. This directly leads us to the validity
of the lemma. 
�

Proof of Lemma 2

ub(γβ, γμ1, γ
2μ2) = [

log γβ, log γ t̄
] ·

([
γ 0
0 γ 2

][
β t̄
β2 t2

])−1 [
γ 0
0 γ 2

][
μ1

μ2

]

= ([
logβ, log t̄

] + [
log γ, log γ

]) ·
[

β t̄
β2 t̄2

]−1 [
μ1

μ2

]

definition of ub = ub(β, μ1, μ2)+
[
log γ, log γ

] ·
[

β t̄
β2 t̄2

]−1 [
μ1

μ2

]

= ub(β, μ1, μ2) + ũbγ (β, μ1, μ2). (43)

Now, we show that the second term equals to N · log γ by
using the definition of t̄ and the calculation of the weights for
μ1 andμ2 as done in the beginning of the proof of Lemma 1:

ũbγ (β, μ1, μ2) = (log γ )
[
1, 1

]·
[

β t̄
β2 t̄2

]−1 [
μ1

μ2

]

see proof of L1 = log γ

t̄ − β

[
t̄

β
− β

t̄
,
1

t̄
− 1

β

] [
μ1

μ2

]

= log γ(
t̄ − β

)
t̄β

[
t̄2 − β2, β − t̄

] [
μ1

μ2

]

= log γ

t̄β

[
t̄ + β, −1

] [
μ1

μ2

]

= log γ

t̄β

((
t̄ + β

)
μ1 − μ2

)

definition of t̄ = (log γ )
βN − μ1

β2μ1 − βμ2
·

((
βμ1 − μ2 + β2N − βμ1

βN − μ1

)
μ1 − μ2

)

= (log γ )
−μ1μ2 + β2Nμ1 − βNμ2 + μ1μ2

β2μ1 − βμ2

= (log γ )
β2Nμ1 − βNμ2

β2μ1 − βμ2

= N · log γ. (44)


�
Proof of Theorem 2 The first part of the inequality was
proved by Bai and Golub (1997) and the proof for the second
part is straightforward by applying Lemma 2 with γ = 1

β

followed by using Lemma 1:

ub(β, μ1, μ2)=ub

(
1,

μ1

β
,
μ2

β2

)
−N · log

(
1

β

)
L2

≤ub

(
1,

μ1

β
,
μ̃2

β2

)
−N · log

(
1

β

)
L1

=ub(β, μ1, μ̃2). L2 (45)


�

Bounds on Quadratic Forms

From linear algebrawe know that any real-valued, symmetric
matrix M ∈ R

N×N can be transformed into M = UDUT

where D is a positive definite diagonal matrix containing the
eigenvalues of M and U is an orthogonal matrix of the same
size as M. Therefore, we notice that for any vector x ∈ R

N

the following holds:

xTMx = xTUDUTx = x̃TDx̃ =
N∑
i=1

λi x̃ (i)2 . (46)
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We denoted with λi the decreasingly ordered eigenvalues of
M, i.e.,λ1 ≥ · · · ≥ λN , and x̃i contains the projection of x
onto the i th column of U , which is the i th eigenvector of M.
As a result, we can bound the quadratic form in Eq. (46) as
follows:

xTMx =
k∑

i=1

λi x̃ (i)2 +
N∑

j=k+1

λ j x̃ ( j)2 (47)

≤
k∑

i=1

λi x̃ (i)2 + λk+1

N∑
j=k+1

x̃ ( j)2 . (48)

Since U is an orthonormal basis, it does not influence the
length of vectors, i.e., ||Ux|| = ||x||. Therefore, we can
obtain the following upper bound:

xTMx ≤
k∑

i=1

λi x̃ (i)2 + λk+1

(
||x||2 −

k∑
i=1

x̃ (i)2
)
. (49)

Equivalently, we get the following lower bound considering
the k smallest eigenvalues of M and bounding the remaining
eigenvalues with the (k + 1)th smallest:

xTMx ≥
N∑

j=N−k+1

λ j x̃ ( j)2

+ λN−k

(
||x||2 −

N∑
j=N−k+1

x̃ ( j)2
)
.

(50)

For the special cases of k = 0 in Eq. (49) and Eq. (50), we
obtain thewell known bounds for any positive definitematrix
M and any vector x of corresponding size:

λN (M) ||x||2 ≤ xTMx ≤ λ1(M) ||x||2 . (51)
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